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Exact distribution of a modified Behrens-Fisher statistic

Saralees Nadarajah and Rui Li
School of Mathematics, University of Manchester, UK

Abstract

The exact distribution of a modified Behrens-Fisher statistic is derived. The distribution
function is mostly elementary and is simpler than the exact distribution derived by Nel et al.
[Communications in Statistics—Theory and Methods, 19, 1990, 279-298]. Its practical use (in-

cluding computationalféiciency and computational convenience) is discussed.

Keywords: Behrens-Fisher statistic; Hypergeometric functions; Studéenistribution.
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1 Introduction

Suppos&s, Xy, .. ., Xmis a random sample from a normal population with meaand variance
crf(. Suppose/, Yo, . . ., Yn is another random sample from a normal population with mgan
and variancer?. Suppose too that the random samples are independent. If the variances are

unknown and unequal then the test for equality of means is based etatlstic

&:(r 1)
N
m n
say,where
I L I
X=szi, y=ﬁZy.,
i=1 i=1
m B 1 n >
Sc= =g D 0= =2 > -9
i=1 i=1

(1) is known as the Behrens-Fisher statistic (Fisher, 1935). Commonly its distribution is ap-

proximated by a Studenttsrandom variable (Welch, 1938) with degree of freedom

%, %)
y= (m ”) . 2)

s3] 5 (3]

The resulting test is known as the two sanipiest. Many other approximations to the distribu-

tion of (1) have since been proposed. We refer the readers to Chapters 28 and 30 of Johnson et
al. (1995) for an excellent review. See also Kim and Cohen (1998).
There has been little work on deriving the exact distribution of (1). The only work known

to us is that due to Nel et al. (1990). Under the hypothegis- 1y, Nel et al. (1990) showed
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that the probability density function (pdf) Gf can be expressed as

m+n+1
() i >+ tz)_mg+l
() = —+—
Var (1) gy g2 (9 ¢
mm+n+1 m+n (1 1\(1 -1
F : =)=+ |, 3
“[z a5 ®

wheregx = o%/[mm-1)], gy = od/[n(n-1)], ¢* = m 0% + n"loF and2Fi(a b; ¢ X)

denotes the Gauss hypergeometric function defined by

(@)xk(b)x x¢
Ok K’

where €)x = e(e+ 1)---(e+ k- 1) denotes the ascending factorial. Nel et al. (1990) did not

Fiabicx =)
k=0

give expressions for the cumulative distribution function (cdfyof

The Gauss hypergeometric function in (3) is a special function and there are not many com-
puter programs for computing it. Even some of the programs for computing the Gauss hyper-
geometric function are prone to rounff errors, for examplehypergeom in the R software (R
Development Core Team, 2015). Besides, many authors have stated that (3) is “computationally
intractable”. For example, Krishnamoorthy and Yu (2004) stated that (3) is “computationally
intractable. .. is of no use for practical applications”. For multivariate Behrens-Fisher prob-
lem, Kakizawa and Iwashita (2008) stated that (3) is “quite complicated and intractable from a
computational point of view”.

The aim of this paper is to derive the exact distribution of (1) in mostly elementary forms.
In fact, the derived forms for the pdf and cdf are all elementary except whemfatitn are
even numbers. Elementary forms can be computed accurately on any platform, even using a
pocket calculator. Hence, they are computationally more convenient than (3).

In passing, we would like to point out that even some of the known approximations for (1)
are not elementary. For example, the Studdrdajsproximation’s distribution function involves

the incomplete beta function ratio, a special function, fonadindn.
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Consider the modified form of (1) given by

[(X-9) = (ux = p))* _
S,
m n

T 4

say. Note that (1) and (4) are equivalent at least wheg uy. Using the &cts

0'2 0'2
X~ N X1, ¥~ N|uy, —
[,ux, m ) y [MY, n )

(m-1)s% ) (n-1)s )
T2 TAmr T 5 Y
X Y

we can rewrite (4) as

u
T=—
VW ®)

whereU NX% V ~T'(a,b), W~ I'(c,d) are independent random variables and

_m-1 _n-1
A= T
_(m- 1) (no% + mo?) i (n-1)(no% + mo2)

B

2n0'§( 2mO'\2(
Here,I'(a, b) denotes a gamma random variable with shape parametsl rate parametéx

Exact expressions for the pdf and cdfiofn (5) are given in Section 2. Of the expressions
given there, the ones that are new and original are: the ctifiothe general case; the pdf and
cdf of T whenb = d; the cdf of T whenm andn are odd; the cdf o whenmis odd andh is
even; the cdf off whenmis even and is odd; the cdf off whenmandn are even; the pdf of
T whenmis odd; the pdf off whenn is odd; the pdf off whenm andn are even. All of the
proofs are given in Appendix A.

