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Preface

This book is an introduction to the essentials of statistical analysis for students who have
little or no background in mathematics or statistics. The audience includes first- and second-
year undergraduate students in science, engineering, medicine and economics, along with
post-experience and other mature students who want to relearn their statistics, or to switch to
the powerful new language of R.

For many students, statistics is the least favourite course of their entire time at university.
Part of this is because some students have convinced themselves that they are no good at
sums, and consequently have tried to avoid contact with anything remotely quantitative in
their choice of subjects. They are dismayed, therefore, when they discover that the statistics
course is compulsory. Another part of the problem is that statistics is often taught by people
who have absolutely no idea how difficult some of the material is for non-statisticians. As
often as not, this leads to a recipe-following approach to analysis, rather than to any attempt
to understand the issues involved and how to deal with them.

The approach adopted here involves virtually no statistical theory. Instead, the assump-
tions of the various statistical models are discussed at length, and the practice of exposing
statistical models to rigorous criticism is encouraged. A philosophy of model simplification
is developed in which the emphasis is placed on estimating effect sizes from data, and
establishing confidence intervals for these estimates. The role of hypothesis testing at an
arbitrary threshold of significance like α � 0:05 is played down. The text starts from
absolute basics and assumes absolutely no background in statistics or mathematics.

As to presentation, the idea is that background material would be covered in a series of
1-hour lectures, then this book could be used as a guide to the practical sessions and for
homework, with the students working on their own at the computer. My experience is that
the material can be covered in 10–30 lectures, depending on the background of the students
and the depth of coverage it is hoped to achieve. The practical work is designed to be
covered in 10–15 sessions of about 1½ hours each, again depending on the ambition and
depth of the coverage, and on the amount of one-to-one help available to the students as they
work at their computers.

The R language of statistical computing has an interesting history. It evolved from the S
language, which was first developed at the AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. Their idea was to provide a software tool for professional
statisticians who wanted to combine state-of-the-art graphics with powerful model-fitting
capability. S is made up of three components. First and foremost, it is a powerful tool for
statistical modelling. It enables you to specify and fit statistical models to your data, assess
the goodness of fit and display the estimates, standard errors and predicted values derived



from the model. It provides you with the means to define and manipulate your data, but the
way you go about the job of modelling is not predetermined, and the user is left with
maximum control over the model-fitting process. Second, S can be used for data explora-
tion, in tabulating and sorting data, in drawing scatter plots to look for trends in your data, or
to check visually for the presence of outliers. Third, it can be used as a sophisticated
calculator to evaluate complex arithmetic expressions, and a very flexible and general
object-orientated programming language to perform more extensive data manipulation. One
of its great strengths is in the way in which it deals with vectors (lists of numbers). These
may be combined in general expressions, involving arithmetic, relational and transforma-
tional operators such as sums, greater-than tests, logarithms or probability integrals. The
ability to combine frequently-used sequences of commands into functions makes S a
powerful programming language, ideally suited for tailoring one’s specific statistical
requirements. S is especially useful in handling difficult or unusual data sets, because
its flexibility enables it to cope with such problems as unequal replication, missing values,
non-orthogonal designs, and so on. Furthermore, the open-ended style of S is particularly
appropriate for following through original ideas and developing new concepts. One of the
great advantages of learning S is that the simple concepts that underlie it provide a unified
framework for learning about statistical ideas in general. By viewing particular models in a
general context, S highlights the fundamental similarities between statistical techniques and
helps play down their superficial differences. As a commercial product S evolved into
S-PLUS, but the problem was that S-PLUS was very expensive. In particular, it was much
too expensive to be licensed for use in universities for teaching large numbers of students. In
response to this, two New Zealand-based statisticians, Ross Ihaka and Robert Gentleman
from the University of Auckland, decided to write a stripped-down version of S for teaching
purposes. The letter R ‘comes before S’, so what would be more natural than for two authors
whose first initial was ‘R’ to christen their creation R. The code for R was released in 1995
under a General Public License, and the core team was rapidly expanded to 15 members
(they are listed on the website, below). Version 1.0.0 was released on 29 February 2000.
This book is written using version 3.0.1, but all the code will run under earlier releases.

There is now a vast network of R users world-wide, exchanging functions with one another,
and a vast resource of packages containing data and programs. There is a useful publication
called The R Journal (formerly R News) that you can read at CRAN. Make sure that you cite
the R Core Team when you use R in published work; you should cite them like this:

R Core Team (2014). R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna. Available from http://www.r-project
.org/.

R is an Open Source implementation and as such can be freely downloaded. If you type
CRAN into your Google window you will find the site nearest to you from which to
download it. Or you can go directly to

http://cran.r-project.org

The present book has its own website at

http://www.imperial.ac.uk/bio/research/crawley/statistics
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Here you will find all the data files used in the text; you can download these to your hard
disk and then run all of the examples described in the text. The executable statements are
shown in the text in red Courier New font. There are files containing all the commands for
each chapter, so you can paste the code directly into R instead of typing it from the book.
There is a series of 12 fully-worked stand-alone practical sessions covering a wide range of
statistical analyses. Learning R is not easy, but you will not regret investing the effort to
master the basics.

M.J. Crawley
Ascot

April 2014
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1
Fundamentals

The hardest part of any statistical work is getting started. And one of the hardest things about
getting started is choosing the right kind of statistical analysis. The choice depends on the
nature of your data and on the particular question you are trying to answer. The truth is that
there is no substitute for experience: the way to know what to do is to have done it properly
lots of times before.

The key is to understand what kind of response variable you have got, and to know the
nature of your explanatory variables. The response variable is the thing you are working on: it
is the variable whose variation you are attempting to understand. This is the variable that goes
on the y axis of the graph (the ordinate). The explanatory variable goes on the x axis of the
graph (the abscissa); you are interested in the extent to which variation in the response variable
is associated with variation in the explanatory variable. A continuous measurement is a
variable like height or weight that can take any real numbered value. A categorical variable is a
factor with two or more levels: sex is a factor with two levels (male and female), and rainbow
might be a factor with seven levels (red, orange, yellow, green, blue, indigo, violet).

It is essential, therefore, that you know:

• which of your variables is the response variable?

• which are the explanatory variables?

• are the explanatory variables continuous or categorical, or a mixture of both?

• what kind of response variable have you got – is it a continuous measurement, a count, a
proportion, a time-at-death, or a category?

These simple keys will then lead you to the appropriate statistical method:

1. The explanatory variables (pick one of the rows):

(a) All explanatory variables continuous Regression

(b) All explanatory variables categorical Analysis of variance (ANOVA)

(c) Some explanatory variables continuous
some categorical

Analysis of covariance (ANCOVA)

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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2. The response variable (pick one of the rows):

(a) Continuous Regression, ANOVA or ANCOVA

(b) Proportion Logistic regression

(c) Count Log linear models

(d) Binary Binary logistic analysis

(e) Time at death Survival analysis

There is a small core of key ideas that need to be understood from the outset. We cover
these here before getting into any detail about different kinds of statistical model.

Everything Varies

If you measure the same thing twice you will get two different answers. If you measure
the same thing on different occasions you will get different answers because the thing will
have aged. If you measure different individuals, they will differ for both genetic and
environmental reasons (nature and nurture). Heterogeneity is universal: spatial hetero-
geneity means that places always differ, and temporal heterogeneity means that times
always differ.

Because everything varies, finding that things vary is simply not interesting. We need a
way of discriminating between variation that is scientifically interesting, and variation that
just reflects background heterogeneity. That is why you need statistics. It is what this whole
book is about.

The key concept is the amount of variation that we would expect to occur by chance
alone, when nothing scientifically interesting was going on. If we measure bigger differ-
ences than we would expect by chance, we say that the result is statistically significant. If we
measure no more variation than we might reasonably expect to occur by chance alone, then
we say that our result is not statistically significant. It is important to understand that this is
not to say that the result is not important. Non-significant differences in human life span
between two drug treatments may be massively important (especially if you are the patient
involved). Non-significant is not the same as ‘not different’. The lack of significance may be
due simply to the fact that our replication is too low.

On the other hand, when nothing really is going on, then we want to know this. It makes
life much simpler if we can be reasonably sure that there is no relationship between y and x.
Some students think that ‘the only good result is a significant result’. They feel that their
study has somehow failed if it shows that ‘A has no significant effect on B’. This is an
understandable failing of human nature, but it is not good science. The point is that we want
to know the truth, one way or the other. We should try not to care too much about the way
things turn out. This is not an amoral stance, it just happens to be the way that science works
best. Of course, it is hopelessly idealistic to pretend that this is the way that scientists really
behave. Scientists often want passionately that a particular experimental result will turn out
to be statistically significant, so that they can get a Nature paper and get promoted. But that
does not make it right.
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Significance

What do we mean when we say that a result is significant? The normal dictionary definitions
of significant are ‘having or conveying a meaning’ or ‘expressive; suggesting or implying
deeper or unstated meaning’. But in statistics we mean something very specific indeed.
We mean that ‘a result was unlikely to have occurred by chance’. In particular, we mean
‘unlikely to have occurred by chance if the null hypothesis was true’. So there are two
elements to it: we need to be clear about what we mean by ‘unlikely’, and also what exactly
we mean by the ‘null hypothesis’. Statisticians have an agreed convention about what
constitutes ‘unlikely’. They say that an event is unlikely if it occurs less than 5% of the time.
In general, the null hypothesis says that ‘nothing is happening’ and the alternative says that
‘something is happening’.

Good and Bad Hypotheses

Karl Popper was the first to point out that a good hypothesis was one that was capable
of rejection. He argued that a good hypothesis is a falsifiable hypothesis. Consider the
following two assertions:

A. there are vultures in the local park

B. there are no vultures in the local park

Both involve the same essential idea, but one is refutable and the other is not. Ask
yourself how you would refute option A. You go out into the park and you look for vultures.
But you do not see any. Of course, this does not mean that there are none. They could have
seen you coming, and hidden behind you. No matter how long or how hard you look, you
cannot refute the hypothesis. All you can say is ‘I went out and I didn’t see any vultures’.
One of the most important scientific notions is that absence of evidence is not evidence of
absence.

Option B is fundamentally different. You reject hypothesis B the first time you see a
vulture in the park. Until the time that you do see your first vulture in the park, you work on
the assumption that the hypothesis is true. But if you see a vulture, the hypothesis is clearly
false, so you reject it.

Null Hypotheses

The null hypothesis says ‘nothing is happening’. For instance, when we are comparing two
sample means, the null hypothesis is that the means of the two populations are the same.
Of course, the two sample means are not identical, because everything varies. Again, when
working with a graph of y against x in a regression study, the null hypothesis is that the slope
of the relationship is zero (i.e. y is not a function of x, or y is independent of x). The essential
point is that the null hypothesis is falsifiable. We reject the null hypothesis when our data
show that the null hypothesis is sufficiently unlikely.

p Values

Here we encounter a much-misunderstood topic. The p value is not the probability that the
null hypothesis is true, although you will often hear people saying this. In fact, p values are
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calculated on the assumption that the null hypothesis is true. It is correct to say that p values
have to do with the plausibility of the null hypothesis, but in a rather subtle way.

As you will see later, we typically base our hypothesis testing on what are known as
test statistics: you may have heard of some of these already (Student’s t, Fisher’s F and
Pearson’s chi-squared, for instance): p values are about the size of the test statistic.
In particular, a p value is an estimate of the probability that a value of the test statistic,
or a value more extreme than this, could have occurred by chance when the null hypothesis
is true. Big values of the test statistic indicate that the null hypothesis is unlikely to be true.
For sufficiently large values of the test statistic, we reject the null hypothesis and accept the
alternative hypothesis.

Note also that saying ‘we do not reject the null hypothesis’ and ‘the null hypothesis is
true’ are two quite different things. For instance, we may have failed to reject a false null
hypothesis because our sample size was too low, or because our measurement error was too
large. Thus, p values are interesting, but they do not tell the whole story: effect sizes and
sample sizes are equally important in drawing conclusions. The modern practice is to state
the p value rather than just to say ‘we reject the null hypothesis’. That way, the reader can
form their own judgement about the effect size and its associated uncertainty.

Interpretation

It should be clear by this point that we can make two kinds of mistakes in the interpretation
of our statistical models:

• we can reject the null hypothesis when it is true

• we can accept the null hypothesis when it is false

These are referred to as Type I and Type II errors, respectively. Supposing we knew the
true state of affairs (which, of course, we seldom do). Then in tabular form:

Actual situationNull hypothesis

True False

Accept Correct decision Type II
Reject Type I Correct decision

Model Choice

There are a great many models that we could fit to our data, and selecting which model to use
involves considerable skill and experience. All models are wrong, but some models are
better than others. Model choice is one of the most frequently ignored of the big issues
involved in learning statistics.

In the past, elementary statistics was taught as a series of recipes that you followed
without the need for any thought. This caused two big problems. People who were taught
this way never realized that model choice is a really big deal (‘I’m only trying to do a t test’).
And they never understood that assumptions need to be checked (‘all I need is the p value’).
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Throughout this book you are encouraged to learn the key assumptions. In order of
importance, these are

• random sampling

• constant variance

• normal errors

• independent errors

• additive effects

Crucially, because these assumptions are often not met with the kinds of data that we
encounter in practice, we need to know what to do about it. There are some things that it is
much more difficult to do anything about (e.g. non-random sampling) than others (e.g. non-
additive effects).

The book also encourages users to understand that in most cases there are literally
hundreds of possible models, and that choosing the best model is an essential part of the
process of statistical analysis. Which explanatory variables to include in your model, what
transformation to apply to each variable, whether to include interaction terms: all of these
are key issues that you need to resolve.

The issues are at their simplest with designed manipulative experiments in which there
was thorough randomization and good levels of replication. The issues are most difficult
with observational studies where there are large numbers of (possibly correlated) explan-
atory variables, little or no randomization and small numbers of data points. Much of your
data is likely to come from the second category.

Statistical Modelling

The object is to determine the values of the parameters in a specific model that lead to the
best fit of the model to the data. The data are sacrosanct, and they tell us what actually
happened under a given set of circumstances. It is a common mistake to say ‘the data were
fitted to the model’ as if the data were something flexible, and we had a clear picture of the
structure of the model. On the contrary, what we are looking for is the minimal adequate
model to describe the data. The model is fitted to data, not the other way around. The best
model is the model that produces the least unexplained variation (the minimal residual
deviance), subject to the constraint that the parameters in the model should all be statistically
significant.

You have to specify the model. It embodies your mechanistic understanding of the
factors involved, and of the way that they are related to the response variable. We want the
model to be minimal because of the principle of parsimony, and adequate because there is
no point in retaining an inadequate model that does not describe a significant fraction of
the variation in the data. It is very important to understand that there is not one model; this
is one of the common implicit errors involved in traditional regression and ANOVA,
where the same models are used, often uncritically, over and over again. In most
circumstances, there will be a large number of different, more or less plausible models
that might be fitted to any given set of data. Part of the job of data analysis is to determine
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which, if any, of the possible models are adequate, and then, out of the set of adequate
models, which is the minimal adequate model. In some cases there may be no single best
model and a set of different models may all describe the data equally well (or equally
poorly if the variability is great).

Maximum Likelihood

What, exactly, do we mean when we say that the parameter values should afford the ‘best fit
of the model to the data’? The convention we adopt is that our techniques should lead to
unbiased, variance minimizing estimators. We define ‘best’ in terms of maximum likeli-
hood. This notion is likely to be unfamiliar, so it is worth investing some time to get a feel for
it. This is how it works:

• given the data

• and given our choice of model

• what values of the parameters of that model

• make the observed data most likely?

Let us take a simple example from linear regression where the model we want to fit is y =
a+ bx and we want the best possible estimates of the two parameters (the intercept a and the
slope b) from the data in our scatterplot.

If the intercept were 0 (left-hand graph, above), would the data be likely? The answer
of course, is no. If the intercept were 8 (centre graph) would the data be likely? Again,
the answer is obviously no. The maximum likelihood estimate of the intercept is shown
in the right-hand graph (its value turns out to be 4.827). Note that the point at which
the graph cuts the y axis is not the intercept when (as here) you let R decide where to
put the axes.

We could have a similar debate about the slope. Suppose we knew that the intercept
was 4.827, then would the data be likely if the graph had a slope of 1.5 (left-hand graph,
below)?
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The answer, of course, is no. What about a slope of 0.2 (centre graph)? Again, the data are
not at all likely if the graph has such a gentle slope. The maximum likelihood of the data
given the model is obtained with a slope of 0.679 (right-hand graph).

This is not how the procedure is carried out in practice, but it makes the point that we
judge the model on the basis how likely the data would be if the model were correct. When
we do the analysis in earnest, both parameters are estimated simultaneously.

Experimental Design

There are only two key concepts:

• replication

• randomization

You replicate to increase reliability. You randomize to reduce bias. If you replicate
thoroughly and randomize properly, you will not go far wrong.

There are a number of other issues whose mastery will increase the likelihood that you
analyse your data the right way rather than the wrong way:

• the principle of parsimony

• the power of a statistical test

• controls

• spotting pseudoreplication and knowing what to do about it

• the difference between experimental and observational data (non-orthogonality)

It does not matter very much if you cannot do your own advanced statistical analysis. If
your experiment is properly designed, you will often be able to find somebody to help you
with the stats. But if your experiment is not properly designed, or not thoroughly
randomized, or lacking adequate controls, then no matter how good you are at stats,
some (or possibly even all) of your experimental effort will have been wasted. No amount of
high-powered statistical analysis can turn a bad experiment into a good one. R is good, but
not that good.
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The Principle of Parsimony (Occam’s Razor)

One of the most important themes running through this book concerns model simplification.
The principle of parsimony is attributed to the fourteenth-century English nominalist
philosopher William of Occam who insisted that, given a set of equally good explanations
for a given phenomenon, then the correct explanation is the simplest explanation. It is
called Occam’s razor because he ‘shaved’ his explanations down to the bare minimum.
In statistical modelling, the principle of parsimony means that:

• models should have as few parameters as possible

• linear models should be preferred to non-linear models

• experiments relying on few assumptions should be preferred to those relying on many

• models should be pared down until they are minimal adequate

• simple explanations should be preferred to complex explanations

The process of model simplification is an integral part of statistical analysis in R. In
general, a variable is retained in the model only if it causes a significant increase in deviance
when it is removed from the current model. Seek simplicity, then distrust it.

In our zeal for model simplification, we must be careful not to throw the baby out with the
bathwater. Einstein made a characteristically subtle modification to Occam’s razor. He said:
‘A model should be as simple as possible. But no simpler.’

Observation, Theory and Experiment

There is no doubt that the best way to solve scientific problems is through a thoughtful blend
of observation, theory and experiment. In most real situations, however, there are con-
straints on what can be done, and on the way things can be done, which mean that one or
more of the trilogy has to be sacrificed. There are lots of cases, for example, where it is
ethically or logistically impossible to carry out manipulative experiments. In these cases it is
doubly important to ensure that the statistical analysis leads to conclusions that are as critical
and as unambiguous as possible.

Controls

No controls, no conclusions.

Replication: It’s the ns that Justify the Means

The requirement for replication arises because if we do the same thing to different individuals
we are likely to get different responses. The causes of this heterogeneity in response are many
and varied (genotype, age, sex, condition, history, substrate, microclimate, and so on). The
object of replication is to increase the reliability of parameter estimates, and to allow us to
quantify the variability that is found within the same treatment. To qualify as replicates, the
repeated measurements:
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• must be independent

• must not form part of a time series (data collected from the same place on successive
occasions are not independent)

• must not be grouped together in one place (aggregating the replicates means that they are
not spatially independent)

• must be measured at an appropriate spatial scale

• ideally, one replicate from each treatment ought to be grouped together into a block, and
all treatments repeated in many different blocks.

• repeated measures (e.g. from the same individual or the same spatial location) are not
replicates (this is probably the commonest cause of pseudoreplication in statistical
work)

How Many Replicates?

The usual answer is ‘as many as you can afford’. An alternative answer is 30. A very useful
rule of thumb is this: a sample of 30 or more is a big sample, but a sample of less than 30 is a
small sample. The rule doesn’t always work, of course: 30 would be derisively small as a
sample in an opinion poll, for instance. In other circumstances, it might be impossibly
expensive to repeat an experiment as many as 30 times. Nevertheless, it is a rule of great
practical utility, if only for giving you pause as you design your experiment with 300
replicates that perhaps this might really be a bit over the top. Or when you think you could
get away with just five replicates this time.

There are ways of working out the replication necessary for testing a given hypothesis
(these are explained below). Sometimes we know little or nothing about the variance of the
response variable when we are planning an experiment. Experience is important. So are pilot
studies. These should give an indication of the variance between initial units before the
experimental treatments are applied, and also of the approximate magnitude of the responses
to experimental treatment that are likely to occur. Sometimes it may be necessary to reduce
the scope and complexity of the experiment, and to concentrate the inevitably limited
resources of manpower and money on obtaining an unambiguous answer to a simpler
question. It is immensely irritating to spend three years on a grand experiment, only to find
at the end of it that the response is only significant at p = 0.08. A reduction in the number of
treatments might well have allowed an increase in replication to the point where the same
result would have been unambiguously significant.

Power

The power of a test is the probability of rejecting the null hypothesis when it is false. It has to
do with Type II errors: β is the probability of accepting the null hypothesis when it is false.
In an ideal world, we would obviously make β as small as possible. But there is a snag.
The smaller we make the probability of committing a Type II error, the greater we make the
probability of committing a Type I error, and rejecting the null hypothesis when, in fact, it is
correct. A compromise is called for. Most statisticians work with α � 0:05 and β � 0:2.
Now the power of a test is defined as 1 � β � 0:8 under the standard assumptions. This is
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used to calculate the sample sizes necessary to detect a specified difference when the error
variance is known (or can be guessed at).

Let’s think about the issues involved with power analysis in the context of a Student’s
t-test to compare two sample means. As explained on p. 91, the test statistic is t = difference/
(the standard error of the difference) and we can rearrange the formula to obtain n, the
sample size necessary in order that that a given difference, d, is statistically significant:

n � 2s2t2

d2

You can see that the larger the variance s2, and the smaller the size of the difference, the
bigger the sample we shall need. The value of the test statistic t depends on our decisions
about Type I and Type II error rates (conventionally 0.05 and 0.2). For sample sizes of order
30, the t values associated with these probabilities are 1.96 and 0.84 respectively: these add
to 2.80, and the square of 2.80 is 7.84. To the nearest whole number, the constants in the
numerator evaluate to 2× 8 = 16. So as a good rule of thumb, the sample size you need in
each treatment is given by

n � 16s2

d2

We simply need to work out 16 times the sample variance (obtained from the literature or
from a small pilot experiment) and divide by the square of the difference that we want to be
able to detect. So suppose that our current cereal yield is 10 t/ha with a standard deviation of
sd = 2.8 t/ha (giving s2 = 7.84) and we want to be able to say that a yield increase (delta) of
2 t/ha is significant at 95% with power = 80%, then we shall need to have 16× 7.84/
4 = 31.36 replicates in each treatment. The built in R function

power.t.test(delta=2,sd=2.8,power=0.8)

also gives n = 32 replicates per treatment on rounding-up.

Randomization

Randomization is something that everybody says they do, but hardly anybody does
properly. Take a simple example. How do I select one tree from a forest of trees, on
which to measure photosynthetic rates? I want to select the tree at random in order to avoid
bias. For instance, I might be tempted to work on a tree that had accessible foliage near to the
ground, or a tree that was close to the lab. Or a tree that looked healthy. Or a tree that had
nice insect-free leaves. And so on. I leave it to you to list the biases that would be involved in
estimating photosynthesis on any of those trees.

One common way of selecting a ‘random’ tree is to take a map of the forest and select a
random pair of coordinates (say 157 m east of the reference point, and 228 m north). Then
pace out these coordinates and, having arrived at that particular spot in the forest, select the
nearest tree to those coordinates. But is this really a randomly selected tree?

If it were randomly selected, then it would have exactly the same chance of being selected
as every other tree in the forest. Let us think about this. Look at the figure below, which
shows a map of the distribution of trees on the ground. Even if they were originally planted
out in regular rows, accidents, tree-falls, and heterogeneity in the substrate would soon lead
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to an aggregated spatial distribution of trees. Now ask yourself how many different random
points would lead to the selection of a given tree. Start with tree (a). This will be selected by
any points falling in the large shaded area.

Now consider tree (b). It will only be selected if the random point falls within the tiny area
surrounding that tree. Tree (a) has a much greater chance of being selected than tree (b),
and so the nearest tree to a random point is not a randomly selected tree. In a spatially
heterogeneous woodland, isolated trees and trees on the edges of clumps will always have a
higher probability of being picked than trees in the centre of clumps.

The answer is that to select a tree at random, every single tree in the forest must be
numbered (all 24 683 of them, or whatever), and then a random number between 1 and
24 683 must be drawn out of a hat. There is no alternative. Anything less than that is not
randomization.

Now ask yourself how often this is done in practice, and you will see what I mean when
I say that randomization is a classic example of ‘Do as I say, and not do as I do’. As an
example of how important proper randomization can be, consider the following experiment
that was designed to test the toxicity of five contact insecticides by exposing batches of flour
beetles to the chemical on filter papers in Petri dishes. The animals walk about and pick up
the poison on their feet. The Tribolium culture jar was inverted, flour and all, into a large
tray, and beetles were collected as they emerged from the flour. The animals were allocated
to the five chemicals in sequence; three replicate Petri dishes were treated with the first
chemical, and 10 beetles were placed in each Petri dish. Do you see the source of bias in this
procedure?
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It is entirely plausible that flour beetles differ in their activity levels (sex differences,
differences in body weight, age, etc.). The most active beetles might emerge first from the
pile of flour. These beetles all end up in the treatment with the first insecticide. By the time
we come to finding beetles for the last replicate of the fifth pesticide, we may be grubbing
round in the centre of the pile, looking for the last remaining Tribolium. This matters,
because the amount of pesticide picked by the beetles up will depend upon their activity
levels. The more active the beetles, the more chemical they pick up on their feet, and the
more likely they are to die. Thus, the failure to randomize will bias the result in favour of the
first insecticide because this treatment received the most active beetles.

What we should have done is this. If we think that insect activity level is important in our
experiment, then we should take this into account at the design stage. We might decide to
have three levels of activity: active, average and sluggish. We fill the first five Petri dishes
with 10 each of the active insects that emerge first from the pile. The next 50 insects we find
go 10-at-a-time into five Petri dishes that are labelled average. Finally, we put last 50 insects
to emerge into a set of five Petri dishes labelled sluggish. This procedure has created three
blocks based on activity levels: we do not know precisely why the insects differed in their
activity levels, but we think it might be important. Activity level is called a random effect: it
is a factor with three levels. Next comes the randomization. We put the names of the five
insecticides into a hat, shuffle them up, and draw them out one-at-a-time at random. The first
Petri dish containing active beetles receives the insecticide that is first out of the hat, and so
on until all five active Petri dishes have been allocated their own different pesticide. Then
the five labels go back in the hat and are reshuffled. The procedure is repeated to allocate
insecticide treatment at random to the five average activity Petri dishes. Finally, we put the
labels back in the hat and draw the insecticide treatment for the five Petri dishes containing
sluggish insects.

But why go to all this trouble? The answer is very important, and you should read it again
and again until you understand it. The insects differ and the insecticides differ. But the Petri
dishes may differ, too, especially if we store them in slightly different circumstances (e.g.
near to the door of the controlled temperature cabinet or away at the back of the cabinet). The
point is that there will be a total amount of variation in time to death across all the insects in
the whole experiment (all 3× 5× 10= 150 of them). We want to partition this variation into
that which can be explained by differences between the insecticides and that which cannot.

explained variation

unexplained variation

total variation
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If the amount of variation explained by differences between the insecticide treatments is
large, then we conclude that the insecticides are significantly different from one another in
their effects on mean age at death. We make this judgement on the basis of a comparison
between the explained variation SSA and the unexplained variation SSE. If the unexplained
variation is large, it is going to be very difficult to conclude anything about our fixed effect
(insecticide in this case).

The great advantage of blocking is that it reduces the size of the unexplained variation. In
our example, if activity level had a big effect on age at death (block variation), then the
unexplained variation SSE would be much smaller than would have been the case if we had
ignored activity and the significance of our fixed effect will be correspondingly higher:

explained variation

unexplained variation

total variation
block variation

SSE

The idea of good experimental design is to make SSE as small as possible, and blocking is
the most effective way to bring this about.

R is very useful during the randomization stage because it has a function called sample

which can shuffle the factor levels into a random sequence. Put the names of the five
insecticides into a vector like this:

treatments <- c("aloprin","vitex","formixin","panto","allclear")

Then use sample to shuffle them for the active insects in dishes 1 to 5:

sample(treatments)

[1] "formixin" "panto" "vitex" "aloprin" "allclear"

then for the insects with average activity levels in dishes 6 to 10:

sample(treatments)

[1] "formixin" "allclear" "aloprin" "panto" "vitex"

then finally for the sluggish ones in dishes 11 to 15:

sample(treatments)

[1] "panto" "aloprin" "allclear" "vitex" "formixin"

The recent trend towards ‘haphazard’ sampling is a cop-out. What it means is that ‘I admit
that I didn’t randomize, but you have to take my word for it that this did not introduce any
important biases’. You can draw your own conclusions.
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Strong Inference

One of the most powerful means available to demonstrate the accuracy of an idea is an
experimental confirmation of a prediction made by a carefully formulated hypothesis. There
are two essential steps to the protocol of strong inference (Platt, 1964):

• formulate a clear hypothesis

• devise an acceptable test

Neither one is much good without the other. For example, the hypothesis should not lead
to predictions that are likely to occur by other extrinsic means. Similarly, the test should
demonstrate unequivocally whether the hypothesis is true or false.

A great many scientific experiments appear to be carried out with no particular
hypothesis in mind at all, but simply to see what happens. While this approach may
be commendable in the early stages of a study, such experiments tend to be weak as an
end in themselves, because there will be such a large number of equally plausible
explanations for the results. Without contemplation there will be no testable predictions;
without testable predictions there will be no experimental ingenuity; without experi-
mental ingenuity there is likely to be inadequate control; in short, equivocal interpreta-
tion. The results could be due to myriad plausible causes. Nature has no stake in being
understood by scientists. We need to work at it. Without replication, randomization and
good controls we shall make little progress.

Weak Inference

The phrase ‘weak inference’ is used (often disparagingly) to describe the interpretation of
observational studies and the analysis of so-called ‘natural experiments’. It is silly to be
disparaging about these data, because they are often the only data that we have. The aim of
good statistical analysis is to obtain the maximum information from a given set of data,
bearing the limitations of the data firmly in mind.

Natural experiments arise when an event (often assumed to be an unusual event, but
frequently without much justification of what constitutes unusualness) occurs that is like an
experimental treatment (a hurricane blows down half of a forest block; a landslide creates
a bare substrate; a stock market crash produces lots of suddenly poor people, etc.). ‘The
requirement of adequate knowledge of initial conditions has important implications for the
validity of many natural experiments. Inasmuch as the “experiments” are recognized only
when they are completed, or in progress at the earliest, it is impossible to be certain of the
conditions that existed before such an “experiment” began. It then becomes necessary to
make assumptions about these conditions, and any conclusions reached on the basis of
natural experiments are thereby weakened to the point of being hypotheses, and they should
be stated as such’ (Hairston, 1989).

How Long to Go On?

Ideally, the duration of an experiment should be determined in advance, lest one falls prey to
one of the twin temptations:
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• to stop the experiment as soon as a pleasing result is obtained

• to keep going with the experiment until the ‘right’ result is achieved (the ‘Gregor
Mendel effect’)

In practice, most experiments probably run for too short a period, because of the
idiosyncrasies of scientific funding. This short-term work is particularly dangerous in
medicine and the environmental sciences, because the kind of short-term dynamics
exhibited after pulse experiments may be entirely different from the long-term dynamics
of the same system. Only by long-term experiments of both the pulse and the press kind
will the full range of dynamics be understood. The other great advantage of long-term
experiments is that a wide range of patterns (e.g. ‘kinds of years’) is experienced.

Pseudoreplication

Pseudoreplication occurs when you analyse the data as if you had more degrees of freedom
than you really have. There are two kinds of pseudoreplication:

• temporal pseudoreplication, involving repeated measurements from the same individual

• spatial pseudoreplication, involving several measurements taken from the same vicinity

Pseudoreplication is a problem because one of the most important assumptions of
standard statistical analysis is independence of errors. Repeated measures through time
on the same individual will have non-independent errors because peculiarities of the
individual will be reflected in all of the measurements made on it (the repeated measures
will be temporally correlated with one another). Samples taken from the same vicinity will
have non-independent errors because peculiarities of the location will be common to all the
samples (e.g. yields will all be high in a good patch and all be low in a bad patch).

