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Solutions to Question 1

a) We can write

F (x, y) = exp

{
−(x+ y)

[
1− 2y

3(x+ y)
+

y2

3(x+ y)2
+

y3

3(x+ y)3

]}
This is in the form of

F (x, y) = exp

[
−(x+ y)A

(
y

x+ y

)]
with A(t) = 1− 2t/3 + t2/3 + t3/3.

We now check the conditions for A(·). Clearly, A(0) = 1 and A(1) = 1.

Also A(t) ≥ 0 since 1− 2t/3 ≥ 0 for all t and t2/3 + t3/3 ≥ 0 for all t.

Also A(t) ≤ 1 since

A(t) ≤ 1

⇔ 1− 2t/3 + t2/3 + t3/3 ≤ 1

⇔ −2t/3 + t2/3 + t3/3 ≤ 0

⇔ −2/3 + t/3 + t2/3 ≤ 0

⇔ −2 + t+ t2 ≤ 0

⇔ (t+ 2)(t− 1) ≤ 0

⇔ t− 1 ≤ 0.

Note that

A(t) ≥ t

⇔ 1− 2t/3 + t2/3 + t3/3 ≥ t

⇔ 1− 5t/3 + t2/3 + t3/3 ≥ 0

⇔ 3− 5t+ t2 + t3 ≥ 0.

Let g(t) = 3− 5t+ t2 + t3. Note g
′
(t) = −5 + 2t+ 3t2 = (3t+ 5)(t− 1) ≤ 0 for all t. So, g(t)

is a decreasing function with g(0) = 3 and g(1) = 0. Hence g(t) ≥ t for all t.

Note that

A(t) ≥ 1− t
⇔ 1− 2t/3 + t2/3 + t3/3 ≥ 1− t
⇔ t/3 + t2/3 + t3/3 ≥ 0

⇔ t+ t2 + t3 ≥ 0.
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A(·) is convex since

A
′
(t) = −2/3 + 2t/3 + t2

and

A
′′
(t) = 2/3 + 2t ≥ 0

for all t.

UNSEEN

b) the joint cdf is

F (x, y) = 1− exp(−x)− exp(−y) + exp

{
−x− y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
.

UNSEEN

c) the derivative of joint cdf with respect to x is

∂F (x, y)

∂x
= exp(−x)−

(
−1 +

y2

3(x+ y)2
+

2y3

3(x+ y)3

)
· exp

{
−x− y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
,

so the conditional cdf if Y given X = x is

F (y|x) = 1−
(
−1 +

y2

3(x+ y)2
+

2y3

3(x+ y)3

)
· exp

{
−y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
.

UNSEEN

d) the derivative of joint cdf with respect to y is

∂F (x, y)

∂y
= exp(−y)−

(
−1

3
+

2y

3(x+ y)
− 2y2

3(x+ y)2
+

2y3

3(x+ y)3

)
· exp

{
−x− y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
,

so the conditional cdf if X given Y = y is

F (x|y) = 1−
(
−1

3
+

2y

3(x+ y)
− 2y2

3(x+ y)2
+

2y3

3(x+ y)3

)
· exp

{
−x+

2y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
.
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UNSEEN

e) the derivative of joint cdf with respect to x and y is

f(x, y) =
∂F (x, y)

∂x∂y
= − exp

{
−x− y

3
− y2

3(x+ y)
− y3

3(x+ y)2

}
·

[(
−1 +

y2

3(x+ y)2
+

2y3

3(x+ y)3

)(
−1

3
+

2y

3(x+ y)
− 2y2

3(x+ y)2
+

2y3

3(x+ y)3

)

+
2y

3(x+ y)2
− 4y2

3(x+ y)3
− 2y3

(x+ y)4

]
.

