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Exact distribution of a modified Behrens-Fisher statistic

Saralees Nadarajah and Rui Li
School of Mathematics, University of Manchester, UK

Abstract

The exact distribution of a modified Behrens-Fisher statistic is derived. The distribution

function is mostly elementary and is simpler than the exact distribution derived by Nel et al.

[Communications in Statistics—Theory and Methods, 19, 1990, 279-298]. Its practical use (in-

cluding computational efficiency and computational convenience) is discussed.

Keywords: Behrens-Fisher statistic; Hypergeometric functions; Student’st distribution.
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1 Introduction

Supposex1, x2, . . . , xm is a random sample from a normal population with meanμX and variance

σ2
X. Supposey1, y2, . . . , yn is another random sample from a normal population with meanμY

and varianceσ2
Y. Suppose too that the random samples are independent. If the variances are

unknown and unequal then the test for equality of means is based on thestatistic

x− y
√

s2
X

m
+

s2
Y

n

= T (1)

say,where

x =
1
m

m∑

i=1

xi , y =
1
n

n∑

i=1

yi ,

s2
X =

1
m− 1

m∑

i=1

(xi − x)2 , s2
Y =

1
n− 1

n∑

i=1

(yi − y)2 .

(1) is known as the Behrens-Fisher statistic (Fisher, 1935). Commonly its distribution is ap-

proximated by a Student’st random variable (Welch, 1938) with degree of freedom

ν =




s2
X

m
+

s2
Y

n




2

1
m− 1




s2
X

m




2

+
1

n− 1




s2
Y

n




2
. (2)

The resulting test is known as the two samplet test. Many other approximations to the distribu-

tion of (1) have since been proposed. We refer the readers to Chapters 28 and 30 of Johnson et

al. (1995) for an excellent review. See also Kim and Cohen (1998).

There has been little work on deriving the exact distribution of (1). The only work known

to us is that due to Nel et al. (1990). Under the hypothesisμX = μY, Nel et al. (1990) showed
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that the probability density function (pdf) ofT can be expressed as

fT (t) =

Γ

(
m+ n+ 1

2

)

√
πΓ

(m+ n
2

)
gm/2

X gn/2
Y

√
φ2

(
1
gY

+
t2

φ2

)−m+n+1
2

∙2F1



m
2
,
m+ n+ 1

2
;
m+ n

2
;

(
1
gY
−

1
gX

) (
1
gY

+
t2

φ2

)−1 , (3)

wheregX = σ2
X/ [m(m− 1)], gY = σ2

Y/ [n(n− 1)], φ2 = m−1σ2
X + n−1σ2

Y and 2F1(a, b; c; x)

denotes the Gauss hypergeometric function defined by

2F1(a, b; c; x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
,

where (e)k = e(e+ 1) ∙ ∙ ∙ (e+ k − 1) denotes the ascending factorial. Nel et al. (1990) did not

give expressions for the cumulative distribution function (cdf) ofT .

The Gauss hypergeometric function in (3) is a special function and there are not many com-

puter programs for computing it. Even some of the programs for computing the Gauss hyper-

geometric function are prone to round off errors, for example,hypergeom in the R software (R

Development Core Team, 2015). Besides, many authors have stated that (3) is “computationally

intractable”. For example, Krishnamoorthy and Yu (2004) stated that (3) is “computationally

intractable. . . is of no use for practical applications”. For multivariate Behrens-Fisher prob-

lem, Kakizawa and Iwashita (2008) stated that (3) is “quite complicated and intractable from a

computational point of view”.

The aim of this paper is to derive the exact distribution of (1) in mostly elementary forms.

In fact, the derived forms for the pdf and cdf are all elementary except when bothm andn are

even numbers. Elementary forms can be computed accurately on any platform, even using a

pocket calculator. Hence, they are computationally more convenient than (3).

In passing, we would like to point out that even some of the known approximations for (1)

are not elementary. For example, the Student’st approximation’s distribution function involves

the incomplete beta function ratio, a special function, for allm andn.
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Consider the modified form of (1) given by

[
(x− y) − (μX − μY)

]2

s2
X

m
+

s2
Y

n

= T (4)

say. Note that (1) and (4) are equivalent at least whenμX = μY. Using the facts

x∼ N


μX,

σ2
X

m


 , y∼ N


μY,
σ2

Y

n


 ,

(m− 1)s2
X

σ2
X

∼ χ2
m−1,

(n− 1)s2
Y

σ2
Y

∼ χ2
n−1,

we can rewrite (4) as

T =
U

V + W
, (5)

whereU ∼ χ2
1, V ∼ Γ(a, b), W ∼ Γ(c, d) are independent random variables and

a =
m− 1

2
, c =

n− 1
2
,

b =
(m− 1)

(
nσ2

X + mσ2
Y

)

2nσ2
X

, d =
(n− 1)

(
nσ2

X + mσ2
Y

)

2mσ2
Y

.

Here,Γ(a, b) denotes a gamma random variable with shape parametera and rate parameterb.

Exact expressions for the pdf and cdf ofT in (5) are given in Section 2. Of the expressions

given there, the ones that are new and original are: the cdf ofT in the general case; the pdf and

cdf of T whenb = d; the cdf ofT whenm andn are odd; the cdf ofT whenm is odd andn is

even; the cdf ofT whenm is even andn is odd; the cdf ofT whenm andn are even; the pdf of

T whenm is odd; the pdf ofT whenn is odd; the pdf ofT whenm andn are even. All of the

proofs are given in Appendix A.