Pseudoreplication is generally quite easy to spot. The question to ask is this. How many
degrees of freedom for error does the experiment really have? If a field experiment appears
to have lots of degrees of freedom, it is probably pseudoreplicated. Take an example from
pest control of insects on plants. There are 20 plots, 10 sprayed and 10 unsprayed. Within
each plot there are 50 plants. Each plant is measured five times during the growing season.
Now this experiment generates 20× 50× 5= 5000 numbers. There are two spraying
treatments, so there must be 1 degree of freedom for spraying and 4998 degrees of freedom
for error. Or must there? Count up the replicates in this experiment. Repeated measurements
on the same plants (the five sampling occasions) are certainly not replicates. The
50 individual plants within each quadrat are not replicates either. The reason for this is
that conditions within each quadrat are quite likely to be unique, and so all 50 plants will
experience more or less the same unique set of conditions, irrespective of the spraying
treatment they receive. In fact, there are 10 replicates in this experiment. There are
10 sprayed plots and 10 unsprayed plots, and each plot will yield only one independent
datum to the response variable (the proportion of leaf area consumed by insects, for
example). Thus, there are 9 degrees of freedom within each treatment, and 2× 9= 18
degrees of freedom for error in the experiment as a whole. It is not difficult to find examples
of pseudoreplication on this scale in the literature (Hurlbert, 1984). The problem is that it
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leads to the reporting of masses of spuriously significant results (with 4998 degrees of
freedom for error, it is almost impossible not to have significant differences). The first skill
to be acquired by the budding experimenter is the ability to plan an experiment that is
properly replicated.

There are various things that you can do when your data are pseudoreplicated:

• average away the pseudoreplication and carry out your statistical analysis on the means

• carry out separate analyses for each time period

• use more advanced statistical techniques such as time series analysis or mixed effects
models

Initial Conditions

Many otherwise excellent scientific experiments are spoiled by a lack of information about
initial conditions. How can we know if something has changed if we do not know what it
was like to begin with? It is often implicitly assumed that all the experimental units were
alike at the beginning of the experiment, but this needs to be demonstrated rather than taken
on faith. One of the most important uses of data on initial conditions is as a check on the
efficiency of randomization. For example, you should be able to run your statistical analysis
to demonstrate that the individual organisms were not significantly different in mean size at
the beginning of a growth experiment. Without measurements of initial size, it is always
possible to attribute the end result to differences in initial conditions. Another reason for
measuring initial conditions is that the information can often be used to improve the
resolution of the final analysis through analysis of covariance (see Chapter 9).

Orthogonal Designs and Non-Orthogonal Observational Data

The data in this book fall into two distinct categories. In the case of planned experiments, all
of the treatment combinations are equally represented and, barring accidents, there will be
no missing values. Such experiments are said to be orthogonal. In the case of observational
studies, however, we have no control over the number of individuals for which we have
data, or over the combinations of circumstances that are observed. Many of the explanatory
variables are likely to be correlated with one another, as well as with the response variable.
Missing treatment combinations will be commonplace, and such data are said to be non-
orthogonal. This makes an important difference to our statistical modelling because, in
orthogonal designs, the variability that is attributed to a given factor is constant, and does not
depend upon the order in which that factor is removed from the model. In contrast, with non-
orthogonal data, we find that the variability attributable to a given factor does depend upon
the order in which the factor is removed from the model. We must be careful, therefore, to
judge the significance of factors in non-orthogonal studies, when they are removed from the
maximal model (i.e. from the model including all the other factors and interactions with
which they might be confounded). Remember, for non-orthogonal data, order matters.

Aliasing

This topic causes concern because it manifests itself as one or more rows of NA appearing
unexpectedly in the output of your model. Aliasing occurs when there is no information on
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which to base an estimate of a parameter value. Intrinsic aliasing occurs when it is due to the
structure of the model. Extrinsic aliasing occurs when it is due to the nature of the data.
Parameters can be aliased for one of two reasons:

• there are no data in the dataframe from which to estimate the parameter (e.g. missing
values, partial designs or correlation amongst the explanatory variables)

• the model is structured in such a way that the parameter value cannot be estimated (e.g.
over-specified models with more parameters than necessary)

If we had a factor with four levels (say none, light, medium and heavy use) then we could
estimate four means from the data, one for each factor level. But the model looks like this:

y � μ � β1x1 � β2x2 � β3x3 � β4x4

where the xi are dummy variables having the value 0 or 1 for each factor level (see p. 158), the
βi are the effect sizes and μ is the overall mean. Clearly there is no point in having five
parameters in the model if we can estimate only four independent terms from the data. One of
the parameters must be intrinsically aliased. This topic is explained in detail in Chapter 11.

In a multiple regression analysis, if one of the continuous explanatory variables is perfectly
correlated with another variable that has already been fitted to the data (perhaps because it is a
constant multiple of the first variable), then the second term is aliased and adds nothing to the
descriptive power of the model. Suppose that x2= 0.5x1; then fitting a model with x1+ x2 will
lead to x2 being intrinsically aliased and given a parameter estimate of NA.

If all of the values of a particular explanatory variable are set to zero for a given level of a
particular factor, then that level is said to have been intentionally aliased. This sort of
aliasing is a useful programming trick during model simplification in ANCOVA when we
wish a covariate to be fitted to some levels of a factor but not to others.

Finally, suppose that in a factorial experiment, all of the animals receiving level 2 of diet
(factor A) and level 3 of temperature (factor B) have died accidentally as a result of attack by
a fungal pathogen. This particular combination of diet and temperature contributes no
data to the response variable, so the interaction term A(2):B(3) cannot be estimated. It is
extrinsically aliased, and its parameter estimate is set to NA.

Multiple Comparisons

The thorny issue of multiple comparisons arises because when we do more than one test we
are likely to find ‘false positives’ at an inflated rate (i.e. by rejecting a true null hypothesis
more often than indicated by the value of α). The old fashioned approach was to use
Bonferroni’s correction; in looking up a value for Student’s t, you divide your α value by the
number of comparisons you have done. If the result is still significant then all is well, but it
often will not be. Bonferroni’s correction is very harsh and will often throw out the baby
with the bathwater. An old-fashioned alternative was to use Duncan’s multiple range
tests (you may have seen these in old stats books, where lower-case letters were written at
the head of each bar in a barplot: bars with different letters were significantly different,
while bars with the same letter were not significantly different. The modern approach is
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to use contrasts wherever possible, and where it is essential to do multiple compari-
sons, then to use the wonderfully named Tukey’s honestly significant differences (see
?TukeyHSD).

Summary of Statistical Models in R

Models are fitted to data (not the other way round), using one of the following model-fitting
functions:

• lm: fits a linear model assuming normal errors and constant variance; generally this is
used for regression analysis using continuous explanatory variables. The default output
is summary.lm

• aov: an alternative to lm with summary.aov as the default output. Typically used only
when there are complex error terms to be estimated (e.g. in split-plot designs where
different treatments are applied to plots of different sizes)

• glm: fits generalized linear models to data using categorical or continuous explanatory
variables, by specifying one of a family of error structures (e.g. Poisson for count data
or binomial for proportion data) and a particular link function

• gam: fits generalized additive models to data with one of a family of error structures (e.g.
Poisson for count data or binomial for proportion data) in which the continuous
explanatory variables can (optionally) be fitted as arbitrary smoothed functions using
non-parametric smoothers rather than specific parametric functions.

• lmer: fits linear mixed effects models with specified mixtures of fixed effects and
random effects and allows for the specification of correlation structure amongst the
explanatory variables and autocorrelation of the response variable (e.g. time series
effects with repeated measures). The older lme is an alternative

• nls: fits a non-linear regression model via least squares, estimating the parameters of a
specified non-linear function

• nlme: fits a specified non-linear function in a mixed effects model where the
parameters of the non-linear function are assumed to be random effects; allows
for the specification of correlation structure amongst the explanatory variables and
autocorrelation of the response variable (e.g. time series effects with repeated
measures).

• loess: fits a local regression model with one or more continuous explanatory variables
using non-parametric techniques to produce a smoothed model surface

• rpart: fits a regression tree model using binary recursive partitioning whereby the data
are successively split along coordinate axes of the explanatory variables so that at any
node, the split is chosen that maximally distinguishes the response variable in the left
and the right branches. With a categorical response variable, the tree is called a
classification tree, and the model used for classification assumes that the response
variable follows a multinomial distribution
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For most of these models, a range of generic functions can be used to obtain information
about the model. The most important and most frequently used are

summary produces parameter estimates and standard errors from
lm, and ANOVA tables from aov; this will often
determine your choice between lm and aov. For either
lm or aov you can choose summary.aov or summary.

lm to get the alternative form of output (an ANOVA
table or a table of parameter estimates and standard
errors; see p. 158)

plot produces diagnostic plots for model checking, including
residuals against fitted values, influence tests, etc.

anova a useful function for comparing two or more different
models and producing ANOVA tables (and alternative to
AIC)

update used to modify the last model fit; it saves both typing
effort and computing time

Other useful generics include:

coef the coefficients (estimated parameters) from the model
fitted the fitted values, predicted by the model for the values of the

explanatory variables that appear in the data frame
resid the residuals (the differences between measured and

predicted values of y)
predict uses information from the fitted model to produce smooth

functions for plotting a curve through the scatterplot of your
data. The trick is to realize that you need to provide values
for all of the explanatory variables that are in the model
(both continuous and categorical) as a list, and that the
vectors of explanatory variables must all be exactly the same
length (see p. 248 for a worked example). You can back-
transform automatically using the option
type="response".

Organizing Your Work

There are three things that you really must keep for each separate R session:

• the dataframe, stored in a comma-delimited (.csv) or a tab-delimited (.txt) file

• the script, stored in a text file (.txt)

• the results obtained during this session (tables, graphs, model objects, etc.) stored in a
PDF so that you can retain the graphics along with model outputs
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To make sure you remember which data files and results go with which scripts, it is good
practice to save the script, results and data files in the same, sensibly named folder.

Once the data are checked and edited, you are not likely ever to want to alter the data file.
On the other hand, you are likely to want to keep a separate script for each working session
of R. One of the great advantages of using scripts is that you can copy (potentially large)
sections of code from previous successful sessions and save yourself a huge amount of
typing (and wheel reinvention).

There are two sensible ways of working and you should choose the one that suits you best.
The first is to write all of your code in a script editor, save it regularly, and pepper it liberally
with comments (use the hatch symbol to start each comment):

# this is a comment

When you make mistakes, cut them out of the script, taking care not to delete important
bits of code accidentally.

The alternative is to save the script of the whole session just before you finish. This is
stored in what R calls the history file. At the end of the session, type

history(Inf)

and R will open a script window called ‘R History’ containing a full transcript of all the
commands (both right and wrong) that you entered during that session. Copy all the material
to a text file, edit out the mistakes (again, making sure that you do not remove any essential
lines of code), add the necessary comments, then save the text file as your script for the
session in its customized directory along with the data file and the results (the output
of tables, models and graphics).

Whichever method you use, the saved script is a permanent record of what you did (with
comments pointing out exactly why you did it). You are likely to copy and paste the code
into R on future occasions when you want to do similar analyses, and you want the code
to work seamlessly (which it will not do if you have unintentionally removed key lines
of code).

It is a bad idea to create your scripts in a word processor because several of the symbols
you will use may not be readable within R. Double quotes is a classic example of this;
your word processor will have “ (open quotes) and ” (close quotes) but R will read only
" (simple quotes). However, you might want to save the results from your R sessions in a
word processor because this can include graphs as well as input and output in the same
document.

Housekeeping within R

The simplest way to work is to start a new R session for each separate activity. The
advantage of working this way is that things from one session do not get mixed up with
things from another session.

The classic thing to go wrong is that you get two different objects with the same name,
and you do not know which is which. For instance, a variable called x from one analysis may
contain 30 numbers and a different variable called x from another analysis might have
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50 numbers in it. At least, in that case, you can test the length of the object to see which one it
is (if it is of length 50 then it must be the x variable from the second analysis). Worse
problems arise when the two different variables called x are both the same length. Then you
really do not know where you are.

If you insist on doing several things during the same R session, then it pays to be really
well organized. In this book we attach dataframes, so that you can refer to your variables
by name without reference to the name of the dataframe from which they come (experts
generally do not use attach). The disadvantage of using attach is that you might have
several dataframes attached that contain exactly the same variable name. R will warn you of
this by writing

The following object is masked from first.frame:

temp, wind

when you attach a dataframe containing variables that are already attached from a different
dataframe. The message means that when you attached a new dataframe, it contained two
variables, called temp and wind respectively, that were already attached from a previous
dataframe called first.frame. This state of affairs is confusing and unsatisfactory. The
way to avoid it is to make sure that you detach all unnecessary dataframes before attaching
a new dataframe. Here is the problem situation in full:

first.frame <- read.csv("c:\\temp\\test.pollute.csv")
second.frame <- read.csv("c:\\temp\\ozone.data.csv")
attach(first.frame)
attach(second.frame)

The following object is masked from first.frame:

temp, wind

Here is how to avoid the problem

first.frame <- read.csv("c:\\temp\\test.pollute.csv")
second.frame <- read.csv("c:\\temp\\ozone.data.csv")
attach(first.frame)

. . . this is where you work on the information from first.frame. Then when you are
finished . . .

detach(first.frame)
attach(second.frame)

No warning message is printed because temp and rain are no longer duplicate variable
names.

The other big problem arises when you create variables during a session by allocation
(this typically involves calculation or the use of data-generating functions within R to
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produce random numbers, for instance, or sequences). So if in the first session you wanted x
to be

ffiffiffi

2
p

then you would put:

x <- sqrt(2)

Now, in a later session you use x for the axis of a graph, and give it the sequence of values
0 to 10:

x <- 0:10

If the fact that you had done this slipped your mind, then you might later use x thinking
that is was the single number

ffiffiffi

2
p

. But R knows it to be the vector of 11 numbers 0 to 10,
and this could have seriously bad consequences. The way to avoid problems like this
is to remove all the variables you have calculated before you start on another project
during the same session of R. The function for this is rm (or remove)

rm(x)

If you ask for a variable to be removed that does not exist, then R will warn you of this fact:

rm(y,z)

Warning messages:
1: In rm(y, z) : object ’y’ not found
2: In rm(y, z) : object ’z’ not found

We are now in a position to start using R in earnest. The first thing to learn is how to
structure a dataframe and how to read a dataframe into R. It is immensely irritating that this
first step often turns out to be so difficult for beginners to get right. Once the data are into R,
the rest is plain sailing.
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2
Dataframes

Learning how to handle your data, how to enter it into the computer, and how to read the
data into R are amongst the most important topics you will need to master. R handles data
in objects known as dataframes. A dataframe is an object with rows and columns (a bit
like a two-dimensional matrix). The rows contain different observations from your study,
or measurements from your experiment. The columns contain the values of different
variables. The values in the body of the dataframe can be numbers (as they would be in
as matrix), but they could also be text (e.g. the names of factor levels for categorical
variables, like ‘male’ or ‘female’ in a variable called ‘gender’), they could be calendar
dates (like 23/5/04), or they could be logical variables (like ‘TRUE’ or ‘FALSE’). Here is
a spreadsheet in the form of a dataframe with seven variables, the leftmost of which
comprises the row names, and other variables are numeric (Area, Slope, Soil pH and
Worm density), categorical (Field Name and Vegetation) or logical (Damp is either
true=T or false=F).

Field Name Area Slope Vegetation Soil pH Damp Worm density

Nash’s Field 3.6 11 Grassland 4.1 F 4
Silwood Bottom 5.1 2 Arable 5.2 F 7
Nursery Field 2.8 3 Grassland 4.3 F 2
Rush Meadow 2.4 5 Meadow 4.9 T 5
Gunness’ Thicket 3.8 0 Scrub 4.2 F 6
Oak Mead 3.1 2 Grassland 3.9 F 2
Church Field 3.5 3 Grassland 4.2 F 3
Ashurst 2.1 0 Arable 4.8 F 4
The Orchard 1.9 0 Orchard 5.7 F 9
Rookery Slope 1.5 4 Grassland 5 T 7
Garden Wood 2.9 10 Scrub 5.2 F 8
North Gravel 3.3 1 Grassland 4.1 F 1
South Gravel 3.7 2 Grassland 4 F 2
Observatory Ridge 1.8 6 Grassland 3.8 F 0
Pond Field 4.1 0 Meadow 5 T 6
Water Meadow 3.9 0 Meadow 4.9 T 8
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(Continued )

Field Name Area Slope Vegetation Soil pH Damp Worm density

Cheapside 2.2 8 Scrub 4.7 T 4
Pound Hill 4.4 2 Arable 4.5 F 5
Gravel Pit 2.9 1 Grassland 3.5 F 1
Farm Wood 0.8 10 Scrub 5.1 T 3

Perhaps the most important thing about analysing your own data properly is getting
your dataframe absolutely right. The expectation is that you will have used a spreadsheet
like Excel to enter and edit the data, and that you will have used plots to check for errors.
The thing that takes some practice is learning exactly how to put your numbers into the
spreadsheet. There are countless ways of doing it wrong, but only one way of doing it right.
And this way is not the way that most people find intuitively to be the most obvious.

The key thing is this: all the values of the same variable must go in the same column. It
does not sound like much, but this is what people tend to get wrong. If you had an
experiment with three treatments (control, pre-heated and pre-chilled), and four measure-
ments per treatment, it might seem like a good idea to create the spreadsheet like this:

Control Preheated Prechilled

6.1 6.3 7.1
5.9 6.2 8.2
5.8 5.8 7.3
5.4 6.3 6.9

But this is not a dataframe, because values of the response variable appear in three different
columns, rather than all in the same column. The correct way to enter these data is to have two
columns: one for the response variable and one for the levels of the experimental factor
(control, pre-heated and pre-chilled). Here are the same data, entered correctly as a dataframe:

Response Treatment

6.1 control
5.9 control
5.8 control
5.4 control
6.3 preheated
6.2 preheated
5.8 preheated
6.3 preheated
7.1 prechilled
8.2 prechilled
7.3 prechilled
6.9 prechilled
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A good way to practice this layout is to use the Excel function called PivotTable (found
under the Insert tab on the main menu bar) on your own data: it requires your spreadsheet to
be in the form of a dataframe, with each of the explanatory variables in its own column.

Once you have made your dataframe in Excel and corrected all the inevitable data entry
and spelling errors, then you need to save the dataframe in a file format that can be read by
R. Much the simplest way is to save all your dataframes from Excel as comma-delimited
files: File/Save As/ . . . then from the ‘Save as type’ options choose ‘CSV (Comma
delimited)’. There is no need to add a suffix, because Excel will automatically add ‘.csv’
to your file name. This file can then be read into R directly as a dataframe, using the
read.csv function.

Think of a name for the dataframe (say, ‘worms’ in this case). Now use the gets arrow
<� which is a composite symbol made up of the two characters < (less than) and �
(minus) like this

worms <- read.csv("c:\\temp\\worms.csv")

To see which variables are included in this dataframe, we use the names function:

names(worms)

[1] "Field.Name" "Area" "Slope" "Vegetation"
[5] "Soil.pH" "Damp" "Worm.density"

In order that we can refer to the variable names directly (without prefixing them by the
dataframe name) we attach the dataframe:

attach(worms)

To see the contents of the dataframe, just type its name:

worms

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
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17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3

The variable names appear in row number 1. Notice that R has expanded our abbreviated
T and F into TRUE and FALSE.

Selecting Parts of a Dataframe: Subscripts

We often want to extract part of a dataframe. This is a very general procedure in R,
accomplished using what are called subscripts. You can think of subscripts as addresses
within a vector, a matrix or a dataframe. Subscripts in R appear within square brackets, thus
y[7] is the 7th element of the vector called y and z[2,6] is the 2nd row of the 6th column
of a two-dimensional matrix called z. This is in contrast to arguments to functions in R,
which appear in round brackets (4,7).

We might want to select all the rows of a dataframe for certain specified columns. Or we
might want to select all the columns for certain specified rows of the dataframe. The
convention in R is that when we do not specify any subscript, then all the rows, or all the
columns is assumed. This syntax is difficult to understand on first acquaintance, but [,

‘blank then comma’ means ‘all the rows’ and ,] ‘comma then blank’ means all the columns.
For instance, to select the first column of the dataframe, use subscript [,1]. To select
groups of columns we provide several column numbers. Thus, to select all the rows of the
first three columns of worms, we write:

worms[,1:3]

Field.Name Area Slope
1 Nashs.Field 3.6 11
2 Silwood.Bottom 5.1 2
3 Nursery.Field 2.8 3
4 Rush.Meadow 2.4 5
5 Gunness.Thicket 3.8 0
6 Oak.Mead 3.1 2
7 Church.Field 3.5 3
8 Ashurst 2.1 0
9 The.Orchard 1.9 0
10 Rookery.Slope 1.5 4
11 Garden.Wood 2.9 10
12 North.Gravel 3.3 1
13 South.Gravel 3.7 2
14 Observatory.Ridge 1.8 6
15 Pond.Field 4.1 0
16 Water.Meadow 3.9 0
17 Cheapside 2.2 8
18 Pound.Hill 4.4 2
19 Gravel.Pit 2.9 1
20 Farm.Wood 0.8 10
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To select just the middle 11 rows for all the columns of the dataframe, use subscript
[5:15,] like this:

worms[5:15,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6

It is often useful to select certain rows, based on logical tests on the values of one or more
variables. Here is the code to select only those rows which have Area > 3 and Slope < 3

using ‘comma then blank’ to specify all the columns like this:

worms[Area>3 & Slope <3,]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5

Sorting

You can sort the rows or the columns of the dataframe in any way you choose, but typically
you will want to see all of the columns and to sort on the basis of the values in one or more of
the columns. By default, things in R are sorted into ascending order (i.e. into alphabetical
order for character data, and increasing numeric order for numbers). The simplest way to
sort is to use the name of the variable. Suppose we want the whole dataframe sorted by Area:

worms[order(Area),]

Field.Name Area Slope Vegetation Soil.pH Damp Worm.density
20 Farm.Wood 0.8 10 Scrub 5.1 TRUE 3
10 Rookery.Slope 1.5 4 Grassland 5.0 TRUE 7
14 Observatory.Ridge 1.8 6 Grassland 3.8 FALSE 0
9 The.Orchard 1.9 0 Orchard 5.7 FALSE 9
8 Ashurst 2.1 0 Arable 4.8 FALSE 4
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17 Cheapside 2.2 8 Scrub 4.7 TRUE 4
4 Rush.Meadow 2.4 5 Meadow 4.9 TRUE 5
3 Nursery.Field 2.8 3 Grassland 4.3 FALSE 2
11 Garden.Wood 2.9 10 Scrub 5.2 FALSE 8
19 Gravel.Pit 2.9 1 Grassland 3.5 FALSE 1
6 Oak.Mead 3.1 2 Grassland 3.9 FALSE 2
12 North.Gravel 3.3 1 Grassland 4.1 FALSE 1
7 Church.Field 3.5 3 Grassland 4.2 FALSE 3
1 Nashs.Field 3.6 11 Grassland 4.1 FALSE 4
13 South.Gravel 3.7 2 Grassland 4.0 FALSE 2
5 Gunness.Thicket 3.8 0 Scrub 4.2 FALSE 6
16 Water.Meadow 3.9 0 Meadow 4.9 TRUE 8
15 Pond.Field 4.1 0 Meadow 5.0 TRUE 6
18 Pound.Hill 4.4 2 Arable 4.5 FALSE 5
2 Silwood.Bottom 5.1 2 Arable 5.2 FALSE 7

The key point to note is that order(Area) comes before the comma, and there is a blank
after the comma (which means that we want all of the columns). The original row numbers
appear on the left of the sorted dataframe.

Now suppose we just want the columns containing numeric information to appear in the
output; these are column numbers 2, 3, 5 and 7:

worms[order(Area),c(2,3,5,7)]

Area Slope Soil.pH Worm.density
20 0.8 10 5.1 3
10 1.5 4 5.0 7
14 1.8 6 3.8 0
9 1.9 0 5.7 9
8 2.1 0 4.8 4
17 2.2 8 4.7 4
4 2.4 5 4.9 5
3 2.8 3 4.3 2
11 2.9 10 5.2 8
19 2.9 1 3.5 1
6 3.1 2 3.9 2
12 3.3 1 4.1 1
7 3.5 3 4.2 3
1 3.6 11 4.1 4
13 3.7 2 4.0 2
5 3.8 0 4.2 6
16 3.9 0 4.9 8
15 4.1 0 5.0 6
18 4.4 2 4.5 5
2 5.1 2 5.2 7

To sort things into descending order we employ the reverse function rev like this:

worms[rev(order(worms[,5])),c(5,7)]
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Soil.pH Worm.density
9 5.7 9
11 5.2 8
2 5.2 7
20 5.1 3
15 5.0 6
10 5.0 7
16 4.9 8
4 4.9 5
8 4.8 4
17 4.7 4
18 4.5 5
3 4.3 2
7 4.2 3
5 4.2 6
12 4.1 1
1 4.1 4
13 4.0 2
6 3.9 2
14 3.8 0
19 3.5 1

which sorts into descending order by Soil pH, with only Soil pH and Worm density as output
(because of the c(5,7)). This makes the point that you can specify the sorting variable
either by name (as we did with Area above) or by column number (as we did with Soil.pH

here by specifying column number 5).

Summarizing the Content of Dataframes

The object called worms now has all the attributes of a dataframe. For example, you can
summarize it, using summary:

summary(worms)

Field.Name Area Slope Vegetation
Ashurst : 1 Min. :0.800 Min. : 0.00 Arable :3
Cheapside : 1 1st Qu.:2.175 1st Qu.: 0.75 Grassland:9
Church.Field: 1 Median:3.000 Median: 2.00 Meadow :3
Farm.Wood : 1 Mean :2.990 Mean : 3.50 Orchard :1
Garden.Wood : 1 3rd Qu.:3.725 3rd Qu.: 5.25 Scrub :4
Gravel.Pit : 1 Max. :5.100 Max. :11.00
(Other) :14

Soil.pH Damp Worm.density
Min. :3.500 Mode :logical Min. :0.00
1st Qu.:4.100 FALSE:14 1st Qu.:2.00
Median :4.600 TRUE :6 Median :4.00
Mean :4.555 NA’s :0 Mean :4.35
3rd Qu.:5.000 3rd Qu.:6.25
Max. :5.700 Max. :9.00
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Values of continuous variables are summarized under six headings: one parametric (the
arithmetic mean) and five non-parametric (maximum, minimum, median, 25th percentile or
first quartile, and 75th percentile or third quartile). Levels of categorical variables are counted.

Summarizing by Explanatory Variables

The function you need to master for summarizing quantitative information in dataframes is
called aggregate. You will often want to know the average values of continuous variables
within the dataframe summarized by factor levels from one or more of the categorical
variables. For instance, we may want to know the mean number of worms under different
plant communities. For a single response variable like Worm.density, you can use tapply

and with like this:

with(worms,tapply(Worm.density,Vegetation,mean))

Arable Grassland Meadow Orchard Scrub
5.33 2.44 6.33 9.00 5.25

In the early stages of analysis, however, we often want to see the mean values of all the
continuous variables summarized at the same time, and this is where aggregate comes into
its own. We need to do a little bit of work in advance, by noting down the column numbers
that contain the variables for which it would be useful and sensible to calculate the mean
values (i.e. the columns containing real numbers). These are Area and Slope in columns 2
and 3 respectively, Soil.pH in column 5 and Worm.density in column 7. To get their
mean values classified by plant communities we need only type:

aggregate(worms[,c(2,3,5,7)],list(Vegetation),mean)

Group.1 Area Slope Soil.pH Worm.density
1 Arable 3.87 1.33 4.83 5.33
2 Grassland 2.91 3.67 4.10 2.44
3 Meadow 3.47 1.67 4.93 6.33
4 Orchard 1.90 0.00 5.70 9.00
5 Scrub 2.42 7.00 4.80 5.25

which causes all of the mean values to be printed. Do you know why there is a comma after
the left hand square bracket on worms? Note that the column containing the levels of
Vegetation is headed Group.1. This is the default used by aggregate. Within the column,
the levels of Vegetation appear in alphabetical order. To get the column headed by
‘Community’ instead of Group.1 we annotate the list like this:

aggregate(worms[,c(2,3,5,7)],list(Community=Vegetation),mean)

Community Area Slope Soil.pH Worm.density
1 Arable 3.87 1.33 4.83 5.33
2 Grassland 2.91 3.67 4.10 2.44
3 Meadow 3.47 1.67 4.93 6.33
4 Orchard 1.90 0.00 5.70 9.00
5 Scrub 2.42 7.00 4.80 5.25
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You can do multiple classifications using two or more categorical explanatory variables:
here is a summary that asks for the mean values separately for each level of soil moisture
within each vegetation type

aggregate(worms[,c(2,3,5,7)],
list(Moisture=Damp,Community=Vegetation),mean)

Moisture Community Area Slope Soil.pH Worm.density
1 FALSE Arable 3.87 1.33 4.83 5.33
2 FALSE Grassland 3.09 3.62 3.99 1.88
3 TRUE Grassland 1.50 4.00 5.00 7.00
4 TRUE Meadow 3.47 1.67 4.93 6.33
5 FALSE Orchard 1.90 0.00 5.70 9.00
6 FALSE Scrub 3.35 5.00 4.70 7.00
7 TRUE Scrub 1.50 9.00 4.90 3.50

You will notice that aggregate produces only those rows for which there is output (there
are no dry meadows, and no wet arable or wet orchards, for instance). This is in contrast to
tapply, which produces NA for missing combinations:

with(worms,tapply(Slope,list(Damp,Vegetation),mean))

Arable Grassland Meadow Orchard Scrub
FALSE 1.33 3.62 NA 0 5
TRUE NA 4.00 1.67 NA 9

You choose between aggregate and tapply on the basis of which of them serves your
needs best in a particular case, bearing in mind that tapply can summarize only one
variable at a time.

The answer to the quiz (above) is that the comma after the square bracket means ‘select all
of the rows in the dataframe’. If we wanted only some of the rows, then we would need to
specify which rows, just like we specified which columns we wanted using c(2,3,5,7).

First Things First: Get to Know Your Data

Once the data are in the computer, the temptation is to rush straight into statistical
analysis. This is exactly the wrong thing to do. You need to get to know your data first.
This is particularly important early on in a project, because there is a very high chance that
the data contain mistakes. Obviously, these need to be put right before anything sensible
can be done.

Just as important, if you do not know what your data look like, then you will not know
what model to select to fit to the data (e.g. a straight line or a curved line), or whether the
assumptions of your intended model are met by the data (e.g. constancy of variance and
normality of errors).

The recommended procedure is this. First, just plot the response variable on its
own. This is called an index plot. It will show if there are any glaring errors in the data
and whether there are trends or cycles in the values of the response as they appear in
the dataframe.
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data <- read.csv("c:\\temp\\das.csv")
attach(data)
head(data)

y
1 2.514542
2 2.559668
3 2.460061
4 2.702720
5 2.571997
6 2.412833

Data inspection could not be simpler. Just plot the values of y using plot(y). This
produces a scatterplot with the values of y appearing from left to right in the order in which
they appear in the dataframe:

plot(y)

One data point sticks out like a sore thumb. We need to go back to the lab notebook and
check what has happened. It is useful to know what line of the dataframe contains the
unusually large value of y. This is easy to work out using the which function. Inspection of
the plot shows that our questionable data point is the only one larger than 10, so we can use
the which function like this:

which(y > 10)

[1] 50

so the outlying data point is on line 50 of the spreadsheet. Now we need to go back to the lab
book and try to work out what happened. What is the exact value of the outlier? We use
subscripts [square brackets] for this. We want the 50th value of y:
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y[50]

[1] 21.79386

The lab book shows that the value should be 2.179386. What has happened is that a typing
error has put the decimal point in the wrong place. Clearly we should change the entry in the
spreadsheet and start again. Now when we use plot to check the data, it looks like this

plot(y)

There is no reason to suspect any of the data points. The data are not trended with the
order of entry, and the degree of scatter looks to be consistent from left to right. That is good
news.

It is important to appreciate that outliers are not necessarily mistakes. Most outliers will
be genuine values of the response. The key point about outliers is that you need to be aware
of their existence (the plots will show this) and to understand how influential the outliers are
in determining effect sizes and standard errors in your chosen model. This crucial point is
discussed on p. 135. Now do the same thing for each of the continuous explanatory variables
in turn.