The practical use andfeciency of the newly derived expressions are discussed in Section
3. The discussion centers on four aspects: i) comparison of the newly derived pdfs and the
Student'st pdf with degree of freedom (2); ii) comparison of the newly derived cdfs and the
Student’st cdf with degree of freedom (2); iii) comparison of power functions corresponding
to the newly derived expressions and the Studerafsproximation with degree of freedom (2);

iv) comparison of computational times corresponding to the newly derived expressions and (3).
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The expressions given in Section 2 are mostly elementary. One case giving non-elementary
expressions is when both andn are even integers. In this case, expressions involve the error
function, modified Bessel function of the first kind and elliptical integrals. The derivations in
all cases make use of the error function and the confluent and Gauss hypergeometric functions.
The derivations also make use of some new integral identities hitherto unknown. These new

identities are stated and proved in Appendix B.

2 Main results

The main results are explicit expressions for the cdf and pdfiof (5). All of the expressions

are new and original except for those given by (7) and (8). The latter expressions are due to
Nel et al. (1990). The practical use ani@ency of most of the expressions are illustrated in
Section 3.

Throughout, we suppodg ~ X%, V ~ I'(a,b) andW ~ T(c,d) are independent random
variables, whera > 0,b > 0, c > 0 andd > 0. The expressions are grouped as follows: the
general case where there are no restrictiona 10, b > 0,c > 0 andd > 0; thecasd=d > 0
but no restrictions o > 0 andc > 0; the casen > 1 is an odd integer; the case> 1 is an
odd integer; the casm > 1 andn > 1 are even integers. We shall see that all of the derived
expressions are elementary except for the general case and thra sateindn > 1 are even

integers.

2.1 General case

Supposa > 0,b > 0,c > 0 andd > 0 are real numbers. Then the cdfiotan be expressed as

badC 00

O g Jo

7+ L exp(-dgerf(Vtz/2) 1F1 (8 a+ ¢; (b - d)2) dz (6)

for t > 0, where erff) denotes the error function defined by

2 X
erf(x) = Tfo exp(-s’)ds

T
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and;F1(a; b; X) denotes the confluent hypergeometric function defined by

(@) X<

1F1(a b = Z Bk

The corresponding pdf can be expressed as

bad°r (a +C- L

2) 1t \3ac 1 d-b
fr(t) = ‘i( +d) zFl(a,a+c——;a+c;—) )
V2rT'(a+ c) 2 2 5+d
and
1
b?d°Tr - =
fr(t) (a+c Z)t%(t+b)%ac F (c a+c 1'a+C'b_d) (8)
T = A 2r1 ) =] y T L
V2rT'(a+ c) 2 2 s+b
for %_’;—z <1 and’%_"—:t’) < 1, respectively. The result given by (7) and (8) appears equivalent to
2 2

(3) due to Net et al. (1990).

2.2 Thecasd =d

Supposé > 0 andd > 0 are equal and take a real value. Then the cdf and pdf cdn be

expressed as

2 a+C

Fr(t) = @ +)|(2a+2c 1b, \t/2) (9)
and
ber (a+ c— 1)
fr(t) = 2) -4 (1 + d)i_a_c, (10)
VorI'(a+ c) 2

respectively, fot > 0, wherel(n, p, ¢) is an elementary form defined by Lemma B1.
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2.3 The casemodd

Supposen > 1 is an odd integer. If in addition > 1 is also an odd integer then the cdff

can be expressed as

aNC(1 _ o _ c-1 _ TR
Er() = 2b%d*(1-a-0¢), [Z (1-c)k(d-Db) I( d 1 )
k=0

2a+2c+2k-1,—,—
(a+c—1)(a- 1)1t KI(2 - a— o)tk t 2

a-1 k
_Z%|(2a+20+2k—1,%%)] (11)
k=0 M\ T <A™

fort > 0, wherel(n, p, ¢) is an elementary form defined by Lemma B1. On the other hand, if

n > 1is an even integer then the cdfbfcan be expressed as

2ck?d(1 + C)a1

Fr(t) @-1)
= ofa-1\/(1 [d=D
.[x/;?(d—b) pz_:‘)(b—d) p( ) )(E)Cer_%J(Za—Zp—l,b, Wi, T)
. (—1)p(a; 1) cwd t
N/ b-d)¥(~c - 2a+2c-2k—1,d, /=
p; o k;( ) (-c p)kl(a+c 1 2)]
(12)
and
Fr (D) ZCba?;(_l:B!C)a—l \/E(d—b)_c
! ~1\/1 b-d
: (b—d)‘p(a )(—) K[Za—Zp—l,b, «/E,N/—]
;) P 2c+p—% 2
Y e T t
N/ b-d)¥(-c - 2a+2c—2k-1,d, \/=
DZ:;] o k;( ) K(-c p)kl(a+c 1,d, 2)]
(13)