The practical use and efficiency of the newly derived expressions are discussed in Section

3. The discussion centers on four aspects: i) comparison of the newly derived pdfs and the

Student’st pdf with degree of freedom (2); ii) comparison of the newly derived cdfs and the

Student’st cdf with degree of freedom (2); iii) comparison of power functions corresponding

to the newly derived expressions and the Student’st approximation with degree of freedom (2);

iv) comparison of computational times corresponding to the newly derived expressions and (3).
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The expressions given in Section 2 are mostly elementary. One case giving non-elementary

expressions is when bothm andn are even integers. In this case, expressions involve the error

function, modified Bessel function of the first kind and elliptical integrals. The derivations in

all cases make use of the error function and the confluent and Gauss hypergeometric functions.

The derivations also make use of some new integral identities hitherto unknown. These new

identities are stated and proved in Appendix B.

2 Main results

The main results are explicit expressions for the cdf and pdf ofT in (5). All of the expressions

are new and original except for those given by (7) and (8). The latter expressions are due to

Nel et al. (1990). The practical use and efficiency of most of the expressions are illustrated in

Section 3.

Throughout, we supposeU ∼ χ2
1, V ∼ Γ(a, b) andW ∼ Γ(c, d) are independent random

variables, wherea > 0, b > 0, c > 0 andd > 0. The expressions are grouped as follows: the

general case where there are no restrictions ona > 0, b > 0, c > 0 andd > 0; the caseb = d > 0

but no restrictions ona > 0 andc > 0; the casem > 1 is an odd integer; the casen > 1 is an

odd integer; the casem > 1 andn > 1 are even integers. We shall see that all of the derived

expressions are elementary except for the general case and the casem > 1 andn > 1 are even

integers.

2.1 General case

Supposea > 0, b > 0, c > 0 andd > 0 are real numbers. Then the cdf ofT can be expressed as

FT(t) =
badc

Γ(a+ c)

∫ ∞

0
za+c−1 exp(−dz)erf

( √
tz/2

)
1F1 (a; a+ c;−(b− d)z) dz (6)

for t > 0, where erf(x) denotes the error function defined by

erf(x) =
2
√
π

∫ x

0
exp

(
−s2

)
ds
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and1F1(a; b; x) denotes the confluent hypergeometric function defined by

1F1 (a; b; x) =
∞∑

k=0

(a)k

(b)k

xk

k!
.

The corresponding pdf can be expressed as

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ d

) 1
2−a−c

2F1

(

a,a+ c−
1
2

; a+ c;
d − b
t
2 + d

)

(7)

and

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ b

) 1
2−a−c

2F1

(

c,a+ c−
1
2

; a+ c;
b− d
t
2 + b

)

(8)

for
∣∣∣∣ d−b

t
2+d

∣∣∣∣ < 1 and
∣∣∣∣ b−d

t
2+b

∣∣∣∣ < 1, respectively. The result given by (7) and (8) appears equivalent to

(3) due to Net et al. (1990).

2.2 The caseb = d

Supposeb > 0 andd > 0 are equal and take a real value. Then the cdf and pdf ofT can be

expressed as

FT(t) =
2ba+c

Γ(a+ c)
I
(
2a+ 2c− 1, b,

√
t/2

)
(9)

and

fT(t) =

ba+cΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ d

) 1
2−a−c

, (10)

respectively, fort > 0, whereI (n, p, c) is an elementary form defined by Lemma B1.
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2.3 The casem odd

Supposem > 1 is an odd integer. If in additionn > 1 is also an odd integer then the cdf ofT

can be expressed as

FT(t) =
2badc(1− a− c)a

(a+ c− 1)(a− 1)!ta+c

[ c−1∑

k=0

(1− c)k(d − b)k

k!(2 − a− c)kt
k

I

(

2a+ 2c+ 2k− 1,
d
t
,

1
√

2

)

−
a−1∑

k=0

(1− a)k(b− d)k

k!(2 − a− c)kt
k

I

(

2a+ 2c+ 2k− 1,
b
t
,

1
√

2

) ]

(11)

for t > 0, whereI (n, p, c) is an elementary form defined by Lemma B1. On the other hand, if

n > 1 is an even integer then the cdf ofT can be expressed as

FT(t) =
2cbadc(1+ c)a−1

(a− 1)!

∙

[
√
π(d − b)−c

a−1∑

p=0

(b− d)−p
(
a− 1

p

) (
1
2

)

c+p− 1
2

J


2a− 2p− 1, b,

√
t,

√
d − b

2




−
a−1∑

p=0

(−1)p
(
a− 1

p

)

c+ p

c+p− 1
2∑

k=1

(b− d)−k(−c− p)kI


2a+ 2c− 2k− 1, d,

√
t
2




]

(12)

and

FT(t) =
2cbadc(1+ c)a−1

(a− 1)!

[
√
π(d − b)−c

∙
a−1∑

p=0

(b− d)−p
(
a− 1

p

) (
1
2

)

c+p− 1
2

K


2a− 2p− 1, b,

√
t,

√
b− d

2




−
a−1∑

p=0

(−1)p
(
a− 1

p

)

c+ p

c+p− 1
2∑

k=1

(b− d)−k(−c− p)kI


2a+ 2c− 2k− 1, d,

√
t
2




]

(13)

for d > b andb > d, respectively, andt > 0, whereI (n, p, c), J(n, p, b, c) andK(n, p, b, c) are

elementary forms defined by Lemmas B1, B2 and B3. In either case (n > 1 is an odd integer or
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an even integer), the corresponding pdf can be expressed as

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ d

) 1
2−a−c

(1− y)−a

∙

[
2+ a+ c

2
(y− 1)Ca+1

(

a,
1
2
,a+ c;

y
y− 1

) 3∑

k=0

(
1
2

)

k
(−3)ky

k

(a+ c)kk!(y− 1)k

+Ca+2

(

a,
1
2
, a+ c;

y
y− 1

) 2∑

k=0

(
1
2

)

k
(−2)ky

k

(a+ c)kk!(y− 1)k

]

(14)

and

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ b

) 1
2−a−c

(1− y)
1
2−c

∙

[
2+ a+ c
2(y− 1)

Ca+1

(

a,
1
2
, a+ c; y

) 3∑

k=0

(
1
2

)

k
(−3)ky

k

(a+ c)kk!