To check for mistakes in the factor levels of categorical explanatory variables, you use the
table function. This shows how many times each factor level appears in a particular
column of the data frame. Mistakes will be highlighted because there will be more factor
levels than there should be. Here is a variable called treatment from an experiment on
fertilizer application and plant growth. There are four levels of the factor: control, nitrogen,
phosphorus and both N and P. This is how we check the data:

yields <- read.csv("c:\\temp\\fertyield.csv")
attach(yields)
head(yields)
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treatment yield
1 control 0.8274156
2 control 3.6126275
3 control 2.6192581
4 control 1.7412190
5 control 0.6590589
6 control 0.4891107

As you can see, the variable called treatment is a factor with text (‘control’ on these six
lines) entries to describe which of the four treatments was applied to obtain the yield in
column 2. This is how we check the factor levels:

table(treatment)

variable
both N and P control nitogen nitrogen phosphorus

10 10 1 9 10

There are five factor levels printed rather than the four we expected, so it is clear that
something is wrong. What has happened is that one of the nitrogen values has been
misspelled as nitogen with the result that there are only 9 nitrogen values (not the 10 we
expect) and an extra column in the table with one entry for the spelling mistake. The next
step is to find out which row the mistake occurs in, then armed with this information, go
back to the original spreadsheet and correct the error. This is easy using the which function.
Note the use of ‘double equals’ to check for equality):

which(treatment == "nitogen")

[1] 11

The mistake is in line number 11. We need to correct that line in the spreadsheet. Make
the change then start again, by reading the new corrected dataframe into R. Check all of your
variables, continuous and categorical, one at a time and correct all of the mistakes you find.
Now it is time to look at relationships between variables.

detach(yields)

Relationships

The place to start is with pairwise relationships. When both variables are continuous, the
appropriate graph is a scatterplot:

data <- read.csv("c:\\temp\\scatter.csv")
attach(data)
head(data)

x y
1 0.000000 0.00000
2 5.112000 61.04000
3 1.320000 11.11130
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4 35.240000 140.65000
5 1.632931 26.15218
6 2.297635 10.00100

The response variable is y and the explanatory variable is x, so we write plot(x,y) or
plot(y∼x) to see the relationship (the two forms of plot produce the same graph; the
choice of which to use is entirely up to you). We introduce two new features to customize the
plot: changing the plotting symbol (pch stands for ‘plotting character’) from the default
open circles we have been using so far to coloured discs with a black edge (pch = 21) and
select a bright colour for the fill of the disc (the ‘background’ as it is called in R, using
bg="red"):

plot(x,y,pch=21,bg="red")

This plot immediately alerts us to two important issues: (1) the relationship between the
response and the explanatory variable is curved, not a straight line; and (2) the degree of
scatter of the response variable increases from left to right (this is what non-constant
variance (heteroscedasticity) looks like). These two features of the data are not mistakes, but
they are very important elements in model selection (despite the positive correlation
between x and y, we would not do a linear regression on these data, for instance).

When the explanatory variable is categorical the plot function produces a box-and-
whisker plot. This is very useful for error-checking, as the following example illustrates:

data <- read.csv("c:\\temp\\weather.data.csv")
attach(data)
head(data)

upper lower rain month yr
1 10.8 6.5 12.2 1 1987
2 10.5 4.5 1.3 1 1987
3 7.5 -1.0 0.1 1 1987
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4 6.5 -3.3 1.1 1 1987
5 10.0 5.0 3.5 1 1987
6 8.0 3.0 0.1 1 1987

There are three potential continuous response variables in this dataframe (daily maximum
temperature ‘upper’ in degrees Celsius, daily minimum temperature ‘lower’ in degrees
Celsius, and daily total precipitation ‘rain’ in millimetres) and two quantitative variables that
we might choose to define as categorical (month and year). Here, we carry out an initial
inspection of the maximum temperature data. Note that when the plot function is invoked
with a categorical explanatory variable – factor(month) in this case – then R produces a
box-and-whisker plot rather than a scatterplot (see p. 67 for details).

plot(factor(month),upper)

The box-and- whisker plot shows the very clear seasonal pattern of median temperature,
peaking in July and August and reaching a minimum in January. The details of what the
boxes and whiskers mean are explained on p. 161. For our present purposes we concentrate
on error-checking.

The plot shows a freezing day (0 maximum) in June (month= 6), which is unheard of at this
location. It turns out that the thermometer broke on this day and was replaced by a new one.
The missing value for the day of the breakdown was foolishly entered as a zero (it should have
been NA). Again, we go back to the spreadsheet and replace the erroneous 0 by the correct NA
(this stands for not available; notice that NA is not enclosed in quotation marks).

Looking for Interactions between Continuous Variables

Once the obvious errors have been corrected, the next questions concern model choice. For
instance, does the response to one variable depend upon the level of another variable? (in the
jargon, this is known as a statistical interaction). With continuous explanatory variables,
we can look for interaction effects using conditioning plots (typically known as coplots).
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With categorical explanatory variables, we can look for interaction effects using barplots.
Here we have one response variable (y) and two continuous explanatory variables (x and z):

data <- read.csv("c:\\temp\\coplot.csv")
attach(data)
head(data)

x y z
1 95.73429 107.8087 14.324408
2 36.20660 223.9257 10.190577
3 28.71378 245.2523 12.566815
4 78.36956 132.7344 13.084384
5 38.37717 222.2966 9.960033
6 57.18078 184.8372 10.035677

Two scatterplots side by side look better if we change the shape of the plotting window
from the default square (7 × 7 inches) to a rectangle (7 × 4 inches) like this:

windows(7,4)

then alter the graphics parameter to specify two sets of axis on the same row (see p. 134 for
details):

par(mfrow=c(1,2))

There is no clear relationship between the response and either of the two continuous
explanatory variables when they are fitted on their own:

plot(x,y)
plot(z,y)

To look for interactions between continuous explanatory variables (like x and z in this
example) we employ a superb graphical function called coplot. The function plots y
against x conditional on the value of z. The function is very simple to use. The symbol that
might be new to you is the vertical bar | which is read as ‘given’. The syntax says ‘plot y
against x given the value of z’ and is written as plot(y∼x|z). The default is to split the data
into six graphs (but you can change this if you want to). The sixth of the data with the lowest
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values of z appear in the bottom left-hand panel as a plot of y against x. To improve the
appearance of the plot we can use solid black plotting symbols (pch=16) and fit a trend line
through the scatterplot in red (this is called a non-parametric smoother, and is invoked by
the function panel.smooth). First we return to the default window shape (7× 7 inches):

windows(7,7)

then we draw the conditioning plot:

coplot(y∼x|z,pch=16,panel=panel.smooth)

This shows a really clear relationship between the response variable and x, but the form of
the relationship depends on the value of z (the second of our continuous explanatory
variables). For low values of z (in the bottom left-hand panel) the relationship between y and
x is strongly negative. For high values of z (top right) the relationship is strongly positive. As
z increases (from bottom left to bottom right, then from top left to top right), the slope of the
relationship between y and x increases rather smoothly from large negative values to zero
then to increasingly positive values. Only coplot can show this kind of interaction so
simply and clearly.
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The top part of the figure can be confusing for beginners. The shaded horizontal bars are
called shingles (after the American word for roof tiles) and they show the range of values of
the variable (z in this example) used to produce each of the six panel plots. The bottom (left-
hand) shingle shows that the bottom left-hand panel (with the strong negative relationship
between y and x) was based on data selected to have z values between 10 and 20 (look at the
scale on the top axis beneath ‘Given: z’). The next panel used data with z values between 13
and 30, the next between 20 and 40, and so on. The shingles overlap because that is the
default setting (see ?coplot for details of overlap = 0.5): for a non-edge plot, half of the
data points are shared with the panel to its left, and half are shared with the panel on its right.
You can specify non-overlapping panels if that is what you want (overlap = 0).

Graphics to Help with Multiple Regression

The problems become most acute when we have many continuous explanatory variables
and the data come from observational studies where we have no control over replication or
randomization. In data sets like this, the explanatory variables are often correlated with each
other (most simple models assume that the explanatory variables are independent –

orthogonal in the jargon). We discuss these issues in detail in Chapter 10, but at this
stage we simply observe that there are no easy cures for this. Two very useful tools for
preliminary investigation of multiple regression data are tree models and generalized
additive models, as illustrated on p. 197.

Interactions Involving Categorical Variables

The following data are from a factorial experiment involving nitrogen and phosphorus
fertilizers applied separately and in combination:

data <- read.csv("c:\\temp\\np.csv")
attach(data)
head(data)

yield nitrogen phosphorus
1 0.8274156 no no
2 3.6126275 no no
3 2.6192581 no no
4 1.7412190 no no
5 0.6590589 no no
6 0.4891107 no no

There is one continuous response variable (yield) and two categorical explanatory
variables (nitrogen and phosphorus) each with two levels (yes and no, meaning the fertilizer
was or was not applied to the plot in question). First we look at the effects of the two
nutrients separately:

windows(7,4)
par(mfrow=c(1,2))
plot(nitrogen,yield,main="N")
plot(phosphorus,yield,main="P")
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These plots show what are called the ‘main effects’ of nitrogen and phosphorus: it looks
as if nitrogen increases yield slightly more than does phosphorus. The median for plus
nitrogen (‘yes’ in the left-hand plot) is above the top of the box for no nitrogen, whereas the
median for plus phosphorus is below the top of the box for no phosphorus (right-hand plot).
What these main effects fail to show us is whether the response to phosphorus depends on
the level of nitrogen. What we need is an interaction plot showing effect sizes for four levels
of response: neither nutrient, just nitrogen, just phosphorus, or both N and P. We use the
function tapply to do this:

tapply(yield,list(nitrogen,phosphorus),mean)

no yes
no 1.47384 1.875928
yes 2.28999 3.480184

The rows refer to nitrogen and the columns to phosphorus. With no P (left column), the
effect size for N is 2.290/1.474= 1.55, but with P the effect size of N is 3.480/1.876= 1.86.
The effect size for nitrogen depends on the level of phosphorus (55% increase in yield
without P, but 86% increase with P). That is an example of a statistical interaction: the
response to one factor depends upon the level of another factor.

We need a way of showing interactions graphically. There are many way of doing this,
but perhaps the most visually effective is to use the barplot function. We can use the
output from tapply directly for this, but it is a good idea to add a legend to show the
nitrogen treatments associated using two colours of shading:

barplot(tapply(yield,list(nitrogen,phosphorus),mean),
beside=TRUE,xlab="phosphorus")

The locator function allows you to put the legend in a place where it does not interfere
with any of the bars. Put the cursor where you want the top left corner of the legend box to
appear, then left click:

legend(locator(1),legend=c("no","yes"),title="nitrogen",
fill=c("black","lightgrey"))
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For your final presentation, you would want to add error bars to the plot, but we shall deal
with this later, once we have discussed how to measure the unreliability of effects (see p. 162).

It is essential to spend time on understanding the patterns in your data before you embark
on the statistics. These preliminary plots are not optional extras. They are absolutely vital for
deciding what kind of statistical modelling will be appropriate, and what kinds of
assumptions about the data (linearity of response, constancy of variance, normality of
errors) are likely to be justified. As you will see, we return to check the assumptions again,
once the statistical modelling has been carried out (see p. 134).

That concludes the initial data inspection. Now we can begin to think about statistical
analysis of the data. We shall concentrate on measuring effect sizes and their unreliabilities
(the modern approach) and pay relatively little attention to hypothesis testing (the old-
fashioned approach).

Further Reading

Chambers, J.M. and Hastie, T.J. (1992) Statistical Models in S, Wadsworth & Brooks/Cole, Pacific
Grove, CA.

Crawley, M.J. (2013) The R Book, 2nd edn, John Wiley & Sons, Chichester.
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3
Central Tendency

Despite the fact that everything varies, measurements often cluster around certain interme-
diate values; this attribute is called central tendency. Even if the data themselves do not
show much tendency to cluster round some central value, the parameters derived from
repeated experiments (e.g. replicated sample means) almost inevitably do (this is called the
central limit theorem; see p. 70). We need some data to work with. The data are in a vector
called y stored in a text file called yvalues

yvals <- read.csv("c:\\temp\\yvalues.csv")
attach(yvals)

So how should we quantify central tendency? Perhaps the most obvious way is just by
looking at the data, without doing any calculations at all. The data values that occur most
frequently are called the mode, and we discover the value of the mode simply by drawing a
histogram of the data like this:

hist(y)

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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So we would say that the modal class of y was between 1.10 and 1.12 (we will see how to
control the location of the break points in a histogram later).

The most straightforward quantitative measure of central tendency is the arithmetic mean
of the data. This is the sum of all the data values

P

y divided by the number of data values, n.
The capital Greek sigma

P

just means ‘add up all the values’ of what follows; in this case,
a set of y values. So if we call the arithmetic mean ‘y bar’, y, we can write

y �
P

y

n

The formula shows how we would write a general function to calculate arithmetic means
for any vector of y values. First, we need to add them up. We could do it like this:

y[1] + y[2] + y[3] + . . . + y[n]

but that is very long-winded, and it supposes that we know the value of n in advance.
Fortunately, there is a built-in function called sum that works out the total for any length of
vector, so

total <- sum(y)

gives us the value for the numerator. But what about the number of data values? This is
likely to vary from application to application. We could print out the y values and count
them, but that is tedious and error-prone. There is a very important, general function in R to
work this out for us. The function is called length(y) and it returns the number of numbers
in the vector called y:

n <- length(y)

So our recipe for calculating the arithmetic mean would be ybar <- total/n.

ybar <- total/n

[1] 1.103464

There is no need to calculate the intermediate values, total and n, so it would be more
efficient to write ybar<- sum(y)/length(y). To put this logic into a general function we
need to pick a name for the function, say arithmetic.mean, then define it as follows:

arithmetic.mean <- function(x) sum(x)/length(x)

Notice two things: we do not assign the answer sum(x)/length(x) to a variable name
like ybar; and the name of the vector x used inside the function(x) may be different from
the names on which we might want to use the function in future (y, for instance). If you type
the name of a function on its own, you get a listing of the contents:

arithmetic.mean

function(x) sum(x)/length(x)
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Now we can test the function on some data. First we use a simple data set where we know
the answer already, so that we can check that the function works properly: say

data <- c(3,4,6,7)

where we can see immediately that the arithmetic mean is 5.

arithmetic.mean(data)

[1] 5

So that’s OK. Now we can try it on a realistically big data set:

arithmetic.mean(y)

[1] 1.103464

You will not be surprised to learn that R has a built-in function for calculating arithmetic
means directly, and again, not surprisingly, it is called mean. It works in the same way as did
our home-made function:

mean(y)

[1] 1.103464

Arithmetic mean is not the only quantitative measure of central tendency, and in fact it has
some rather unfortunate properties. Perhaps the most serious failing of the arithmetic mean is
that it ishighly sensitive to outliers. Just a single extremely large or extremely small value in the
data set will have a big effect on the value of the arithmetic mean. We shall return to this issue
later, but our next measure of central tendency does not suffer from being sensitive to outliers.
It is called themedian, and is the ‘middle value’ in the data set. To write a function to work out
the median, the first thing we need to do is sort the data into ascending order:

sorted <- sort(y)

Now we just need to find the middle value. There is slight hitch here, because if the vector
contains an even number of numbers, then there is no middle value. Let us start with the easy
case where the vector contains an odd number of numbers. The number of numbers in the
vector is given by length(y)and the middle value is half of this:

length(y)/2

[1] 19.5

So the median value is the 20th value in the sorted data set. To extract the median value of y
we need to use 20 as a subscript, not 19.5, so we should convert the value of length(y)/2

into an integer. We use ceiling (‘the smallest integer greater than’) for this:

ceiling(length(y)/2)

[1] 20
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So now we can extract the median value of y:

sorted[20]

[1] 1.108847

or, more generally:

sorted[ceiling(length(y)/2)]

[1] 1.108847

or even more generally, omitting the intermediate variable called sorted:

sort(y)[ceiling(length(y)/2)]

[1] 1.108847

But what about the case where the vector contains an even number of numbers? Let us
manufacture such a vector, by dropping the first element from our vector called y using
negative subscripts like this:

y.even <- y[-1]
length(y.even)

[1] 38

The logic is that we shall work out the arithmetic average of the two values of y on either
side of the middle; in this case, the average of the 19th and 20th sorted values:

sort(y.even)[19]

[1] 1.108847

sort(y.even)[20]

[1] 1.108853

So in this case, the median would be:

(sort(y.even)[19]+sort(y.even)[20])/2

[1] 1.10885

But to make it general we need to replace the 19 and 20 by

ceiling(length(y.even)/2)

and

ceiling(1+length(y.even)/2)

respectively.
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The question now arises as to how we know, in general, whether the vector y contains an
odd or an even number of numbers, so that we can decide which of the two methods to use.
The trick here is to use ‘modulo’. This is the remainder (the amount ‘left over’) when one
integer is divided by another. An even number has modulo 0 when divided by 2, and an odd
number has modulo 1. The modulo function in R is %% (two successive percent symbols) and
it is used where you would use slash / to carry out a regular division. You can see this in
action with an even number, 38, and odd number, 39:

38%%2

[1] 0

39%%2

[1] 1

Now we have all the tools we need to write a general function to calculate medians. Let us
call the function med and define it like this:

med <- function(x) {
modulo <- length(x)%%2
if (modulo == 0) (sort(x)[ceiling(length(x)/2)]+sort(x)[ceiling

(1+length(x)/2)])/2
else sort(x)[ceiling(length(x)/2)]

}

Notice that when the if statement is true (i.e. we have an even number of numbers) then
the expression immediately following the if statement is evaluated (this is the code for
calculating the median with an even number of numbers). When the if statement is false
(i.e. we have an odd number of numbers, and modulo == 1) then the expression following
the else statement is evaluated (this is the code for calculating the median with an odd
number of numbers). Let us try it out, first with the odd-numbered vector y, then with the
even-numbered vector y.even, to check against the values we obtained earlier.

med(y)

[1] 1.108847

med(y.even)

[1] 1.10885

Both of these check out. Again, you will not be surprised that there is a built-in function
for calculating medians, and helpfully it is called median:

median(y)

[1] 1.108847

median(y.even)

[1] 1.10885
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For processes that change multiplicatively rather than additively, then neither the
arithmetic mean nor the median is an ideal measure of central tendency. Under these
conditions, the appropriate measure is the geometric mean. The formal definition of this is
somewhat abstract: the geometric mean is the nth root of the product of the data. If we use
capital Greek pi (∏) to represent multiplication, and y ‘hat’ (ŷ) to represent the geometric
mean, then

ŷ � ffiffiffiffiffiffiffi

∏yn
p

Let us take a simple example we can work out by hand: the numbers of insects on five
different plants were as follows: 10, 1, 1000, 1, 10. Multiplying the numbers together gives
100 000. There are five numbers, so we want the fifth root of this. Roots are hard to do in
your head, so we will use R as a calculator. Remember that roots are fractional powers, so
the fifth root is a number raised to the power 1/5= 0.2. In R, powers are denoted by the ^

symbol (the caret), which is found above number 6 on the keyboard:

100000^0.2

[1] 10

So the geometric mean of these insect numbers is 10 insects per stem. Note that two of the
five counts were exactly this number, so it seems a reasonable estimate of central tendency.
The arithmetic mean, on the other hand, is hopeless for these data, because the large value
(1000) is so influential: 10+ 1+ 1000+ 1+ 10= 1022 and 1022/5= 204.4. Note that none
of the counts were close to 204.4, so the arithmetic mean is a poor estimate of central
tendency in this case.

insects <- c(1,10,1000,10,1)
mean(insects)

[1] 204.4

Another way to calculate geometric mean involves the use of logarithms. Recall that to
multiply numbers together we add up their logarithms. And to take roots, we divide the
logarithm by the root. So we should be able to calculate a geometric mean by finding the
antilog (exp) of the average of the logarithms (log) of the data:

exp(mean(log(insects)))

[1] 10

Writing a general function to compute geometric means is left to you as an exercise.
The use of geometric means draws attention to a general scientific issue. Look at the

figure below, which shows numbers varying through time in two populations. Now
ask yourself ‘Which population is the more variable?’ Chances are, you will pick the
upper line:
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But now look at the scale on the y axis. The upper population is fluctuating 100, 200, 100,
200 and so on. In other words, it is doubling and halving, doubling and halving. The lower
curve is fluctuating 10, 20, 10, 20, 10, 20 and so on. It, too, is doubling and halving,
doubling and halving. So the answer to the question is: ‘They are equally variable’. It is just
that one population has a higher mean value than the other (150 vs. 15 in this case). In order
not to fall into the trap of saying that the upper curve is more variable than the lower curve, it
is good practice to graph the logarithms rather than the raw values of things like population
sizes that change multiplicatively.
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Now it is clear that both populations are equally variable.
Finally, we should deal with a rather different measure of central tendency. Consider the

following problem. An elephant has a territory which is a square of side 2 km. Each
morning, the elephant walks the boundary of this territory. It begins the day at a sedate pace,
walking the first side of the territory at a speed of 1 km/hr. On the second side, he has sped up
to 2 km/hr. By the third side he has accelerated to an impressive 4 km/hr, but this so wears
him out, that he has to return on the final side at a sluggish 1 km/hr. So what is his average
speed over the ground? You might say he travelled at 1, 2, 4 and 1 km/hr so the average
speed is (1+ 2+ 4+ 1)/4= 8/4= 2 km/hr. But that is wrong. Can you see how to work out
the right answer? Recall that velocity is defined as distance travelled divided by time taken.
The distance travelled is easy: it is just 4× 2= 8 km. The time taken is a bit harder. The first
edge was 2 km long and, travelling at 1 km/hr, this must have taken 2 hr. The second edge
was 2 km long and, travelling at 2 km/hr, this must have taken 1 hr. The third edge was 2 km
long and, travelling at 4 km/hr, this must have taken 0.5 hr. The final edge was 2 km long
and, travelling at 1 km/hr, this must have taken 2 hr. So the total time taken was 2+ 1+
0.5+ 2= 5.5 hr. So the average speed is not 2 km/hr but 8/5.5= 1.4545 km/hr.

The way to solve this problem is to use the HARMONIC MEAN. This is the reciprocal of the
average of the reciprocals. Remember that a reciprocal is ‘one over’. So the average of our
reciprocals is 1

1 � 1
2 � 1

4 � 1
1

� �

=4 � 2:75 � 4 � 0:6875. The reciprocal of this average is the
harmonic mean 1=0:6875 � 1:4545. In symbols, therefore, the harmonic mean, ~y, (y ‘curl’)
is given by

~y � 1
P 1

y
n

� n
P 1

y

In R, we would write either

v <- c(1,2,4,1)
length(v)/sum(1/v)

[1] 1.454545

or

1/mean(1/v)

[1] 1.454545

Further Reading

Zar, J.H. (2009) Biostatistical Analysis, 5th edn, Pearson, New York.
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4
Variance

A measure of variability is perhaps the most important quantity in statistical analysis. The
greater the variability in the data, the greater will be our uncertainty in the values of
parameters estimated from the data, and the lower will be our ability to distinguish between
competing hypotheses about the data.

Consider the following data, y, which are plotted simply in the order in which they were
measured:

y <- c(13,7,5,12,9,15,6,11,9,7,12)
plot(y,ylim=c(0,20))

How can we quantify the variation (the scatter) in y that we can see here? Perhaps the
simplest measure is the range of y values:

range(y)

[1] 5 15

plot(1:11,y,ylim=c(0,20),pch=16,col="blue")
lines(c(4.5,4.5),c(5,15),col="brown")
lines(c(4.5,3.5),c(5,5),col="brown",lty=2)
lines(c(4.5,5.5),c(15,15),col="brown",lty=2)

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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This is a reasonable measure of variability, but it is too dependent on outlying values for
most purposes. Also, we want all of our data to contribute to the measure of variability, not
just the maximum and minimum values.

How about estimating the mean value, and looking at the departures from the mean
(known as ‘residuals’ or ‘deviations’)?

plot(1:11,y,ylim=c(0,20),pch=16,col="blue")
abline(h=mean(y),col="green")
for (i in 1:11) lines(c(i,i),c(mean(y),y[i]),col="red")

The longer the red lines, the more variable the data. So this looks promising. How about
adding up the lengths of the red lines:

P�y � y�? A moment’s thought will show that this is
no good, because the negative residuals (from the points below the mean) will cancel out the
positive residuals (from the points above the line). In fact, it is easy to prove that this
quantity

P�y � y� is zero, no matter what the variation in the data, so that’s no good
(see Box 4.1).

But the only problem was the minus signs. How about ignoring the minus signs and
adding up the absolute values of the residuals:

P� | y � y | �. This is a very good measure of
variability, and is used in some modern, computationally intensive methods. The problem is
that it makes the sums hard, and we do not want that. A much more straightforward way of
getting rid of the problem of the minus signs is to square the residuals before we add them
up:

P�y � y�2. This is perhaps the most important single quantity in all of statistics. It is
called, somewhat unimaginatively, the sum of squares. So, in our figure (above) imagine
squaring the lengths of each of the vertical red lines:

y - mean(y)

[1] 3.3636364 -2.6363636 -4.6363636 2.3636364 -0.6363636 5.3636364
[7] -3.6363636 1.3636364 -0.6363636 -2.6363636 2.3636364
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(y - mean(y))^2

[1] 11.3140496 6.9504132 21.4958678 5.5867769 0.4049587 28.7685950
[7] 13.2231405 1.8595041 0.4049587 6.9504132 5.5867769

then adding up all these squared differences:

sum((y - mean(y))^2)

[1] 102.5455

So the sum of squares for our data is 102.5455. But what are its units? Well that depends
on the units in which y is measured. Suppose the y values were lengths in mm. So the units of
the sum of squares are mm2 (like an area).

Now what would happen to the sum of squares if we added a 12th data point? It would get
bigger, of course. And it would get bigger for every extra data point we added (except in the
unlikely event that our new data point was exactly equal to the mean value, in which case
we would add zero squared= 0). We do not want our measure of variability to depend on
sample size in this way, so the obvious solution is to divide by the number of samples, to get
the mean squared deviation.

At this point we need to make a brief, but important, diversion. Before we can progress,
we need to understand the concept of degrees of freedom.

Box 4.1. The sum of the differences
P�y � y� is zero

Start by writing down the differences explicitly:

X

d � X�y � y�
Take

P

through the brackets:

X

d � X

y �X

y

The important point is that
P

y is the same as n:y so

X

d � X

y � ny

and we know that y � P

y=n, so

X

d � X

y � n
P

y

n

The ns cancel, leaving

X

d � X

y �X

y � 0
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Degrees of Freedom

Suppose we had a sample of five numbers and their average was 4. What was the sum of the
five numbers? It must have been 20, otherwise the mean would not have been 4. So now let
us think about each of the five numbers in turn.

We will put a number in each of the five boxes. If we allow that the numbers could be
positive or negative real numbers, we ask how many values could the first number take?
Once you see what I’m doing, you will realize it could take any value. Suppose it was a 2.

2

How many values could the next number take? It could be anything. Say, it was a 7.

2 7

And the third number? Anything. Suppose it was a 4.

2 7 4

The fourth number could be anything at all. Say it was 0.

2 7 4 0

Now then. How many values could the last number take? Just one. It has to be another 7
because the numbers have to add up to 20 because the mean of the five numbers is 4.

2 7 4 0 7

To recap. We have total freedom in selecting the first number. And the second, third
and fourth numbers. But we have no choice at all in selecting the fifth number. We have
4 degrees of freedom when we have five numbers. In general we have n� 1 degrees of
freedom if we estimated the mean from a sample of size n. More generally still, we can
propose a formal definition of degrees of freedom: degrees of freedom is the sample size, n,
minus the number of parameters, p, estimated from the data.

This is so important, you should memorize it. In the example we plotted earlier we had
n= 11 and we estimated just one parameter from the data: the sample mean, y. So we have
n� 1= 10 d.f.

Variance

We return to developing our quantitative measure of variability. We have come to the
conclusion that the sum of squares

P�y � y�2 is a good basis for assessing variability, but we
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have the problem that the sum of squares increases with every new data point we add to the
sample. The intuitive thing to do would be to divide by the number of numbers, n, to get
the mean squared deviation. But look at the formula for the sum of squares:

P�y � y�2.
We cannot begin to calculate it until we know the value of the sample mean, y. And where do
we get the value of y from? Do we know it in advance? Can we look it up in tables? No, we
need to calculate it from the data. The mean value y is a parameter estimated from the data,
so we lose one degree of freedom as a result. Thus, in calculating the mean squared deviation
we divide by the degrees of freedom, n� 1, rather than by the sample size, n. In the jargon,
this provides us with an unbiased estimate of the variance, because we have taken account of
the fact that one parameter was estimated from the data prior to computation.

Now we can formalize our definition of the measure that we shall use throughout the book
for quantifying variability. It is called variance and it is represented conventionally by s2:

variance � sum of squares
degrees of freedom

This is one of the most important definitions in the book, and you should commit it to
memory. We can put it into a more mathematical form, by spelling out what we mean by
each of the phrases in the numerator and the denominator:

variance � s2 �
P �y � y�2

n � 1

Let’s write an R function to do this. We have most of the necessary components already
(see above); the sum of squares is obtained as sum((y-mean(y))^2). For the degrees of
freedom, we need to know the number of numbers in the vector, y. This is obtained by the
function length(y). Let us call the function variance and write it like this:

variance <- function (x) sum((x-mean(x))^2)/(length(x)-1)

Now we can try out the function on our data, like this:

variance(y)

[1] 10.25455

So there we have it. Our quantification of the variation we saw in the first plot is the
sample variance, s2= 10.25455. You will not be surprised that R provides its own, built-in
function for calculating variance, and it has an even simpler name than the function we just
wrote: var

var(y)

[1] 10.25455

Variance is used in countless ways in statistical analysis, so this section is probably the
most important in the whole book, and you should reread it until you are sure that you know
exactly what variance is, and precisely what it measures (Box 4.2).
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Variance: A Worked Example

The data in the following table come from three market gardens. The data show the ozone
concentrations in parts per hundred million (pphm) on 10 summer days.

ozone <- read.csv("c:\\temp\\gardens.csv")
attach(ozone)
ozone

gardenA gardenB gardenC
1 3 5 3
2 4 5 3
3 4 6 2
4 3 7 1
5 2 4 10
6 3 4 4
7 1 3 3
8 3 5 11
9 5 6 3
10 2 5 10

Box 4.2. Shortcut formula for the sum of squares
P�y � y�2

The main problem with the formula defining variance is that it involves all those
subtractions, y � y. It would be good to find a simpler way of calculating the sum of
squares. Let us expand the bracketed term �y � y�2 to see if we can make any progress
towards a subtraction-free solution:

�y � y�2 � �y � y��y � y� � y2 � 2yy � y2

So far, so good. Now we apply the summation

X

y2 � 2y
X

y � ny2 � X

y2 � 2

P

y

n

X

y � n

P

y

n

� �2

Note that only the ys take the summation sign. This is because we can replace
P

y by
ny. Now replace y with

P

y=n on the right-hand side, then cancel the ns and collect the
terms:

X

y2 � 2

P

y
� �2

n
� n

P

y
� �2

n2
� X

y2 �
P

y
� �2

n

This is the shortcut formula for computing the sum of squares. It requires only two
quantities to be estimated from the data. The sum of the squared y values

P

y2 and the
square of the sum of the y values

P

y
� �2

.
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The first step in calculating variance is to work out the mean:

mean(gardenA)

[1] 3

Now we subtract the mean value (3) from each of the data points:

gardenA - mean(gardenA)

[1] 0 1 1 0 -1 0 -2 0 2 -1

This produces a vector of differences (of length = 10). We need to square these
differences:

(gardenA - mean(gardenA))^2

[1] 0 1 1 0 1 0 4 0 4 1

then add up the squared differences:

sum((gardenA - mean(gardenA))^2)

[1] 12

This important quantity is called ‘the sum of squares’. Variance is the sum of squares
divided by degrees of freedom. We have 10 numbers, and have estimated one parameter
from the data (the mean) in calculating the sum of squares, so we have 10 – 1= 9 d.f.

sum((gardenA - mean(gardenA))^2)/9

[1] 1.333333

So the mean ozone concentration in garden A is 3.0 and the variance in ozone
concentration is 1.33. We now do the same for garden B:

mean(gardenB)

[1] 5

It has a much higher mean ozone concentration than garden A. But what about its
variance?

gardenB - mean(gardenB)

[1] 0 0 1 2 -1 -1 -2 0 10

(gardenB - mean(gardenB))^2

[1] 0 0 1 4 1 1 4 0 1 0

sum((gardenB - mean(gardenB))^2)

[1] 12
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sum((gardenB - mean(gardenB))^2)/9

[1] 1.333333

This is interesting: so although the mean values are quite different, the variances are
exactly the same (both have s2 = 1.33333). What about garden C?

mean(gardenC)

[1] 5

Its mean ozone concentration is exactly the same as in garden B.

gardenC - mean(gardenC)

[1] -2 -2 -3 -4 5 -1 -2 6 -2 5

(gardenC - mean(gardenC))^2

[1] 4 4 9 16 25 1 4 36 4 25

sum((gardenC - mean(gardenC))^2)

[1] 128

sum((gardenC - mean(gardenC))^2)/9

[1] 14.22222

So, although the means in gardens B and C are identical, the variances are quite different
(1.33 and 14.22, respectively). Are the variances significantly different? We do an F test for
this, dividing the larger variance by the smaller variance:

var(gardenC)/var(gardenB)

[1] 10.66667

Then look up the probability of getting an F ratio as big as this by chance alone if the two
variances were really the same. We need the cumulative probability of the F distribution,
which is a function called pf that we need to supply with three arguments: the size of the
variance ratio (10.667), the number of degrees of freedom in the numerator (9) and the
number of degrees of freedom in the denominator (also 9). We did not know in advance
which garden was going to have the higher variance, so we do what is called a two-tailed test
(we simply multiply the probability by 2):

2*(1 - pf(10.667,9,9))

[1] 0.001624002

This probability is much less than 5%, so we conclude that there is a highly significant
difference between these two variances. We could do this even more simply by using the
built-in F test:

var.test(gardenB,gardenC)
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F test to compare two variances
data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695

sample estimates:
ratio of variances

0.09375

So the two variances are significantly different. But why does this matter?
What follows is one of the most important lessons so far, so keep rereading it until you are

sure that you understand it. Comparing gardens A and B, we can see that two samples can
have different means, but the same variance. This is assumed to be the case when we carry
out standard tests (like Student’s t test) to compare two means, or an analysis of variance to
compare three or more means. Constancy of variance is the most important assumption we
make in most statistical analyses.