UNSEEN
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Solutions to Question 2

a) Let X denote the actual stock return. The cdf of X is

FX(x) =

∫ ∞
0

x+ θ

2θ

λ

θ2
exp

(
−λ
θ

)
dθ

=
λx

2

∫ ∞
0

1

θ3
exp

(
−λ
θ

)
dθ +

λ

2

∫ ∞
0

1

θ2
exp

(
−λ
θ

)
dθ

=
x

2λ

∫ ∞
0

y exp (−y) dy +
1

2

∫ ∞
0

exp (−y) dy

=
x

2λ
+

1

2

=
x+ λ

2λ
,

the cdf of the uniform [−λ, λ] distribution.

UNSEEN

b) The corresponding pdf is 1/(2λ) for −λ < x < λ.

UNSEEN

c) The corresponding expected value of X is

E(X) =

∫ λ

−λ
x

1

2λ
dx

=
1

2λ

[
x2

2

]λ
−λ

=
1

2λ

[
λ2

2
− (−λ)2

2

]
= 0.

UNSEEN
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d) The corresponding variance of X is (2λ)2/12 = λ2/3.

V ar(X) = E
(
X2
)
− 02

=

∫ λ

−λ
x2

1

2λ
dx

=
1

2λ

[
x3

3

]λ
−λ

=
1

2λ

[
λ3

3
− (−λ)3

3

]
=

1

2λ

2λ3

3

=
λ2

3
.

UNSEEN

e) If x1, x2, . . . , xn is a random sample on X then the likelihood function is

L(λ) = (2λ)−n
n∏
i=1

I {−λ < xi < λ}

= (2λ)−nI {maxxi < λ,minxi > −λ}
= (2λ)−nI {λ > maxxi, λ > −minxi}
= (2λ)−nI {λ > max (maxxi,−minxi)} .

PLOT THIS AS A FUNCTION OF λ

You will see that the mle of λ is max (maxxi,−minxi).

UNSEEN
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Solutions to Question 3

If there are norming constants an > 0, bn and a nondegenerate G such that the cdf of a
normalized version of Mn converges to G, i.e.

Pr

(
Mn − bn
an

≤ x

)
= F n (anx+ bn)→ G(x) (1)

as n → ∞ then G must be of the same type as (cdfs G and G∗ are of the same type if
G∗(x) = G(ax+ b) for some a > 0, b and all x) as one of the following three classes:

I : Λ(x) = exp {− exp(−x)} , x ∈ <;

II : Φα(x) =

{
0 if x < 0,
exp {−x−α} if x ≥ 0

for some α > 0;

III : Ψα(x) =

{
exp {−(−x)α} if x < 0,
1 if x ≥ 0

for some α > 0.

The necessary and sufficient conditions for the three extreme value distributions are:

I : ∃γ(t) > 0 s.t. lim
t↑w(F )

1− F (t+ xγ(t))

1− F (t)
= exp(−x), x ∈ <,

II : w(F ) =∞ and lim
t↑∞

1− F (tx)

1− F (t)
= x−α, x > 0,

III : w(F ) <∞ and lim
t↓0

1− F (w(F )− tx)

1− F (w(F )− t)
= xα, x > 0.

UP TO THIS BOOK WORK

First, suppose that G belongs to the max domain of attraction of the Gumbel extreme
value distribution. Then, there must exist a strictly positive function say h(t) such that

lim
t→w(G)

1−G (t+ xh(t))

1−G(t)
= e−x
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for every x ∈ (−∞,∞). But

lim
t→w(F )

1− F (t+ xh(t))

1− F (t)
= lim

t→w(G)

1−
{

1−
[
1−G (t+ xh(t))θ

]2}α
1−

{
1−

[
1−G (t)θ

]2}α

= lim
t→w(G)

[
1−G (t+ xh(t))θ

]2
[
1−G (t)θ

]2
=

[
lim

t→w(G)

1−G (t+ xh(t))θ

1−G (t)θ

]2

=

[
lim

t→w(G)

1− [1− [1−G (t+ xh(t))]]θ

1− [1− [1−G (t)]]θ

]2

=

[
lim

t→w(G)

1− [1− θ [1−G (t+ xh(t))]]

1− [1− θ [1−G (t)]]

]2
=

[
lim

t→w(G)

θ [1−G (t+ xh(t))]

θ [1−G (t)]

]2
=

[
lim

t→w(G)

1−G (t+ xh(t))

1−G (t)

]2
= e−2x

for every x ∈ (−∞,∞). So, it follows that F also belongs to the max domain of attraction
of the Gumbel extreme value distribution with

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= exp [− exp(−2x)]

for some suitable norming constants an > 0 and bn.

Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme
value distribution. Then, there must exist a β > 0 such that

lim
t→∞

1−G (tx)

1−G(t)
= x−β
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for every x > 0. But

lim
t→∞

1− F (tx)

1− F (t)
= lim

t→∞

1−
{

1−
[
1−G (tx)θ

]2}α
1−

{
1−

[
1−G (t)θ

]2}α

= lim
t→∞

[
1−G (tx)θ

]2
[
1−G (t)θ

]2
=

[
lim
t→∞

1−G (tx)θ

1−G (t)θ

]2

=

[
lim
t→∞

1− [1− [1−G (tx)]]θ

1− [1− [1−G (t)]]θ

]2

=

[
lim
t→∞

1− [1− θ [1−G (tx)]]

1− [1− θ [1−G (t)]]

]2
=

[
lim
t→∞

θ [1−G (tx)]

θ [1−G (t)]

]2
=

[
lim
t→∞

1−G (tx)

1−G (t)

]2
= x−2β

for every x > 0. So, it follows that F also belongs to the max domain of attraction of the
Fréchet extreme value distribution with

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= exp

(
−x−2β

)
for some suitable norming constants an > 0 and bn.

Third, suppose that G belongs to the max domain of attraction of the Weibull extreme
value distribution. Then, there must exist a β > 0 such that

lim
t→0

1−G (w(G)− tx)

1−G (w(G)− t)
= xβ
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for every x > 0. But

lim
t→0

1− F (w(F )− tx)

1− F (w(F )− t)
= lim

t→0

1−
{

1−
[
1−G (w(G)− tx)θ

]2}α
1−

{
1−

[
1−G (w(G)− t)θ

]2}α

= lim
t→0

[
1−G (w(G)− tx)θ

]2
[
1−G (w(G)− t)θ

]2
=

[
lim
t→0

1−G (w(G)− tx)θ

1−G (w(G)− t)θ

]2

=

[
lim
t→0

1− [1− [1−G (w(G)− tx)]]θ

1− [1− [1−G (w(G)− t)]]θ

]2

=

[
lim
t→0

1− [1− θ [1−G (w(G)− tx)]]

1− [1− θ [1−G (w(G)− t)]]

]2
=

[
lim
t→0

θ [1−G (w(G)− tx)]

θ [1−G (w(G)− t)]

]2
=

[
lim
t→∞

1−G (w(G)− tx)

1−G (w(G)− t)

]2
= x2β

for every x > 0. So, it follows that F also belongs to the max domain of attraction of the
Weibull extreme value distribution with

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= exp

(
−(−x)2β

)
for some suitable norming constants an > 0 and bn.

UNSEEN
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Solutions to Question 4

a) Note that w(F ) =∞. Then

lim
t↑∞

1− F (tx)

1− F (t)
= lim

t↑∞

[1 + (tx)c]−k

[1 + tc]−k

= lim
t↑∞

[
1 + (tx)c

1 + tc

]−k
= x−ck.

So, F (x) belongs to the Fréchet domain of attraction.

UNSEEN

b) Note that w(F ) = 1. Then

lim
t→0

1− F (1− tx)

1− F (1− t)
= lim

t→0

[
1− (1− tx)b

]a
[1− (1− t)b]a

= lim
t→0

[
1− (1− tx)b

1− (1− t)b

]a
= lim

t→0

[
1− (1− btx)

1− (1− bt)

]a
= lim

t→0

[
btx

bt

]a
= xa.

So, F belongs to the Weibull domain of attraction.

UNSEEN

c) For the Poisson distribution,

Pr(X = k)

1− F (k − 1)
=

λk/k!∑∞
j=k λ

j/j!
=

1

1 +
∑∞

j=k+1 k!λj−k/j!
.