ford > b andb > d, respectively, and > 0, wherel(n, p, c), J(n, p, b, c) andK(n, p, b, c) are

elementary forms defined by Lemmas B1, B2 and B3. In either cas€l(is an odd integer or
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an even integer), the corresponding pdf can be expressed as

bad°r (a +Cc-— %)
¢ _ _
r® V2rT'(a+ c) t

Nl

49 "

(5) o

3
1 y )
-1)C —,a+¢C;
v )a+1(a,2 1) s ot i

(3) 2

1y« ]
+Caz (a’ 2 aTeyT 1) kzé (@+ ORkI(y— 1F 1)

2+a+c

and

b?d°T (a +C— %) ) 1o
ti(z+0)  @-yhe

2
1
2+a+c 1 BT (5) (=3
EE A e

kc0
(%)k (-2)y*

1 \%
Caclp 202 g | o

fr(t) =

V2rT'(a+ c)

fory = $=8 < 1 andy = 29 < 1, respectively, wher€;(a. 3, v. 2) satisfies
2 2

_ =B +y+2i+B-a-i)z i-pg+y-1
Cl(a"ﬁ’ v Z) - (| _ﬁ)(y _ 1) Cl—l(a’ﬁ’ Y, Z) + (I _ﬁ _ 1)(2_ 1)CI—2(a"ﬁ’ v Z) (16)
with the initial values
B _2=-2B+y+(B-a-1)z
CO(G”B7 Y, Z) - 1’ Cl(a’ﬂ’ Y, Z) = (B _ 1)(2_ 1) . (17)
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2.4 The casen odd

Suppose > 1 is an odd integer. If in additiom > 1 is an even integer then the cdfbican be
expressed as

2ab?d®(1+ a)c_1

Fr(t) =

(c-1)!
L5 oc-1)\(1 [o—d
.[\/E(b—d) pZ;J(d_b) p( ; )(E)a+p_%J(20—2p—l,d, Wi, T)
et (" ams t
Ny ___\PJ d—b)K(—a— —2k-1,b, /=
pzz(:) 2+ D ;( )" (—a p)kl(2a+20 2k-1 \/;]]
(18)
and
Frly = 2R e
= ~1\(1 d-b
. (d—b)‘p(c )(—) K(Zc—Zp—l,d, x/f,w/—]
pzz;) p 2 a+p-1 2
e (T et t
- (d-b) (—a—p)l(2a+2c—2k—1,b, —)]
pZ:;) a+p kZ:; k 2
(19)

for b > d andd > b, respectively, and > 0, wherel(n, p, c), J(n, p, b, c) andK(n, p, b, c) are
elementary forms defined by Lemmas B1, B2 and B3. Whether annetl is an even integer,
the corresponding pdf can be expressed as
1
bAd°r (a+c— —) N
o - Doy od) i
V2rT'(a+ c)
1
= (-3
2+a+cC c1a+0' i(Z)k( )kyk
26— 52 L @ ok

3) E—Z)kyk

2
1
+Cei2(c. S,a+¢ E —_— 20
°+2( 2 y)k:0 @+ Okl ] (20)
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and
b?d°T (a+c— }) l
fr®) = 2 (£ + b)z_a_c 1-9~°
V2rT(a+ c) 2
1
g N ES
|2+a+c 1 )y (2)k
1 y 2 (%)k (_2)kyk
+Ce2 (C’ PR 1) kZ:(:) (a+o)k!(y - 1)k] -

fory=$2 < 1andy = 24 < 1, respectively, wher€i(a. 3,y.2) is as defined in (16)-(17).
2 2

2.5 The casaneven,neven
Suppose botin > 1 andn > 1 are even integers. Then the cdflotan be expressed as

L 1
2l-a-cpaqce (a - E)!F(a) a3 k+atc-1

Fr() = 1 1 Z Z Zpl
G

p=0 ¢g=0

2

2)51

a-d-k (~1)P2 kP (% + k- a) (b — d)’
4

D

=0 (a— % - k)!F(k+£’+ %) ki¢!

k+a+c-1\(p
( p )(q)ll(t) 22

fort > 0, where

1(t) = f " prerket-1 exp(_wz) erf(Vtz/2) 152 ((d _ b)z) dz
0 2 2

wherel, () denotes the modified Bessel function of the first kind of osdéefined by