Comparing gardens B and C, we can see that two samples can have the same mean but
different variances. Samples with the same mean are identical, right? Wrong! Let us look
into the science in a bit more detail. The damage threshold for lettuces is 8 pphm ozone, so
looking at the means shows that both gardens are free of ozone damage on their lettuces (the
mean of 5 for both B and C is well below the threshold of 8). Let us look at the raw data for
garden B. How many of the days had ozone > 8? Look at the dataframe and you will see that
none of the days exceeded the threshold. What about garden C?

gardenC

[1] 3 3 2 1 10 4 3 11 3 10

In garden C ozone reached damaging concentrations on three days out of 10, so 30% of
the time the lettuce plants would be suffering ozone damage. This is the key point: when the
variances are different, we should not make inferences by comparing the means. When we
compare the means, we conclude that garden C is like garden B, and that there will be no
ozone damage to the lettuces. When we look at the data, we see that this is completely
wrong: there is ozone damage 30% of the time in garden C and none of the time in garden B.

The moral of this story is: when the variances are different, don’t compare the means.
If you do, you run the risk of coming to entirely the wrong conclusion.

Variance and Sample Size

It is important to understand the relationship between the size of a sample (the replication, n)
and the value of variance that is estimated. We can do a simple simulation experiment to
investigate this:

plot(c(0,32),c(0,15),type="n",xlab="Sample size",ylab="Variance")

The plan is to select random numbers from a normal distribution using the function
rnorm. Our distribution is defined as having a mean of 10 and a standard deviation of 2 (this
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is the square root of the variance, so s2 = 4). We shall work out the variance for sample sizes
between n= 3 and n= 31, and plot 30 independent instances of variance at each of the
selected sample sizes:

for (n in seq(3,31,2)) {
for( i in 1:30){
x <- rnorm(n,mean=10,sd=2)
points(n,var(x)) }}

You see that as sample size declines, the range of the estimates of sample variance
increases dramatically (remember that the population variance is constant at s2= 4
throughout). The problem becomes severe below samples of 13 or so, and is very serious
for samples of 7 or fewer. Even for reasonably large samples (like n= 31) the variance varies
more than threefold in just 30 trials (you can see that the rightmost group of points vary from
about 2 to about 6). This means that for small samples, the estimated variance is badly
behaved, and this has serious consequences for estimation and hypothesis testing.

When people ask ‘How many samples do I need?’ a statistician will often answer with
another question, ‘How many can you afford?’ Other things being equal, what we have
learned in this chapter is that 30 is a reasonably good sample. Anything less than this is a
small sample, and anything less than 10 is a very small sample. Anything more than 30 may
be an unnecessary luxury (i.e. a waste of resources). We shall see later when we study power
analysis how the question of sample size can be addressed more objectively. But for the time
being, take n= 30 samples if you can afford it, and you will not go far wrong.

Using Variance

Variance is used in two main ways:

• for establishing measures of unreliability (e.g. confidence intervals)

• for testing hypotheses (e.g. Student’s t test)
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AMeasure of Unreliability

Consider the properties that you would like a measure of unreliability to possess. As the
variance of the data increases, what would happen to the unreliability of estimated
parameters? Would it go up or down? Unreliability would go up as variance increased,
so we would want to have the variance on the top (the numerator) of any divisions in our
formula for unreliability:

unreliability∝ s2

What about sample size? Would you want your estimate of unreliability to go up or down
as sample size, n, increased? You would want unreliability to go down as sample size went
up, so you would put sample size on the bottom of the formula for unreliability (i.e. in the
denominator):

unreliability∝
s2

n

Finally, consider the units in which you would want unreliability to be expressed. What
are the units in which our current measure is expressed? Sample size is dimensionless, but
variance is based on the sum of squared differences, so it has dimensions of squared values
of y. So if the mean was a length in cm, the variance would be an area in cm2. This is an
unfortunate state of affairs. It would make good sense to have the dimensions of the
unreliability measure the same as the dimensions of the parameter whose unreliability is
being measured. That is why all unreliability measures are enclosed inside a big square-root
term. Unreliability measures are called standard errors. What we have just worked out is the
standard error of the mean:

SEy �
ffiffiffiffi

s2

n

r

This is a very important equation and should be memorized. Let us calculate the standard
errors of each of our market garden means:

sqrt(var(gardenA)/10)

[1] 0.3651484

sqrt(var(gardenB)/10)

[1] 0.3651484

sqrt(var(gardenC)/10)

[1] 1.19257

In written work one shows the unreliability of any estimated parameter in a formal,
structured way like this:
‘The mean ozone concentration in garden A was 3.0± 0.365 pphm (1 s.e., n= 10)’
You write plus or minus, then the unreliability measure, the units (parts per hundred

million in this case) then, in brackets, tell the reader what the unreliability measure is (in this
case one standard error) and the size of the sample on which the parameter estimate was
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based (in this case 10). This may seem rather stilted, unnecessary even. But the problem is
that unless you do this, the reader will not know what kind of unreliability measure you have
used. For example, you might have used a 95% confidence interval or a 99% confidence
interval instead of one standard error.

Confidence Intervals

A confidence interval shows the likely range in which the mean would fall if the sampling
exercise were to be repeated. It is a very important concept that people always find difficult
to grasp at first. It is pretty clear that the confidence interval will get wider as the unreliability
goes up, so:

confidence interval∝ unreliability measure∝
ffiffiffiffi

s2

n

r

But what do we mean by ‘confidence’? This is the hard thing to grasp. Ask yourself this
question. Would the interval be wider or narrower if we wanted to bemore confident that out
repeat sample mean will fall inside the interval? It may take some thought, but you should be
able to convince yourself that the more confident you want to be, the wider the interval will
need to be. You can see this clearly by considering the limiting case of complete and
absolute certainty. Nothing is certain in statistical science, so the interval would have to be
infinitely wide.

We can produce confidence intervals of different widths by specifying different levels
of confidence. The higher the confidence, the wider the interval. How exactly does this
work? How do we turn the proportionality (∝) in the equation above into equality? The
answer is by resorting to an appropriate theoretical distribution (as explained below).
Suppose our sample size is too small to use the normal distribution (n< 30, as here); then
we traditionally use Student’s t distribution. The values of Student’s t associated with
different levels of confidence are available in the function qt, which gives the quantiles of
the t distribution. Confidence intervals are always two-tailed because the parameter may
be larger or smaller than our estimate of it. Thus, if we want to establish a 95% confidence
interval we need to calculate the value of Student’s t associated with α � 0:025 (i.e. with
0.01(100%– 95%)/2). The value is found like this for the left-hand (0.025) and right-hand
(0.975) tails:

qt(.025,9)

[1] -2.262157

qt(.975,9)

[1] 2.262157

The first argument in qt is the probability and the second is the degrees of freedom. This
says that values as small as �2.262 standard errors below the mean are to be expected in
2.5% of cases (p= 0.025), and values as large as +2.262 standard errors above the mean
with similar probability (p= 0.975). Values of Student’s t are numbers of standard errors
to be expected with specified probability and for a given number of degrees of freedom.
The values of t for 99% are bigger than these (0.005 in each tail):
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qt(.995,9)

[1] 3.249836

and the value for 99.5% confidence are bigger still (0.0025 in each tail):

qt(.9975,9)

[1] 3.689662

Values of Student’s t like these appear in the formula for calculating the width of the
confidence interval, and their inclusion is the reason why the width of the confidence
interval goes up as our degree of confidence is increased. The other component of the
formula, the standard error, is not affected by our choice of confidence level. So, finally,
we can write down the formula for the confidence interval of a mean based on a small
sample (n< 30):

confidence interval � t-value � standard error

CI95% � t�α�0:025;d:f:�9�
ffiffiffiffi

s2

n

r

For garden B, therefore, we calculate

qt(.975,9)*sqrt(1.33333/10)

[1] 0.826022

and we would present the result in written work like this:
‘The mean ozone concentration in garden B was 5.0± 0.826 (95% CI, n= 10).’

Bootstrap

A completely different way of calculating confidence intervals is called bootstrapping. You
have probably heard the old phrase about ‘pulling yourself up by your own bootlaces’.
That is where the term comes from. It is used in the sense of getting ‘something for nothing’.
The idea is very simple. You have a single sample of n measurements, but you can sample
from this in very many ways, so long as you allow some values appear more than once, and
other samples to be left out (i.e. sampling with replacement). All you do is calculate the
sample mean lots of times, once for each sampling from your data, then obtain the
confidence interval by looking at the extreme highs and lows of the estimated means
using a function called quantile to extract the interval you want (e.g. a 95% interval is
specified using c(0.0275, 0.975) to locate the lower and upper bounds). Here are
the data:

data <- read.csv("c:\\temp\\skewdata.csv")
attach(data)
names(data)

[1] "values"
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We shall simulate sample sizes (k) between 5 and 30, and for each sample size we shall
take 10 000 independent samples from our data (the vector called values), using the
function called sample with replacement (replace=T):

plot(c(0,30),c(0,60),type="n",xlab="Sample size",
ylab="Confidence interval")

for (k in seq(5,30,3)){
a <- numeric(10000)
for (i in 1:10000){

a[i] <- mean(sample(values,k,replace=T))
}

points(c(k,k),quantile(a,c(.025,.975)),type="b",pch=21,bg="red")
}

The confidence interval narrows rapidly over the range of sample sizes up to about 20, but
more slowly thereafter. At n= 30, the bootstrapped CI based on 10 00 simulations was

quantile(a,c(0.025,0.975))
2.5% 97.5%

24.86843 37.6895

(you will get slightly different values because of the randomization). It is interesting to see

how this compares with the normal theory confidence interval: 1:96
ffiffiffi

s2

n

q

� 1:96
ffiffiffiffiffiffiffiffiffiffiffi

337:065
30

q

�
6:5698 implying that a repeat of the sample is likely to have a mean value in the range
24.39885 to 37.53846. As you see, the estimates from the bootstrap and normal theory are
reassuringly close. But they are not identical.
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Here are the bootstrapped intervals compared with the intervals calculated from the
normal (blue solid line):

xv <- seq(5,30,0.1)
yv <- mean(values)+1.96*sqrt(var(values)/xv)
lines(xv,yv,col="blue")
yv <- mean(values)-1.96*sqrt(var(values)/xv)
lines(xv,yv,col="blue")

and Student’s t distribution (green dotted line):

yv <- mean(values)-qt(.975,xv�1)*sqrt(var(values)/xv)
lines(xv,yv,lty=2,col="green")
yv <- mean(values)+qt(.975,xv�1)*sqrt(var(values)/xv)
lines(xv,yv,lty=2,col="green")

For the upper interval, you see that the bootstrapped intervals (vertical lines and red
symbols) fall between the normal (the lower, blue line) and the Student’s t distribution (the
greater, dotted green line). For the lower interval, however, the bootstrapped intervals are quite
different. This is because of the skewness exhibited by these data. Very small values of the
response are substantially less likely than predicted by the symmetrical normal (blue line) or
Student’s t (dotted green line) distributions. Recall that for small-sample confidence intervals
using Students t distribution, the sample size, n, enters the equation twice: once as the
denominator in the formula for the standard error of the mean, then again as a determinant of
the quantile of the t distribution qt(0.975,n-1). That is why the difference between the
normal and the Student’s t confidence intervals gets bigger as sample size gets smaller.

So which kind of confidence interval should you choose? I prefer the bootstrapped
estimate because it makes fewer assumptions. If, as in our example, the data are skew, then
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this is reflected in the asymmetry of the confidence intervals above and below the mean
(6.7 above the mean, and 6.1 below it, at n= 30). Both normal and Student’s t assume that
there is no skew, and so their confidence intervals are symmetrical, whatever the data
actually show.

Non-constant Variance: Heteroscedasticity

One of the most important assumptions in classical statistical analysis is that the variance
does not change with the mean value of the response variable. A good model must account
adequately for the observed variance-mean relationship. A plot of standardised residuals
against fitted values should look like the sky at night (points scattered at random over the
whole plotting region as in the left hand panel), with no trend in the size or degree of scatter
of the residuals. A common problem is that the variance increases with the mean, so that we
obtain an expanding, fan-shaped pattern of residuals (right hand panel).
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The plot on the left is what we want to see: no trend in the residuals with the fitted values.
The plot on the right is a problem. There is a clear pattern of increasing residuals as the fitted
values get larger. This is a picture of what heteroscedasticity looks like.

Further Reading

Rowntree, D. (1981) Statistics without Tears: An Introduction for Non-Mathematicians, Penguin,
London.
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5
Single Samples

Suppose we have a single sample. The questions we might want to answer are these:

• what is the mean value?

• is the mean value significantly different from current expectation or theory?

• what is the level of uncertainty associated with our estimate of the mean value?

In order to be reasonably confident that our inferences are correct, we need to establish
some facts about the distribution of the data:

• are the values normally distributed or not?

• are there outliers in the data?

• if data were collected over a period of time, is there evidence for serial correlation?

Non-normality, outliers and serial correlation can all invalidate inferences made by
standard parametric such as like Student’s t test. It is much better in cases with non-
normality and/or outliers to use a non-parametric technique such as Wilcoxon’s signed-rank
test. If there is serial correlation in the data, then you need to use time series analysis or
mixed effects models.

Data Summary in the One-Sample Case

To see what is involved, read the data called y from the file called example.csv:

data <- read.csv("c:\\temp\\example.csv")
attach(data)
names(data)

[1] "y"

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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Summarizing the data could not be simpler. We use the built-in function called summary

like this:

summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.904 2.241 2.414 2.419 2.568 2.984

This gives us six pieces of information about the vector called y. The smallest value is
1.904 (labelled Min. for minimum) and the largest value is 2.984 (labelled Max. for
maximum). There are two measures of central tendency: the median is 2.414 and the
arithmetic mean in 2.419. What you may be unfamiliar with are the figures labelled ‘1st
Qu.’ and ‘3rd Qu.’ The ‘Qu.’ is an abbreviation of quartile, which means one quarter of
the data. The first quartile is the value of the data below which lie the smallest 25% of the
data. The median is the second quartile by definition (half the data are smaller than
the median). The third quartile is the value of the data above which lie the largest 25% of
the data (it is sometimes called the 75th percentile, because 75% of the values of y are
smaller than this value). The graphical equivalent of this summary table is known as a
box-and-whisker plot:

boxplot(y)

There is a lot of information here. The bold horizontal bar in the middle of the box shows
the median value of y. The top of the box shows the 75th percentile, and the bottom of the
box shows the 25th percentile. The box as a whole shows where the middle 50% of the data
lie (this is called the ‘interquartile range’; we can see that this is between about 2.25 and
2.55). If the boxes above and below the median are different sizes, then this is indicative of
skew in the data. The whiskers show the maximum and minimum values of y (later on we
shall see what happens when the data contain ‘outliers’).
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Another sort of plot that we might want to use for a single sample is the histogram:

hist(y)

Histograms are fundamentally different from the graphs that we have encountered so far,
because in all cases to date the response variable has been on the y axis (the ordinate). With a
histogram, the response variable is on the x axis (the abscissa). The ordinate of a histogram
shows the frequency with which different values of the response were observed. We can see
that rather few values of y were less that 2.0 or greater than 2.8. The most frequently
observed values of y were between 2.4 and 2.6. Histograms are related to probability density
functions. We shall come across several very important statistical distributions in various
parts of the book; we have met the normal and Student’s t distributions already, and later we
shall meet the Poisson, binomial and negative binomial distributions. What they all have in
common is that y is on the abscissa and the ordinate shows the probability density associated
with each value of y. You need to be careful not to fall into the trap of confusing graphs and
probability distributions (see p. 1).

Our histogram (above) is clearly not symmetrical about its mode (2.5 to 2.6). There are six
bars below the mode but only four above the mode. Data like this are said to be ‘skew to the
left’ because the longer tail is on the left of the distribution.

Simple as they seem at first sight, there are actually lots of issues about histograms.
Perhaps the most important issue is where exactly to draw the lines between the bars (the
‘bin widths’ in the jargon). For whole-number (integer) data this is often an easy decision
(we could draw a bar of the histogram for each of the integer values of y). But for continuous
(real number) data like we have here, that approach is a non-starter. How many different
values of y do we have in our vector of 100 numbers? The appropriate function to answer
questions like this is table: we do not want to see all the values of y, we just want to know
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how many different values of y there are. That is to say, we want to know the length of the
table of different y values:

length(table(y))

[1] 100

This shows us that there are no repeats of any of the y values, and a histogram of unique
values would be completely uninformative (a plot like this is called a ‘rug plot’, and has
short vertical bars placed at each value of y).

plot(range(y),c(0,10),type="n",xlab="y values",ylab="")
for (i in 1:100) lines(c(y[i],y[i]),c(0,1),col="blue")

10
8

6
4

2
0

2.0 2.2 2.4 2.6 2.8 3.0

y values

Let us look more closely to see what R has chosen on our behalf in designing the
histogram. The x axis is labelled every 0.2 units, in each of which there are two bars. So the
chosen bin width is 0.1. R uses simple rules to select what it thinks will make a ‘pretty’
histogram. It wants to have a reasonable number of bars (too few bars looks dumpy, while too
many makes the shape too rough); there are 11 bars in this case. The next criterion is to have
‘sensible’ widths for the bins. It makes more sense, for instance to have the bins exactly 0.1
units wide (as here) than to use one tenth of the range of y values, or one eleventh of the range
(note the use of the diff and range functions) which are close to 0.1 but not equal to 0.1:

(max(y)-min(y))/10

[1] 0.1080075

diff(range(y))/11

[1] 0.09818864
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So a width of 0.1 is a ‘pretty’ compromise. As we shall see later, you can specify the width
of the bins if you do not like the choice that R has made for you, or if you want to draw two
histograms that are exactly comparable.

The really important thing to understand is how R decides where to put values that fall
exactly on one of the edges of a bin. It could decide to put them in the lower bin (the one to
the left) or the higher bin (to the right) or it could toss a coin (heads in the left hand bin, tails
in the right). This is hard to understand at first. Suppose that a is the value of the lower
break and b is the value of the higher break for a given bar of the histogram. The convention
about what to do is indicated by the use of round brackets and square brackets: (a,b] or
[a,b). The number next to the square bracket is included in the bar, while the number next
to the round bracket is excluded from this bar. The first convention (a,b] is the default in
R, and means include the right-hand endpoint b, but not the left-hand one a in this bar (in
the function definition, this is written as right = TRUE). In our histogram (above) the
modal bin is between 2.5 and 2.6. This would be written as (2.5,2.6] and it means that a
value of exactly 2.60 would be included in this bin, but a value of exactly 2.50 would not (it
would be included in the bin to the left). You will meet this convention again later, when we
learn about the cut function for converting a continuous variable into a categorical
variable (p. 276).

The main problem with histograms is the arbitrariness about where the breaks are put and
how wide the bins are defined to be. For instance, distributions that look bimodal with
narrow bins can look unimodal with wider bins. The moral about histograms is ‘take care; all
may not be as it seems’.

The Normal Distribution

This famous distribution has a central place is statistical analysis. If you take repeated
samples from a population and calculate their averages, then these averages will be
normally distributed. This is called the central limit theorem. Let us demonstrate it for
ourselves.

You may be familiar with the ancient game of ‘craps’. It involves the use of two 6-sided
dice. In its simplest form the two dice are thrown and the two scores added together. The
lowest score you can get is 1+ 1= 2 and the highest is 6+ 6= 12. There is only one way of
getting each of these scores so they both have the same low probability (1/6× 1/6= 1/36).
You can score 3 by throwing 1 and 2 or 2 and 1 (so the probability of getting 3 is 2× 1/
36= 1/18; the same as scoring 11 by getting 5 and 6 or 6 and 5). The most likely score is 7
because there are so many ways of getting this: 1 and 6, 2 and 5, 3 and 4, 4 and 3, 5 and 2 or 6
and 1). Let us simulate 10 000 plays of the game and produce a histogram of the results. The
possible scores are the 11 numbers from 2 to 12:

score <- 2:12

The number of ways of getting each score are:

ways <- c(1,2,3,4,5,6,5,4,3,2,1)
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We can use the rep function to produce a vector of all the 36 possible outcomes:

game <- rep(score,ways)
game

[1] 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7
[22] 8 8 8 8 8 9 9 9 9 10 10 10 11 11 12

Now we draw a single random sample from this vector to represent the outcome of one
throw (this game produced a score of 5):

sample(game,1)

[1] 5

and we record this score in a vector called outcome. The game is repeated 10 000 times:

outcome <- numeric(10000)
for (i in 1:10000) outcome[i] <- sample(game,1)

This is what the distribution of outcomes looks like:

hist(outcome,breaks=(1.5:12.5))

Note the trick of specifying the breakpoints to be offset by 0.5 in order to get the correct
labels in the centre of the relevant bars.

The distribution is very well behaved, but it is clearly triangular, not bell-shaped like the
normal. What if we work out the mean score over, say, three games? Presumably, the mean
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score is still going to be 7 (as above) but what will the distribution of mean scores look like?
We shall try it and see:

mean.score <- numeric(10000)
for (i in 1:10000) mean.score[i] <- mean(sample(game,3))
hist(mean.score,breaks=(1.5:12.5))

That was a demonstration of the central limit theorem in action. The triangular
distribution of scores has become a normal distribution of mean scores, even though we
were averaging across only three games. To demonstrate the goodness of fit to the normal
distribution, we can overlay the histogram with a smooth probability density function
generated from a normal distribution (dnorm) with the same mean and standard deviation of
our actual sample of games:

mean(mean.score)

[1] 6.9821

sd(mean.score)

[1] 1.366118

To accommodate the top of the smooth density function, we need to make the y axis a
little longer: ylim=c(0,3000). To generate a smooth curve, we need a series of values for
the x axis ranging between 2 and 12 (as a rule of thumb, you need 100 or so values to make a
smooth-looking curve in R):

xv <- seq(2,12,0.1)
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Now calculate the height of the curve. The standard normal has an integral of 1.0 but our
histogram has an integral of 10 000 so we calculate the height of the curve like this

yv <- 10000*dnorm(xv,mean(mean.score),sd(mean.score))

We shall make a few minor embellishments by removing the heading from the plot
(main=""), colouring the bars in yellow (col="yellow"):

hist(mean.score,breaks=(1.5:12.5),ylim=c(0,3000),
col="yellow", main="")

and overlaying the normal probability density in red:

lines(xv,yv,col="red")

As you can see, the fit to the normal distribution is excellent, even though we were
averaging across just three throws of the dice. The central limit theorem really works.
Almost any distribution, even a ‘badly behaved’ one like the negative binomial (p. 251), will
produce a normal distribution of sample means taken from it.

The great thing about the normal distribution is that we know so much about its shape.
Obviously, all values must lie between minus infinity and plus infinity, so the area under the
whole curve is 1.0. The distribution is symmetrical, so half of our samples will fall below the
mean, and half will be above it (i.e. the area beneath the curve to the left of the mean is 0.5).
The important thing is that we can predict the distribution of samples in various parts of the
curve. For example, c.16% of samples will be more than 1 standard deviation above the
mean, and c.2.5% of samples will be more than 2 standard deviations below the mean. But
how do I know this?

There is an infinity of different possible normal distributions: the mean can be anything at
all, and so can the standard deviation. For convenience, it is useful to have a standard normal
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distribution, whose properties we can tabulate. But what would be a sensible choice for the
mean of such a standard normal distribution? 12.7? Obviously not. 1? Not bad, but the
distribution is symmetrical, so it would be good to have the left and right halves with similar
scales (not 1 to 4 on the right, but �2 to 1 on the left). The only really sensible choice is to
have the mean equal to 0. What about the standard deviation? Should that be 0 as well?
Hardly, since that would be a distribution with no spread at all. Not very useful. It could be
any positive number, but in practice the most sensible choice is 1. So there you have it. The
standard normal distribution is one specific case of the normal with mean= 0 and standard
deviation= 1. So how does this help?

It helps a lot, because now we can work out the area below the curve up to any number of
standard deviations (these are the values on the x axis):

standard.deviations <- seq(-3,3,0.01)
pd <- dnorm(standard.deviations)
plot(standard.deviations,pd,type="l",col="blue")

You can see that almost all values fall within 3 standard deviations of the mean, one
way or the other. It is easy to find the area beneath the curve for any value on the x axis
(i.e. for any specified value of the standard deviation). Let us start with standard
deviation=�2. What is the area beneath the curve to the left of �2? It is obviously a
small number, but the curvature makes it hard to estimate the area accurately from the
plot. R provides the answer with a function called pnorm (‘probability for a normal
distribution’; strictly ‘cumulative probability’, as we shall see). Because we are dealing
with a standard normal (mean= 0, sd= 1) we need only specify the value of the normal
deviate, which is �2 in our case:

pnorm(-2)

[1] 0.02275013
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This tells us that just a bit less than 2.5% of values will be lower than �2. What about 1
standard deviation below the mean?

pnorm(-1)

[1] 0.1586553

In this case, about 16% of random samples will be smaller than 1 standard deviation
below the mean. What about big values of the normal deviate? The density function shows a
maximum of +3. What is the probability of getting a sample from a normal distribution that
is more than 3 standard deviations above the mean? The only point to note here is that
pnorm gives the probability of getting a value less than the value specified (not more, as we
want here). The trick is simply to subtract the value given by pnorm from 1 to get the answer
we want:

1-pnorm(3)

[1] 0.001349898

This tells us that a value as large as 3 or more is very unlikely indeed: less than 0.2%,
in fact.

Probably the most frequent use of the standard normal distribution is in working out the
values of the normal deviate that can be expected by chance alone. This, if you like, is the
opposite kind of problem to the ones we have just been dealing with. There, we provided a
value of the normal deviate (such as �1, or �2 or +3) and asked what probability was
associated with such a value. Now, we want to provide a probability and find out what value
of the normal deviate is associated with that probability. Let us take an important example.
Suppose we want to know the upper and lower values of the normal deviate between which
95% of samples are expected to lie. This means that 5% of samples will lie outside this
range, and because the normal is a symmetrical distribution, this means that 2.5% of values
will be expected to be smaller than the lower bound (i.e. lie to the left of the lower bound)
and 2.5% of values will be expected to be greater than the upper bound (i.e. lie to the right of
the upper bound). The function we need is called qnorm (‘quantiles of the normal
distribution’) and it is used by specifying our two probabilities 0.025 and 0.975 in a
vector like this c(0.025,0.975):

qnorm(c(0.025,0.975))

[1] -1.959964 1.959964

These are two very important numbers in statistics. They tell us that with a normal
distribution, 95% of randomly selected values will fall between �1.96 and +1.96 standard
deviations of the mean. Let us shade in these areas under the normal probability density
function to see what is involved:
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In the green area between the two vertical lines, we can expect 95% of all random samples
to fall; we expect 2.5% of samples to be more than 1.96 standard deviations below the mean
(the left-hand red area), and we expect 2.5% of samples to be greater than 1.96 standard
deviations above the mean (the right-hand red area). If we discover that this is not the case,
then our sample is not normally distributed. It might, for instance, follow a Student’s t
distribution (see p. 82).

To sum up: if we want to provide values of the normal deviate and work out probabilities,
we use pnorm; if we want to provide probabilities and work out values of the normal
deviate, we use qnorm. You should try and remember this important distinction.

Calculations Using z of the Normal Distribution

Suppose we have measured the heights of 100 people. The mean height was 170 cm and the
standard deviation was 8 cm. The normal distribution looks like this:

ht <- seq(150,190,0.01)
plot(ht,dnorm(ht,170,8),type="l",col="brown",

ylab="Probability density",xlab="Height")

(the top left-hand panel in the plots below). We can ask three sorts of questions about data
like these. What is the probability that a randomly selected individual will be:

• shorter than a particular height?

• taller than a particular height?

• between one specified height and another?

The area under the whole curve is exactly 1; everybody has a height between minus
infinity and plus infinity. True, but not particularly helpful. Suppose we want to know the
probability that one of our people, selected at random from the group, will be less than
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160 cm tall. We need to convert this height into a value of z; that is to say, we need to convert
160 cm into a number of standard deviations from the mean. What do we know about the
standard normal distribution? It has a mean of 0 and a standard deviation of 1. So we can
convert any value y, from a distribution with mean y and standard deviation s to a standard
normal very simply by calculating:

z � y � y

s

So we convert 160 cm into a number of standard deviations. It is less than the mean height
(170 cm) so its value will be negative:

z � 160 � 170
8

� �1:25

Now we need to find the probability of a value of the standard normal taking a value of
�1.25 or smaller. This is the area under the left-hand tail of the distribution. The function we
need for this is pnorm: we provide it with a value of z (or, more generally, with a quantile)
and it provides us with the probability we want:

pnorm(-1.25)

[1] 0.1056498

So the answer to our first question is just over 10% (the orange shaded area, below).
The second question is: What is the probability of selecting one of our people and finding

that they are taller than 185 cm? The first two parts of the exercise are exactly the same as
before. First we convert our value of 185 cm into a number of standard deviations:

z � 185 � 170
8

� 1:875

Then we ask what probability is associated with this, using pnorm:

pnorm(1.875)

[1] 0.9696036

But this is the answer to a different question. This is the probability that someone will be
less than 185 cm tall (that is what the function pnorm has been written to provide). All we
need to do is to work out the complement of this:

1 - pnorm(1.875)

[1] 0.03039636

So the answer to the second question is about 3% (the blue shaded area, below).
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Finally, we might want to know the probability of selecting a person between 165 cm and
180 cm. We have a bit more work to do here, because we need to calculate two z values:

z1 � 165 � 170
8

� �0:625 and z2 � 180 � 170
8

� 1:25

The important point to grasp is this: we want the probability of selecting a person between
these two z values, so we subtract the smaller probability from the larger probability. It
might help to sketch the normal curve and shade in the area you are interested in:

pnorm(1.25) - pnorm(-0.625)

[1] 0.6283647

Thus we have a 63% chance of selecting a medium-sized person (taller than 165 cm and
shorter than 180 cm) from this sample with a mean height of 170 cm and a standard
deviation of 8 cm (the green shaded area, below).

The function called polygon is used for colouring in different shaped areas under the curve:
to see how it is used, type ?polygon

par(mfrow=c(2,2))

ht <- seq(150,190,0.01)
pd <- dnorm(ht,170,8)

plot(ht,dnorm(ht,170,8),type="l",col="brown",
ylab="Probability density",xlab="Height")

plot(ht,dnorm(ht,170,8),type="l",col="brown",
ylab="Probability density",xlab="Height")
yv <- pd[ht<=160]
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xv <- ht[ht<=160]
xv <- c(xv,160,150)
yv <- c(yv,yv[1],yv[1])
polygon(xv,yv,col="orange")

plot(ht,dnorm(ht,170,8),type="l",col="brown",
ylab="Probability density",xlab="Height")
xv <- ht[ht>=185]
yv <- pd[ht>=185]
xv <- c(xv,190,185)
yv <- c(yv,yv[501],yv[501])
polygon(xv,yv,col="blue")

plot(ht,dnorm(ht,170,8),type="l",col="brown",
ylab="Probability density",xlab="Height")
xv <- ht[ht>=160 & ht <= 180]
yv <- pd[ht>=160 & ht <= 180]
xv <- c(xv,180,160)
yv <- c(yv,pd[1],pd[1])
polygon(xv,yv,col="green")

Plots for Testing Normality of Single Samples

The simplest test of normality (and in many ways the best) is the ‘quantile–quantile plot’; it
plots the ranked samples from our distribution against a similar number of ranked quantiles
taken from a normal distribution. If the sample is normally distributed then the line will be
straight. Departures from normality show up as various sorts of non-linearity (e.g. S-shapes
or banana shapes). The functions you need are qqnorm and qqline (quantile–quantile plot
against a normal distribution):

data <- read.csv("c:\\temp\\skewdata.csv")
attach(data)
qqnorm(values)
qqline(values,lty=2)
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This shows a marked S-shape, indicative of non-normality (as we already know, our
distribution is non-normal because it is skew to the left; see p. 68).

We can investigate the issues involved with Michelson’s (1880) famous data on
estimating the speed of light. The actual speed is 299 000 km s�1 plus the values in our
dataframe called light:

light <- read.csv("c:\\temp\\light.csv")
attach(light)
names(light)

[1] "speed"

hist(speed)

We get a summary of the non-parametric descriptors of the sample like this:

summary(speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
650 850 940 909 980 1070

From this, you see at once that the median (940) is substantially bigger than the mean
(909), as a consequence of the strong negative skew in the data seen in the histogram. The
interquartile range, the difference between the first and third quartiles, is 980� 850= 130.
This is useful in the detection of outliers: a good rule of thumb is this

an outlier is a value more than 1.5 times the interquartile range above the third
quartile, or below the first quartile.

