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Abstract For the first time, explicit closed forms are derived for characteristic func-
tions for the extreme value distributions of type 2 and type 3. These expressions
involve the Fox’s H2,0

0,2 function and the Wright generalized confluent hypergeometric
1�0-function. A discussion of applications is given.
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1 Introduction

Let X1, X2, . . . , Xn be an independent and identically distributed sequence of ran-
dom variables, and let Mn = max1≤k≤n Xk denote the partial maximum. If there
exist normalizing constants an > 0, bn ∈ R and a nondegenerate distribution F(x)

such that

P (Mn ≤ an x + bn) −→ F(x)

as n → ∞ then F(x) is said to be an extreme value distribution (EVD) (Fisher
and Tippett 1928; Gnedenko 1943; Gumbel 1958). Three forms are possible for
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F(x), known as EVDs of type 1, type 2 and type 3. In general form, the cumu-
lative distribution function (CDF) of the EVD of type 1 (also known as Gumbel
distribution) is

F(x) = exp
{

− exp
(

− x − μ

σ

)}
(1.1)

for −∞ < x < ∞, −∞ < μ < ∞ and σ > 0. The type 2 EVD (also known as
Fréchet distribution) has the CDF

F(x) = exp
{

−
( x − μ

σ

)−α}
(1.2)

for x > μ, α > 0, −∞ < μ < ∞ and σ > 0. The type 3 EVD has the CDF

F(x) = exp
{

−
(μ − x

σ

)α}

for x < μ, α > 0, −∞ < μ < ∞ and σ > 0. The type 3 EVD is equivalent to the
Weibull distribution that has the CDF

F(x) = 1 − exp
{

−
( x − μ

σ

)α}
(1.3)

for x > μ, α > 0, −∞ < μ < ∞ and σ > 0.
The parameter, α, in Eqs. 1.2 and 1.3 controls the shape of the EVDs. The type 2

EVD has heavy upper tails for all α > 0. Its upper tails become heavier with smaller
values of α. The type 3 EVD has heavy upper tails for 0 < α < 1. Its upper tails
become heavier with smaller values of α ∈ (0, 1). The type 3 EVD has exponen-
tially decaying light upper tails for all α ≥ 1. Its upper tails become lighter with
larger values of α ∈ [1, ∞). Since the EVDs of type 2 and type 3 accommodate
heavy upper tails, they have received applications in numerous areas. These include:
insurance claim-size distribution, estimation of extreme rainfall return levels, plane-
tary perturbations on Oort cloud comets, modeling high-resolution synthetic aperture
radar images, fatal traffic accidents, texture analysis, value-at-risk analysis, flood risk
assessment, commodity price distribution, internet traffic and risk theory. For other
application areas, we refer the readers to the excellent book Embrechts et al. (1997).

The characteristic function (CHF) of a random variable, X say, defined by
φX (t) = E exp{it X}, where i = √−1, is a fundamental tool in probability and
statistics. So, one would like to have a closed form expression for φX (t) for every X
if that is possible. If X has the CDF given by Eq. 1.1 then it is well known that

φX (t) = exp
{
iμt

}
�

(
1 − iσ t

)
. (1.4)

However, for the distributions given by Eqs. 1.2 and 1.3, closed form expressions for
φX (t) have not been known in the literature.

The CHFs can be used, for example, to derive the distribution of X1+X2+· · ·+Xn

when Xi , i = 1, 2, . . . , n are independent and follow the EVDs. The result in Eq. 1.4
has been used, for example, to derive the distribution of the sum of independent
Gumbel random variables, see Nadarajah (2007, 2008a).
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Sums of independent Fréchet random variables arise in a variety of contexts:

1. as models for the distribution of ground state energy in the context of disordered
systems of statistical mechanics, see Biroli et al. (2007a, b).

2. as compound sums in insurance for the distribution of total claim amount.

Each of the cited papers contains explicit details involving sums of independent
Fréchet random variables.

Sums of independent Weibull random variables are of prime importance in wire-
less communications and related areas, see Filho and Yacoub (2006). They also arise
in a wide variety of other contexts:

1. for cell migration and proliferation during monolayer formation and wound
healing (Roberts and Wiihem 1964).

2. as models for the long-term stress range response distribution in offshore
structural reliability analysis (Veritas 1995).

3. study of the influence of publication delays on the aging of scientific literature
(Egghe and Rousseau 2000).