- 1 z
W2 = ;O T(k+v+ K (E

)2k+v
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If m> 4 is even andh > 4 is even then the corresponding pdf can be expressed as

bad°r (a +Cc-— l)

f (1) %) %(t +d)“a_ 1-y)2
T = -
V2rT'(a+ c) 2
4 1 1 1 3
. ﬁCa+c_3(a,§,a+c,z)ca ;(z,a,l Z)2F1(2 > l'z)
4 , 1 1 1 1
+mca+c_3(a, E,a+ C,Z)Ca+:_2L (E,a,l,Z)zFl(E,—E,l,Z)
1 1 1 3
+5( - 1)Ca+c 2( 2,a+c,z)Ca_% (2,3,2 Z)2F1(2 1 12 z)
1 1 1 1
+Ca+c2( 2,a+c,z)C (2 a2, 2)2F1(2 > 12,2 )] (23)
and
b?d°r (a+ c- })
) = et (Lap) oyt
- - _
V2rI'(a+ c) 2
4 1 1 1 3
TZCa+C_3(a,§,a+c,y)C _(Z,a,l y)zFl(z, 2,1,y)
LAY-1) 1 11,
3(a 2)Cam_ (a,i,a+c,y)c ( ,a,ly)zFl > 2, )
5 1 1 1 3
+ﬁca+c_2(a,§,a+c,y)C _(Z,a,Z Y)ZFl(z, 2,2,y)
1 1
+Chicn ( a5.a+ C,Y)Ca+_(2,a,2 y)ZFl( )] (24)
fory = T < landy = %4 < 1, respectively, where = 21, Ci(e. 8.7, 2) is as defined in
2
(16)-(17) and::i (a,B, 7, 2) satisfies
, i-Yi-y-1)(1-2 ,
Cl(@f.7,7) (-Ni-y-1)1-2 C,(@.5.7.2

(@-y+i-1)B-y+i-1)z
y-iDl-y+i-[a+B+20i-y-1)+3]7 -
’ (@—y+)B-y+i)z Ci_1(a.8,7.2)

with the initial values

(y-D[2-y—-(a+p~-2y+3)
(x—-y+1D)B-y+1)z

Co@By.d=1  CyaBy.2d=
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By Prudnikov et al. (1986, volume 3, Section 7.3.2),

|

;1;2) = EK(Z),
T

N
Tn
iy

B

N
T
=

)4
37 = 2 K@) - Q).

NI NP N

N
m
=

N
M
i

o — o —

9

;2;z) - 2@ + - DK@,

I~ NI I\JIH NI NI NI NI

2Fil=, g,l,z) §[2(z 1K (2 - 4(z- 2E(2)],

1 2

1 i1 z) = ;E(z)
oF1l=, 2,2,2): {[(7T-229z+3E(2 + (z- D)(z+ 3K (D},
1 2,—§;2,z)=—[(z+1)E(z)+(z DK@

whereK

K(z):fog (1—zsin2t)’% dt

and

E(2) = fog (1- zsmzt)%

respectively.

-) andE(-) are complete elliptical integrals of the first and second kinds defined by

Hence, the pdf off for anym > 2 even andh > 2 even can be expressed in termdf)

andE(2).

3 Discussion

Here, we illustrate the practical use arfi@ency of the expressions in Sections 2.2 to 2.5. We
do this by comparing: the pdf af suggested by Sections 2.2 to 2.5 with the pdf ;fluggested

by the Student’s approximation with degree of freedom (2); the cdffofuggested by Sections
2.2 to 2.5 with the cdf ol suggested by the Student’approximation with degree of freedom

(2); the power function ofix — uy suggested by Sections 2.2 to 2.5 with the power function of

ACCEPTED MANUSCRIPT
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ux — py suggested by the Student’approximation with degree of freedom (2); the central pro-
cessing unit times taken to compute the pdf$ @f Sections 2.3-2.4 with the central processing
unit times taken to compute the corresponding pdfs in Section 2.1; the central processing unit
times taken to compute the cdfs Dfin Sections 2.3-2.4 with the central processing unit times
taken to compute the corresponding cdfs in Section 2.1.

Supposex = uy. Then the pdf and the cdf df suggested by the Student’approximation

with degree of freedom (2) are

fT,Approx(t) = t_% fty ( ‘/E)

and
I:T,Approx(t) = Ftv ( ‘/E) - Ftv (— ‘/f) R

respectively, wherdy, (-) and Fy,(-) denote, respectively, the pdf and the cdf of a Studdnt’s
random variable with degree of freedomThe exact expressions for the pdf and the cdf of
given in Section 2 involve the unknown parameuef(sandq\z(. We also computed them with
o2 ando? replaced by the sample variancgsands?, respectively, yielding what we refer to
as the “estimated exact” pdfs and cdfsTofThesf( was computed as the variance of a single
sample of sizen simulated from a normal distribution with varianeé ands? was computed
as the variance of a single sample of sizeimulated from a normal distribution with variance
o%. Note that the estimated exact pdf and the estimated exact cdf are still continuous functions
of t just like fr(t) andF+(t) are.