+Ca+2

(

a,
1
2
, a+ c; y

) 2∑

k=0

(
1
2

)

k
(−2)ky

k

(a+ c)kk!

]

(15)

for y = d−b
t
2+d
< 1 andy = b−d

t
2+b
< 1, respectively, whereCi(α, β, γ, z) satisfies

Ci(α, β, γ, z) = −
−2β + γ + 2i + (β − α − i)z

(i − β)(γ − 1)
Ci−1(α, β, γ, z) +

i − β + γ − 1
(i − β − 1)(z− 1)

Ci−2(α, β, γ, z) (16)

with the initial values

C0(α, β, γ, z) = 1, C1(α, β, γ, z) =
2− 2β + γ + (β − α − 1)z

(β − 1)(z− 1)
. (17)
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2.4 The casen odd

Supposen > 1 is an odd integer. If in additionm> 1 is an even integer then the cdf ofT can be

expressed as

FT(t) =
2abadc(1+ a)c−1

(c− 1)!

∙

[
√
π(b− d)−a

c−1∑

p=0

(d − b)−p
(
c− 1

p

) (
1
2

)

a+p− 1
2

J


2c− 2p− 1, d,

√
t,

√
b− d

2




−
c−1∑

p=0

(−1)p
(
c− 1

p

)

a+ p

a+p− 1
2∑

k=1

(d − b)−k(−a− p)kI


2a+ 2c− 2k− 1, b,

√
t
2




]

(18)

and

FT(t) =
2abadc(1+ a)c−1

(c− 1)!

[
√
π(b− d)−a

∙
c−1∑

p=0

(d − b)−p
(
c− 1

p

) (
1
2

)

a+p− 1
2

K


2c− 2p− 1, d,

√
t,

√
d − b

2




−
c−1∑

p=0

(−1)p
(
c− 1

p

)

a+ p

a+p− 1
2∑

k=1

(d − b)−k(−a− p)kI


2a+ 2c− 2k− 1, b,

√
t
2




]

(19)

for b > d andd > b, respectively, andt > 0, whereI (n, p, c), J(n, p, b, c) andK(n, p, b, c) are

elementary forms defined by Lemmas B1, B2 and B3. Whether or notm> 1 is an even integer,

the corresponding pdf can be expressed as

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ d

) 1
2−a−c

(1− y)
1
2−a

∙

[
2+ a+ c
2(y− 1)

Cc+1

(

c,
1
2
, a+ c; y

) 3∑

k=0

(
1
2

)

k
(−3)ky

k

(a+ c)kk!

+Cc+2

(

c,
1
2
, a+ c; y

) 2∑

k=0

(
1
2

)

k
(−2)ky

k

(a+ c)kk!

]

(20)
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and

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ b

) 1
2−a−c

(1− y)−c

∙

[
2+ a+ c

2
(y− 1)Cc+1

(

c,
1
2
, a+ c;

y
y− 1

) 3∑

k=0

(
1
2

)

k
(−3)ky

k

(a+ c)kk!(y− 1)k

+Cc+2

(

c,
1
2
, a+ c;

y
y− 1

) 2∑

k=0

(
1
2

)

k
(−2)ky

k

(a+ c)kk!(y− 1)k

]

(21)

for y = d−b
t
2+d
< 1 andy = b−d

t
2+b
< 1, respectively, whereCi(α, β, γ, z) is as defined in (16)-(17).

2.5 The casem even,n even

Suppose bothm> 1 andn > 1 are even integers. Then the cdf ofT can be expressed as

FT(t) =

21−a−cbadc
(

a−
1
2

)

!Γ(a)

(
1
2

)

a+c−1

(
1
2

)

a− 1
2

a− 1
2∑

k=0

k+a+c−1∑

p=0

p∑

q=0

∙
a− 1

2−k∑

`=0

(−1)p2−k−p
(
1
2
+ k− a

)

`

(b− d)`

(

a−
1
2
− k

)

!Γ

(

k+ ` +
1
2

)

k!`!

(
k+ a+ c− 1

p

)(
p
q

)

I1(t) (22)

for t > 0, where

I1(t) =
∫ ∞

0
za+c+k+`−1 exp

(

−
b+ d

2
z

)

erf
( √

tz/2
)
I p−2q

(
(d − b)z

2

)

dz,

whereIν(∙) denotes the modified Bessel function of the first kind of orderν defined by

Iν(z) =
∞∑

k=0

1
Γ(k+ ν + 1)k!