4. as models for radar clutter and thermal noise (Helstrom 2000).
5. for spectral estimation in time series analysis (Gunter 2001).
6. as models for sums of waiting times (Kleiner 2001).
7. for modeling value at risk-efficient portfolios (Malevergne and Sornette1 2004).
8. for modeling rough surfaces (Yu and Polycarpou 2004).
9. as models to fit the distribution of sea clutter with spikes (Dong 2006).

10. as models for synthetic aperture radar images (Sun and Han 2009; Wan-She and
Zheng 2000).

Each of the cited papers contains explicit details involving sums of independent
Weibull random variables.

The authors are not aware of any work deriving expressions or even approxima-
tions for the distribution of sums of independent Fréchet random variables. However,
there is considerable work giving approximations for the distribution of sums of
independent Weibull random variables. Beaulieu (1990) provides an infinite series
approximation for the distribution of the sum of Rayleigh random variables (Rayleigh
is the particular case of Weibull for α = 2). Hu and Beaulieu (2005) provide
simple and accurate closed-form approximations to Rayleigh sum distributions and
densities. Karagiannidis et al. (2005) propose a closed form upper bound for the
distribution of the weighted sum of Rayleigh random variables. Vegas-Sanchez-
Ferrero et al. (2010) suggest that a gamma distribution is a good approximation for
the distribution of the weighted sum of Rayleigh random variables. Various authors
have proposed approximations based on mixtures of exponentials for the distribution
of the sum of Weibull random variables, see, for example, Feldmann and Whitt
(1998), Asmussen (2000), Dufresne (2007) and Ko and Ng (2007).

Zhang (1999) gives the simplest approach for finding the Rayleigh sum distribu-
tion. The idea is to use the CHF. The CHF of a Rayleigh random variable directly
involves the standard normal CDF, a well known function. So, by the inversion theo-
rem, the Rayleigh sum distribution is a single integral of a well known function. Such
integrals can be computed easily using any platform. This approach circumvents the
need for approximations.
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The motivation for our work comes from Zhang (1999). We first find expressions
for the CHFs of Fréchet and Weibull random variables, see Sections 2 and 3. We then
apply the inversion theorem for these expressions to find the sum distributions, see
Section 4.

For the EVD of type 2, the authors are not aware of any work giving closed form
expressions for φX (t). However, closed form expressions are possible for some par-
ticular cases. For example, if α = 1 in Eq. 1.2 then φX (t) can be expressed in terms
of the modified Bessel function of the second kind (Gradshteyn and Ryzhik 2000,
Sections 8.407 and 8.43).

For the EVD of type 3, there has been considerable work to find closed form
expressions for φX (t) for some particular cases. If α is an integer in Eq. 1.3 then
Cheng et al. (2004) express φX (t) in terms of the Meijer’s G function (Gradshteyn
and Ryzhik 2000, Section 9.3). If α is a rational number then Sagias and Karagian-
nidis (2005) express φX (t) in terms of the Meijer’s G function. Nadarajah and Kotz
(2007) provide an alternative expression involving finite series of generalized hyper-
geometric functions (Gradshteyn and Ryzhik 2000, Section 9.14) for the case α is
a rational number. Ismail and Matalgah (2007) use Padé approximation techniques
to obtain closed-form approximations for φX (t). Muraleedharan et al. (2007) and
Muraleedharan (2008) give two forms φX (t): the first is simply a re-expression of
the definition of φX (t):

φX (t) =
∫ ∞

−∞
cos(t x) fX (x)dx + i

∫ ∞

−∞
sin(t x) fX (x)dx,

where fX (x) denotes the probability density function (PDF) of X . The second form
given is grossly incorrect as pointed by Nadarajah (2008b, c). Finally, note that φX (t)
takes an elementary form if α = 1 and involves the standard normal CDF if α =
1/2, 2.

The main results of this note are explicit closed form expressions for the CHF for
the EVDs of type 2 and type 3. These results are new.

Sections 2 and 3 provide expressions for φX (t) when X has the CDFs Eqs. 1.2 and
1.3, respectively. These expressions involve the Fox’s H function and the Wright gen-
eralized hypergeometric function. Section 4 discusses how the results of Sections 2
and 3 can be applied in practice.