The term in the denominator can be rewritten as

∞∑
j=1

λj

(k + 1)(k + 2) · · · (k + j)
≤

∞∑
j=1

(
λ

k

)j
=

λ/k

1− λ/k

(when k > λ) and the bound tends to 0 as k →∞ and so it follows that p(k)/(1−F (k−1))→
1. Hence, there can be no non-degenerate limit.

CLASS EXERCISE
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d) Note that w(F ) =∞. Then

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞

1− Φ (t+ xg(t))

1− Φ(t)

= lim
t→∞

φ (t+ xg(t))

φ(t)

(
1 + xg

′
(t)
)

= lim
t→∞

exp

{
−1

2

[
2txg(t) + x2g2(t)

]}(
1 + xg

′
(t)
)

= lim
t→∞

exp

{
−x− x2

2t2

}(
1− x

t2

)
= exp(−x)

if g(t) = 1/t. So, F belongs to the Gumbel domain of attraction.

UNSEEN

e) Note that w(F ) =∞. Then

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞

1− exp {− exp [−t− xg(t)]}
1− exp {− exp(−t)}

= lim
t→∞

1− {1− exp [−t− xg(t)]}
1− {1− exp(−t)}

= lim
t→∞

exp [−t− xg(t)]

exp(−t)
= lim

t→∞
exp [−xg(t)]

= exp(−x)

if g(t) = 1. So, F belongs to the Gumbel domain of attraction.

UNSEEN
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Solutions to Question 5

(a) If X is an absolutely continuous random variable with cdf F (·) then

VaRp(X) = F−1(p)

and

ESp(X) =
1

p

∫ p

0

F−1(v)dv.

UP TO THIS BOOK WORK

(b) (i) If x > 0 then

F (x) =
1

2λ

∫ x

−∞
exp

(
−| y |

λ

)
dy

= 1− 1

2λ

∫ ∞
x

exp

(
−| y |

λ

)
dy

= 1− 1

2λ

∫ x

−∞
exp

(
−y
λ

)
dy

= 1− 1

2

[
− exp

(
−y
λ

)]x
−∞

= 1− 1

2
exp

(
−x
λ

)
.

If x < 0 then

F (x) =
1

2λ

∫ x

−∞
exp

(
−| y |

λ

)
dy

=
1

2λ

∫ x

−∞
exp

(y
λ

)
dy

=
1

2

[
exp

(y
λ

)]x
−∞

=
1

2
exp

(x
λ

)
.

UNSEEN

(b) (ii) Inverting

F (x) = 1− 1

2
exp

(
−x
λ

)
= p,

we obtain VaRp(X) = λ log [2(1− p)] for p ≥ 1/2. Inverting

F (x) =
1

2
exp

(x
λ

)
= p,
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we obtain VaRp(X) = λ log [2p] for p < 1/2.

UNSEEN

(b) (iii) Since ∫ p

0

log tdt = [t log t]p0 −
∫ p

0

1 · dt

= p (log p− 1)

and ∫ p

1/2

log(1− t)dt = [t log(1− t)]p1/2 +

∫ p

1/2

t

1− t
dt

= p log(1− p)− 1

2
log

1

2
+

∫ p

1/2

t

1− t
dt

= p log(1− p)− 1

2
log

1

2
+

1

2
− p+

∫ p

1/2

1

1− t
dt

= p log(1− p)− 1

2
log

1

2
+

1

2
− p+ [− log(1− t)]p1/2

= p log(1− p)− 1

2
log

1

2
+

1

2
− p− log(1− p)− log 2

= p log(1− p)− 1

2
log 2 +

1

2
− p− log(1− p),

we obtain

ES(X) = λ log 2 + λ (log p− 1)

for p < 1/2 and

ESp(X) =
1

p
[pλ log 2 + λp log(1− p)− λ log 2− λp− λ log(1− p)]

for p ≥ 1/2.