The exact, estimated exact and approximate pdfs arfe plotted in Figure 1 for a range of
different values ofm andn. The exact, estimated exact and approximate cdfs afe plotted
in Figure 2 for a range of flierent values ofm andn.

Now consider testingHo : ux = uy versusHy : ux # uy with significance levelr = 0.05.

The rule for rejectingHg suggested by the Student'spproximation with degree of freedom

ACCEPTED MANUSCRIPT
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2)is
_ XM e (1_ g) (25)
t, 2 .
S, S
m n

The rule for rejectindHg suggested by the results in Section 2 is
(x-9)°

%, &

m

>Fil(l-a). (26)

F7'(%) andF;*(1- %) involve the unknown parametesy ando2. With them replaced by

the sample variances, we obtain the rule

>Fitdl-a), (27)

whereF71(4) andF;* (1 - %) denote the estimates &t (4) andF7!(1- ), respectively.
Finally, let F(-) denote the empirical cdf ¢k — V] / V% + % computed over ten thousand sam-
ples simulated fronN (ux, %) andN (uy, 2). Then a rule for rejectingfo is

IX-Vl

S LS

_+_
m n

>F1(l-0). (28)

The power functions corresponding to (25)-(28) are plotted in Figure 3 for a rangferedt
values ofm andn. “Approx” power refers to (25), “Exact” power refers to (26), “Estimated
Exact” power refers to (27) and “Simulated” power refers to (28). The cdf mgeded for (26)
and (27) were computed using: (9) when= n; (11) whenm andn # m are odd; (12)-(13)
whenmis odd anch # mis even; (18)-(19) whemis even andh # mis odd; (22) whemm and

n # mare even.

Figure 4 plots the central processing unit times taken to compute the elementary expressions
in Sections 2.3-2.4 and the expressions due to Nel et al. (1990). These times are plotted versus
arange oimandn. “Nel et al.'s PDF” in Figure 4 refers to (3). “Nel et al.'s CDF” refers to the
integrated version of (3), integration performed numerically. “Proposed PDF” refers to one of

(14) or (15) ifmis odd. “Proposed PDF” refers to one of (20) or (21hifs odd. “Proposed

ACCEPTED MANUSCRIPT
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CDF” refers to one of (11), (12) or (13) this odd. “Proposed CDF” refers to one of (18) or
(19) if nis odd.

In Figure 1, the exact and estimated exact pdfsiier n were computed using (10). Those
whenmandn # mare odd were computed using (14)-(15). Those winés odd anch # mis
even were computed using (14)-(15). Those wites even and # mis odd were computed
using (20)-(21). Those whem andn # m are even were computed using (23)-(24). In Figure
2, the exact and estimated exact cdfsffoe n were computed using (9). Those wherand
n # m are odd were computed using (11). Those wheis odd andn # mis even were
computed using (12)-(13). Those wheris even andh # mis odd were computed using (18)-
(19). Those whem andn # m are even were computed using (22). The approximate pdfs
and cdfs in Figures 1 and 2 are based on the Studeagproximation. All computations were
performed in Maple witlDigits set equal to 20. Maple like most other algebraic manipulation
packages allows for arbitrary precision, so the accuracy of computations was not an issue. The
inversions needed for (26) and (27) were performed ufsiolge.

Figure 1 shows that the approximate pdfiotiffers significantly from the exact one for
all sufficiently large values of. The estimated exact pdf df does not dier as much from
the exact one as the approximate pdffofloes. The estimated exact pdf appears a lot closer
to the exact pdf especially in the upper tail of each of the six plots in Figure 1. This could be
significant when the extremes of the means of two random samples are of interest, for example,
the extremes of mean returns of twdfdrent stocks, the extremes of mean rainfall for two
different locations, the extremes of mean wind speeds for tfierdit locations, the extremes
of mean sea levels at twoftirent coastal points, the extremes of mean exchange rates for two
different countries, and so on.