For integers m, n, p, q ∈ N0 = {0, 1, 2, . . .} such that m ≤ q, n ≤ p, and for
ai , b j ∈ C and Ai , B j > 0, i = 1, p, j = 1, q , the H function, Hm,n

p,q (z), is defined
via a Mellin-Barnes integral in the form

Hm,n
p,q (z) ≡ Hm,n

p,q

[
z

∣∣∣∣
(ai , Ai )1,p(
b j , B j

)
1,q

]

= Hm,n
p,q

[
z

∣∣∣∣
(a1, A1) , . . . ,

(
ap, Ap

)
(b1, B1) , . . . ,

(
bq , Bq

)
]

= 1

2π i

∫

L
�m,n

p,q (s)z−sds (1.5)
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with

�m,n
p,q (s) =

m∏
j=1

�
(
b j + B j s

) n∏
k=1

� (1 − ak − Aks)

p∏
k=n+1

� (ak + Aks)
q∏

j=m+1
�

(
1 − b j − B j s

) . (1.6)

Here, z−s = exp{−s ln |z|+i arg z}, z 
= 0, where arg z is not necessarily the principal
value, while the empty product in Eq. 1.6 is taken to be one. The integration path L
is an infinite contour which separates all poles of the gamma functions �(b j + B j s),
j = 1, m to the left and all poles of the gamma functions �(1 − ak − Aks), k = 1, n
to the right of L. Precise details can be found in Mathai and Saxena (1978, Chapter
1), Srivastava et al. (1982, Chapter 1) and Kilbas et al. (2006).

The complex parameter Wright generalized hypergeometric function, p�q(·),
with p numerator and q denominator parameters (Kilbas et al. 2006, Equation (1.9))
is defined by the series

p�q

[ (
α1, A1

)
, . . . ,

(
αp, Ap

)
(
β1, B1

)
, . . . ,

(
βq , Bq

) ; z
]

=
∞∑

n=0

∏p
j=1 �

(
α j + A j n

)
∏q

j=1 �
(
β j + B j n

) zn

n! (1.7)

for z ∈ C, where α j , βk ∈ C, A j , Bk 
= 0, j = 1, p, k = 1, q and the series con-
verges for 1+∑q

j=1 B j−∑p
j=1 A j > 0, compare with Mathai and Saxena (1978) and

Srivastava et al. (1982). This function was originally introduced by Wright (1935).
If any of the parameters (m, n, p, q) in Eq. 1.5 is zero then the corresponding

product in Eq. 1.6 should be taken as one. For example, if n = 0 then the second
product in the numerator of Eq. 1.6 should be taken as one. If p = 0 then the first
product in the denominator of Eq. 1.6 should be taken as one. If m = n = p = q = 0
then Eq. 1.5 is undefined.

Similarly, if any of the parameters (p, q) in Eq. 1.7 is zero then the corresponding
product should be taken as one. For example, if p = 0 then the product in the numer-
ator of Eq. 1.7 should be taken as one. If q = 0 then the product in the denominator
of Eq. 1.7 should be taken as one. If p = q = 0 then Eq. 1.7 is undefined.

Hypergeometric functions are included as in-built functions in most mathematical
software packages, so the special functions in Eqs. 1.5 and 1.7 can be easily eval-
uated by the software packages Maple, Matlab and Mathematica using known
procedures.

2 CHF for the EVD of type 2

Define on a standard probability space (
,F,P) a random variable X having the
CDF Eq. 1.2. The corresponding PDF is

fX (x) = α

σ

( x − μ

σ

)−α−1
exp

{
−

( x − μ

σ

)−α}
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for x > μ. The corresponding CHF is

φX (t) = E exp {it X} = α

σ

∫ ∞

μ

( x − μ

σ

)−α−1
exp

{
it x −

( x − μ

σ

)−α}
dx

= α exp{iμt}
∫ ∞

0
uα−1 exp

{
iσ tu−1 − uα

}
du. (2.1)

Consider the integral

Zν
ρ(z) =

∫ ∞

0
uν−1 exp

{ − uρ − z/u
}
du

for ρ ∈ R, ν ∈ C and z ∈ C\{0}. This integral is referred to as the complex parameter
Krätzel function, studied in detail by Kilbas et al. (2006). The Mellin-transform of
Zν

ρ(z) is (Kilbas et al. 2006, Lemma 3.1):

(
MZν

ρ

)
(s) =

∫ ∞

0
Zν

ρ(z)zs−1dz = 1

|ρ|�(s)�
(ν + s

ρ

)

for ρ 
= 0 and ν ∈ C. On the other hand, by the definition Eq. 1.5 of the H function,
it follows

(
MHm,n

p,q

)
(s) = �m,n

p,q (s).