( z
2

)2k+ν
.
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If m≥ 4 is even andn ≥ 4 is even then the corresponding pdf can be expressed as

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ d

) 1
2−a−c

(1− y)−a

∙

[
4

a− 2
C
′

a+c−3

(

a,
1
2
, a+ c, z

)

Ca− 1
2

(
1
2
, a,1, z

)

2F1

(
1
2
,−

3
2

; 1;z

)

+
4

3(a− 2)(y− 1)
C
′

a+c−3

(

a,
1
2
, a+ c, z

)

Ca+ 1
2

(
1
2
, a, 1, z

)

2F1

(
1
2
,−

1
2

; 1;z

)

+5(y− 1)C
′

a+c−2

(

a,
1
2
,a+ c, z

)

Ca− 1
2

(
1
2
,a, 2, z

)

2F1

(
1
2
,−

3
2

; 2;z

)

+C
′

a+c−2

(

a,
1
2
, a+ c, z

)

Ca+ 1
2

(
1
2
, a, 2, z

)

2F1

(
1
2
,−

1
2

; 2;z

) ]

(23)

and

fT(t) =

badcΓ

(

a+ c−
1
2

)

√
2πΓ(a+ c)

t−
1
2

( t
2
+ b

) 1
2−a−c

(1− y)
1
2−c

∙

[
4

a− 2
C
′

a+c−3

(

a,
1
2
, a+ c, y

)

Ca− 1
2

(
1
2
, a,1, y

)

2F1

(
1
2
,−

3
2

; 1;y

)

+
4(y− 1)
3(a− 2)

C
′

a+c−3

(

a,
1
2
, a+ c, y

)

Ca+ 1
2

(
1
2
, a,1, y

)

2F1

(
1
2
,−

1
2

; 1;y

)

+
5

y− 1
C
′

a+c−2

(

a,
1
2
, a+ c, y

)

Ca− 1
2

(
1
2
, a,2, y

)

2F1

(
1
2
,−

3
2

; 2;y

)

+C
′

a+c−2

(

a,
1
2
, a+ c, y

)

Ca+ 1
2

(
1
2
, a, 2, y

)

2F1

(
1
2
,−

1
2

; 2;y

) ]

(24)

for y = d−b
t
2+d
< 1 andy = b−d

t
2+b
< 1, respectively, wherez =

y
y−1, Ci(α, β, γ, z) is as defined in

(16)-(17) andC
′

i (α, β, γ, z) satisfies

C
′

i (α, β, γ, z) =
(i − γ)(i − γ − 1)(1− z)

(α − γ + i − 1)(β − γ + i − 1)z
C
′

i−2(α, β, γ, z)

+
(γ − i)

{
1− γ + i −

[
α + β + 2(i − γ − 1)+ 3

]
z
}

(α − γ + i)(β − γ + i)z
C
′

i−1(α, β, γ, z)

with the initial values

C
′

0(α, β, γ, z) = 1, C
′

1(α, β, γ, z) =
(γ − 1)

[
2− γ − (α + β − 2γ + 3)z

]

(α − γ + 1)(β − γ + 1)z
.
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By Prudnikov et al. (1986, volume 3, Section 7.3.2),

2F1

(
1
2
,
1
2

; 1;z

)

=
2
π

K (z),

2F1

(
3
2
,
1
2

; 3;z

)

=
4
πz

[K (z) − E(z)] ,

2F1

(
1
2
,
1
2

; 2;z

)

=
4
πz

[E(z) + (z− 1)K (z)] ,

2F1

(
1
2
,−

3
2

; 1;z

)

=
1
3π

[2(z− 1)K (z) − 4(z− 2)E(z)] ,

2F1

(
1
2
,−

1
2

; 1;z

)

=
2
π

E(z),

2F1

(
1
2
,−

3
2

; 2;z

)

=
4

15πz
{[(7− 2z)z+ 3] E(z) + (z− 1)(z+ 3)K (z)} ,

2F1

(
1
2
,−

1
2

; 2;z

)

=
4

3πz
[(z+ 1)E(z) + (z− 1)K (z)] ,

whereK (∙) andE(∙) are complete elliptical integrals of the first and second kinds defined by

K (z) =
∫ π

2

0

(
1− zsin2 t

)− 1
2 dt

and

E(z) =
∫ π

2

0

(
1− zsin2 t

) 1
2 dt,

respectively.

Hence, the pdf ofT for anym ≥ 2 even andn ≥ 2 even can be expressed in terms ofK (z)

andE(z).

3 Discussion

Here, we illustrate the practical use and efficiency of the expressions in Sections 2.2 to 2.5. We

do this by comparing: the pdf ofT suggested by Sections 2.2 to 2.5 with the pdf ofT suggested

by the Student’st approximation with degree of freedom (2); the cdf ofT suggested by Sections

2.2 to 2.5 with the cdf ofT suggested by the Student’st approximation with degree of freedom

(2); the power function ofμX − μY suggested by Sections 2.2 to 2.5 with the power function of
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μX−μY suggested by the Student’st approximation with degree of freedom (2); the central pro-

cessing unit times taken to compute the pdfs ofT in Sections 2.3-2.4 with the central processing

unit times taken to compute the corresponding pdfs in Section 2.1; the central processing unit

times taken to compute the cdfs ofT in Sections 2.3-2.4 with the central processing unit times

taken to compute the corresponding cdfs in Section 2.1.

SupposeμX = μY. Then the pdf and the cdf ofT suggested by the Student’st approximation

with degree of freedom (2) are

fT,Approx(t) = t−
1
2 ftν

(√
t
)

and

FT,Approx(t) = Ftν

(√
t
)
− Ftν

(
−
√

t
)
,

respectively, whereftν(∙) and Ftν(∙) denote, respectively, the pdf and the cdf of a Student’st

random variable with degree of freedomν. The exact expressions for the pdf and the cdf ofT

given in Section 2 involve the unknown parametersσ2
X andσ2

Y. We also computed them with

σ2
X andσ2

Y replaced by the sample variancess2
X ands2

Y, respectively, yielding what we refer to

as the “estimated exact” pdfs and cdfs ofT. The s2
X was computed as the variance of a single

sample of sizem simulated from a normal distribution with varianceσ2
X ands2

Y was computed

as the variance of a single sample of sizen simulated from a normal distribution with variance

σ2
Y. Note that the estimated exact pdf and the estimated exact cdf are still continuous functions

of t just like fT(t) andFT(t) are.