(130× 1.5= 195). In this case, therefore, outliers would be measurements of speed that were
less than 850� 195= 655 or greater than 980+ 195= 1175. You will see that there are no
large outliers in this data set, but one or more small outliers (the minimum is 650).
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Inference in the One-Sample Case

We want to test the hypothesis that Michelson’s estimate of the speed of light is significantly
different from the value of 299 990 thought to prevail at the time. The data have all had
299 000 subtracted from them, so the test value is 990. Because of the non-normality, the use
of Student’s t test in this case is ill advised. The correct test is Wilcoxon’s signed-rank test:

wilcox.test(speed,mu=990)

Wilcoxon signed rank test with continuity correction

data: speed

V = 22.5, p-value = 0.00213

alternative hypothesis: true location is not equal to 990

Warning message:
In wilcox.test.default(speed, mu = 990) :

cannot compute exact p-value with ties

We reject the null hypothesis and accept the alternative hypothesis because p= 0.00213
(i.e. much less than 0.05). The speed of light is significantly less than 990.

Bootstrap in Hypothesis Testing with Single Samples

We shall meet parametric methods for hypothesis testing later. Here we use bootstrapping to
illustrate another non-parametric method of hypothesis testing. Our sample mean value of y is
909. The question we have been asked to address is this: ‘How likely is it that the population
mean that we are trying to estimate with our random sample of 100 values is as big as 990?’

We take 10 000 random samples with replacement using n= 100 from the 100 values of
light and calculate 10 000 values of the mean. Then we ask: what is the probability of obtaining
a mean as large as 990 by inspecting the right-hand tail of the cumulative probability
distribution of our 10 000 bootstrapped mean values? This is not as hard as it sounds:

a <- numeric(10000)
for(i in 1:10000) a[i] <- mean(sample(speed,replace=T))
hist(a)
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The test value of 990 is off the scale to the right. A mean of 990 is clearly most unlikely,
given the data:

max(a)

[1] 983

In our 10 000 samples of the data, we never obtained a mean value greater than 983, so the
probability that the mean is 990 is clearly p< 0.0001.

Student’s t Distribution

Student’s t distribution is used instead of the normal distribution when sample sizes are
small (n< 30). Recall that the 95% intervals of the standard normal were �1.96 to +1.96
standard deviations. Student’s t distribution produces bigger intervals than this. The smaller
the sample, the bigger the interval. Let us see this in action. The equivalents of pnorm and
qnorm are pt and qt. We are going to plot a graph to show how the upper interval
(equivalent to the normal’s 1.96) varies with sample size in a t distribution. This is a deviate,
so the appropriate function is qt. We need to supply it with the probability (in this case
p= 0.975) and the degrees of freedom (we shall vary this from 1 to 30 to produce the graph)

plot(c(0,30),c(0,10),type="n",
xlab="Degrees of freedom",ylab="Students t value")

lines(1:30,qt(0.975,df=1:30),col="red")
abline(h=1.96,lty=2,col="green")

The importance of using Student’s t rather than the normal is relatively slight until the
degrees of freedom fall below about 10 (above which the critical value is roughly 2), and
then it increases dramatically below about 5 degrees of freedom. For samples with more
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than 30 degrees of freedom, Student’s t produces an asymptotic value of 1.96, just like the
normal (this is the horizontal green dotted line). The graph demonstrates that Student’s t= 2
is a reasonable rule of thumb; memorizing this will save you lots of time in looking up
critical values in later life.

So what does the t distribution look like, compared to a normal? Let us redraw the
standard normal in black:

xvs <- seq(-4,4,0.01)
plot(xvs,dnorm(xvs),type="l",

ylab="Probability density",xlab="Deviates")

Now we can overlay Student’s t with d.f.= 5 as a red line to see the difference:

lines(xvs,dt(xvs,df=5),col="red")

The difference between the normal (black line) and Student’s t distributions (red line) is
that the t distribution has ‘fatter tails’. This means that extreme values are more likely with a
t distribution than with a normal, and the confidence intervals are correspondingly broader.
So instead of a 95% interval of ±1.96 with a normal distribution we should have a 95%
interval of ±2.57 for a Student’s t distribution with just 5 degrees of freedom:

qt(0.975,5)

[1] 2.570582

Higher-Order Moments of a Distribution

So far, and without saying so explicitly, we have encountered the first two moments of a
sample distribution. The quantity

P

y was used in the context of defining the arithmetic
mean of a single sample: this is the first moment, y � P

y=n. The quantity
P �y � y�2, the

SINGLE SAMPLES 83



sum of squares, was used in calculating sample variance, and this is the second moment of
the distribution, s2 � P�y � y�2=�n � 1�. Higher-order moments involve powers of the
difference greater than 2, such as

P �y � y�3 and
P �y � y�4.

Skew

Skew (or skewness) is the dimensionless version of the third moment about the mean

m3 �
P �y � y�3

n

which is rendered dimensionless by dividing by the cube of the standard deviation of y
(because this is also measured in units of y3):

s3 � sd�y�3 � ffiffiffiffi

s2
p� �3

The skew is then given by

skew � γ1 � m3

s3

It measures the extent to which a distribution has long, drawn-out tails on one side or the
other. A normal distribution is symmetrical and has skew= 0. Negative values of γ1 mean
skew to the left (negative skew) and positive values mean skew to the right. To test whether
a particular value of skew is significantly different from 0 (and hence the distribution from
which it was calculated is significantly non-normal) we divide the estimate of skew by its
approximate standard error:

SEγ1
�

ffiffiffi

6
n

r

It is straightforward to write an R function to calculate the degree of skew for any vector
of numbers, x, like this:

skew <- function(x){
m3 <- sum((x-mean(x))^3)/length(x)
s3 <- sqrt(var(x))^3
m3/s3 }

Note the use of the length(x) function to work out the sample size, n, whatever the size
of the vector x. The last expression inside a function is not assigned to a variable name, and
is returned as the value of skew(x) when this is executed from the command line.

We use the data from the file called skewdata.txt that we read on p. 79. To illustrate
the skew, we plot a histogram of values, taking the opportunity to introduce two useful
options: main="" to suppress the production of a title and col="green" to fill in the
histogram bars in a chosen colour:

hist(values,main="",col="green")
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The data appear to be positively skew (i.e. to have a longer tail on the right than on the
left). We use the new function skew to quantify the degree of skewness:

skew(values)

[1] 1.318905

Now we need to know whether a skew of 1.319 is significantly different from zero. We do
a t test, dividing the observed value of skew by its standard error

ffiffiffiffiffiffiffiffi

6=n
p

:

skew(values)/sqrt(6/length(values))

[1] 2.949161

Finally, we ask: what is the probability of getting a t value of 2.949 by chance alone, given
that we have 28 degrees of freedom, when the skew value really is zero?

1 - pt(2.949,28)

[1] 0.003185136

We conclude that these data show significant non-normality (p< 0.0032). Note that we
have n� 2= 28 degrees of freedom, because in order to calculate skew we needed to know
the values of two parameters that were estimated from the data: the mean and the variance.

The next step might be to look for a transformation that normalizes the data by reducing
the skewness. One way of drawing in the larger values is to take square roots, so let us try
this to begin with:

skew(sqrt(values))/sqrt(6/length(values))

[1] 1.474851
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This is not significantly skew. Alternatively, we might take the logs of the values:

skew(log(values))/sqrt(6/length(values))

[1] -0.6600605

This is now slightly skew to the left (negative skew), but the value of Student’s t is smaller
than with a square-root transformation, so we might prefer a log transformation in this case.

Kurtosis

This is a measure of non-normality that has to do with the peakyness, or flat-toppedness, of a
distribution. The normal distribution is bell-shaped, whereas a kurtotic distribution is other
than bell-shaped. In particular, a more flat-topped distribution is said to be platykurtic, and a
more pointy distribution is said to be leptokurtic. Kurtosis is the dimensionless version of
the fourth moment about the mean

m4 �
P �y � y�4

n

which is rendered dimensionless by dividing by the square of the variance of y (because this
is also measured in units of y4):

s4 � var�y�2 � �s2�2

Kurtosis is then given by

kurtosis � γ2 � m4

s4
� 3

The minus 3 is included because a normal distribution has m4/s4= 3. This formulation
therefore has the desirable property of giving zero kurtosis for a normal distribution, while a
flat-topped (platykurtic) distribution has a negative value of kurtosis, and a pointy
(leptokurtic) distribution has a positive value of kurtosis. The approximate standard error
of kurtosis is

SEγ2
�

ffiffiffiffiffi

24
n

r

An R function to calculate kurtosis might look like this:

kurtosis <- function(x) {
m4 <- sum((x-mean(x))^4)/length(x)
s4 <- var(x)^2
m4/s4 - 3 }

For our present data, we find that kurtosis is not significantly different from normal:

kurtosis(values)
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[1] 1.297751

kurtosis(values)/sqrt(24/length(values))

[1] 1.450930

because the t value (1.45) is substantially less than the rule of thumb (2.0).
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6
Two Samples

There is absolutely no point in carrying out an analysis that is more complicated than it
needs to be. Occam’s razor applies to the choice of statistical model just as strongly as to
anything else: simplest is best. The so-called classical tests deal with some of the most
frequently-used kinds of analysis, and they are the models of choice for:

• comparing two variances (Fisher’s F test, var.test)

• comparing two sample means with normal errors (Student’s t test, t.test)

• comparing two means with non-normal errors (Wilcoxon’s test, wilcox.test)

• comparing two proportions (the binomial test, prop.test)

• correlating two variables (Pearson’s or Spearman’s rank correlation, cor.test)

• testing for independence in contingency tables using chi-squared (chisq.test)

• testing small samples for correlation with Fisher’s exact test (fisher.test)

Comparing Two Variances

Before we can carry out a test to compare two sample means, we need to test whether the
sample variances are significantly different (see p. 55). The test could not be simpler. It is
called Fisher’s F test after the famous statistician and geneticist R. A. Fisher, who worked at
Rothamsted in south-east England. To compare two variances, all you do is divide the larger
variance by the smaller variance.

Obviously, if the variances are the same, the ratio will be 1. In order to be significantly
different, the ratio will need to be significantly bigger than 1 (because the larger variance
goes on top, in the numerator). How will we know a significant value of the variance ratio
from a non-significant one? The answer, as always, is to look up the critical value of the
variance ratio. In this case, we want critical values of Fisher’s F. The R function for this is qf

which stands for ‘quantiles of the F distribution’. For our example of ozone levels in market
gardens (see Chapter 4) there were 10 replicates in each garden, so there were 10� 1= 9
degrees of freedom for each garden. In comparing two gardens, therefore, we have 9 d.f. in
the numerator and 9 d.f. in the denominator. Although F tests in analysis of variance are
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typically one-tailed (the treatment variance is expected to be larger than the error variance if
the means are significantly different; see p. 153), in this case, we had no expectation as to
which garden was likely to have the higher variance, so we carry out a two-tailed test
(p � 1 � α=2). Suppose we work at the traditional α � 0:05, then we find the critical value
of F like this:

qf(0.975,9,9)

4.025994

This means that a calculated variance ratio will need to be greater than or equal to 4.026 in
order for us to conclude that the two variances are significantly different at α � 0:05. To see
the test in action, we can compare the variances in ozone concentration for market gardens B
and C.

f.test.data <- read.csv("c:\\temp\\f.test.data.csv")
attach(f.test.data)
names(f.test.data)

[1] "gardenB" "gardenC"

First, we compute the two variances:

var(gardenB)

[1] 1.333333

var(gardenC)

[1] 14.22222

The larger variance is clearly in garden C, so we compute the F ratio like this:

F.ratio <- var(gardenC)/var(gardenB)
F.ratio

[1] 10.66667

The test statistic shows us that the variance in garden C is more than 10 times as big as the
variance in garden B. The critical value of F for this test (with 9 d.f. in both the numerator
and the denominator) is 4.026 (see qf, above), so we conclude: since the test statistic is
larger than the critical value, we reject the null hypothesis.

The null hypothesis was that the two variances were not significantly different, so we
accept the alternative hypothesis that the two variances are significantly different. In fact, it
is better practice to present the p value associated with the calculated F ratio rather than just
to reject the null hypothesis. To do this we use pf rather than qf. We double the resulting
probability to allow for the two-tailed nature of the test:

2*(1 - pf(F.ratio,9,9))

[1] 0.001624199
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so the probability of obtaining an F ratio as large as this or larger, if the variances were the
same (as assumed by the null hypothesis), is less than 0.002. It is important to note that the p
value is not the probability that the null hypothesis is true (this is a common mistake
amongst beginners). The null hypothesis is assumed to be true in carrying out the test. Keep
rereading this paragraph until you are sure that you understand this distinction between what
p values are and what they are not.
Because the variances are significantly different, it would be wrong to compare the two

sample means using Student’s t test. In this case the reason is very obvious; the means are
exactly the same (5.0 pphm) but the two gardens are clearly different in their daily levels of
ozone pollution (see p. 55).

There is a built-in function called var.test for speeding up the procedure. All we
provide are the names of the two variables containing the raw data whose variances are to be
compared (we do not need to work out the variances first):

var.test(gardenB,gardenC)

F test to compare two variances

data: gardenB and gardenC
F = 0.0938, num df = 9, denom df = 9, p-value = 0.001624
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.02328617 0.37743695

sample estimates:
ratio of variances

0.09375

Note that the variance ratio, F, is given as roughly 1/10 rather than roughly 10 because
var.test put the variable name that came first in the alphabet (gardenB) on top (i.e. in the
numerator) instead of the bigger of the two variances. But the p value of 0.0016 is exactly
the same, and we reject the null hypothesis. These two variances are highly significantly
different.

detach(f.test.data)

Comparing Two Means

Given what we know about the variation from replicate to replicate within each sample (the
within-sample variance), how likely is it that our two sample means were drawn from
populations with the same average? If this is highly likely, then we shall say that our two
sample means are not significantly different. If it is rather unlikely, then we shall say that our
sample means are significantly different. As with all of the classical tests, we do this by
calculating a test statistic and then asking the question: how likely are we to obtain a test
statistic this big (or bigger) if the null hypothesis is true? We judge the probability by
comparing the test statistic with a critical value. The critical value is calculated on the
assumption that the null hypothesis is true. It is a useful feature of R that it has built-in
statistical tables for all of the important probability distributions, so that if we provide R with
the relevant degrees of freedom, it can tell us the critical value for any particular case.
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There are two simple tests for comparing two sample means:

• Student’s t test when the samples are independent, the variances constant, and the errors
are normally distributed

• Wilcoxon rank-sum test when the samples are independent but the errors are not
normally distributed (e.g. they are ranks or scores or some sort)

What to do when these assumptions are violated (e.g. when the variances are different) is
discussed later on.

Student’s t Test

Student was the pseudonym of W.S. Gosset who published his influential paper in
Biometrika in 1908. He was prevented from publishing under his own name by dint of
the archaic employment laws in place at the time, which allowed his employer, the Guinness
Brewing Company, to prevent him publishing independent work. Student’s t distribution,
later perfected by R. A. Fisher, revolutionised the study of small-sample statistics where
inferences need to be made on the basis of the sample variance s2 with the population
variance σ2 unknown (indeed, usually unknowable).

The test statistic is the number of standard errors by which the two sample means
are separated:

t � difference between the two means
SE of the difference

� yA � yB

SEdiff

We already know the standard error of the mean (see p. 60) but we have not yet met the
standard error of the difference between two means. For two independent (i.e. non-
correlated) variables, the variance of a difference is the sum of the separate variances
(see Box 6.1).

Box 6.1. The variance of a difference between two independent samples

We want to work out the sum of squares of a difference between samples A and B.
First we express each y variable as a departure from its own mean, μ:

X �yA � μA� � �yB � μB�� �2

If we were to divide by the degrees of freedom, we would get the variance of the
difference, σ2

yA�yB
. Start by calculating the square of the difference:

�yA � μA�2 � �yB � μB�2 � 2�yA � μA��yB � μB�
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This important result allows us to write down the formula for the standard error of the
difference between two sample means:

SEdiff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
A

nA
� s2

B

nB

s

At this stage we have everything we need to carry out Student’s t test. Our null hypothesis
is that the two sample means are the same, and we shall accept this unless the value of
Student’s t is sufficiently large that it is unlikely that such a difference arose by chance
alone. We shall estimate this probability by comparing our test statistic with the critical
value from Student’s t distribution with the appropriate number of degrees of freedom.

For our ozone example, each sample has 9 degrees of freedom, so we have 18 d.f. in total.
Another way of thinking of this is to reason that the complete sample size as 20, and we have
estimated two parameters from the data, yA and yB, so we have 20� 2= 18 d.f. We typically
use 5% as the chance of rejecting the null hypothesis when it is true (this is the Type I error
rate). Because we did not know in advance which of the two gardens was going to have the
higher mean ozone concentration (and we usually do not), this is a two-tailed test, so the
critical value of Student’s t is:

qt(0.975,18)

[1] 2.100922

Then apply summation:

X �yA � μA�2 �
X �yB � μB�2 � 2

X�yA � μA��yB � μB�

We already know that the average of
P �yA � μA�2is the variance of population A and

the average of
P �yB � μB�2 is the variance of population B (Box 4.2). So the variance

of the difference between the two sample means is the sum of the variances of the two
samples, minus a term 2

P�yA � μA��yB � μB�, i.e. minus 2 times the covariance of
samples A and B (see Box 6.2). But because (by assumption) the samples from A and
B are independently drawn they are uncorrelated, the covariance is zero, so
2
P�yA � μA��yB � μB� � 0. This important result needs to be stated separately:

σ2
yA�yB

� σ2
A � σ2

B

If two samples are independent, the variance of the difference is the sum of the two
sample variances. This is not true, of course, if the samples are positively or negatively
correlated (see p. 108).
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This means that our test statistic needs to be bigger than 2.1 in order to reject the null
hypothesis, and hence to conclude that the two means are significantly different at α � 0:05.
The data frame is attached like this:

t.test.data <- read.csv("c:\\temp\\t.test.data.csv")
attach(t.test.data)
names(t.test.data)

[1] "gardenA" "gardenB"

A useful graphical test for two samples employs the ‘notches’ option of boxplot:

ozone <- c(gardenA,gardenB)
label <- factor(c(rep("A",10),rep("B",10)))
boxplot(ozone∼label,notch=T,xlab="Garden",

ylab="Ozone pphm",col="lightblue")

Because the notches of two plots do not overlap, we conclude that the medians are
significantly different at the 5% level. Note that the variability is similar in both gardens
(both in terms of the range – the length of the whiskers – and the interquartile range – the size
of the boxes).

To carry out a t test long-hand, we begin by calculating the variances of the two samples,
s2A and s2B:

s2A <- var(gardenA)
s2B <- var(gardenB)

We need to check that the two variances are not significantly different:

s2A/s2B

[1] 1
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They are identical, which is excellent. Constancy of variance is the most important
assumption of the t test. In general, the value of the test statistic for Student’s t is the
difference divided by the standard error of the difference.

In our case, the numerator is the difference between the two means (3� 5=�2), and the
denominator is the square root of the sum of the variances (1.333333) divided by their
sample sizes (10):

(mean(gardenA)-mean(gardenB))/sqrt(s2A/10+s2B/10)

Note that in calculating the standard errors we divide by the sample size (10) not
the degrees of freedom (9); degrees of freedom were used in calculating the variances (see
p. 53).

This gives the value of Student’s t as

[1] -3.872983

With t tests you can ignore the minus sign; it is only the absolute value of the difference
between the two sample means that concerns us. So the calculated value of the test statistic is
3.87 and the critical value is 2.10 (qt(0.975,18), above). Since the test statistic is larger
than the critical value, we reject the null hypothesis.

Notice that the wording of that previous sentence is exactly the same as it was for the F
test (above). Indeed, the wording is always the same for all kinds of tests, and you should try
to memorize it. The abbreviated form is easier to remember: larger reject, smaller accept.
The null hypothesis was that the two means are not significantly different, so we reject this
and accept the alternative hypothesis that the two means are significantly different. Again,
rather than merely rejecting the null hypothesis, it is better to state the probability that a test
statistic as extreme as this (or more extreme) would be observed if the null hypothesis was
true (i.e. the mean values were not significantly different). For this we use pt rather than qt,
and 2 × pt because we are doing a two-tailed test:

2*pt(-3.872983,18)

[1] 0.001114540

so p< 0.0015. You will not be surprised to learn that there is a built-in function to do all the
work for us. It is called, helpfully, t.test and is used simply by providing the names of the
two vectors containing the samples on which the test is to be carried out (gardenA and
gardenB in our case).

t.test(gardenA,gardenB)

There is rather a lot of output. You often find this: the simpler the statistical test, the more
voluminous the output.

Welch Two Sample t-test

data: gardenA and gardenB
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t = -3.873, df = 18, p-value = 0.001115
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.0849115 -0.9150885
sample estimates:
mean of x mean of y

3 5

The result is exactly the same as we obtained long-hand. The value of t is �3.873 and
since the sign is irrelevant in a t test we reject the null hypothesis because the test statistic is
larger than the critical value of 2.1. The mean ozone concentration is significantly higher in
garden B than in garden A. The output also gives a p value and a confidence interval. Note
that, because the means are significantly different, the confidence interval on the difference
does not include zero (in fact, it goes from �3.085 up to �0.915). You might present the
result like this:

Ozone concentration was significantly higher in garden B (mean= 5.0 pphm) than in
garden A (mean= 3.0 pphm; t= 3.873, p= 0.0011 (two-tailed), d.f.= 18).

which gives the reader all of the information they need to come to a conclusion about the
size of the effect and the unreliability of the estimate of the size of the effect.

Wilcoxon Rank-Sum Test

This is a non-parametric alternative to Student’s t test, which we could use if the errors
were non-normal. The Wilcoxon rank-sum test statistic, W, is calculated as follows. Both
samples are put into a single array with their sample names clearly attached (A and B in
this case, as explained below). Then the aggregate list is sorted, taking care to keep the
sample labels with their respective values. A rank is then assigned to each value, with ties
getting the appropriate average rank (two-way ties get (rank i+ (rank i+ 1))/2, three-way
ties get (rank i+ (rank i+ 1)+ (rank i+ 3))/3, and so on). Finally, the ranks are added
up for each of the two samples, and significance is assessed on size of the smaller sum
of ranks.

First we make a combined vector of the samples:

ozone <- c(gardenA,gardenB)
ozone

[1] 3 4 4 3 2 3 1 3 5 2 5 5 6 7 4 4 3 5 6 5

Then we make a list of the sample names, A and B:

label <- c(rep("A",10),rep("B",10))
label

[1] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"
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Now we use the built-in function rank to get a vector containing the ranks, smallest to
largest, within the combined vector:

combined.ranks <- rank(ozone)
combined.ranks

[1] 6.0 10.5 10.5 6.0 2.5 6.0 1.0 6.0 15.0 2.5 15.0 15.0 18.5 20.0 10.5
[16] 10.5 6.0 15.0 18.5 15.0

Notice that the ties have been dealt with by averaging the appropriate ranks. Now all we
need to do is calculate the sum of the ranks for each garden. We use tapply with sum as the
required operation:

tapply(combined.ranks,label,sum)

A B
66 144

Finally, we compare the smaller of the two values (66) with values in tables of Wilcoxon
rank sums (e.g. Snedecor and Cochran, 1980, p. 555), and reject the null hypothesis if our
value of 66 is smaller than the value in tables. For samples of size 10 and 10 like ours, the
5% value in tables is 78. Our value is smaller than this, so we reject the null hypothesis. The
two sample means are significantly different (in agreement with our earlier t test on the same
data).

We can carry out the whole procedure automatically, and avoid the need to use tables of
critical values of Wilcoxon rank sums, by using the built-in function wilcox.test:

wilcox.test(gardenA,gardenB)

This produces the following output:

Wilcoxon rank sum test with continuity correction

data: gardenA and gardenB
W = 11, p-value = 0.002988
alternative hypothesis: true location shift is not equal to 0

Warning message:
In wilcox.test.default(gardenA, gardenB) :

cannot compute exact p-value with ties

The function uses a normal approximation algorithm to work out a z value, and from this a
p value to assess the hypothesis that the two means are the same. This p value of 0.002988 is
much less than 0.05, so we reject the null hypothesis, and conclude that the mean ozone
concentrations in gardens A and B are significantly different. The warning message at the
end draws attention to the fact that there are ties in the data (repeats of the same ozone
measurement), and this means that the p value cannot be calculated exactly (this is seldom a
real worry).

It is interesting to compare the p values of the t test and the Wilcoxon test with the same
data: p= 0.001115 and 0.002988, respectively. The non-parametric test is much more
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appropriate than the t-test when the errors are not normal, and the non-parametric test is
about 95% as powerful with normal errors, and can be more powerful than the t test if the
distribution is strongly skewed by the presence of outliers. Typically, as here, the t test will
give the lower p value, so the Wilcoxon test is said to be conservative: if a difference is
significant under a Wilcoxon test it would be even more significant under a t test.

Tests on Paired Samples

Sometimes, two-sample data come from paired observations. In this case, we might expect a
correlation between the two measurements, either because they were made on the same
individual, or because they were taken from the same location. You might recall that earlier
(Box 6.1) we found that the variance of a difference was the average of

�yA � μA�2 � �yB � μB�2 � 2�yA � μA��yB � μB�
which is the variance of sample A, plus the variance of sample B, minus 2 times the
covariance of A and B. When the covariance of A and B is positive, this is a great help
because it reduces the variance of the difference, which makes it easier to detect significant
differences between the means. Pairing is not always effective, because the correlation
between yA and yB may be weak.

The following data are a composite biodiversity score based on a kick sample of aquatic
invertebrates from 16 rivers:

streams <- read.csv("c:\\temp\\streams.csv")
attach(streams)
names(streams)

[1] "down" "up"

The elements are paired because the two samples were taken on the same river, one
upstream and one downstream from the same sewage outfall. If we ignore the fact that the
samples are paired, it appears that the sewage outfall has no impact on biodiversity score
(p= 0.6856):

t.test(down,up)

Welch Two Sample t-test

data: down and up
t = -0.4088, df = 29.755, p-value = 0.6856
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.248256 3.498256
sample estimates:
mean of x mean of y

12.500 13.375

However, if we allow that the samples are paired (simply by specifying the option
paired=T), the picture is completely different:
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t.test(down,up,paired=T)

Paired t-test

data: down and up
t = -3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.4864388 -0.2635612
sample estimates:
mean of the differences

-0.875

Now the difference between the means is highly significant (p= 0.0081). The moral is
clear. If you can do a paired t test, then you should always do the paired test. It can never do
any harm, and sometimes (as here) it can do a huge amount of good. In general, if you have
information on blocking or spatial correlation (in this case, the fact that the two samples
came from the same river), then you should always use it in the analysis.

Here is the same paired test carried out as a one-sample t-test on the differences between
the pairs:

d <- up-down
t.test(d)

One Sample t-test

data: d
t = 3.0502, df = 15, p-value = 0.0081
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
0.2635612 1.4864388

sample estimates:
mean of x

0.875

As you see, the result is identical to the two-sample t test with paired=T (p= 0.0081).
The upstream values of the biodiversity score were greater by 0.875 on average, and this

difference is highly significant. Working with the differences has halved the number of
degrees of freedom (from 30 to 15), but it has more than compensated for this by reducing
the error variance, because there is such a strong positive correlation between yA and yB. The
moral is simple: blocking always helps. The individual rivers are the blocks in this case.

The Binomial Test

This is one of the simplest of all statistical tests. Suppose that you cannot measure a
difference, but you can see it (e.g. in judging a diving contest). For example, nine
springboard divers were scored as better or worse, having trained under a new regime
and under the conventional regime (the regimes were allocated in a randomized sequence to
each athlete: new then conventional, or conventional then new). Divers were judged twice:
one diver was worse on the new regime, and eight were better. What is the evidence that the
new regime produces significantly better scores in competition? The answer comes from a
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two-tailed binomial test. How likely is a response of 1/9 (or 8/9 or more extreme than this,
i.e. 0/9 or 9/9) if the populations are actually the same (i.e. there was no difference between
the two training regimes)? We use binom.test for this, specifying the number of ‘failures’
(1) and the total sample size (9):

binom.test(1,9)

This produces the output:

Exact binomial test

data: 1 and 9
number of successes = 1, number of trials = 9, p-value = 0.03906
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.002809137 0.482496515

sample estimates:
probability of success

0.1111111

From this we would conclude that the new training regime is significantly better than the
traditional method, because p< 0.05. The p value of 0.03906 is the exact probability of
obtaining the observed result (1 of 9) or a more extreme result (0 of 9) if the two training
regimes were the same (so the probability of any one of the judging outcomes was 0.5). If
the two regimes had identical effects on the judges, then a score of either ‘better’ or ‘worse’
has a probability of 0.5. So eight successes has a probability of 0.58= 0.0039 and one failure
has a probability of 0.5. The whole outcome has a probability of

0:00390625 � 0:5 � 0:001953125

Note, however, that there are 9 ways of getting this result, so the probability of 1 out of
9 is

9 � 0:001953125 � 0:01757812

This is not the answer we want, because there is a more extreme case when all 9 of the judges
thought that the new regime produced improved scores. There is only one way of obtaining
this outcome (9 successes and no failures) so it has a probability of 0.59= 0.001953125. This
means that the probability the observed result or a more extreme outcome is

0:001953125 � 0:01757812 � 0:01953124

Even this is not the answer we want, because the whole process might have worked in the
opposite direction (the new regime might have produced worse scores (8 and 1 or 9 and 0) so
what we need is a two-tailed test). The result we want is obtained simply by doubling the last
result:

2 � 0:01953124 � 0:03906248

which is the figure produced by the built in function binom.test (above)
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Binomial Tests to Compare Two Proportions

Suppose that in your institution only four females were promoted, compared with 196 men.
Is this an example of blatant sexism, as it might appear at first glance? Before we can judge,
of course, we need to know the number of male and female candidates. It turns out that 196
men were promoted out of 3270 candidates, compared with 4 promotions out of only 40
candidates for the women. Now, if anything, it looks like the females did better than males in
the promotion round (10% success for women versus 6% success for men).

The question then arises as to whether the apparent positive discrimination in favour of
women is statistically significant, or whether this sort of difference could arise through
chance alone. This is easy in R using the built-in binomial proportions test prop.test in
which we specify two vectors, the first containing the number of successes for females
and males c(4,196) and second containing the total number of female and male candidates
c(40,3270):

prop.test(c(4,196),c(40,3270))

2-sample test for equality of proportions with continuity correction

data: c(4, 196) out of c(40, 3270)
X-squared = 0.5229, df = 1, p-value = 0.4696
alternative hypothesis: two.sided
95 percent confidence interval:
-0.06591631 0.14603864
sample estimates:

prop 1 prop 2
0.10000000 0.05993884

Warning message:
In prop.test(c(4, 196), c(40, 3270)) :

Chi-squared approximation may be incorrect

There is no evidence in favour of positive discrimination (p= 0.4696). A result like this
will occur more than 45% of the time by chance alone. Just think what would have happened
if one of the successful female candidates had not applied. Then the same promotion system
would have produced a female success rate of 3/39 instead of 4/40 (7.7% instead of 10%).

The moral is very important: in small samples, small changes have big effects.

Chi-Squared Contingency Tables

A great deal of statistical information comes in the form of counts (whole numbers or
integers); the number of animals that died, the number of branches on a tree, the number of
days of frost, the number of companies that failed, the number of patients that died. With
count data, the number 0 is often the value of a response variable (consider, for example,
what a 0 would mean in the context of the examples just listed).

The dictionary definition of contingency is ‘a thing dependent on an uncertain event’
(Oxford English Dictionary). In statistics, however, the contingencies are all the events that
could possibly happen. A contingency table shows the counts of how many times each of
the contingencies actually happened in a particular sample. Consider the following example
that has to do with the relationship between hair colour and eye colour in white people.
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For simplicity, we just chose two contingencies for hair colour: ‘fair’ and ‘dark’. Likewise
we just chose two contingencies for eye colour: ‘blue’ and ‘brown’. Each of these two
categorical variables, eye colour and hair colour, has two levels (‘blue’ and ‘brown’ and
‘fair’ and ‘dark’, respectively). Between them, they define four possible outcomes (the
contingencies): fair hair and blue eyes, fair hair and brown eyes, dark hair and blue eyes, and
dark hair and brown eyes. We take a sample of people and count how many of them fall into
each of these four categories. Then we fill in the 2× 2 contingency table like this:

Blue eyes Brown eyes

Fair hair 38 11

Dark hair 14 51

These are our observed frequencies (or counts). The next step is very important. In order
to make any progress in the analysis of these data we need a model which predicts the
expected frequencies. What would be a sensible model in a case like this? There are all sorts
of complicated models that you might select, but the simplest model (Occam’s razor, or the
principle of parsimony) is that hair colour and eye colour are independent. We may not
believe that this is actually true, but the hypothesis has the great virtue of being falsifiable. It
is also a very sensible model to choose because it makes it easy to predict the expected
frequencies based on the assumption that the model is true. We need to do some simple
probability work. What is the probability of getting a random individual from this sample
whose hair was fair? A total of 49 people (38+ 11) had fair hair out of a total sample of 114
people. So the probability of fair hair is 49/114 and the probability of dark hair is 65/114.
Notice that because we have only two levels of hair colour, these two probabilities add up to
1 ((49+ 65)/114). What about eye colour? What is the probability of selecting someone at
random from this sample with blue eyes? A total of 52 people had blue eyes (38+ 14) out of
the sample of 114, so the probability of blue eyes is 52/114 and the probability of brown
eyes is 62/114. As before, these sum to 1 ((52+ 62)/114). It helps to append the subtotals to
the margins of the contingency table like this:

Blue eyes Brown eyes Row totals

Fair hair 38 11 49

Dark hair 14 51 65

Column totals 52 62 114

Now comes the important bit. We want to know the expected frequency of people with fair
hair andblue eyes, to compare with our observed frequency of 38. Our model says that the two
are independent. This is essential information, because it allows us to calculate the expected
probability of fair hair and blue eyes. If, and only if, the two traits are independent, then the
probability of having fair hair and blue eyes is the product of the two probabilities. So,
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following our earlier calculations, the probability of fair hair and blue eyes is 49/114× 52/114.
We can do exactly equivalent things for the other three cells of the contingency table:

Blue eyes Brown eyes Row totals

Fair hair 49
114 � 52

114
49

114 � 62
114

49

Dark hair 65
114 � 52

114
65

114 � 62
114

65

Column totals 52 62 114

Now we need to know how to calculate the expected frequency. It could not be simpler. It
is just the probability multiplied by the total sample (n= 114). So the expected frequency of
blue eyes and fair hair is 49

114 � 52
114 � 114 � 22:35 which is much less than our observed

frequency of 38. It is beginning to look as if our hypothesis of independence of hair and eye
colour is false.