UNSEEN

c) (i) The likelihood and log-likelihood functions of λ are

L (λ) =
1

(2λ)n
exp

[
−1

λ

n∑
i=1

|xi|

]

and

logL (λ) = −n log(2λ)− 1

λ

n∑
i=1

|xi| .
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UNSEEN

c) (ii)

d logL

dλ
= −n

λ
+

1

λ2

n∑
i=1

|xi|

and

d2 logL

dλ2
=

n

λ2
− 2

λ3

n∑
i=1

|xi| .

The root of d logL
dλ

= 0 is
1

n

n∑
i=1

|xi| = λ̂ say. The value of d2 logL
dλ2

at λ = λ̂ is negative, so λ̂ is

an mle.

UNSEEN

c) (iii) The MLE of VaR is V̂aRp(X) = λ̂ log [2(1− p)] for p ≥ 1/2 and V̂aRp(X) = λ̂ log [2p]
for p < 1/2.

UNSEEN

The MLE of ES is

ÊS(X) = λ̂ log 2 + λ̂ (log p− 1)

for p < 1/2 and

ÊSp(X) =
1

p

[
pλ̂ log 2 + λ̂p log(1− p)− λ̂ log 2− λ̂p− λ̂ log(1− p)

]
for p ≥ 1/2.

UNSEEN

c (iv) This follows since λ̂ is unbiased for λ, i.e.,

E

(
1

n

n∑
i=1

|xi|

)
=

1

n

n∑
i=1

E (|xi|)

=
1

2nλ

n∑
i=1

∫ ∞
−∞
| x | exp

(
−| x |

λ

)
dx

=
1

λ

∫ ∞
0

x exp
(
−x
λ

)
dx

= λ

∫ ∞
0

y exp (−y) dy

= λΓ(2)

= λ.

UNSEEN
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Solutions to Question 6

a) The cdf of Y is

FY (y) = Pr(Y ≤ y)

= Pr (min (X1, . . . , Xα) ≤ y)

= 1− Pr (min (X1, . . . , Xα) > y)

= 1− Pr (X1 > y, . . . , Xα > y)

= 1− Pr (X1 > y) · · ·Pr (Xα > y)

= 1−
(
K

y

)a
· · ·
(
K

y

)a
= 1−

(
K

y

)aα
,

a Pareto cdf with parameters K and aλ.

UNSEEN

b) The corresponding pdf is

fY (y) = aα
Kaα

yaα+1

for y ≥ K.

UNSEEN

c) The nth moment of Y can be calculated as

E (Y n) = aαKaα

∫ ∞
K

yn−aα−1dy

= aαKaα

[
yn−aα

n− aα

]∞
K

= aαKaα

[
0− Kn−aα

n− aα

]
= −aα Kn

n− aα

provided that aα > n. So,

E (Y ) =
aαK

aα− 1

and

V ar (Y ) =
aαK2

aα− 2
− a2α2K2

(aα− 1)2
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UNSEEN

d) Setting

1−
(
K

y

)aα
= p

gives

VaRp(Y ) = K (1− p)−1/(aα) .

UNSEEN

e) The expected shortfall is

ESp(Y ) =
K

p

∫ p

0

(1− v)−1/(aα) dv

=
K

p [1− 1/(aα)]

[
− (1− v)1−1/(aα)

]p
0

=
K

p [1− 1/(aα)]

[
1− (1− p)1−1/(aα)

]
.

UNSEEN

f) The likelihood and log likelihood functions are

L(a,K) = anαnKnaα

n∏
i=1

[
y−aα−1i I {yi ≥ K}

]
= anαnKnaα

(
n∏
i=1

yi

)−aα−1
I {min yi ≥ K}

and

logL(a,K) = n log a+ n logα + naα logK − (aα + 1)
n∑
i=1

log yi + log I {min yi ≥ K} .

Note that L is an increasing function of K over (0,min yi]. So, the mle of K is min yi. The
partial derivative of logL with respect to a is

∂ logL(a,K)

∂a
=
n

a
+ nα logK − α

n∑
i=1

log yi

The solution of ∂ logL(a,K)
∂a

= 0 for a is

â = −

[
α logK − α

n

n∑
i=1

log yi

]−1
,

the mle of a.

UNSEEN
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