The exact, estimated exact and approximate pdfs ofT are plotted in Figure 1 for a range of

different values ofm andn. The exact, estimated exact and approximate cdfs ofT are plotted

in Figure 2 for a range of different values ofm andn.

Now consider testingH0 : μX = μY versusH1 : μX , μY with significance levelα = 0.05.

The rule for rejectingH0 suggested by the Student’st approximation with degree of freedom

13
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

(2) is

|x− y|
√

s2
X

m
+

s2
Y

n

> F−1
tν

(
1−
α

2

)
. (25)

The rule for rejectingH0 suggested by the results in Section 2 is

(x− y)2

s2
X

m
+

s2
Y

n

> F−1
T (1− α) . (26)

F−1
T

(
α
2

)
andF−1

T

(
1− α2

)
involve the unknown parameters,σ2

X andσ2
Y. With them replaced by

the sample variances, we obtain the rule

(x− y)2

s2
X

m
+

s2
Y

n

> F̂−1
T (1− α) , (27)

whereF̂−1
T

(
α
2

)
and F̂−1

T

(
1− α2

)
denote the estimates ofF−1

T

(
α
2

)
andF−1

T

(
1− α2

)
, respectively.

Finally, let F̃(∙) denote the empirical cdf of|x− y| /
√

s2
X

m +
s2
Y
n computed over ten thousand sam-

ples simulated fromN
(
μX, σ

2
X

)
andN

(
μY, σ

2
Y

)
. Then a rule for rejectingH0 is

|x− y|
√

s2
X

m
+

s2
Y

n

> F̃−1 (1− α) . (28)

The power functions corresponding to (25)-(28) are plotted in Figure 3 for a range of different

values ofm andn. “Approx” power refers to (25), “Exact” power refers to (26), “Estimated

Exact” power refers to (27) and “Simulated” power refers to (28). The cdf ofT needed for (26)

and (27) were computed using: (9) whenm = n; (11) whenm andn , m are odd; (12)-(13)

whenm is odd andn , m is even; (18)-(19) whenm is even andn , m is odd; (22) whenmand

n , m are even.

Figure 4 plots the central processing unit times taken to compute the elementary expressions

in Sections 2.3-2.4 and the expressions due to Nel et al. (1990). These times are plotted versus

a range ofm andn. “Nel et al.’s PDF” in Figure 4 refers to (3). “Nel et al.’s CDF” refers to the

integrated version of (3), integration performed numerically. “Proposed PDF” refers to one of

(14) or (15) ifm is odd. “Proposed PDF” refers to one of (20) or (21) ifn is odd. “Proposed
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CDF” refers to one of (11), (12) or (13) ifm is odd. “Proposed CDF” refers to one of (18) or

(19) if n is odd.

In Figure 1, the exact and estimated exact pdfs form= n were computed using (10). Those

whenm andn , m are odd were computed using (14)-(15). Those whenm is odd andn , m is

even were computed using (14)-(15). Those whenm is even andn , m is odd were computed

using (20)-(21). Those whenm andn , m are even were computed using (23)-(24). In Figure

2, the exact and estimated exact cdfs form = n were computed using (9). Those whenm and

n , m are odd were computed using (11). Those whenm is odd andn , m is even were

computed using (12)-(13). Those whenm is even andn , m is odd were computed using (18)-

(19). Those whenm andn , m are even were computed using (22). The approximate pdfs

and cdfs in Figures 1 and 2 are based on the Student’st approximation. All computations were

performed in Maple withDigits set equal to 20. Maple like most other algebraic manipulation

packages allows for arbitrary precision, so the accuracy of computations was not an issue. The

inversions needed for (26) and (27) were performed usingfsolve.

Figure 1 shows that the approximate pdf ofT differs significantly from the exact one for

all sufficiently large values oft. The estimated exact pdf ofT does not differ as much from

the exact one as the approximate pdf ofT does. The estimated exact pdf appears a lot closer

to the exact pdf especially in the upper tail of each of the six plots in Figure 1. This could be

significant when the extremes of the means of two random samples are of interest, for example,

the extremes of mean returns of two different stocks, the extremes of mean rainfall for two

different locations, the extremes of mean wind speeds for two different locations, the extremes

of mean sea levels at two different coastal points, the extremes of mean exchange rates for two

different countries, and so on.

Figure 2 shows that the approximate cdf ofT is the furthest from the exact one for all values

of t. The estimated exact cdf ofT does not differ as much from the exact one as the approximate

cdf of T does. The estimated exact cdf appears a lot closer to the exact cdf in each of the six

plots in Figure 2. Figure 3 shows that (26) and (27) give the best power for most values of

μX − μY , 0. (25) gives the worst power for most values ofμX − μY , 0. The powers given by
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(26) and (27) do not differ much from the power given by the simulated version (28). Figure

4 shows that the elementary expressions in Sections 2.3-2.4 are computationally more efficient

than the expressions in Section 2.1 for everymand everyn. As expected, the central processing

unit times increase with increasingm. They also increase with increasingn.

The observations in Figures 1 to 3 were noted also for a wide range of other small values

of mandn (equal and unequal sample sizes) and for a wide range of other values ofσ2
X andσ2

Y

(equal and unequal variances). Hence, the use of the Student’st approximation in these cases

can lead to serious errors and less power.