That is, Zν
ρ(z) in the case ρ > 0 can be represented as the H function in the following

form:

Zν
ρ(z) = 1

ρ
H2,0

0,2

[
z

∣∣∣∣
−

(0, 1), (ν/ρ, 1/ρ)

]

for ρ > 0 and for all z ∈ C\{0}. Now, comparison with Eq. 2.1 by setting ν = ρ = α

leads us to the following result.

Theorem 2.1 Let X be a random variable having the EVD of type 2. Then the CHF
has the closed form:

φX (t) =

⎧⎪⎨
⎪⎩

exp {iμt} H2,0
0,2

[
− iσ t

∣∣∣∣
−

(0, 1), (1, 1/α)

]
, t 
= 0,

1, t = 0

for all α > 0 and α 
∈ Q
+
0 = {r/s : r ∈ N0, s ∈ N}.
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Proof It remains to prove the continuity of φX (t) at zero, and to prove that φX (t) →
0 for |t | → ∞. According to Kilbas et al. (2006, Corollary 4.2, Remark 4.1), we have

Zν
ρ(z) =

⎧⎪⎨
⎪⎩

1

ρ
�

(
ν
ρ

)
+ O

(
zmin(1,�{ν})), ν + ρm 
∈ N0 for all m ∈ N0,

− 1

ρ
ln z + O

(
z ln z

)
, ν + ρm ∈ N0 for some m ∈ N0

for ρ > 0 and as z → 0. We deduce for all α > 0, α 
∈ Q
+
0 = {r/s : r ∈ N0, s ∈ N},

the following asymptotic behavior:

φX (t) = α exp {iμt} Zα
α

( − iσ t
) = exp {iμt} (

1 + O
[
tmin(1,α)

])

as t → 0 that ensures φX (0) = 1.
However, for α ∈ Q

+
0 positive and rational, the continuity property is not fulfilled.

Taking into account Kilbas et al. (2010, Theorem 3.2), we have

Zν
ρ(z) = az(2ν−ρ)/(2ρ+2) exp

{ − bzρ/(ρ+1)
}[

1 + O
(
z−ρ/(ρ+1)

)]

as z → ∞. Here, the convergence is uniform on | arg z| < (ρ + 1)π/(2ρ) − ε for a
constant ε ∈ (0, (ρ + 1)π/(2ρ)) and

a =
( 2π

ρ + 1

)1/2
, b = (1 + ρ)ρ−ρ/(ρ+1).

This result gives

|φX (t)| = O
(
|t |α/(2α+2) exp

{ − c|t |α/(α+1)
}) → 0

as |t | → ∞, where

c = (1 + α)
(σ

α

)α/(α+1)

.

The proof is complete. �


3 CHF for the EVD of type 3

Consider a random variable X defined on a standard probability space (
,F,P)

having the CDF Eq. 1.3. The corresponding PDF is

fX (x) = α

σ

( x − μ

σ

)α−1
exp

{
−

( x − μ

σ

)α}
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for x > μ. The corresponding CHF is

φX (t) = E exp{it X} = α

σ

∫ ∞

μ

( x − μ

σ

)α−1
exp

{
it x −

( x − μ

σ

)α}
dx

= α exp
{
iμt

} ∫ ∞

0
xα−1 exp

{
iσ t x − xα

}
dx .

Now, repeating the same procedure as in Section 2, we obtain

φX (t) = exp
{
iμt

} ∞∑
m=0

�
(

1 + m

α

) (iσ t)m

m! .

The convergence of the series is fulfilled for all α > 1, so using the definition of the
Wright function, we have the following result.

Theorem 3.1 Let X be a random variable having the EVD of type 3. Then the CHF
has the closed form:

φX (t) = exp
{
iμt}1�0

[ (
1, 1/α

)
− ; itσ

]

for α > 1.

The EVD of type 3 for α = 1 is the exponential distribution. The CHF for the
exponential distribution is well known. It is an open problem to derive the CHF for
the EVD of type 3 for α ∈ (0, 1).

4 Application

We mentioned in Section 1 that one use of the results in Sections 2–3 is to compute
the distribution of X1 + X2 + · · · + X N when Xi are independent and identically
distributed. A probability of importance associated with this sum is

P = Pr (X1 + X2 + · · · + X N > u) , (4.1)

where N could be deterministic or stochastic. For example, (4.1) could represent
the probability that the total claim amount over some period exceeding a certain
threshold (Klugman et al. 2008) or the probability that the accumulated failure of a
system exceeding some critical level.