Figure 2 shows that the approximate cdflois the furthest from the exact one for all values
of t. The estimated exact cdf dfdoes not dier as much from the exact one as the approximate
cdf of T does. The estimated exact cdf appears a lot closer to the exact cdf in each of the six
plots in Figure 2. Figure 3 shows that (26) and (27) give the best power for most values of

ux — uy # 0. (25) gives the worst power for most valuesu@f— uy # 0. The powers given by

ACCEPTED MANUSCRIPT
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(26) and (27) do not diier much from the power given by the simulated version (28). Figure
4 shows that the elementary expressions in Sections 2.3-2.4 are computationallyffinienet e
than the expressions in Section 2.1 for evargnd everyn. As expected, the central processing
unit times increase with increasing They also increase with increasing

The observations in Figures 1 to 3 were noted also for a wide range of other small values
of mandn (equal and unequal sample sizes) and for a wide range of other valuésamﬁg\z(
(equal and unequal variances). Hence, the use of the Studepsoximation in these cases
can lead to serious errors and less power.

The observations in Figure 4 were noted also for a wide range of other valumesdn
(equal and unequal sample sizes) and for a wide range of other valuésamho-% (equal and
unequal variances). Hence, the use of Nel et al.’s expression is computationallyfileeste
and computationally less convenient than the elementary expressions in Sections 2.3-2.4.

Some future work are: i) derive elementary forms of the exact distribution of (4) corre-
sponding to non-integer values of andn; ii) consider one-sided versions of (4) and derive
their exact distributions, (4) corresponds to a two-sided test of the equality wy; iii) de-

velop distribution theory for theftect of replacingri anda$ by their sample counterparts.
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Appendix A: The proofs

The derivation of the results in Section 2 requires the following lemma which derives the exact
pdf of the sum oV ~ T'(a, b) andW ~ T'(c, d).

Lemma Al Suppose = I'(a, b) and W~ T'(c, d) are independent random variables. Then the
pdf of S= V + W can be expressed as

— ﬂ +c—-1 - . - (h_
fs(s) = F(a+c)5a expd9) Fi(a;a+c;—(b—-d)s)

for s> 0.

Proof: We can write

fs(s)

fs fv (V) fw(s — v)dv

0

b?d® exp(-ds)
I'(@r(c)

b?d°s** L exp(-ds)

1
= -11 _ \pC-1 (L
- T(a)r(c) fo"a (1- V)" exp[—(b-d)si dv. (29)

f } V(s = v)*Lexp[-(b - d)v] dv
0

The result follows by using equation (2.3.6.1) in Prudnikov et al. (1986, volume 1) to calculate
the integral in (29).03

Proof of (6): Using Lemma Al, we can write

b*d® oo +c-1 . X
T(a+0) fo Fu(tZ*“ "~ exp(d2.Fi(a;a+ c;—(b-d)z) dz

Fri) = [ Fut@fs@dz-

The result follows sinc&y (u) = erf(Vu72). O

Proof of (7)-(8): Differentiating (6) with respect tpwe obtain
b?d®

V2aT(a+ c)

The results follow by using equation (7.621.4) in Gradshteyn and Ryzhik (2000) to calculate

fr(t) = {2 fom 23 exp[— (% + d) z] 1Fi(@a+c;—(b-d)2)dz (30)

the integral in (30).00
Proof of (9) and (10): If b = d then (6) reduces to

b?d®
I'(a+c)

Fr(t) = fo " e exp(-d2erf(vtz/2) dz (31)

(9) follows by applying Lemma B1 to calculate the integral in (31). (10) follows from (7)-(8).

ACCEPTED MANUSCRIPT
18



ACCEPTED MANUSCRIPT

O

Proof of (11): Using the fact

i—2)1(1-i)2 /&
P59 = ) { O R L Z(lkl(zu)k( z)‘

see http/functions.wolfram.con®7.20.03.0024.01, rewrite the integrand of (6) as

_ bd-a-da [T A-0d-bK S5 (a-ab-df
FT(t)_(a+c—1)(a—1)! k; k!(2—a—c)k Z KI(2 —a- o) }
where

I, = f " okl exp(-d2erf(vitz/2) dz
0

and

I, = foo Aokl exp(—bz)erf( \/tz/2) dz
0

The result follows by applying Lemma B1 to calculdieandl,. O

Proof of (12)-(13): Using the fact

1F1(i;i+%?z) ) %(H%)H

[ V;?exp(z)i_j_%erf( ‘/2) i(_z)_p(i _pl) (%)j—Hp

p=0
i-1 (-1) ( ) j-i+p 1
_ZZJ 2|+2p+1z(z) (J+I 2)k]’
see http/functions.wolfram.con®7.20.03.0130.01, rewrite the integrand of (6) as

Cbadc(l + C)a—l
(a-1)!