The observations in Figure 4 were noted also for a wide range of other values ofm andn

(equal and unequal sample sizes) and for a wide range of other values ofσ2
X andσ2

Y (equal and

unequal variances). Hence, the use of Nel et al.’s expression is computationally less efficient

and computationally less convenient than the elementary expressions in Sections 2.3-2.4.

Some future work are: i) derive elementary forms of the exact distribution of (4) corre-

sponding to non-integer values ofm andn; ii) consider one-sided versions of (4) and derive

their exact distributions, (4) corresponds to a two-sided test of the equalityμX = μY; iii) de-

velop distribution theory for the effect of replacingσ2
X andσ2

Y by their sample counterparts.
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Appendix A: The proofs

The derivation of the results in Section 2 requires the following lemma which derives the exact

pdf of the sum ofV ∼ Γ(a,b) andW ∼ Γ(c,d).

Lemma A1 Suppose V∼ Γ(a, b) and W∼ Γ(c,d) are independent random variables. Then the

pdf of S= V + W can be expressed as

fS(s) =
badc

Γ(a+ c)
sa+c−1 exp(−ds)1F1 (a; a+ c;−(b− d)s)

for s> 0.

Proof: We can write

fS(s) =

∫ s

0
fV(v) fW(s− v)dv

=
badc exp(−ds)

Γ(a)Γ(c)

∫ s

0
va−1(s− v)c−1 exp[−(b− d)v] dv

=
badcsa+c−1 exp(−ds)

Γ(a)Γ(c)

∫ 1

0
va−1(1− v)c−1 exp[−(b− d)sv] dv. (29)

The result follows by using equation (2.3.6.1) in Prudnikov et al. (1986, volume 1) to calculate

the integral in (29).�

Proof of (6): Using Lemma A1, we can write

FT(t) =
∫ ∞

0
FU(tz) fS(z)dz=

badc

Γ(a+ c)

∫ ∞

0
FU(tz)za+c−1 exp(−dz)1F1 (a; a+ c;−(b− d)z) dz.

The result follows sinceFU(u) = erf
(√

u/2
)
. �

Proof of (7)-(8): Differentiating (6) with respect tot, we obtain

fT(t) =
badc

√
2πΓ(a+ c)

t−
1
2

∫ ∞

0
za+c− 3

2 exp
[
−

( t
2
+ d

)
z
]

1F1 (a; a+ c;−(b− d)z) dz. (30)

The results follow by using equation (7.621.4) in Gradshteyn and Ryzhik (2000) to calculate

the integral in (30).�

Proof of (9) and (10): If b = d then (6) reduces to

FT(t) =
badc

Γ(a+ c)

∫ ∞

0
za+c−1 exp(−dz)erf

( √
tz/2

)
dz. (31)

(9) follows by applying Lemma B1 to calculate the integral in (31). (10) follows from (7)-(8).
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�

Proof of (11): Using the fact

1F1 (i; j; z) =
(i − 2)!(1− i) jz

1−i

(i − 1)!




j−i−1∑

k=0

(i − j + 1)kz
k

k!(2 − j)k
− exp(z)

i−1∑

k=0

(1− i)k(−z)k

k!(2 − j)k


 ,

see http://functions.wolfram.com/07.20.03.0024.01, rewrite the integrand of (6) as

FT(t) =
badc(1− a− c)a

(a+ c− 1)(a− 1)!




c−1∑

k=0

(1− c)k(d − b)k

k!(2 − a− c)k
I1 −

a−1∑

k=0

(1− a)k(b− d)k

k!(2 − a− c)k
I2


 ,

where

I1 =

∫ ∞

0
za+c+k−1 exp(−dz)erf

( √
tz/2

)
dz

and

I2 =

∫ ∞

0
za+c+k−1 exp(−bz)erf

( √
tz/2

)
dz.

The result follows by applying Lemma B1 to calculateI1 andI2. �

Proof of (12)-(13): Using the fact

1F1

(

i; j +
1
2

; z

)

=
(2 j − 2i + 1)

2(i − 1)!

(

j − i +
3
2

)

i−1

∙

[
√
π exp(z)zi− j− 1

2 erf
(√

z
) i−1∑

p=0

(−z)−p
(
i − 1

p

) (
1
2

)

j−i+p

−2
i−1∑

p=0

(−1)p
(
i − 1

p

)

2 j − 2i + 2p+ 1

j−i+p∑

k=1

(−z)−k
(

− j + i − p−
1
2

)

k

]

,

see http://functions.wolfram.com/07.20.03.0130.01, rewrite the integrand of (6) as

FT(t) =
cbadc(1+ c)a−1

(a− 1)!

∙

[
√
π(d − b)−c

a−1∑

p=0

(b− d)−p
(
a− 1

p

) (
1
2

)

c+p− 1
2

I1

−
a−1∑

p=0

(−1)p
(
a− 1

p

)

c+ p

c+p− 1
2∑

k=1

(b− d)−k(−c− p)kI2

]

,
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where

I1 =

∫ ∞

0
za−1−p exp(−bz)erf

(√
tz
)
erf




√
(d − b)z

2


 dz

and

I2 =

∫ ∞

0
za+c−k−1 exp(−dz)erf




√
tz
2


 dz.