Consider the case N is deterministic. It is of interest to know the distribution of
X1+X2+· · ·+X N = Z say. If Xi are independent and identical EV random variables
of type 2 then, using Theorem 2.1 and the inversion theorem, we can express the PDF
of Z as

fZ (z) = 1

2π

∫ ∞

−∞
exp {(Nμ − z) it}

{
H2,0

0,2

[
− iσ t

∣∣∣∣
−

(0, 1), (1, 1/α)

]}N

dt (4.2)
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provided α > 0 and α 
∈ Q
+
0 = {r/s : r ∈ N0, s ∈ N}. Using the inversion theorem

of Wendel (1961), we can express the CDF of Z as

FZ (z)= 1

2
− 1

π

∫ ∞

0
t−1Im

[
exp {(Nμ−z) it}

{
H2,0

0,2

[
− iσ t

∣∣∣∣
−

(0, 1), (1, 1/α)

]}N ]
dt

(4.3)

provided α > 0 and α 
∈ Q
+
0 = {r/s : r ∈ N0, s ∈ N}, where Im(·) denotes the

imaginary part.
Similarly, if Xi are independent and identical EV random variables of type 3 then,

using Theorem 3.1 and the inversion theorem, we can express the PDF and the CDF
of Z as

fZ (z) = 1

2π

∫ ∞

−∞
exp {(Nμ − z) it}

{
1�0

[ (
1, 1/α

)
− ; itσ

]}N

dt (4.4)

and

FZ (z) = 1

2
− 1

π

∫ ∞

0
t−1Im

[
exp {(Nμ − z) it}

{
1�0

[ (
1, 1/α

)
− ; itσ

]}N ]
dt,

(4.5)

respectively, provided α > 1.
The integrals in Eqs. 4.2–4.5 do not appear to have closed forms. However, they

can be easily computed using known routines for Fox’s H function and Wright
generalized hypergeometric � function.

The probability, P , in Eq. 4.1 follows from Eqs. 4.3 and 4.5. If Xi are independent
and identical EV random variables of type 2 then

P = 1

2
+ 1

π

∫ ∞

0
t−1Im

[
exp {(Nμ − u) it}

{
H2,0

0,2

[
− iσ t

∣∣∣∣
−

(0, 1), (1, 1/α)

]}N ]
dt.

(4.6)

If Xi are independent and identical EV random variables of type 3 then

P = 1

2
+ 1

π

∫ ∞

0
t−1Im

[
exp {(Nμ − u) it}

{
1�0

[ (
1, 1/α

)
− ; itσ

]}N ]
dt.

(4.7)

Note that both Eqs. 4.6 and 4.7 are single integrals of known special functions. These
representations are perhaps the simplest means to compute P , compare with Zhang
(1999). They circumvent the need for approximations for P . The probability, P , can
also be computed in other ways. For example, it can be computed by using the PDF
of EV random variables. But P will then be an (N − 1)-fold integral, a much more
complicated representation than Eqs. 4.6 and 4.7.
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Fig. 1 CPU times taken to
compute Eq. 4.6 versus N when
u = 1, μ = 0, σ = 1
and α = π
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We now present some numerical results with respect to computing Eqs. 4.6 and
4.7. We take u = 1, μ = 0, σ = 1 and α = π in Eq. 4.6. We take u = 1,
μ = 0, σ = 1 and α = 2 in Eq. 4.7. Figures 1 and 2 show the Central Processing
Unit (CPU) time in seconds taken to compute Eqs. 4.6 and 4.7. The figures show
how the time varies with respect to N . As expected, the CPU time increases with N .
The increase appears sharp. However, it is comforting to note that the CPU times are
manageable even for N as large as ten.

The computations for Figures 1 and 2 were performed using Mathematica. The
accuracy of computations of Eqs. 4.6 and 4.7 is not an issue as Mathematica (like
most other algebraic manipulation packages) allows for arbitrary precision.

Fig. 2 CPU times taken to
compute Eq. 4.7 versus N when
u = 1, μ = 0, σ = 1
and α = 2
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Finally, we like to comment on how the results of this note compare to known
results for stable random variables. For stable random variables, the CHF takes an
elementary form. The corresponding PDF does not take an elementary form, see
Nolan (2012). For EV random variables, the CHFs do not take elementary forms.
The corresponding PDFs are elementary. So, computation of probabilities of the form
Eq. 4.1 based on CHFs will be easier for stable random variables. On the other hand,
estimation and hypothesis testing based on likelihood functions will be more difficult
for stable random variables. However, for both stable and EV random variables, it is
more convenient to work with CHFs than PDFs for computing probabilities of the
form Eq. 4.1.
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