You might have noticed something useful in the last calculation: two of the sample sizes
cancel out. Therefore, the expected frequency in each cell is just the row total (R) times the
column total (C) divided by the grand total (G):

E � R � C

G

We can now work out the four expected frequencies.

Blue eyes Brown eyes Row totals

Fair hair 22.35 26.65 49

Dark hair 29.65 35.35 65

Column totals 52 62 114

Notice that the row and column totals (the so-called ‘marginal totals’) are retained under
the model. It is clear that the observed frequencies and the expected frequencies are
different. But in sampling, everything always varies, so this is no surprise. The important
question is whether the expected frequencies are significantly different from the observed
frequencies.

We assess the significance of the differences between using a chi-squared test. We
calculate a test statistic χ2 (Pearson’s chi-squared) as follows:

χ2 � X �O � E�2
E

where O is the observed frequency and E is the expected frequency. Capital Greek sigma
P

just means ‘add up all the values of’. It makes the calculations easier if we write the
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observed and expected frequencies in parallel columns, so that we can work out the
corrected squared differences more easily.

O E (O�E)2 �O�E�2
E

Fair hair and blue eyes 38 22.35 244.92 10.96

Fair hair and brown eyes 11 26.65 244.92 9.19

Dark hair and blue eyes 14 29.65 244.92 8.26

Dark hair and brown eyes 51 35.35 244.92 6.93

All we need to do now is to add up the four components of chi-squared to get the test
statistic χ2 � 35:33. The question now arises: is this a big value of chi-squared or not? This
is important, because if it is a bigger value of chi-squared than we would expect by chance,
then we should reject the null hypothesis. If, on the other hand, it is within the range of
values that we would expect by chance alone, then we should accept the null hypothesis.

We always proceed in the same way at this stage. We have a calculated value of the test
statistic: χ2 � 35:33. We compare this value of the test statistic with the relevant critical
value. To work out the critical value of chi-squared we need two things:

• the number of degrees of freedom

• the degree of certainty with which to work

In general, a contingency table has a number of rows (r) and a number of columns (c), and
the degrees of freedom is given by

d:f: � �r � 1� � �c � 1�
So we have (2� 1)× (2� 1)= 1 degree of freedom for a 2× 2 contingency table. You can

see why there is only one degree of freedom by working through our example. Take the ‘fair
hair and brown eyes’ box (the top right in the table) and ask how many values this could
possibly take. The first thing to note is that the count could not be more than 49, otherwise
the row total would be wrong. But in principle, the number in this box is free to be any value
between 0 and 49. We have one degree of freedom for this box. But when we have fixed this
box to be 11, you will see that we have no freedom at all for any of the other three boxes.

Blue eyes Brown eyes Row totals

Fair hair 11 49

Dark hair 65

Column totals 52 62 114
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The top left box has to be 49� 11= 38 because the row total is fixed at 49. Once the top
left box is defined as 38 then the bottom left box has to be 52� 38= 14 because the column
total is fixed (the total number of people with blue eyes was 52). This means that the bottom
right box has to be 65� 14= 51. Thus, because the marginal totals are constrained, a 2× 2
contingency table has just 1 degree of freedom.

The next thing we need to do is say how certain we want to be about the falseness of the
null hypothesis. The more certain we want to be, the larger the value of chi-squared we
would need to reject the null hypothesis. It is conventional to work at the 95% level. That
is our certainty level, so our uncertainty level is 100� 95= 5%. Expressed as a fraction,
this is called alpha (α � 0:05). Technically, alpha is the probability of rejecting the null
hypothesis when it is true. This is called a Type I error. A Type II error is accepting the
null hypothesis when it is false (see p. 4).

Critical values in R are obtained by use of quantiles (q) of the appropriate statistical
distribution. For the chi-squared distribution, this function is called qchisq. The function
has two arguments: the certainty level (1� α= 0.95), and the degrees of freedom
(d.f.= 1):

qchisq(0.95,1)

[1] 3.841459

The critical value of chi-squared is 3.841.The logic goes like this: since the calculated
value of the test statistic is greater than the critical value, we reject the null hypothesis. You
should memorize this sentence: put the emphasis on ‘greater’ and ‘reject’.

What have we learned so far? We have rejected the null hypothesis that eye colour and
hair colour are independent. But that is not the end of the story, because we have not
established the way in which they are related (e.g. is the correlation between them positive or
negative?). To do this we need to look carefully at the data, and compare the observed and
expected frequencies. If fair hair and blue eyes were positively correlated, would the
observed frequency of getting this combination be greater or less than the expected
frequency? A moment’s thought should convince you that the observed frequency will
be greater than the expected frequency when the traits are positively correlated (and less
when they are negatively correlated). In our case we expected only 22.35 but we observed
38 people (nearly twice as many) to have both fair hair and blue eyes. So it is clear that fair
hair and blue eyes are positively associated.

In R the procedure is very straightforward. We start by defining the counts as a 2× 2
matrix like this:

count <- matrix(c(38,14,11,51),nrow=2)
count

[,1] [,2]
[1,] 38 11
[2,] 14 51

Notice that you enter the data column-wise (not row-wise) into the matrix. Then the test
uses the chisq.test function, with the matrix of counts as its only argument:

104 STATISTICS: AN INTRODUCTION USING R



chisq.test(count)

Pearson’s Chi-squared test with Yates’ continuity correction

data: count
X-squared = 33.112, df = 1, p-value = 8.7e-09

The calculated value of chi-squared is slightly different from ours, because Yates’s
correction has been applied as the default (see ?chisq.test). If you switch the correction
off (correct=F), you get the exact value we calculated by hand:

chisq.test(count,correct=F)

Pearson’s Chi-squared test

data: count
X-squared = 35.3338, df = 1, p-value = 2.778e-09

It makes no difference at all to the interpretation: there is a highly significant positive
association between fair hair and blue eyes for this group of people.

Fisher’s Exact Test

This test is used for the analysis of contingency tables based on small samples in which one
or more of the expected frequencies are less than 5. The individual counts are a, b, c and d
like this:

2 × 2 table Column 1 Column 2 Row totals

Row 1 a b a+ b

Row 2 c d c+ d

Column totals a+ c b+ d n

The probability of any one particular outcome is given by

p � �a � b�!�c � d�!�a � c�!�b � d�!
a!b!c!d!n!

where n is the grand total, and ! means ‘factorial’ (the product of all the numbers from n
down to 1; 0! is defined as being 1).

Our data concern the distribution of 8 ants nests over 10 trees of each of two species (A
and B). There are two categorical explanatory variables (ants and trees), and four
contingencies, ants (present or absent) and trees (A or B). The response variable is the
vector of four counts c(6,4,2,8).
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Tree A Tree B Row totals

With ants 6 2 8

Without ants 4 8 12

Column totals 10 10 20

Now we can calculate the probability for this particular outcome:

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(6)*factorial(2)*factorial(4)*factorial(8)*factorial(20))

[1] 0.07501786

But this is only part of the story. We need to compute the probability of outcomes that are
more extreme than this. There are two of them. Suppose only one ant colony was found on
tree B. Then the table values would be 7, 1, 3, 9 but the row and column totals would be
exactly the same (the marginal totals are constrained). The numerator always stays the
same, so this case has probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(7)*factorial(3)*factorial(1)*factorial(9)*factorial(20))

[1] 0.009526078

There is an even more extreme case if no ant colonies at all were found on tree B. Now the
table elements become 8, 0, 2, 10 with probability

factorial(8)*factorial(12)*factorial(10)*factorial(10)/
(factorial(8)*factorial(2)*factorial(0)*factorial(10)*factorial(20))

[1] 0.0003572279

We need to add these three probabilities together:

0.07501786 + 0.009526078 + 0.000352279

[1] 0.08489622

But there was no a priori reason for expecting the result to be in this direction. It might
have been tree A that had relatively few ant colonies. We need to allow for extreme counts in
the opposite direction by doubling this probability (all Fisher’s exact tests are two-tailed):

2*(0.07501786+0.009526078+0.000352279)

[1] 0.1697924

This shows that there is no strong evidence of a correlation between tree and ant colonies.
The observed pattern, or a more extreme one, could have arisen by chance alone with
probability p= 0.17.
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There is a built in function called fisher.test, which saves us all this tedious
computation. It takes as its argument a 2× 2 matrix containing the counts of the four
contingencies. We make the matrix like this (compare with the alternative method of making
a matrix, above):

x <- as.matrix(c(6,4,2,8))
dim(x) <- c(2,2)
x

[,1] [,2]
[1,] 6 2
[2,] 4 8

Then we run the test like this:

fisher.test(x)

Fisher’s Exact Test for Count Data

data: x
p-value = 0.1698
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

0.6026805 79.8309210
sample estimates:
odds ratio

5.430473

The fisher.test can be used with matrices much bigger than 2× 2. Alternatively, the
function may be provided with two vectors containing factor levels, instead of a matrix of
counts, as here; this saves you the trouble of counting up how many combinations of each
factor level there are:

table <- read.csv("c:\\temp\\fisher.csv")
attach(table)
head(table)

tree nests
1 A ants
2 B ants
3 A none
4 A ants
5 B none
6 A none

The function is invoked by providing the two vector names as arguments:

fisher.test(tree,nests)

TWO SAMPLES 107



Correlation and Covariance

With two continuous variables, x and y, the question naturally arises as to whether their
values are correlated with each other (remembering, of course, that correlation does not
imply causation). Correlation is defined in terms of the variance of x, the variance of y, and
the covariance of x and y (the way the two vary together; the way they co-vary) on the
assumption that both variables are normally distributed. We have symbols already for
the two variances, s2

x and s2
y . We denote the covariance of x and y by cov(x, y), after which

the correlation coefficient r is defined as

r � cov�x; y�
ffiffiffiffiffiffiffiffi

s2
xs

2
y

q

We know how to calculate variances (p. 53), so it remains only to work out the value of
the covariance of x and y. Covariance is defined as the expectation of the vector product
x× y, which sounds difficult, but is not (Box 6.2). The covariance of x and y is the
expectation of the product minus the product of the two expectations.

Box 6.2. Correlation and covariance

The correlation coefficient is defined in terms of the covariance of x and y, and the
geometric mean of the variances of x and y:

ρ�x; y� � cov�x; y�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var�x� � var�y�p

The covariance of x and y is defined as the expectation of the vector product:
�x � x��y � y�:

cov�x; y� � E��x � x��y � y��

We start by multiplying through the brackets:

�x � x��y � y� � xy � xy � xy � xy

Now applying expectations, and remembering that the expectation of x is x and the
expectation of y is y, we get

cov�x; y� � E�xy� � xE�y� � E�x�y � xy � E�xy� � xy � xy � xy
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Let us work through a numerical example:

data <- read.csv("c:\\temp\\twosample.csv")
attach(data)
plot(x,y,pch=21,col="blue",bg="orange")

Then �xy � xy cancels out, leaving �xy which is �E�x�E�y� so

cov�x; y� � E�xy� � E�x�E�y�
Notice that when x and y are uncorrelated, E�xy� � E�x�E�y�, so the covariance is 0 in
this case. The corrected sum of products SSXY (see p. 123) is given by

SSXY � X

xy �
P

x
P

y

n

so covariance is computed as

cov�x; y� � SSXY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�n � 1�2
s

which provides a shortcut formula for the correlation coefficient

r � SSXY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSX:SSY
p

because the degrees of freedom (n� 1) cancel out. The sign of r takes the sign of SSXY:
positive for positive correlations and negative for negative correlations.
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First we need the variance of x and the variance of y:

var(x)

[1] 199.9837

var(y)

[1] 977.0153

The covariance of x and y, cov(x,y), is given by the var function when we supply it with
two vectors like this:

var(x,y)

[1] 414.9603

Thus, the correlation coefficient should be 414:96=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

199:98 � 977:02
p

:

var(x,y)/sqrt(var(x)*var(y))

[1] 0.9387684

Let us see if this checks out:

cor(x,y)

[1] 0.9387684

Great relief! So now you know the definition of the correlation coefficient: it is the
covariance divided by the geometric mean of the two variances.

Correlation and the Variance of Differences between Variables

Samples often exhibit positive correlations that result from the pairing, as in the upstream
and downstream invertebrate biodiversity data that we investigated earlier (p. 97). There is
an important general question about the effect of correlation on the variance of differences
between variables. In the extreme, when two variables are so perfectly correlated that they
are identical, the difference between one variable and the other is zero. So it is clear that the
variance of a difference will decline as the strength of positive correlation increases.

These data show the depth of the water table (m below the surface) in winter and summer
at nine locations:

paired <- read.csv("c:\\temp\\water.table.csv ")
attach(paired)
names(paired)

[1] "Location" "Summer" "Winter"

We begin by asking whether there is a correlation between summer and winter water table
depths across locations:
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cor(Summer, Winter)

[1] 0.8820102

There is a strong positive correlation. Not surprisingly, places where the water table is
high in summer tend to have a high water table in winter as well. If you want to determine
the significance of a correlation (i.e. the p value associated with the calculated value of r)
then use cor.test rather than cor. This test has non-parametric options for Kendall’s tau
or Spearman’s rank depending on the method you specify (method="k" or method="s"),
but the default method is Pearson’s product-moment correlation (method="p"):

cor.test(Summer, Winter)

Pearson’s product-moment correlation

data: Summer and Winter
t = 4.9521, df = 7, p-value = 0.001652
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5259984 0.9750087

sample estimates:
cor

0.8820102

The correlation is highly significant (p= 0.00165). Now, let us investigate the relation-
ship between the correlation coefficient and the three variances: the summer variance, the
winter variance, and the variance of the differences (summer–winter):

varS <- var(Summer)
varW <- var(Winter)
varD <- var(Summer-Winter)

The correlation coefficient ρ is related to these three variances by:

ρ � σ2
y � σ2

z � σ2
y�z

2σyσz

So, using the values we have just calculated, we get a correlation coefficient of

(varS+varW-varD)/(2*sqrt(varS)*sqrt(varW))

[1] 0.8820102

which checks out. We can also see whether the variance of the difference is equal to the sum
of the component variances (as we saw for independent variables on p. 97):

varD

[1] 0.01015
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varS + varW

[1] 0.07821389

No, it is not. They would be equal only if the two samples were independent. In fact, we
know that the two variables are positively correlated, so the variance of the difference should
be less than the sum of the variances by an amount equal to 2 � r � s1 � s2:

varS + varW - 2 * 0.8820102 * sqrt(varS) * sqrt(varW)

[1] 0.01015

That’s more like it.

Scale-Dependent Correlations

Another major difficulty with correlations is that scatterplots can give a highly misleading
impression of what is going on. The moral of this exercise is very important: things are not
always as they seem. The following data show the number of species of mammals in forests
of differing productivity:

data <- read.csv("c:\\temp\\productivity.csv")
attach(data)
names(data)

[1] "productivity" "mammals" "region"

plot(productivity,mammals,pch=16,col="blue")

There is a very clear positive correlation: increasing productivity is associated with
increasing species richness. The correlation is highly significant:
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cor.test(productivity,mammals,method="spearman")

Spearman’s rank correlation rho

data: productivity and mammals
S = 6515.754, p-value = 5.775e-11
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.7516389

Warning message:
In cor.test.default(productivity, mammals, method = "spearman") :

Cannot compute exact p-value with ties

But what if we look at the relationship for each region separately, using a different colour
for each region?

plot(productivity,mammals,pch=16,col=as.numeric(region))

The pattern is obvious. In every single case, increasing productivity is associated with
reduced mammal species richness within each region. The lesson is clear: you need to be
extremely careful when looking at correlations across different scales. Things that are
positively correlated over short time scales may turn out to be negatively correlated in the
long term. Things that appear to be positively correlated at large spatial scales may turn out
(as in this example) to be negatively correlated at small scales.

Reference
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7
Regression

Regression analysis is the statistical method you use when both the response variable and
the explanatory variable are continuous variables (i.e. real numbers with decimal places –

things like heights, weights, volumes, or temperatures). Perhaps the easiest way of knowing
when regression is the appropriate analysis is to see that a scatterplot is the appropriate
graphic (in contrast to analysis of variance, say, when the appropriate plot would have been
a box-and-whisker or a bar chart).

The essence of regression analysis is using sample data to estimate parameter values and
their standard errors. First, however, we need to select a model which describes the relationship
between the response variable and the explanatory variable(s). There are literally hundreds of
models from which we might choose. Perhaps the most important thing to learn about
regression is thatmodel choice is a really big deal. The simplest model of all is the linear model:

y � a � bx

The response variable is y, and x is a continuous explanatory variable. There are two
parameters, a and b: the intercept is a (the value of y when x= 0); and the slope is b (the
slope, or gradient, is the change in y divided by the change in x which brought it about). The
slope is so important that it is worth drawing a picture to make clear what is involved.

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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The task is to work out the slope and intercept of this negative linear relationship between
the response variable and the explanatory variable. It is easiest to start with the intercept in
this case, because the value of x= 0 appears on the graph (it does not always). The intercept
is simply the value of y when x= 0. We can get this by inspection. Draw a vertical line
from x= 0 until it intercephs the black regression line (the green line) then a horizontal
line (red) from the regression line until it cuts the y axis. Read off the value directly. It is 80
in this case.

Estimating the slope is slightly more involved because we need to calculate

change in y

change in x that brought it about

In practice, it is a good idea for precision to select a large change in x. Let us take it from 2 to
8. Because the slope of the graph is negative, the value of y is lower when x= 8 than it is when
x= 2. At x= 2, we draw a blue line vertically downwards from the regression line to the value
of ywhen x= 8. The length of this blue line is the change in y (often denoted as ‘delta y’, orΔy
in symbols). Now we draw a horizontal brown line showing the change in x from 2 to 8. The
length of this brown line isΔx. When x= 2 we can read off the value of y (approximately) from
the graph: it is roughly 66. Similarly, when x= 8 we can read off the value of y as 24.

So the change in x is +6 (from 2 up to 8) and the change in y is �42 (from 66 down to 24).
Finally, we can calculate the slope of the straight line, b:

b � change in y

change in x
� 24 � 66

8 � 2
� �42

6
� �7:0

We now know both of the parameter values of the line: the intercept a= 80 and the slope
b=�7.0. We can write the parameterised equation like this:

y � 80 � 7x
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We can predict values of y at x values we have not measured (say, at x= 10.5):

y � 80 � 7:0 � 10:5 � 6:5

We can also ask what x values are associated with particular values of y (say, y= 40). This is
a bit more work, because we have to rearrange the equation

40 � 80 � 7:0x

First, subtract 80 from both sides

40 � 80 � �7:0x

then divide both sides by �7 to find the value of x:

x � 40 � 80
�7

� �40
�7

� �5:714286

You can get a rough check on this value by inspection of the graph. You should work
through this example repeatedly until you understand it completely.

Linear Regression

Let us start with an example. The thing to understand is that there is nothing difficult, or
mysterious about estimating the regression parameters. We can do a reasonable job, just
by eye.

reg.data <- read.csv("c:\\temp\\tannin.csv")
attach(reg.data)
names(reg.data)

[1] "growth" "tannin"

plot(tannin,growth,pch=21,bg="blue")
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This is how we do regression ‘by eye’. We ask: what has happened to the y value? It
decreased from about 12 to about 2, so the change in y is �10 (the minus sign is important).
How did the x value change? It increased from 0 to 8, so the change in x is+8 (when working
out regressions by eye, it is a good idea to take as big a range of x values as possible, so here
we took the complete range of x). What is the value of y when x= 0? It is about 12, so the
intercept is roughly a≈ 12. Finally, what is the value of b? It is the change in y (�10) divided
by the change in x which brought it about (8), so b≈�10/8=�1.25. So our rough guess at
the regression equation is

y � 12:0 � 1:25x

That’s all there is to it. Obviously, we want to make the procedure more objective
than this. And we also want to estimate the unreliability of the two estimated parameters
(i.e. the standard errors of the slope and intercept). But the basics are just as straightfor-
ward as that.

Linear Regression in R

How close did we get to the maximum likelihood estimates of a and b with our guesstimates
of 12 and �1.25? It is easy to find out using the R function lm which stands for ‘linear
model’ (note that the first letter of the function name lm is a lower case L, not a number one).
All we need do is tell R which of the variables is the response variable (growth in this case)
and which is the explanatory variable (tannin concentration in the diet). The response
variable goes on the left of the tilde ∼ and the explanatory variable goes on the right,
like this: growth ∼ tannin. This is read ‘growth is modelled as a function of tannin’. Now
we write:

lm(growth∼tannin)

Coefficients:
(Intercept) tannin

11.756 -1.217

The two parameters are called Coefficients in R: the intercept is 11.756 (compared
with out guesstimate of 12), and the slope is �1.217 (compared with our guesstimate of
�1.25). Not bad at all.

So where does R get its coefficients from? We need to do some calculations to find this
out. If you are more mathematically inclined, you might like to work through Box 7.1, but
this is not essential to understand what is going on. Remember that what we want are the
maximum likelihood estimates of the parameters. That is to say that, given the data, and
having selected a linear model, we want to find the values of the slope and intercept that
make the data most likely. Keep rereading this sentence until you understand what it is
saying.

The best way to see what is going on is to do it graphically. Let us cheat a bit by fitting the
best-fit straight line through our scatterplot, using abline like this:

abline(lm(growth∼tannin),col="green")
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Box 7.1. The least-squares estimate of the regression slope, b

The best-fit slope is found by rotating the line until the error sum of squares, SSE, is
minimized, so we want to find the minimum of

P �y � a � bx�2. We start by finding
the derivative of SSE with respect to b:

dSSE

db
� �2

X

x�y � a � bx�
Now, multiplying through the bracketed term by x gives:

dSSE

db
� �2

X

xy � ax � bx2

Apply summation to each term separately, set the derivative to zero, and divide both
sides by �2 to remove the unnecessary constant:

X

xy �X

ax �X

bx2 � 0

We cannot solve the equation as it stands because there are 2 unknowns, a and b.
However, we know the value of a is y � bx. Also, note that

P

ax can be written as
a
P

x, so, replacing a and taking both a and b outside their summations gives:

X

xy �
P

y

n
� b

P

x

n

� �

X

x � b
X

x2 � 0

Now multiply out the central bracketed term by
P

x to get

X

xy �
P

x
P

y

n
� b

P

x
� �2

n
� b

X

x2 � 0

Finally, take the two terms containing b to the right-hand side, and note their change of
sign:

X

xy �
P

x
P

y

n
� b

X

x2 � b

P

x
� �2

n

Then divide both sides by
P

x2 � P

x
� �2

=n to obtain the required estimate b:

b �
P

xy �
P

x
P

y

n
P

x2 �
P

x
� �2

n

Thus, the value of b that minimizes the sum of squares of the departures is given
simply by (see Box 7.3 for more details):

b � SSXY

SSX

This is the maximum likelihood estimate of the slope of the linear regression.
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The fit is reasonably good, but it is not perfect. The data points do not lie on the fitted line.
The difference between each data point and the value predicted by the model at the same
value of x is called a residual. Some residuals are positive (above the line) and others are
negative (below the line). Let us draw vertical lines to indicate the size of the residuals. The
first x point is at tannin= 0. The y value measured at this point was growth= 12. But what
is the growth predicted by the model at tannin= 0? There is a built-in function called
predict to work this out:

fitted <- predict(lm(growth∼tannin))
fitted

1 2 3 4 5 6 7
11.755556 10.538889 9.322222 8.105556 6.888889 5.672222 4.455556

8 9
3.238889 2.022222

So the first predicted value of growth is 11.755556 when tannin= 0. To draw the first
residual, both x coordinates will be 0. The first y coordinate will be 12 (the observed
value) and the second will be 11.755556 (the fitted (or predicted) value). We use lines,
like this:

lines(c(0,0),c(12,11.755556))

We could go through, laboriously, and draw each residual like this. But it is much quicker
to automate the procedure, using a loop to deal with each residual in turn:

for (i in 1:9)
lines (c(tannin[i],tannin[i]),c(growth[i],fitted[i]),col="red")
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These residuals describe the goodness of fit of the regression line. Our maximum
likelihood model is defined as the model that minimizes the sum of the squares of these
residuals. It is useful, therefore, to write down exactly what any one of the residuals, d, is: it
is the measured value, y, minus the fitted value called ŷ (y ‘hat’):

d � y � ŷ

We can improve on this, because we know that ŷ is on the straight line a � bx, so

d � y � �a � bx� � y � a � bx

The equation includes a� bx because of the minus sign outside the bracket. Now our best-
fit line, by definition, is given by the values of a and b that minimize the sums of the squares
of the ds (see Box 7.1). Note, also, that just as

P�y � y� � 0 (Box 4.1), so the sum of the
residuals

P

d � P�y � a � bx� � 0 (Box 7.2).

Box 7.2. The sum of the residuals in a linear regression is zero

Each point on the graph, y, is located at x. The model predicts a value ŷ � a � bx where
a is the intercept and b is the slope. Each residual is the distance between y and the
fitted value ŷ at location x and we are interested in the sum of the residuals:

X

y � a � bx� �
which we shall prove is equal to zero. First, we note that the best-fit regression line
passes through the point x; y� � so that we know that y � a � bx. We can rearrange this
to find the value of the intercept:

a � y � bx

We can substitute this value in the equation for the sum of the residuals (above):
X

y � y � bx � bx� �
Now we apply the summation, remembering that

P

y � ny and
P

x � nx
X

y � ny � bnx � b
X

x

Recall that y � P

y=n and that x � P

x=n so we can replace the means:

X

y � n

P

y

n
� bn

P

x

n
� b

X

x

Cancel the ns to get
X

y �X

y � b
X

x � b
X

x � 0

which completes the proof.
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To get an overview of what is involved, it is useful to plot the sum of the squares of the
residuals against the value of the parameter we are trying to estimate. Let us take the slope as
our example. We know one thing for certain about our straight-line model; it will pass through
the point in the centre of the cloud of data whose coordinates are (x; y). The best-fit line will
be pivoted about the mean values of x and y and our job is to find the best value for this slope –
the one that minimizes the sum of squares of the red lines in the graph above. It should be
reasonably clear that if our estimate of the slope is too steep, then the fit will be poor and the
sum of squares will be large. Likewise, if our estimate of the slope is too shallow, then the fit
will be poor and the sum of squares will be large. Somewhere between these two extremes,
there will be a value for the slope that minimizes the sum of squares. This is the best-fit value
that we want to discover. First we need to loop thorough an appropriate range of values which
will include the best-fit value (say �1.4< b<�1.0) and work out the sum of the squared
residuals: let us call this quantity sse (you will see why later):

• change the value of the slope b

• work out the new intercept a � y � bx

• predict the fitted values of growth for each level of tannin a � bx

• work out the residuals y � a � bx

• square them and add them up,
P

y � a � bx� �2
• associate this value of sse[i] with the current estimate of the slope b[i]

Once this process is complete, we can produce a U-shaped graph with the squared
residuals on the y axis and the estimate of the slope on the x axis. Now we find the minimum
value of sse (it turns out to be 20.072) and draw a horizontal dashed green line. At the point
where this minimum touches the graph, we read down to the x axis to find the best value of
the slope (the red arrow). This is the value (b=�1.217) that R provided for us earlier.
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Here is the R code that produces the figure and extracts the best estimate of b:

b <- seq(-1.43,-1,0.002)
sse <- numeric(length(b))
for (i in 1:length(b)) {

a <- mean(growth)-b[i]*mean(tannin)
residual <- growth - a - b[i]*tannin
sse[i] <- sum(residual^2)

}

plot(b,sse,type="l",ylim=c(19,24))
arrows(-1.216,20.07225,-1.216,19,col="red")
abline(h=20.07225,col="green",lty=2)
lines(b,sse)

b[which(sse==min(sse))]

Calculations Involved in Linear Regression

We want to find the minimum of
P

d2 � P �y � a � bx�2. To work this out we need the
‘famous five’: these are

P

y2 and
P

y,
P

x2 and
P

x and a new quantity,
P

xy, the sum of
products. The sum of products is worked out pointwise, so for our data, it is:

tannin

[1] 0 1 2 3 4 5 6 7 8

growth

[1] 12 10 8 11 6 7 2 3 3

tannin*growth

[1] 0 10 16 33 24 35 12 21 24

We have 0× 12= 0, plus 1× 10= 10, plus 2× 8= 16, and so on:

sum(tannin*growth)

[1] 175

The next thing is to use the famous five to work out three essential ‘corrected sums’: the
corrected sum of squares of x, the corrected sum of squares of y and the corrected sum of
products, xy. The corrected sums of squares of y and x should be familiar to you:

SSY � X

y2 �
P

y
� �2

n

SSX � X

x2 �
P

x
� �2

n

because if we wanted the variance in y, we would just divide SSY by its degrees of freedom
(and likewise for the variance in x; see p. 55). It is only the corrected sum of products that is
novel, but its structure is directly analogous. Think about the formula for SSY, above. It is
‘the sum of y times y’

P

y2, ‘minus the sum of y times the sum of y’
P

y
� �2

‘divided by the
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sample size’, n. The formula for SSX is similar. It is ‘the sum of x times x’
P

x2, ‘minus the
sum of x times the sum of x’

P

x
� �2

‘divided by the sample size’, n. Now the corrected sum
of products is:

SSXY � X

xy �
P

x
� �

P

y
� �

n

If you look carefully you will see that this has exactly the same kind of structure. It is ‘the
sum of x times y’

P

xy, ‘minus the sum of x times the sum of y ’
P

x
� �

P

y
� �

‘divided by the
sample size’, n.

These three corrected sums of squares are absolutely central to everything that follows
about regression and analysis of variance, so it is a good idea to reread this section as often as
necessary, until you are confident that you understand what SSX, SSY and SSXY represent
(Box 7.3).

Box 7.3. Corrected sums of squares and products in regression

The total sum of squares is SSY, the sum of squares of x is SSX, and the corrected sum
of products is SSXY:

SSY � X

y2 �
P

y
� �2

n

SSX � X

x2 �
P

x
� �2

n

SSXY � X

xy �
P

x
P

y

n

The explained variation is the regression sum of squares, SSR:

SSR � SSXY2

SSX

The unexplained variation is the error sum of squares, SSE, can be obtained by
difference

SSE � SSY � SSR

but SSE is defined as the sum of the squares of the residuals, which is

SSE � X �y � a � bx�2

The correlation coefficient, r, is given by

r � SSXY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSX � SSY
p
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The next question is how we use SSX, SSY and SSXY to find the maximum likelihood
estimates of the parameters and their associated standard errors. It turns out that this step is
much simpler than what has gone before. The maximum likelihood estimate of the slope, b,
that we extracted from the graph (above) is just:

b � SSXY

SSX

(the detailed derivation of this is in Box 7.1).
Now that we know the value of the slope, we can use any point on the fitted straight line to

work out the maximum likelihood estimate of the intercept, a. One part of the definition of
the best-fit straight line is that it passes through the point (x; y) determined by the mean
values of x and y. Since we know that y � a � bx, it must be the case that y � a � bx, and so

a � y � bx �
P

y

n
� b

P

x

n

We can work out the parameter values for our example. To keep things as simple as
possible, we can call the variables SSX, SSY and SSXY (note that R is ‘case sensitive’ so the
variable SSX is different from ssx):

Box 7.4. The shortcut formula for the sum of products, SSXY

SSXY is based on the expectation of the product �x � x��y � y�. Start by multiplying out
the brackets:

�x � x��y � y� � xy � xy � yx � xy

Now apply the summation, remembering that
P

xy � y
P

x and
P

yx � x
P

y:

X

xy � y
X

x � x
X

y � nxy

We know that
P

x � nx and that
P

y � ny, so

X

xy � nyx � nxy � nxy � X

xy � nxy

Now replace the product of the two means by
P

x=n �P

y=n

X

xy � n

P

x

n

P

y

n

which, on cancelling the ns, gives the corrected sum of products as

SSXY � X

xy �
P

x
P

y

n
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SSX <- sum(tannin^2)-sum(tannin)^2/length(tannin)
SSX

[1] 60

SSY <- sum(growth^2)-sum(growth)^2/length(growth)
SSY

[1] 108.8889

SSXY <- sum(tannin*growth)-sum(tannin)*sum(growth)/length(tannin)
SSXY

[1] -73

That is all we need. So the slope is

b � SSXY

SSX
� �73

60
� �1:2166667

and the intercept is given by

a �
P

y

n
� b:

P

x

n
� 62

9
� 1:2166667

36
9

� 6:8889 � 4:86667 � 11:755556

Now we can write the maximum likelihood regression equation in full:

y � 11:75556 � 1:216667x

This, however, is only half of the story. In addition to the parameter estimates,
a= 11.756 and b=�1.2167, we need to measure the unreliability associated with each of
the estimated parameters. In other words, we need to calculate the standard error of the
intercept and the standard error of the slope. We have already met the standard error of a
mean, and we used it in calculating confidence intervals (p. 60) and in doing Student’s
t test (p. 91). Standard errors of regression parameters are similar in so far as they are
enclosed inside a big square-root term (so that the units of the standard error are the same
as the units of the parameter), and they have the error variance, s2, in the numerator. There
are extra components, however, which are specific to the unreliability of a slope or an
intercept (see Boxes 7.6 and 7.7 for details). Before we can work out the standard errors,
however, we need to know the value of the error variance s2, and for this we need to carry
out an analysis of variance.