I1 can be calculated by Lemma B2 ifd > b. I1 can be calculated by Lemma B3 ifd < b. I2 can

be calculated by Lemma B1. The result follows.�

Proof of (18)-(19): Using the transformation1F1 (β − α; β; z) = exp(z)1F1 (α; β;−z), see equa-

tion (7.2.2.8) in Prudnikov et al. (1986, volume 3), we can rewrite (6) as

FT(t) =
badc

Γ(a+ c)

∫ ∞

0
za+c−1 exp(−bz)erf

( √
tz/2

)
1F1 (c; a+ c;−(d − b)z) dz.

Sincec is an integer anda+c is a half integer, the arguments of the proof of (12)-(13) apply.�

Proof of (22): Follows by using the fact

1F1

(

i +
1
2

; j; z

)

=
21− j exp(z/2)( j − 1)!i!

(
1
2

)

j−1

(
1
2

)

i

i∑

k=0

2−k(−z)k

k!
L

k− 1
2

i−k (−z)

∙
k+ j−1∑

p=0

(−1)p2−p
(
k+ j − 1

p

) p∑

q=0

I p−2q

( z
2

)
,

where

Lλn(z) =
Γ(λ + n+ 1)

n!

n∑

k=0

(−n)kz
k

Γ(λ + k+ 1)k!
,

see http://functions.wolfram.com/07.20.03.0120.01 .�

Proof of (14)-(15): By using the transformation formulas,2F1 (γ − α, γ − β; γ; z) = (1 −

z)α+β−γ2F1(α, β; γ; z) and2F1

(
α, γ − β; γ; z

z−1

)
= (1− z)γ2F1(α, β; γ; z), see equations (7.3.1.3),

(7.3.1.4) in Prudnikov et al. (1986, volume 3), we can write

2F1

(

a, a+ c−
1
2

; a+ c; y

)

= (1− y)−a
2F1

(

a,
1
2

; a+ c;
y

y− 1

)

(32)
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and

2F1

(

c, a+ c−
1
2

; a+ c; y

)

= (1− y)
1
2−c

2F1

(

a,
1
2

; a+ c; y

)

. (33)

The results follow by using the following fact

2F1 (α, β; γ; z) =
i − β + γ

(i − β)(z− 1)
Ci−1(α, β, γ, z)2F1(α, β − i − 1;γ; z)

+Ci(α, β, γ, z)2F1(α, β − i; γ; z), (34)

see Prudnikov et al. (1986, volume 3, Section 7.3.1), withi = α + 2. �

Proof of (20)-(21): Similar to the proof of (14)-(15).�

Proof of (23)-(24): By using the following fact

2F1 (α, β; γ; z) =
(i − γ + 1)(α − γ)(1− z)
(i + α − γ)(i + β − γ)z

C
′

i−1(α, β, γ, z)2F1(α, β; γ − i − 1;z)

+C
′

i (α, β, γ, z)2F1(α, β; γ − i; z),

see Prudnikov et al. (1986, volume 3, Section 7.3.1), withi = γ − 2, we can express

2F1

(

a,
1
2

; a+ c; z

)

= −
4(1− z)
3(a− 2)

C
′

a+c−3

(

a,
1
2

; a+ c; z

)

2F1

(
1
2
, a; 1;z

)

+C
′

a+c−2

(

a,
1
2

; a+ c; z

)

2F1

(
1
2
,a; 2;z

)

. (35)

Now applying (34) to each of the two Gauss hypergeometric terms on the right hand side of

(35), we obtain

2F1

(

a,
1
2

; a+ c; z

)

=
4

a− 2
C
′

a+c−3

(

a,
1
2
, a+ c, z

)

Ca− 1
2

(
1
2
, a,1, z

)

2F1

(
1
2
,−

3
2

; 1;z

)

+
4(y− 1)
3(a− 2)

C
′

a+c−3

(

a,
1
2
, a+ c, z

)

Ca+ 1
2

(
1
2
, a,1, z

)

2F1

(
1
2
,−

1
2

; 1;z

)

+
5

z− 1
C
′

a+c−2

(

a,
1
2
, a+ c, z

)

Ca− 1
2

(
1
2
, a,2, z

)

2F1

(
1
2
,−

3
2

; 2;z

)

+C
′

a+c−2

(

a,
1
2
, a+ c, z

)

Ca+ 1
2

(
1
2
, a, 2, z

)

2F1

(
1
2
,−

1
2

; 2;z

)

.

The results follow from (7), (8), (32) and (33).�
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Appendix B: New integral identities

Here, we give three integral identities. One of them (Lemma B1) is known. The other two

(Lemmas B2 and B3) are new. Each lemma gives an elementary expression for the associated

integral.

Lemma B1Let

I (n, p, b) =
∫ ∞

0
zn exp

(
−pz2

)
erf(bz)dz

for n ≥ 1, Re(p) > 0 and Re
(
p+ b2

)
> 0. Then

I (2m, p, b) =
(−1)m
√
π

∂m

∂pm

[
1
√

p
arctan

(
b
√

p

)]

and

I (2m+ 1, p, b) =
(−1)mc

2
∂m

∂pm




1

p
√

p+ b2




for m= 0, 1, . . . with the initial values

I (0, p, b) =
1
√

pπ
arctan

(
b
√

p

)

and

I (1, p, b) =
c

2p
√

p+ b2
.

Proof: See equation (2.8.5.9) in Prudnikov et al. (1986, volume 2).�

Lemma B2Let

J(n, p, b, c) =
∫ ∞

0
zn exp

(
−pz2

)
erf(bz)erf(cz)dz

for n ≥ 0, Re(p) > 0, Re(b) > 0 and Re(c) > 0. Then

J(n, p, b, c) =
2p

n+ 1
J(n+ 2, p, b, c) −

2
[
I
(
n+ 1, p+ b2,b

)
+ I

(
n+ 1, p+ b2, c

)]

√
π(n+ 1)
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with the initial values

J(0, p, b, c) =
1
√
πp

arctan




bc
√

p
√

b2 + c2 + p




and

J(1, p, b, c) =
1
πp




b
√

b2 + p
arctan




c
√

b2 + p


 +

c
√

c2 + p
arctan




b
√

c2 + p





 .