(St

Fr( =

w1 7 e
D X e Pz,
p=0
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where
Iy = fow 7P exp(-bgerf( Viz) erf[ \/ d ;b)z] dz
and

I, = f Aokl exp(—dz)erf( \/g) dz
0

I, can be calculated by Lemma B2df> b. |, can be calculated by Lemma B3df< b. I, can
be calculated by Lemma B1. The result follows.

Proof of (18)-(19): Using the transformatiofF1 (8 — «; B8; 2) = exp@1F1 (a;B; —2), see equa-
tion (7.2.2.8) in Prudnikov et al. (1986, volume 3), we can rewrite (6) as

b?d®
I'(a+c)

Fr(t) = fo " e exp(-b2erf( vitz/2)1F1 (c;a+ ¢ —(d - b)2) dz

Sincecis an integer and + c is a half integer, the arguments of the proof of (12)-(13) apfly.

Proof of (22): Follows by using the fact

1F1 (| + 1, J Z) = 2" Jexp(z/2)(j ~ 1)"' ZI: k( Z)kl_k—:'zL Z)

GG

k+j-1

K+ j-— P z
DI B P

where

F(/1+n+1) ()
Lh@ = ZI‘(/l+k+1)k!’

see http/functions.wolfram.cor®7.20.03.0120.01 OJ
Proof of (14)-(15): By using the transformation formulasFi(y —a,y -8;v;2 = (1 -
2" 5F (e, 8712 andaF 1 (,y - B;7: ) = (1-272F1(e. B 71 2), see equations (7.3.1.3),

(7.3.1.4) in Prudnikov et al. (1986, volume 3), we can write

1 o) 1 w-a 1 y
zFl(a,a+C—§,a+c,y)—(l y) zFl(a,2a+Cy_1) (32)
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and

zFl(c,a+ c-— %;a+ c;y) = (1_Y)%_CZF1(3»%;3-+ c;y). (33)

The results follow by using the following fact

2F1(@.8,7:2) %Ci—ﬂa,ﬁ, Y, 22F1(a,f—1- 1,72
+Ci (a/7ﬁ9 Y, Z)ZF]_(G’,B - h% Z)’ (34)

see Prudnikov et al. (1986, volume 3, Section 7.3.1), withy + 2. [
Proof of (20)-(21): Similar to the proof of (14)-(15)]

Proof of (23)-(24): By using the following fact

(I(I +ya+ 13;)% +2)(17)22) i-1(@.8,7,22F (e, By —1 - 12)

+Ci,(a”ﬁ’ Y Z)ZF]_((Y,B; Y- |, 2)7

2F1 (e, By, 2)

see Prudnikov et al. (1986, volume 3, Section 7.3.1), withy — 2, we can express

1 : 41-2) o 1 : 1 ...
zFl(a,E.a"‘C,Z) = _mca+c_3(a,E,&'FC,Z)ZFl(E,a,1,2)

1 1
+Ca+C 2( 2;a+ (o Z)zF]_ (E,a;z;z). (35)

Now applying (34) to each of the two Gauss hypergeometric terms on the right hand side of

(35), we obtain

1 4 1 1 1 3
zFl(a,z;a+c;z) = ﬁca+c_3(a,§,a+c,z)ca_%(E,a,l,z)zFl(é,—z;l;z)
4(y 1) 1
3(a 2)C‘,M_ (a,z,a+c,z)C _( , 4, zFl(— ——=:1; z)

1z

5 1 1 3

+;Ca+c_2(a,§,a+c,z)c _(Z,a,z 2)2F1(2 222)
1

1 1 1
+Ca+c2( 2,a+c,z)Ca+%(§,a2,2)2F1(2 222)

The results follow from (7), (8), (32) and (33)
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Appendix B: New integral identities

Here, we give three integral identities. One of them (Lemma B1) is known. The other two
(Lemmas B2 and B3) are new. Each lemma gives an elementary expression for the associated
integral.

Lemma B1 Let

I(n, p,b) = fomz”exp(—pzz) erf(b2)dz

forn> 1, Rep) > 0and Re(p+ b2) > 0. Then

1(2m, p,b) = (=17 " [ 1 arctar(%)]

vz 9P| P
and
(=1)"c o™ 1
[(2m+ 1, p,b) =
2 0P| p/p+b?

form=0,1,... with the initial values

1 b
(0, p,b) = \/fﬁ arctar(T‘_))

and

c

2p/p+ 02

I(1. p.b) =

Proof: See equation (2.8.5.9) in Prudnikov et al. (1986, volume(2).