Partitioning Sums of Squares in Regression: SSY = SSR + SSE

The idea is simple: we take the total variation in y, SSY, and partition it into components that
tell us about the explanatory power of our model. The variation that is explained by the
model is called the regression sum of squares (denoted by SSR), and the unexplained
variation is called the error sum of squares (denoted by SSE; this is the sum of the squares of
the lengths of the red lines that we drew on the scatterplot on p. 119). Then SSY= SSR+ SSE
(the proof is given in Box 7.5).
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Box 7.5. Proof that SSY= SSR+ SSE

Let us start with what we know. The difference between y and y is the sum of the
differences y � ŷ and ŷ � y, as you can see from the figure:

Inspection of the figure shows clearly that y � y� � � y � ŷ� � � ŷ � y� �. It is not
obvious, however, that the sums of the squares of these three quantities should be
equal. We need to prove that.

First, square the terms on both sides of the equation

y � y� �2 � y � ŷ� �2 � ŷ � y� �2
to get

y2 � 2yy � y2 � y2 � 2yŷ � ŷ2 � ŷ2 � 2ŷy � y2

From both sides, subtract y2 � y2 to leave

�2yy � �2yŷ � 2ŷ2 � 2ŷy

Apply summation then set to zero:

0 � X

2yy �X

2yŷ �X

2ŷ2 �X

2ŷy

Now group the terms with and without y:

0 � X

2yy �X

2ŷy �X

2ŷ2 �X

2yŷ
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Now, in principle, we could compute SSE because we know that it is the sum of the
squares of the deviations of the data points from the fitted model,

P

d2 � P �y � a � bx�2.
Since we know the values of a and b, we are in a position to work this out. The formula is
fiddly, however, because of all those subtractions, squarings and addings up. Fortunately,
there is a very simple shortcut that involves computing SSR, the explained variation, rather
than SSE. This is because

SSR � b:SSXY

Because y is a constant, we can take it outside the summation along with the 2:

0 � 2y
X�y � ŷ� � 2

X

ŷ�ŷ � y�
We already know that

P�y � ŷ� � 0 from Box 7.2, so all that remains is to prove is that
2
P

ŷ�ŷ � y� � 0. This requires more algebra, because we have to replace ŷ with
a � bx � y � b�x � x�. First multiply through the bracket to get ŷ2 � yŷ, then replace
the ŷ:

y � b x � x� �� � y � b x � x� �� � � y y � b x � x� �� �
This is the gory bit. Multiply out the brackets:

y2 � 2by x � x� � � b2 x � x� �2 � yy � by x � x� �
Next, apply the summation, recalling that

P

y2 � ny2:

ny2 � 2by
X

x � x� � � b2
X

x � x� �2 � y
X

y � b
X

y x � x� �
Now replace y with

P

y

n , cancel the n and note that ny2 � y
P

y to obtain

2b

P

y

n

X

x � x� � � b2
X

x � x� �2 � b
X

y x � x� �

Notice that the first of the three terms involves
P

x � x� � so this must be zero, leaving

b2
X

x � x� �2 � b
X

y x � x� �
Take �b outside the bracket and note that

P

x � x� �2 � SSX and
P

y x � x� � � SSXY ,
so

�b SSXY � b SSX� �
Finally, remember that the definition of the slope, b= SSXY/SSX so b.SSX= SSXY,
giving

�b SSXY � SSXY� � � 0
to complete the proof.
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so we can immediately work out SSR � �1:21667 � �73 � 88:81667. And since SSY=
SSR+ SSE we can get SSE by subtraction:

SSE � SSY � SSR � 108:8889 � 88:81667 � 20:07222

These components are now drawn together in what is known as the ‘ANOVA table’.
Strictly, we have analysed sums of squares rather than variances up to this point, but you will
see why it is called analysis of variance shortly. The leftmost column of the ANOVA table
lists the sources of variation: regression, error and total in our example. The next column
contains the sums of squares, SSR, SSE and SSY. The third column is in many ways the most
important to understand; it contains the degrees of freedom. There are n points on the graph
(n= 9 in this example). So far, our table looks like this:

Source Sum of squares Degrees of freedom Mean squares F ratio

Regression 88.817
Error 20.072
Total 108.889

We shall work out the degrees of freedom associated with each of the sums of squares in
turn. The easiest to deal with is the total sum of squares, because it always has the same
formula for its degrees of freedom. The definition is SSY � P �y � y�2, and you can see that
there is just one parameter estimated from the data: the mean value, y. Because we have
estimated one parameter from the data, we have n� 1 degrees of freedom (where n is the
total number of points on the graph; 9 in our example). The next easiest to work out is
the error sum of squares. Let us look at its formula to see how many parameters need to be
estimated from the data before we can work out SSE � P �y � a � bx�2. We need to know
the values of both a and b before we can calculate SSE. These are estimated from the data, so
the degrees of freedom for error are n� 2. This is important, so reread the last sentence if you
do not see it yet. The most difficult of the three is the regression degrees of freedom, because
you need to think about this one in a different way. The question is this: how many extra
parameters, over and above the mean value of y, did you estimate when fitting the regression
model to the data? The answer is 1. The extra parameter you estimated was the slope, b. So
the regression degrees of freedom in this simple model, with just one explanatory variable, is
1. This will only become clear with practice.

To complete the ANOVA table, we need to understand the fourth column, headed ‘Mean
squares’. This column contains the variances, on which analysis of variance is based. The
key point to recall is that

variance � sum of squares
degrees of freedom

This is very easy to calculate in the context of the ANOVA table, because the relevant
sums of squares and degrees of freedom are in adjacent columns. Thus the regression
variance is just SSR/1= SSR, and the error variance is s2= SSE/(n� 2). Traditionally, one
does not fill in the bottom box (it would be the overall variance in y, SSY/(n� 1)). Finally,
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the ANOVA table is completed by working out the F ratio, which is a ratio between two
variances. In most simple ANOVA tables, you divide the treatment variance in the
numerator (the regression variance in this case) by the error variance s2 in the denominator.
The null hypothesis under test in a linear regression is that the slope of the regression line is
zero (i.e. no dependence of y on x). The two-tailed alternative hypothesis is that the slope is
significantly different from zero (either positive or negative). In many applications it is not
particularly interesting to reject the null hypothesis, because we are interested in the effect
sizes (estimates of the slope and intercept) and their standard errors. We often know from the
outset that the null hypothesis is false. Nevertheless, to test whether the F ratio is sufficiently
large to reject the null hypothesis, we compare our test statistic (the calculated value of F in
the final column of the ANOVA table) with the critical value of F. Recall that the test
statistic is the value of F that is expected by chance alone when the null hypothesis is true.
We find the critical value of F from quantiles of the F distribution qf, with 1 d.f. in the
numerator and n� 2 d.f. in the denominator (as described below). Here is the completed
ANOVA table:

Source Sum of squares Degrees of freedom Mean squares F ratio

Regression 88.817 1 88.817 30.974
Error 20.072 7 s2= 2.86746
Total 108.889 8

Notice that the component degrees of freedom add up to the total degrees of freedom (this
is always true, in any ANOVA table, and is a good check on your understanding of the
design of the experiment). The last question concerns the magnitude of the F ratio= 30.974:
is it big enough to justify rejection of the null hypothesis? The critical value of the F ratio is
the value of F that would arise due to chance alone when the null hypothesis was true, given
that we have 1 d.f. in the numerator and 7 d.f. in the denominator. We have to decide on the
level of uncertainty that we are willing to put up with; the traditional value for work like this
is 5%, so our certainty is 0.95. Now we can use quantiles of the F distribution, qf, to find the
critical value:

qf(0.95,1,7)

[1] 5.591448

Because our calculated value of F (the test statistic= 30.974) is much larger than the
critical value (5.591), we can be confident in rejecting the null hypothesis. Perhaps a better
thing to do, rather than working rigidly at the 5% uncertainty level, is to ask what is the
probability of getting a value for F as big as 30.974 or larger if the null hypothesis is true. For
this we use 1-pf rather than qf:

1-pf(30.974,1,7)

[1] 0.0008460725

It is very unlikely indeed (p< 0.001).
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Next, we can use the calculated error variance s2 = 2.867 to work out the standard
errors of the slope (Box 7.6) and the intercept (Box 7.7). First the standard error of
the slope:

SEb �
ffiffiffiffiffiffiffiffi

s2

SSX

r

�
ffiffiffiffiffiffiffiffiffiffiffi

2:867
60

r

� 0:2186

Box 7.6. The standard error of the regression slope

This quantity is given by

SEb �
ffiffiffiffiffiffiffiffi

s2

SSX

r

The error variance s2 comes from the ANOVA table and is the quantity used in
calculating standard errors and confidence intervals for the parameters, and in carrying
out hypothesis testing. SSX measures the spread of the x values along the x axis. Recall
that standard errors are unreliability estimates. Unreliability increases with the error
variance, so it makes sense to have s2 in the numerator (on top of the division). It is less
obvious why unreliability should depend on the range of x values. Look at these two
graphs that have exactly the same slopes (b= 2) and intercepts (a= 3).

The difference is that the left-hand graph has all of its x values close to the mean
value of x, while the graph on the right has a broad span of x values. Which of these
do you think would give the most reliable estimate of the slope? It is pretty clear that
it is the graph on the right, with the wider range of x values. Increasing the spread
of the x values reduces unreliability of the estimated slope and hence appears in
the denominator (on the bottom of the equation). What is the purpose of the big
square root term? This is there to make sure that the units of the unreliability
estimate are the same as the units of the parameter whose unreliability is being
assessed. The error variance is in units of y squared, but the slope is in units of y per
unit change in x.
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Box 7.7. The standard error of the intercept

This quantity is given by

SEa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
P

x2

n � SSX

r

which is like the formula for the standard error of the slope, but with two additional
terms. Uncertainty declines with increasing sample size n. It is less clear why
uncertainty should increase with

P

x2. The reason for this is that uncertainty in
the estimate of the intercept increases, the further away from the intercept that the
mean value of x lies. You can see this from the following graphs of y= 3+ 2x (solid
black lines). On the left is a graph with a low value of x � 2 and on the right an
identical graph (same slope and intercept) but estimated from a data set with a higher
value of x � 9. In both cases there is a variation in the slope from b= 1.5 to b= 2.5
(dotted blue lines). Compare the difference in the prediction of the intercept in the
two cases.

Confidence in predictions made with linear regression declines with the square of
the distance between the mean value of x and the value of x at which the prediction
is to be made (i.e. with �x � x�2). Thus, when the origin of the graph is a long way
from the mean value of x, the standard error of the intercept will be large, and
vice versa.

In general, the standard error for a predicted value ŷ is given by:

SEŷ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1
n
� �x � x�2

SSX

� �

s

Note that the formula for the standard error of the intercept is just the special case of
this for x= 0.
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The formula for the standard error of the intercept is a little more involved (Box 7.7):

SEa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
P

x2

n � SSX

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:867 � 204
9 � 60

r

� 1:0408

Now that we know where all the numbers come from, we can repeat the analysis in R and
see just how straightforward it is. It is good practice to give the statistical model a name:
model is as good as any.

model <- lm(growth∼tannin)

Then, you can do a variety of things with the model. The most important, perhaps, is to
see the details of the estimated effects, which you get from the summary function:

summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7556 1.0408 11.295 9.54e-06 ***
tannin -1.2167 0.2186 -5.565 0.000846 ***

Residual standard error: 1.693 on 7 degrees of freedom
Multiple R-squared: 0.8157, Adjusted R-squared: 0.7893
F-statistic: 30.97 on 1 and 7 DF, p-value: 0.0008461

This shows everything you need to know about the parameters and their standard
errors (compare the values for SEa and SEb with those you calculated long-hand, above).
We shall meet the other terms shortly (residual standard error, multiple R-squared
and adjusted R-squared). The p value and the F statistic are familiar from the
ANOVA table.

If you want to see the ANOVA table rather than the parameter estimates, then the
appropriate function is summary.aov:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
tannin 1 88.82 88.82 30.97 0.000846 ***
Residuals 7 20.07 2.87

This shows the error variance (s2 = 2.87) along with SSR (88.82) and SSE (20.07), and
the p value we just computed using 1-pf. Of the two sorts of summary table, summary.

lm is vastly the more informative, because it shows the effect sizes (in this case the slope
of the graph and the intercept) and their unreliability estimates (the standard errors of the
slope and intercept). Generally, you should resist the temptation to put ANOVA tables in
your written work. The important information like the p value and the error variance can
be put in the text, or in figure legends, much more efficiently. ANOVA tables put far too
much emphasis on hypothesis testing, and show nothing directly about effect sizes or
their unreliabilities.
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Measuring the Degree of Fit, r2

There is a very important issue that remains to be considered. Two regression lines can have
exactly the same slopes and intercepts, and yet be derived from completely different
relationships:

We need to be able to quantify the degree of fit, which is low in the graph on the left
and high in the one on the right. In the limit, all the data points might fall exactly on
the line. The degree of scatter in that case would be zero and the fit would be perfect
(we might define a perfect fit as 1). At the other extreme, x might explain none of
the variation in y at all; in this case, fit would be 0 and the degree of scatter would
be 100%.

Can we combine what we have learned about SSY, SSR and SSE into a measure of fit that
has these properties? Our proposed metric is the fraction of the total variation in y that is
explained by the regression. The total variation is SSY and the explained variation is SSR,
so our measure – let us call it r2

– is given by

r2 � SSR

SSY

This varies from 1, when the regression explains all of the variation in y (SSR= SSY), to 0
when the regression explains none of the variation in y (SSE= SSY).
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The formal name of this quantity is the coefficient of determination, but these days most
people just refer to it as ‘r-squared’. We have already met the square root of this quantity
(r or ρ), as the correlation coefficient (p. 108).

Model Checking

The final thing you will want to do is to expose the model to critical appraisal.
The assumptions we really want to be sure about are constancy of variance and
normality of errors. The simplest way to do this is with four built-in model-checking
plots:

par(mfrow=c(2,2))
plot(model)

The first graph (top left) shows residuals on the y axis against fitted values on the x
axis. It takes experience to interpret these plots, but what you do not want to see is lots of
structure or pattern in the plot. Ideally, as here, the points should look like the sky at
night. It is a major problem if the scatter increases as the fitted values get bigger;
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this would show up like a wedge of cheese on its side (like this ◀ or less commonly like
this ▶; see p. 65). But in our present case, everything is OK on the constancy of variance
front.

The next plot (top right) is the normal quantile–quantile plot (qqnorm, p. 79) which
should be a straight line if the errors are normally distributed. Again, the present example
looks fine. If the pattern were S-shaped or banana-shaped, we would need to fit a different
model to the data.

The third plot (bottom left) is like the first, but on a different scale; it shows the square root
of the standardized residuals (where all the values are positive) against the fitted values; if
there was a problem, the points would be distributed inside a triangular shape, with the
scatter of the residuals increasing as the fitted values increase. But there is no such pattern
here, which is good.

The fourth and final plot (lower right) is all about highlighting influential points
(p. 148); these are the points on the graph that have the biggest effects on the parameter
estimates. It shows Cook’s distance as red contours on a plane defined by leverage and
standardized residuals, with each point on the graph represented by an open circle, and
selected points numbered (based on the order in which they appear in the dataframe). You
can see that point number 9 has the highest leverage, point number 7 (all but hidden
behind the label) has the highest Cook’s distance, and point number 4 has the largest
residual. In my opinion, this information is more clearly displayed in tabular form; try
influence.measures(model).

It is the top two graphs of plot(model) that are most important, and you should
concentrate on these. The important point is that we always do model-checking; the
summary(model) table is not the end of the process of regression analysis.

Transformation

You must not fall into the trap of thinking that y= a+ bx is the only two-parameter model
for describing the relationship between the response variable and a single continuous
explanatory variable. Model choice is a vitally important part of statistical analysis. Here are
some other useful two-parameter models:

logX y � a � b ln x� � 1.

log Y y � exp a � bx� � 2.

asymptotic y � ax

1 � bx
3.

reciprocal
y � a � b

x
4.

power law y � axb 5.

exponential y � aebx 6.
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It is straightforward to estimate the parameters of such models if the equations can be
transformed so that they become linear in their parameters. An example should make this
clear. The following data show the relationship between radioactive emissions and time:

par(mfrow=c(1,1))
data <- read.csv("c:\\temp\\decay.csv")
attach(data)
names(data)

[1] "time" "amount"

plot(time,amount,pch=21,col="blue",bg="green")

We start by fitting a straight line through the scatterplot, using abline with a linear model:

abline(lm(amount∼time),col="red")
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This draws attention to the pronounced curvature in the data. Most of the residuals at low
values of time are positive, most of the residuals for intermediate values of time are
negative, and most of the residuals at high values of time are positive. This is clearly not a
good model for these data.

There is a very important point here. If, instead of looking at the fit of the model to the
data using plot, we had simply done the statistics, then we might easily have come to the
opposite conclusion. Here is a summary of the linear model applied to these data:

summary(lm(amount∼time))

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.5534 5.0277 16.82 < 2e-16 ***
time -2.8272 0.2879 -9.82 9.94e-11 ***

Residual standard error: 14.34 on 29 degrees of freedom
Multiple R-squared: 0.7688, Adjusted R-squared: 0.7608
F-statistic: 96.44 on 1 and 29 DF, p-value: 9.939e-11

The model explains more than 76% of the variation in the response (a very high value of
r-squared) and the p value is vanishingly small. The moral is that p values and r-squared are
not good measures of model adequacy.

Because the data relate to a decay process, it might be that an exponential function y �
ae�bx describes the data better. If we can linearize this equation, then we can estimate the
parameter values using a linear model. Let us try taking logs of both sides

y � ae�bx

log y� � � log a� � � bx

If we replace log(y) by Y and log(a) by A, you can see that we have a linear model:

Y � A � bx

The intercept of this linear model is A and the slope is �b. To fit the model we have the
untransformed values of time on the x axis and the log of amount on the y axis:

plot(time,log(amount),pch=21,col="blue",bg="red")
abline(lm(log(amount)∼time),col="blue")
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The fit to the model is greatly improved. There is a new issue, however, in that the
variance appears to increase with time and, as you will recall, non-constant variance is a
potentially serious problem. Let us estimate the parameter values of this exponential model
and then check its assumptions using plot(model).

model <- lm(log(amount)∼time)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.547386 0.100295 45.34 < 2e-16 ***
time -0.068528 0.005743 -11.93 1.04e-12 ***

Residual standard error: 0.286 on 29 degrees of freedom
Multiple R-squared: 0.8308, Adjusted R-squared: 0.825
F-statistic: 142.4 on 1 and 29 DF, p-value: 1.038e-12

The slope of the straight line is �0.068528 and its standard error is 0.005743. The value of
r2 is even higher following transformation (83%) and the p value is even lower. The
intercept of 4.547386 with its standard error of 0.100295 is for A, not the value we need for
our exponential equation, but a is the antilog of A. When we back-transform, the standard
errors become asymmetric up and down. It may take a moment for you to see why this is the
case. Let us add one standard error to the intercept and subtract one standard error from it to
get upper and lower intervals.

upper <- 4.547386 + 0.100295
lower <- 4.547386 - 0.100295

Now we return to the original scale of measurement by taking antilogs using exp:

exp(upper)

[1] 104.3427

exp(lower)

[1] 85.37822

so the intercept on the original axis is between 85.38 and 104.34, but the best estimate for the
intercept is

exp(4.547386)

[1] 94.38536

which means that the interval above the intercept is 9.957 but the interval below it is
9.007. Beginners often find it disconcerting that the two unreliability measures are
different sizes.

Now we check the assumptions of the model using plot(model):
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The good news is that the normality of errors assumption looks good (the top right plot is
reasonably straight). As we guessed by looking at the transformed data, however, the
variance does show strong signs of non-constancy (the top left and bottom left plots). The
bottom right plot shows that data points 30 and 31 have high leverage and point number 28
has a large residual. We shall see how deal with these issues later, but for the moment, we
want to plot the curved line through the scatterplot on the original scale of measurement.

par(mfrow=c(1,1))
plot(time,amount,pch=21,col="blue",bg="green")

The key thing to understand about drawing curved lines in R is that curves are made up of
lots of small straight-line sections. Once you get more than about 100 sections in the width
of a graph, the curve typically looks quite smooth. Looking at the scatterplot, you can see
that we want the values of time to go from 0 up to 30. To get more than 100 segments to the
curve we therefore want more than three steps per unit time; let us take four steps, which
makes the sequence interval 0.25. We call the variable xv, to stand for ‘x values’:

xv <- seq(0,30,0.25)

This gives us 121 values (length(xv)). We know the equation for the exponential curve
is 94.38536 exp(�0.068528 x), so now we can calculate the y values (amounts) associated
with each x value:

yv <- 94.38536 * exp(-0.068528 * xv)
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Now we use the lines function to add the curve to the scatterplot:

lines(xv,yv,col="red")

As you can see, our model is a good description of the data for intermediate values of
time, but the model is poor at predicting amount for time= 0 and for time > 28. Clearly,
more work is required to understand what is going on at the extremes, but exponential decay
describes the central part of the data reasonably well.

Polynomial Regression

The relationship between y and x often turns out not to be a straight line. But Occam’s razor
requires that we fit a linear model unless a non-linear relationship is significantly better at
describing the data. So this begs the question: how do we assess the significance of
departures from linearity? One of the simplest ways is to use polynomial regression

y � a � bx � cx2 � dx3 � . . .

The idea of polynomial regression is straightforward. As before, we have just one
continuous explanatory variable, x, but we can fit higher powers of x, such as x2 and x3, to
the model in addition to x to describe curvature in the relationship between y and x. It is
useful to experiment with the kinds of graphs that can be generated with very simple models.
Even if we restrict ourselves to the inclusion of a quadratic term, x2, there are many curves
we can describe, depending upon the signs of the linear and quadratic terms:

par(mfrow=c(2,2))
curve(4+2*x-0.1*x^2,0,10,col="red",ylab="y")
curve(4+2*x-0.2*x^2,0,10,col="red",ylab="y")
curve(12-4*x+0.3*x^2,0,10,col="red",ylab="y")
curve(4+0.5*x+0.1*x^2,0,10,col="red",ylab="y")
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In the top left panel, there is a curve with positive but declining slope, with no hint
of a hump (y � 4 � 2x � 0:1x2). At top right we have a curve with a clear maximum
(y � 4 � 2x � 0:2x2), and at bottom left a curve with a clear minimum (y � 12 � 4x
� 0:35x2). The bottom right curve shows a positive association between y and x with
the slope increasing as x increases (y � 4 � 0:5x � 0:1x2). So you can see that a simple
quadratic model with just three parameters (an intercept, a slope for x, and a slope for x2) is
capable of describing a wide range of functional relationships between y and x. It is very
important to understand that the quadratic model describes the relationship between y and x;
it does not pretend to explain the mechanistic (or causal) relationship between y and x.

We can use the decay data as an example of model comparison. How much better than a
linear model with two parameters (call it model2) is a quadratic with three parameters
(model3)? The function I stands for ‘as is’ and allows you to use arithmetic operators like
caret (^ for calculating powers) in a model formula where the same symbol would otherwise
mean something different (in a model formula, caret means the order of interaction terms to
be fitted).

model2 <- lm(amount∼time)
model3 <- lm(amount∼time+I(time^2))
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 106.38880 4.65627 22.849 < 2e-16 ***
time -7.34485 0.71844 -10.223 5.90e-11 ***
I(time^2) 0.15059 0.02314 6.507 4.73e-07 ***

Residual standard error: 9.205 on 28 degrees of freedom
Multiple R-squared: 0.908, Adjusted R-squared: 0.9014
F-statistic: 138.1 on 2 and 28 DF, p-value: 3.122e-15
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You can see that the slope for the quadratic term (0.15059) is highly significant, which
indicates important curvature in the data. To see how much better the quadratic model is
when compared to the simpler linear model we can use AIC (see p. 232) or anova (see
p. 172):

AIC(model2,model3)

df AIC
model2 3 257.0016
model3 4 230.4445

The much lower AIC of the quadratic model3 means that it is preferred (see p. 232 for
details). Alternatively, if you like p values, then comparison of the two models by anova

shows that the curvature is highly significant (p< 0.000001):

anova(model2,model3)

Analysis of Variance Table

Model 1: amount ∼ time
Model 2: amount ∼ time + I(time^2)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 29 5960.6
2 28 2372.6 1 3588.1 42.344 4.727e-07 ***

Non-Linear Regression

Sometimes we have a mechanistic model for the relationship between y and x, and we want to
estimate the parameters and standard errors of the parameters of a specific non-linear
equation from data. There are a number of frequently-used non-linear models to choose from.
What we mean in this case by non-linear is not that the relationship is curved (it was curved in
the case of polynomial regressions, but these were linear models), but that the relationship
cannot be linearized by transformation of the response variable or the explanatory variable
(or both). Here is an example: it shows jaw bone length as a function of age in deer. Theory
indicates that the relationship is an ‘asymptotic exponential’ with three parameters:

y � a � be�cx

In R, the main difference between linear models and non-linear models is that we have to
tell R the exact nature of the equation as part of the model formula when we use non-linear
modelling. In place of lm we write nls (this stands for ‘nonlinear least squares’). Then we
write y∼a-b*exp(-c*x) to spell out the precise nonlinear model we want R to fit to the
data. The slightly tedious thing is that R requires us to specify initial guesses at the values of
the parameters a, b and c (note, however, that some common non-linear models have ‘self-
starting’ versions in R which bypass this step). Let us plot the data and work out sensible
starting values. It always helps in cases like this to evaluate the equation’s ‘behaviour at the
limits’. That is to say, the values of y when x= 0 and when x= infinity. For x= 0, we have
exp(-0) which is 1, and 1× b= b so y= a� b. For x= infinity, we have exp(-infinity)

which is 0, and 0 × b= 0 so y= a. That is to say, the asymptotic value of y is a,
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and the intercept is a� b. If you need to check your maths, you can do calculations with
infinity and zero in R like this:

exp(-Inf)

[1] 0

exp(-0)

[1] 1

Here are the data on bone length as a function of age:

deer <- read.csv("c:\\temp\\jaws.csv")
attach(deer)
names(deer)

[1] "age" "bone"

par(mfrow=c(1,1))
plot(age,bone,pch=21,bg="lightgrey")

Inspection suggests that a reasonable estimate of the asymptote is a≈ 120 and intercept
≈ 10, so b= 120� 10= 110. Our guess of the value of c is slightly harder. Where the curve
is rising most steeply, jaw length is about 40 where age is 5; rearranging the equation gives

c � � log��a � y�=b�
x

� � log�120 � 40�=110�
5

� 0:06369075

Now that we have the three parameter estimates, we can provide them to R as the starting
conditions as part of the nls call like this: list(a = 120, b = 110, c = 0.064)
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model <- nls(bone∼a-b*exp(-c*age),start=list(a=120,b=110,c=0.064))
summary(model)

Formula: bone ∼ a - b * exp(-c * age)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.2528 2.9139 39.55 < 2e-16 ***
b 118.6875 7.8925 15.04 < 2e-16 ***
c 0.1235 0.0171 7.22 2.44e-09 ***

Residual standard error: 13.21 on 51 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 2.381e-06

All the parameters appear to be significant at p< 0.001. Beware, however. This does not
necessarily mean that all the parameters need to be retained in the model. In this case,
a= 115.2528 with SE= 2.9139 is clearly not significantly different from b= 118.6875 with
SE= 7.8925 (they would need to differ by more than 2 standard errors to be significant). So
we should try fitting the simpler two-parameter model

y � a�1 � e�cx�

model2 <- nls(bone∼a*(1-exp(-c*age)),start=list(a=120,c=0.064))
anova(model,model2)

Analysis of Variance Table

Model 1: bone ∼ a - b * exp(-c * age)
Model 2: bone ∼ a * (1 - exp(-c * age))
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 51 8897.3
2 52 8929.1 -1 -31.843 0.1825 0.671

Model simplification was clearly justified (p= 0.671), so we accept the two-parameter
version, model2, as our minimal adequate model. We finish by plotting the curve through
the scatterplot. The age variable needs to go from 0 to 50:

av <- seq(0,50,0.1)

and we use predict with model2 to generate the predicted bone lengths:

bv <- predict(model2,list(age=av))

Note the use of list to assign our steps along the x axis (called av) to the variable used
for the x axis in model2 (called age).

lines(av,bv,col="blue")
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The parameters of this curve are obtained from model2:

summary(model2)

Formula: bone ∼ a * (1 - exp(-c * age))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 115.58056 2.84365 40.645 < 2e-16 ***
c 0.11882 0.01233 9.635 3.69e-13 ***

Residual standard error: 13.1 on 52 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 1.356e-06

which we could write like this y � 115:58�1 � e�0:1188x� or like this y= 115.58(1�
exp(�0.1188 x)) according to taste or journal style. If you want to present the standard
errors as well as the parameter estimates, you could write:

The model y= a (1� exp(�b x)) had a= 115.58± 2.84 (1 s.e., n= 54) and b= 0.1188
± 0.0123 (1 s.e.) and explained 84.9% of the total variation in bone length.

Note that because there are only two parameters in the minimal adequate model, we
have called them a and b (rather than a and c as in the original formulation).

You may be puzzled as to how we know that model2 explained 84.9% of the
total variation in bone length, because the summary does not give an r-squared figure.
We need to do a little more work to find SSY and SSR (see p. 123). The easiest way to
find SSY is to fit a null model, estimating only the intercept. In R, the intercept
is parameter 1 and is fitted like this: y∼1. The sum of squares associated with this model
is SSY:
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null.model <- lm(bone ∼ 1)
summary.aov(null.model)

Df Sum Sq Mean Sq F value Pr(>F)
Residuals 53 59008 1113

The key figure to extract from this is the total sum of squares SSY= 59 008. The non-
linear output (above) did not give us either SSE or SSR but it did print:

Residual standard error: 13.1 on 52 degrees of freedom

This is useful because we can get the residual variance by squaring the residual standard
error (13.12= 171.61) and convert this into the residual sum of squares SSE by multiplying
it by the degrees of freedom (52× 13.12= 8923.72). Recall that r-squared is SSR/SST
expressed as a percentage, and that SSR= SSY� SSE. Thus, the fraction of the variance in
bone length explained by our model is

100*(59008-8923.72)/59008

[1] 84.8771

Generalized Additive Models

Sometimes we can see that the relationship between y and x is non-linear but we do not
have any theory or any mechanistic model to suggest a particular functional form
(mathematical equation) to describe the relationship. In such circumstances, generalized
additive models are particularly useful, because they fit non-parametric smoothers to the
data without requiring us to specify any particular mathematical model to describe the non-
linearity. This will become clear with an example.

library(mgcv)
hump <- read.csv("c:\\temp\\hump.csv")
attach(hump)
names(hump)

[1] "y" "x"

We start by fitting the generalized additive model as a smoothed function of x, s(x):

model <- gam(y∼s(x))

Then we plot the model, and overlay the scatterplot of data points:

plot(model,col="blue")
points(x,y-mean(y),pch=21,bg="red")
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The y axis is labelled s(x,7.45) which is interpreted as saying that the smoothed
function of x shown by the solid blue curve (‘the non-parametric smoother’) involves the
equivalent of 7.45 degrees of freedom (remember that a straight line would use 2 d.f.: the
intercept and the slope). The dotted lines show the confidence interval for the location of
the smoothed function of x. On the x axis you see a rug plot, showing where the x points on
the graph are located.