Proof: By integration by parts,

∫ ∞

0
zn exp

(
−pz2

)
erf(bz)erf(cz)dz

=

[
zn+1

n+ 1
exp

(
−pz2

)
erf(bz)erf(cz)

]∞

0

+
2p

n+ 1

∫ ∞

0
zn+2 exp

(
−pz2

)
erf(bz)erf(cz)dz

−
2

√
π(n+ 1)

∫ ∞

0
zn+1 exp

[
−

(
p+ b2

)
z2

]
erf(bz)dz

−
2

√
π(n+ 1)

∫ ∞

0
zn+1 exp

[
−

(
p+ b2

)
z2

]
erf(cz)dz,

so the result follows by application of Lemma B1. The initial values given follow by equation

(2.8.19.8) in Prudnikov et al. (1986, volume 2).�

Lemma B3Let

K(n, p, b, c) =
∫ ∞

0
zn exp

(
−pz2

)
erf(bz)erf (icz) dz

for n ≥ 1, Re(p) > 0, Re(b) > 0, Re(c) > 0, Re
(
p− c2

)
> 0 and Re

(
p+ b2 − c2

)
> 0, where

i =
√
−1. Then

(n+ 1)K(n, p, b, c) = −2pK(n+ 2, p, b, c) +
n
√

b2 − c2

i
√
πbc

I
(
n− 1, p,

√
b2 − c2

)

−
n
√
πb

I
(
n− 1, p+ b2, ic

)
−

n
√
πc

I
(
n− 1, p− c2, b

)

+
2p

√
b2 − c2

i
√
πbc

I
(
n+ 1, p,

√
b2 − c2

)
−

2p
√
πb

I
(
n+ 1, p+ b2, ic

)

−
2p
√
πc

I
(
n+ 1, p− c2, b

)
(36)
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with the initial value

K(1, p, b, c) =
bI

(
0, p+ b2, ic

)
+ icI

(
0, p− c2, b

)

√
πp

.

Proof: By integration by parts,

∫ ∞

0
zn exp

(
−pz2

)
erf(bz)erf (icz) dz

=

[

zn exp
(
−pz2

) ∫
erf(bz)erf (icz) dz

]∞

0

−
∫ ∞

0
zn−1

(
n− 2pz2

)
exp

(
−pz2

) [∫
erf(bz)erf (icz) dz

]

dz. (37)

By equation (1.5.6.2) in Prudnikov et al. (1986, volume 2),

∫
erf(bz)erf (icz) dz = zerf(bz)erf (icz) −

√
b2 − c2

i
√
πbc

erf
( √

b2 − c2z
)

−
1
√
πb

exp
(
−b2z2

)
erf (icz) +

1
√
πc

exp
(
−c2z2

)
erf (bz) . (38)

(36) follows by combining (37) and (38) and by application of Lemma B1. By integration by

parts,

∫ ∞

0
zexp

(
−pz2

)
erf(bz)erf (icz) dz

=

[

−
1

2p
exp

(
−pz2

) ∫
erf(bz)erf (icz) dz

]∞

0

−
b
√
πp

∫ ∞

0
exp

[
−

(
p+ b2

)
z2

]
erf (icz) dz

−
ic
√
πp

∫ ∞

0
exp

[(
c2 − p

)
z2

]
erf (bz) dz,

so the initial value follows by application of Lemma B1.�
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Figure 1: Exact, estimated exact and approximate pdfs ofT in (5) versust = 0.01,0.02, . . . , 10
whenσ2

X = 4 andσ2
Y = 1: m= 5 andn = 3 (top left),m= 3 andn = 4 (top right),m= 4 andn = 3

(middle left),m = 2 andn = 4 (middle right),m = n = 3 (bottom left),m = n = 2 (bottom right).
Both axes are plotted in log scale.
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Figure 2: Exact, estimated exact and approximate cdfs ofT in (5) versust = 0.01,0.02, . . . , 10
whenσ2

X = 4 andσ2
Y = 1: m= 5 andn = 3 (top left),m= 3 andn = 4 (top right),m= 4 andn = 3

(middle left),m= 2 andn = 4 (middle right),m= n = 3 (bottom left),m= n = 2 (bottom right).
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Figure 3: Exact, estimated exact, approximate and simulated power ofμX − μY whenσ2
X = 4 and

σ2
Y = 1: m = 5 andn = 3 (top left),m = 3 andn = 4 (top right),m = 4 andn = 3 (middle left),

m= 2 andn = 4 (middle right),m= n = 3 (bottom left),m= n = 2 (bottom right).
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Figure 4: Central processing unit times to compute pdf ofT one hundred times versusn =

3,4, . . . , 101 whenm= 3,σ2
X = 4 andσ2

Y = 1 (top left); Central processing unit times to compute
pdf of T one hundred times versusm = 3,4, . . . , 101 whenn = 3,σ2

X = 4 andσ2
Y = 1 (top right);

Central processing unit times to compute cdf ofT one hundred times versusn = 3,4, . . . , 101 when
m = 3, σ2

X = 4 andσ2
Y = 1 (bottom left); Central processing unit times to compute cdf ofT one

hundred times versusm= 3,4, . . . , 101 whenn = 3,σ2
X = 4 andσ2

Y = 1 (bottom right).
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