Lemma B2 Let

J(n, p,b,c) = fo T exp(-pZ) erf(oerf(cadz

forn> 0, Rdp) > 0, Rdb) > 0 and Réc) > 0. Then
Z[I (n+1,p+b2,b)+ I (n+1,p+b2,c)]
Va(n+1)

0 p.b.o) = 223+ 2,pbc) -
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with the initial values

J(O, p,b,c) = 1 arctar{ b )
R V7P VPVR2+ 2+ p
and
J(1, p,b,c) = 1 l arc ar{ ) arctar{ )
P b2+ p Vb2 +p \/02 +p Ve +

Proof: By integration by parts,

f z' exp erf(bz)erf(cz)dz

(o)

= [n+1 (- zz)erf(bz)erf(cz)]

0

n+1 f 22 exp(—pZ) erf(berf(cidz

+1
‘ﬁ(n+1)fo 2V exp|- (p+ b2) 2] erf(b2dz

* +1 2
s 1)f0 2" exp|-(p+ b?) 2| erf(cadz

so the result follows by application of Lemma B1. The initial values given follow by equation
(2.8.19.8) in Prudnikov et al. (1986, volume 21

Lemma B3 Let

K(n, p,b,c) = j: 2" exp(-pZ) erf(bderf (ic2) dz

forn > 1, Rgp) > 0, Reb) > 0, Rec) > 0, Re(p—c?) > 0 and Rep + b? - ¢?) > 0, where
i = V=1. Then

Vb2 — 2
(n+ 1)K(n, p,b,c) = —2pK(n+2,p,b,c)+n 3_bc I(n—l, P, \/bz—cz)
c

——I(n 1p+b2|c)—TI(n 1,p-c*h)

Vb
2pl \/b_zbccz (n+1 p, Vb2 — 02) (n+ 1, p+b?ic)
\/_c I(n+1.p-c%b) (36)
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with the initial value
bl (0, p+ b%ic) +icl (0, p— ¢ b)

K(1, p,b,c) = \/;p

Proof: By integration by parts,
foo 2" exp(-pZ) erf(bderf (ic2) dz
0
= |2 exp(-pZ f(b2erf(ic2 d r
[ exp(-p )fer( erf(ic2) z0
—f 2"t (n - 2pZ) exp(-pZ) [ferf(bz)erf(icz)dz]dz (37)
0

By equation (1.5.6.2) in Prudnikov et al. (1986, volume 2),
Vb2 — 2
ferf(bz)erf(icz)dz = zerf(bgerf(icg — — erf(\/bz—czz)
i Vbe
1 1
—— exp(-b?Z)erf(ic)) + — exp(-c?Z)erf(b2). (38
75 p(-b?Z) (cd + —= p(-cZ)erf(b). (38)
(36) follows by combining (37) and (38) and by application of Lemma B1. By integration by

parts,

foo zexp(—pZ) erf(berf (ic2) dz

0

- [_%) exp(-p?) f erf(b2erf (ic2) dz]:
_% fom exp[— (p + b2) 22] erf(ic2) dz

—% j:o exp|(c? - p) Z|erf (b2 dz

so the initial value follows by application of Lemma B
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Figure 1. Exact, estimated exact and approximate pdf6 iof (5) versust = 0.01,0.02...,10
wheno? = 4 ando? = 1: m= 5 andn = 3 (top left),m = 3 andn = 4 (top right),m = 4 andn = 3
(middle left),m = 2 andn = 4 (middle right),m = n = 3 (bottom left),m = n = 2 (bottom right).
Both axes are plotted in log scale.
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Figure 2: Exact, estimated exact and approximate cdf of (5) versust = 0.01,0.02...,10
whenco? = 4 ando? = 1: m= 5 andn = 3 (top left),m = 3 andn = 4 (top right),m= 4 andn = 3
(middle left),m = 2 andn = 4 (middle right),m = n = 3 (bottom left),m = n = 2 (bottom right).
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Figure 3: Exact, estimated exact, approximate and simulated powgr-of:y whens? = 4 and
o = 1: m=5andn = 3 (top left),m = 3 andn = 4 (top right),m = 4 andn = 3 (middle left),
m = 2 andn = 4 (middle right),m = n = 3 (bottom left),m = n = 2 (bottom right).
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Figure 4: Central processing unit times to compute pdiTobne hundred times versus =
3,4,...,101 whenm = 3, 0% = 4 ando? = 1 (top left); Central processing unit times to compute
pdf of T one hundred times versus= 3,4,...,101 whemn = 3, 0% = 4 ando? = 1 (top right);
Central processing unit times to compute cdiadne hundred times versas= 3,4, ...,101 when

m = 3, 0% = 4 ando? = 1 (bottom left); Central processing unit times to compute cdf afne
hundred times versus = 3,4, ...,101 whem = 3, 0% = 4 ando? = 1 (bottom right).
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