The model summary is obtained in the usual way:

summary(model)

Family: gaussian
Link function: identity

Formula:
y ∼ s(x)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.95737 0.03446 56.8 <2e-16 ***

Approximate significance of smooth terms:
edf Ref.df F p-value

s(x) 7.452 8.403 116.9 <2e-16 ***

R-sq.(adj) = 0.919 Deviance explained = 92.6%
GCV score = 0.1156 Scale est. = 0.1045 n = 88

This shows that the humped relationship between y and x is highly significant (the p value
of the smooth term s(x) is less than 0.0000001). The fitted function explains 91.9% of the
variance in y (r2= 0.919). The intercept (1.95737) is just the mean value of y.

Note that because of the strong hump in the relationship, a linear model lm(y∼x)

indicates no significant relationship between the two variables (p= 0.346). This is an object
lesson in always plotting the data before you come to conclusions from the statistical
analysis; in this case, if you had started with a linear model you would have thrown out the
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baby with the bathwater by concluding that nothing was happening. In fact, something very
significant is happening but it is producing a humped, rather than a trended relationship.

Influence

One of the commonest reasons for a lack of fit is through the existence of outliers in the data.
It is important to understand, however, that a point may appear to be an outlier because of
misspecification of the model, and not because there is anything wrong with the data.

Take this circle of data that shows absolutely no relationship between y and x:

x <- c(2,3,3,3,4)
y <- c(2,3,2,1,2)

We want to draw two graphs side by side, and we want them to have the same axis scales:

windows(7,4)
par(mfrow=c(1,2))
plot(x,y,xlim=c(0,8),ylim=c(0,8))

Obviously, there is no relationship between y and x in the original data. But let’s add an
outlier at the point (7,6) using concatenation c and see what happens.

x1 <- c(x,7)
y1 <- c(y,6)
plot(x1,y1,xlim=c(0,8),ylim=c(0,8))
abline(lm(y1∼x1),col="blue")

Now, there is a significant regression of y on x. The outlier is said to be highly influential.
Testing for the presence of influential points is an important part of statistical modelling.

You cannot rely on analysis of the residuals, because by their very influence, these points
force the regression line close to them.

Measures of leverage for a given data point y are proportional to �x � x�2. The commonest
measure of leverage is

hi � 1
n
� �xi � x�2
P�xi � x�2
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where the denominator is SSX. A good rule of thumb is that a point is highly influential if its

hi >
2p
n
;

where p is the number of parameters in the model. There is a useful function called
influence.measures which highlights influential points in a given model

reg <- lm(y1∼x1)
influence.measures(reg)

Influence measures of
lm(formula = y1 ∼ x1) :

dfb.1_ dfb.x1 dffit cov.r cook.d hat inf
1 0.687 -0.5287 0.7326 1.529 0.26791 0.348
2 0.382 -0.2036 0.5290 1.155 0.13485 0.196
3 -0.031 0.0165 -0.0429 2.199 0.00122 0.196
4 -0.496 0.2645 -0.6871 0.815 0.19111 0.196
5 -0.105 -0.1052 -0.5156 1.066 0.12472 0.174
6 -3.023 4.1703 4.6251 4.679 7.62791 0.891 *

You can see point #6 is highlighted by an asterisk, drawing attention to its high influence.

Further Reading

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression, Chapman & Hall,
New York.

Hastie, T. and Tibshirani, R. (1990) Generalized Additive Models, Chapman & Hall, London.
Wetherill, G.B., Duncombe, P., Kenward, M. et al. (1986) Regression Analysis with Applications,

Chapman & Hall, London.
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8
Analysis of Variance

Analysis of variance or ANOVA is the technique we use when all the explanatory variables
are categorical. The explanatory variables are called factors, and each factor has two or more
levels. When there is a single factor with three or more levels we use one-way ANOVA. If
we had a single factor with just two levels, we would use Student’s t test (see p. 97), and this
would give us exactly the same answer that we would have obtained by ANOVA (remember
the rule that with just two levels then F= t2). Where there are two or more factors, then we
use two-way or three-way ANOVA, depending on the number of explanatory variables.
When there is replication at each level in a multi-way ANOVA, the experiment is called a
factorial design, and this allows us to study interactions between variables, in which we test
whether the response to one factor depends on the level of another factor.

One-Way ANOVA

There is a real paradox about analysis of variance, which often stands in the way of a clear
understanding of exactly what is going on. The idea of ANOVA is to compare two or more
means. But it does this by comparing variances. How can that work?

The best way to see what is happening is to work through a graphical example. To keep
things as simple as possible, we shall use a factor with just two levels at this stage, but the
argument extends to any number of levels. Suppose that we have atmospheric ozone
concentrations measured in parts per hundred million (pphm) in two commercial lettuce-
growing gardens (we shall call the gardens A and B for simplicity).

oneway <- read.csv("c:\\temp\\oneway.csv")
attach(oneway)
names(oneway)

[1] "ozone" "garden"

As usual, we begin by plotting the data, but here we plot the y values (ozone
concentrations) against the order in which they were measured:

plot(1:20,ozone,ylim=c(0,8),ylab="y",xlab="order",pch=21,bg="red")

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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There is lots of scatter, indicating that the variance in y is large. To get a feel for the overall
variance, we can plot the mean value of y, and indicate each of the residuals by a vertical line
from mean(y) to the value of y, like this:

abline(h=mean(ozone),col="blue")
for(i in 1:20) lines(c(i,i),c(mean(ozone),ozone[i]),col="green")
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We refer to this overall variation as the total sum of squares, SSY, which is the sum of the
squares of the lengths of the green lines. More formally, this is given by:

SSY � X�y � y�2

which should look familiar, because it is the formula used for defining the variance of
y (s2= sum of squares/degrees of freedom; see p. 51).

This next step is the key to understanding how ANOVA works. Instead of fitting the
overall mean value of y thorough the data, and looking at the departures of all the data points
from the overall mean, let us fit the individual treatment means (the mean for garden A and
the mean for garden B in this case), and look at the departures of data points from the
appropriate treatment mean. It will be useful if we have different colours for the different
gardens; say, black for garden A (col= 1) and red for garden B (col = 2). Note the use of
as.numeric to turn the factor levels A and B into the numbers 1 and 2 for the purposes of
selecting the colours (bg) for the plotting symbols.

plot(1:20,ozone,ylim=c(0,8),ylab="y",xlab="order",
pch=21,bg=as.numeric(garden))

abline(h=mean(ozone[garden=="A"]))
abline(h=mean(ozone[garden=="B"]),col="red")

Now it is clear that the mean ozone concentration in garden B (red) is substantially higher
than in garden A. The aim of ANOVA is to determine whether it is significantly higher, or
whether this kind of difference could come about by chance alone, when the mean ozone
concentrations in the two gardens were really the same.
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Now we draw the residuals – the differences between the measured ozone concentrations,
and the mean for the garden involved:

index <- 1:length(ozone)
for (i in 1:length(index)){
if (garden[i] == "A")

lines(c(index[i],index[i]),c(mean(ozone[garden=="A"]),ozone
[i]))
else

lines(c(index[i],index[i]),c(mean(ozone[garden=="B"]),ozone
[i]), col="red")
}

Now here’s the quiz. If the means in the two gardens are not significantly different, what
should be the difference in the lengths of the red and black residual lines in this figure and the
green lines in the first figure we drew? After a bit of thought, you should see that if the means
were the same, then the red and black horizontal lines in this figure would be in the same place,
and hence the lengths of the residual lines would be the same as in the previous figure.

We are half way there. Now, suppose that mean ozone concentration is different in the
two gardens. Would the residual lines be bigger or smaller when we compute them from
the individual treatment means (the red and black lines, as above), or from the overall mean
(the green lines in the previous figure)? They would be smaller when computed from the
individual treatment means if the individual treatment means were different.

So there it is. That is how ANOVA works. When the means are significantly different,
then the sum of squares computed from the individual treatment means will be smaller than
the sum of squares computed from the overall mean. We judge the significance of the
difference between the two sums of squares using analysis of variance.

The analysis is formalized by defining this new sum of squares: it is the sum of the
squares of the differences between the individual y values and the relevant treatment mean.
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We shall call this SSE, the error sum of squares (there has been no error in the sense of a
mistake; ‘error’ is used here as a synonym of ‘residual’). It is the sum of the squares of the
lengths of the vertical red lines added to the sum of the squares of the lengths of the vertical
black lines in the graphic above:

SSE � X

k

j�1

X�y � yj�2

We compute the mean for the jth level of the factor in advance, and then add up the
squares of the differences. Given that we worked it out this way, can you see how many
degrees of freedom should be associated with SSE? Suppose that there were n replicates in
each treatment (n= 10 in our example). And suppose that there are k levels of the factor
(k= 2 in our example). If you estimate k parameters from the data before you can work out
SSE, then you must have lost k degrees of freedom in the process. Since each of the k levels
of the factor has n replicates, there must be k× n numbers in the whole experiment
(2× 10= 20 in our example). So the degrees of freedom associated with SSE is kn� k=
k(n� 1). Another way of seeing this is to say that there are n replicates in each treatment, and
hence n� 1 degrees of freedom for error in each treatment (because 1 d.f. is lost in
estimating each treatment mean). There are k treatments (i.e. k levels of the factor) and hence
there are k(n� 1) d.f. for error in the experiment as a whole.

Now we come to the ‘analysis’ part of the analysis of variance. The total sum of squares in
y, SSY, is broken up (analysed) into components. The unexplained part of the variation is
called the error sum of squares, SSE. The component of the variation that is explained by
differences between the treatment means is called the treatment sum of squares, and is
traditionally denoted by SSA. This is because in two-way ANOVA, with two different
categorical explanatory variables, we shall use SSB to denote the sum of squares attributable
to differences between the means of the second factor. And SSC to denote the sum of squares
attributable to differences between the means of the third factor. And so on.

Analysis of variance, therefore, is based on the notion that we break down the total sum of
squares, SSY, into useful and informative components.

SSY 

SSA 

SSE 

Typically, we compute all but one of the components, then find the value of the last
component by subtraction of the others from SSY. We already have a formula for SSE, so we
could obtain SSA by difference: SSA � SSY � SSE. Starting with SSY, we calculate the sum
of the squares of the differences between the y values and the overall mean:

SSY <- sum((ozone-mean(ozone))^2)
SSY

[1] 44

The question now is: ‘How much of this 44 is attributable to differences between the
means of gardens A and B (SSA= explained variation) and how much is sampling error
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(SSE= unexplained variation)?’ We have a formula defining SSE; it is the sum of the
squares of the residuals calculated separately for each garden, using the appropriate mean
value. For garden A, we get

sum((ozone[garden=="A"]-mean(ozone[garden=="A"]))^2)

[1] 12

and for garden B

sum((ozone[garden=="B"]-mean(ozone[garden=="B"]))^2)

[1] 12

so the error sum of squares is the total of these components SSE= 12+ 12= 24. Finally, we
can obtain the treatment sum of squares, SSA, by difference:

SSA � 44 � 24 � 20

At this point, we can fill in the ANOVA table (see p. 128):

Source Sum of squares Degrees of freedom Mean square F ratio

Garden 20.0 1 20.0 15.0
Error 24.0 18 s2= 1.3333
Total 44.0 19

We need to test whether an F ratio of 15.0 is large or small. To do this we compare it with
the critical value of F from quantiles of the F distribution, qf. We have 1 degree of freedom
in the numerator, and 18 degrees of freedom in the denominator, and we want to work at
95% certainty (α � 0:05):

qf(0.95,1,18)

[1] 4.413873

The calculated value of the test statistic of 15.0 is much greater than the critical value of
F= 4.41, so we can reject the null hypothesis (equality of the means) and accept the alternative
hypothesis (the two means are significantly different). We used a one-tailedF test (0.95 rather
than 0.975 in the qf function) because we are only interested in the case where the treatment
variance is large relative to the error variance. But this approach is rather old-fashioned; the
modern view is to calculate the effect size (the difference between the means is 2.0 pphm
ozone) and to state the probability that such a difference would arise by chance alone when the
null hypothesis was true and the mean ozone concentration was the same in the two gardens.
For this we use cumulative probabilities of the F distribution, rather than quantiles, like this:

1-pf(15.0,1,18)

[1] 0.001114539
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So the probability of obtaining data as extreme as ours (or more extreme) if the two means
really were the same is roughly 0.1%.

That was quite a lot of work. Here is the whole analysis in R in a single line:

summary(aov(ozone∼garden))

Df Sum Sq Mean Sq F value Pr(>F)
garden 1 20 20.000 15 0.00111 **
Residuals 18 24 1.333

The first column shows the sources of variation (SSA and SSE, respectively); note that R
leaves off the bottom row that we included for total variation, SSY. The next column shows
degrees of freedom: there are two levels of garden (A and B) so there is 2� 1= 1 d.f. for
garden, and there are 10 replicates per garden, so 10� 1= 9 d.f. per garden and two gardens,
so error d.f.= 2× 9= 18. The next column shows the sums of squares: SSA= 20 and
SSE= 24. The fourth column gives the mean squares (sums of squares divided by degrees of
freedom); the treatment mean square is 20.0 and the error variance, s2 (synonym of the
residual mean square) is 24/18= 1.3333. The F ratio is 20/1.333= 15, and the probability
that this (or a result more extreme than this) would arise by chance alone if the two means
really were the same is 0.001115 (just as we calculated long-hand, above).

We finish by carrying out graphical checks of the assumptions of the model: namely,
constancy of variance and normality of errors.

plot(aov(ozone∼garden))
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The first plot shows that the variances are identical in the two treatments (this is exactly
what we want to see). The second plot shows a reasonably straight line relationship on the
normal quantile–quantile plot (especially since, in this example, the y values are whole
numbers), so we can be confident that non-normality of errors is not a major problem.
The third plot shows the residuals against the fitted values on a different scale (constant
variance again), and the fourth plot shows Cook’s statistics, drawing attention to the fact
that points 8, 17 and 14 have large residuals.

Shortcut Formulas

In the unlikely event that you ever need to do analysis of variance using a calculator, then it
is useful to know the short-cut formula for calculating SSA. We calculated it by difference,
above, having worked out SSE long-hand. To work out SSA from first principles, the thing
you need to understand is what we mean by a ‘treatment total’. The treatment total is simply
the sum of the y values within a particular factor level. For our two gardens we have:

cbind(ozone[garden=="A"],ozone[garden=="B"])

[,1] [,2]
[1,] 3 5
[2,] 4 5
[3,] 4 6
[4,] 3 7
[5,] 2 4
[6,] 3 4
[7,] 1 3
[8,] 3 5
[9,] 5 6

[10,] 2 5

tapply(ozone,garden,sum)

A B
30 50

The totals for gardens A and B are 30 and 50 respectively, and we will call these T1 and
T2. The shortcut formula for SSA (Box 8.1) is then:

SSA �
P

T2
i

n
�

P

y
� �2

kn

We should confirm that this really does give SSA:

SSA � 302 � 502

10
� 802

2 � 10
� 3400

10
� 6400

20
� 340 � 320 � 20

which checks out. In all sorts of analysis of variance, the key point to realize is that the sum
of the subtotals squared is always divided by the number of numbers that were added
together to get each subtotal. That sounds complicated, but the idea is simple. In our case we
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squared the subtotals T1 and T2 and added the results together. We divided by 10 because
T1 and T2 were each the sum of 10 numbers.

Box 8.1. Corrected sums of squares in one-way ANOVA

The total sum of squares, SSY, is defined as the sum of the squares of the differences
between all the data points, y, and the overall mean, y:

SSY � X

k

i�1

X�y � y�2

where the inner
P

means the sum over the n replicates within each of the k factor
levels and the outer

P

means add the subtotals across each of the factor levels. The
error sum of squares, SSE, is the sum of the squares of the differences between the data
points, y, and their individual treatment means, yi:

SSE � X

k

i�1

X�y � yi�2

The treatment sum of squares, SSA, is the sum of the squares of the differences
between the individual treatment means, yi, and the overall mean, y:

SSA � X

k

i�1

X

n

j�1

�yi � y�2 � n
X

k

i�1

�yi � y�2

Squaring the bracketed term and applying summation gives
X

y2
i � 2y

X

yi � k:y
2

Now replace yi by Ti=n (where Ti is our conventional name for the k individual
treatment totals) and replace y by

P

y=k:n to get

Pk
i�1 T

2
i

n2
� 2

P

y
Pk

i�1 Ti

n:k:n
� k

P

y
P

y

k:n:k:n

Note that
Pk

i�1 Ti � Pj
i�1

Pn
j�1 yij so the right-hand positive and negative terms both

have the form
P

y
� �2

=k:n2. Finally, multiplying through by n gives

SSA �
P

T2

n
�

P

y
� �2

k:n

As an exercise, you should prove that SSY= SSA+ SSE (for a hint, see Box 7.4).
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Effect Sizes

So far we have concentrated on hypothesis testing, using summary.aov. It is usually more
informative to investigate the effects of the different factor levels, using summary.lm like this:

summary.lm(aov(ozone∼garden))

It was easy to interpret this kind of output in the context of a regression, where the rows
represent parameters that are intuitive: namely, the intercept and the slope. In the context of
analysis of variance, it takes a fair bit of practice before the meaning of this kind of output
is transparent.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 0.3651 8.216 1.67e-07 ***
gardenB 2.0000 0.5164 3.873 0.00111 **

Residual standard error: 1.155 on 18 degrees of freedom
Multiple R-squared: 0.4545, Adjusted R-squared: 0.4242
F-statistic: 15 on 1 and 18 DF, p-value: 0.001115

The rows are labelled (Intercept) and gardenB. But what do the parameter estimates
3.0 and 2.0 actually mean? And why are the standard errors different in the two rows (0.3651
and 0.5164)? After all, the variances in the two gardens were identical.

To understand the answers to these questions, we need to know how the equation for the
explanatory variables is structured when the explanatory variable, as here, is categorical.
To recap, the linear regression model is written as

lm(y∼x)

which R interprets as the two-parameter linear equation

y � a � bx

in which the values of the parameters a and b are to be estimated from the data. But what
about our analysis of variance? We have one explanatory variable, x= ‘garden’, with two
levels, A and B. The aov model is exactly analogous to the regression model

aov(y∼x)

But what is the associated equation? Let us look at the equation first, then try to
understand it:

y � a � bx1 � cx2

This looks just like a multiple regression, with two explanatory variables, x1 and x2. The
key point to understand is that x1 and x2 are the levels of the factor called x. If ‘garden’were a
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four-level factor, then the equation would have four explanatory variables in it, x1, . . . , x4.
With a categorical explanatory variable, the levels are all coded as 0 except for the level
associated with the y value in question, which is coded as 1. You will find this hard to
understand without a good deal of practice. Let us look at the first row of data in our
dataframe:

garden[1]

[1] A

So the first ozone value in the data frame comes from garden A. This means that x1= 1
and x2= 0. The equation for the first row therefore looks like this:

y � a � b � 1 � c � 0 � a � b � 1 � a � b

What about the second row of the dataframe?

garden[2]

[1] B

Because this row refers to garden B, x1 is coded as 0 and x2 is coded as 1 so the equation
for the second row is:

y � a � b � 0 � c � 1 � a � c � 1 � a � c

So what does this tell us about the parameters a, b and c? And why do we have three
parameters, when the experiment generates only two means ? These are the crucial questions
for understanding the summary.lm output from an analysis of variance. The simplest
interpretation of the three-parameter case that we have dealt with so far is that the intercept
a is the overall mean from the experiment:

mean(ozone)

[1] 4

Then, if a is the overall mean, so a+ b must be the mean for garden A and a+ c must be
the mean for garden B (see the equations above). If that is true, then b must be the difference
between the mean of garden A and the overall mean. And c must be the difference between
the mean of garden B and the overall mean. Thus, the intercept is a mean, and the other
parameters are differences between means. This explains why the standard errors are
different in the different rows of the table: the standard error of the intercept is the standard
error of a mean

SEy �
ffiffiffiffiffiffi

s2
A

nA

s
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whereas the standard errors on the other rows are standard errors of the difference between
two means:

SEdiff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
A

nA
� s2

B

nB

s

which is a bigger number (bigger by a factor of 1:4142 � ffiffiffi

2
p

if, as here, the sample sizes
and variances are equal).

With three parameters, then, we should have b equal to the mean ozone concentration in
garden A minus 4 and c equal to the mean ozone concentration in garden B minus 4.

mean(ozone[garden=="A"])-mean(ozone)

[1] -1

mean(ozone[garden=="B"])-mean(ozone)

[1] 1

That would be a perfectly reasonable way to parameterize the model for this analysis of
variance. But it suffers from the fact that there is a redundant parameter. The experiment
produces only two means (one for each garden), and so there is no point in having three
parameters to represent the output of the experiment. One of the three parameters is said to
be ‘aliased’ (see p. 16). There are lots of ways round this dilemma, as explained in detail in
Chapter 12 on contrasts. Here we adopt the convention that is used as the default in R using
so-called treatment contrasts. Under this convention, we dispense with the overall mean, a.
So now we are left with the right number of parameters (b and c). In treatment contrasts, the
factor level that comes first in the alphabet is set equal to the intercept. The other parameters
are expressed as differences between this mean and the other relevant means. So, in our case,
the mean of garden A becomes the intercept

mean(ozone[garden=="A"])

[1] 3

and the difference between the means of garden B and garden A is the second parameter:

mean(ozone[garden=="B"])-mean(ozone[garden=="A"])

[1] 2

Let us revisit our summary.lm table and see if it now makes sense:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0000 0.3651 8.216 1.67e-07 ***
gardenB 2.0000 0.5164 3.873 0.00111 **

The intercept is 3.0 which is the mean for garden A (because the factor level A comes
before level B in the alphabet). The estimate for garden B is 2.0. This tells us that the mean
ozone concentration in garden B is 2 pphm greater than in garden A (greater because there is
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no minus sign). We would compute the mean for garden B as 3.0+ 2.0= 5.0. In practice,
we would not obtain the means like this, but by using tapply, instead:

tapply(ozone, garden, mean)

A B
3 5

There is more about these issues in Chapter 12.

Plots for Interpreting One-Way ANOVA

There are two traditional ways of plotting the results of ANOVA:

• box-and-whisker plots

• barplots with error bars

Here is an example to compare the two approaches. We have an experiment on plant
competition where the response variable is biomass and we have one factor with five
levels. The factor is called clipping and the levels are control (i.e. unclipped), two
intensities of shoot pruning and two intensities of root pruning:

comp <- read.csv("c:\\temp\\competition.csv")
attach(comp)
names(comp)

[1] "biomass" "clipping"

This is what the data look like:

plot(clipping,biomass,xlab="Competition treatment",
ylab="Biomass",col="lightgrey")
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The box-and-whisker plot is good at showing the nature of the variation within each
treatment, and also whether there is skew within each treatment (e.g. for the control plots,
there is a wider range of values between the median and upper quartile than between the
lower quartile and median). No outliers are shown above the whiskers, so the tops and
bottoms of the bars are the maxima and minima within each treatment. The medians for the
competition treatments are all higher than the upper quartile of the controls, suggesting that
they may be significantly different from the controls, but there is little to suggest that any of
the competition treatments are significantly different from one another (see below for the
analysis).

Barplots with error bars are the style preferred by many journal editors, and some
people think that they make hypothesis testing easier. We shall see. Unlike S-PLUS, R
does not have a built-in function called error.bar so we shall have to write our own.
First, the barplot on its own. We need to calculate the heights of the bars to represent
the mean biomass from each of the five treatments, and the simplest way to do this is to
use tapply:

heights <- tapply(biomass,clipping,mean)

Now draw the barplot, making sure that the y axis is long enough to accommodate the
tops of the error bars that we intend to add later:

barplot(heights,col="green",ylim=c(0,700),
ylab="mean biomass",xlab="competition treatment")
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This is fine as far as it goes, but it gives us no impression of the uncertainty associated
with the estimated heights of the bars.

Here is a very simple function without any bells or whistles. We shall call it error.bars

to distinguish it from the much more general S-PLUS function. We shall pass two arguments
to the function; the heights of the bars y and the lengths of the error bars, z like this:

error.bars <- function(y,z) {
x <- barplot(y,plot=F)
n <- length(y)
for (i in 1:n)

arrows(x[i],y[i]-z,x[i],y[i]+z,code=3,angle=90,length=0.15)
}

The second line works out the x coordinates of the centres of the bars without redrawing
the barplot (plot= FALSE). The next line works out how many error bars are to be drawn (n
<- length(y), which is 5 in this example). The trick here is to modify the arrows function
to draw the errors bars with heads at right angles (angle=90) and heads at both ends of the
arrow (code=3). The default head length looks a bit clunky, so we reduce the width of the
head to 0.15 inches. We use a for loop to draw the n error bars separately.

To use this function we need to decide what kind of values (z) to use for the lengths of the
bars. Let us use one standard error of the mean based on the pooled error variance from the
ANOVA, then return to a discussion of the pros and cons of different kinds of error bars
later. Here is the one-way ANOVA:

model <- aov(biomass∼clipping)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.3015 0.008752 **
Residuals 25 124020 4961

From the ANOVA table we can see that the pooled error variance s2 = 4961. Now we
need to know how many numbers were used in the calculation of each of the five means:

table(clipping)

clipping
control n25 n50 r10 r5

6 6 6 6 6

There was equal replication (which makes life easier), and each mean was based on six
replicates, so the standard error of the mean is

ffiffiffiffiffiffiffiffiffi

s2=n
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4961=6
p � 28:75. We shall draw

an error bar up 28.75 from each mean and down by the same distance, so we need five
values, one for each bar, each of 28.75:

se <- rep(28.75,5)

Now we can use the new function to add the error bars to the plot:

error.bars(heights,se)
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We do not get the same feel for the distribution of the values within each treatment as was
obtained by the box-and-whisker plot, but we can certainly see clearly which means are not
significantly different. If, as here, we use ± 1 standard error as the length of the error bars,
then when the bars overlap this implies that the two means are not significantly different.
Remember the rule of thumb for t: significance requires 2 or more standard errors, and if the
bars overlap it means that the difference between the means is less than 2 standard errors.
This shows clearly that none of the means for the clipped plants (n25, n50, r10 or r5) is
significantly different from any other (the top of the bar for n25 overlaps the bottom of the
bar for r10).

There is another issue, too. For comparing means, we should be using the standard error
of the difference between two means (not the standard error of one mean) in our tests (see
p. 91); these bars would be about 1.4 times as long as the bars we have drawn here. So while
we can be sure that the pruning treatments are not significantly different from one another,
we cannot conclude from this plot that the controls have significantly lower biomass than
the rest (because the error bars are not the correct length for testing differences between
means).

An alternative graphical method is to use 95% confidence intervals for the lengths of
the bars, rather than standard errors of means. This is easy to do: we multiply our standard
errors by Student’s t, qt(.975,5)= 2.570582, to get the lengths of the confidence
intervals:

ci <- se*qt(.975,5)
barplot(heights,col="green",ylim=c(0,700),

ylab="mean biomass",xlab="competition treatment")
error.bars(heights,ci)
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Now, all of the error bars overlap, implying visually that there are no significant differences
between the means. But we know that this is not true from our analysis of variance, in which
we rejected the null hypothesis that all the means were the same at p= 0.00875. If it were the
case that the bars did not overlap when we are using confidence intervals (as here), then that
would imply that the means differed by more than 4 standard errors, and this is much greater
than the difference required for significance. So this is not perfect either. With standard errors
we could be sure that the means were not significantly different when the bars did overlap.
And with confidence intervals we can be sure that the means are significantly different when
the bars do not overlap. But the alternative cases are not clear-cut for either type of bar. Can
we somehow get the best of both worlds, so that the means are significantly different when the
bars do not overlap, and the means are not significantly different when the bars do overlap?

The answer is yes, we can, if we use LSD bars (LSD stands for ‘least significant
difference’). Let us revisit the formula for Student’s t test:

t � a difference
standard error of the difference

We say that thedifference is significantwhen t> 2 (by the rule of thumb,or t> qt(0.975,df)

if we want to be more precise). We can rearrange this formula to find the smallest difference
that we would regard as being significant. We can call this the least significant difference:

LSD= qt(0.975,df)× standard error of a difference � 2 � SEdiff

In our present example this is

qt(0.975,10)*sqrt(2*4961/6)

[1] 90.60794
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because a difference is based on 12 – 2= 10 degrees of freedom. What we are saying is that
the two means would be significantly different if they differed by 90.61 or more. How can
we show this graphically? We want overlapping bars to indicate a difference less than 90.61,
and non-overlapping bars to represent a difference greater than 90.61. With a bit of thought
you will realize that we need to draw bars that are LSD/2 in length, up and down from each
mean. Let us try it with our current example:

lsd <- qt(0.975,10)*sqrt(2*4961/6)
lsdbars <- rep(lsd,5)/2

barplot(heights,col="green",ylim=c(0,700),
ylab="mean biomass",xlab="competition treatment")

error.bars(heights,lsdbars)

Now we can interpret the significant differences visually. The control biomass is
significantly lower than any of the four treatments, but none of the four treatments is
significantly different from any other. The statistical analysis of this contrast is explained in
detail in Chapter 12. Sadly, most journal editors insist on error bars of 1 standard error. It is
true that there are complicating issues to do with LSD bars (not least the vexed question of
multiple comparisons; see p. 17), but at least LSD/2 bars do what was intended by the error
plot (i.e. overlapping bars means non-significance and non-overlapping bars means
significance). Neither standard errors nor confidence intervals can say that. A better option
might be to use box-and-whisker plots with the notch=T option to indicate significance
(see p. 93).
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Factorial Experiments

A factorial experiment has two or more factors, each with two or more levels, plus
replication for each combination of factor levels. This means that we can investigate
statistical interactions, in which the response to one factor depends on the level of another
factor. Our example comes from a farm-scale trial of animal diets. There are two factors: diet
and supplement. Diet is a factor with three levels: barley, oats and wheat. Supplement is a
factor with four levels: agrimore, control, supergain and supersupp. The response variable is
weight gain after 6 weeks.

weights <- read.csv("c:\\temp\\growth.csv")
attach(weights)

Data inspection is carried out using barplot (note the use of beside=T to get the bars in
adjacent clusters rather than vertical stacks; we shall add the error bars later):

barplot(tapply(gain,list(diet,supplement),mean),beside=T)

Note that the second factor in the list (supplement) appears as groups of bars from left to
right in alphabetical order by factor level, from ‘agrimore’ to ‘supersupp’. The first factor
(diet) appears as three levels within each group of bars: dark= barley, mid= oats, light=
wheat, again in alphabetical order by factor level. We should really add a legend to explain
the levels of diet. We use levels to extract the names of the diets to use as labels in the key:

labels <- levels(diet)
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We have used colours so far, but it is easy to use gray scales in R. The continuum goes
from 0= black to 1=white, so we could use 0.2, 0.6 and 0.9 here:

shade <- c(0.2,0.6,0.9)

The tricky bit is locating the key on the plot so that it does not overlap any of the bars. You
need to understand that R locates the legend on the plot using the coordinates of the top
left-hand corner of the box that surrounds the key. So you need to find some space below
and to the right of a suitable point. Then move the cursor to this point and click. R will draw
the legend at that point.

barplot(tapply(gain,list(diet,supplement),mean),beside=T,
ylab="weight gain",xlab="supplement",ylim=c(0,30))

legend(locator(1),labels,gray(shade))

There are clearly substantial differences between the three diets, but the effects of
supplement are less obvious. We inspect the mean values using tapply as usual:

tapply(gain,list(diet,supplement),mean)

agrimore control supergain supersupp
barley 26.34848 23.29665 22.46612 25.57530
oats 23.29838 20.49366 19.66300 21.86023
wheat 19.63907 17.40552 17.01243 19.66834
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Now we use aov or lm to fit a factorial ANOVA (the choice affects only whether we get
an ANOVA table or a list of parameters estimates as the default output from summary). We
estimate parameters for the main effects of each level of diet and each level of supplement,
plus terms for the interaction between diet and supplement. Interaction degrees of freedom
are the product of the degrees of freedom of the component terms (i.e. (3� 1)× (4� 1)= 6).
The model is

gain ∼ diet + supplement + diet:supplement

but this can be simplified using the asterisk notation like this:

model <- aov(gain∼diet*supplement)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
diet 2 287.17 143.59 83.52 3.00e-14 ***
supplement 3 91.88 30.63 17.82 2.95e-07 ***
diet:supplement 6 3.41 0.57 0.33 0.917
Residuals 36 61.89 1.72

The ANOVA table shows that there is no hint of any interaction between the two
explanatory variables (p= 0.9166); evidently the effects of diet and supplement are additive
but both are highly significant. Now that we know that the error variance s2= 1.72 we can
add the error bars to the plot. For bars showing standard errors, we need to know the
replication for each combination of factor levels:

tapply(gain,list(diet,supplement),length)

agrimore control supergain supersupp
barley 4 4 4 4
oats 4 4 4 4
wheat 4 4 4 4

so the appropriate standard error is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:72=4
p � 0:656. The error.bars function that we

wrote earlier will not work for grouped bars, so we need to modify the code like this:

x <- as.vector(barplot(tapply(gain,list(diet,supplement),mean),
beside=T,ylim=c(0,30)))
y <- as.vector(tapply(gain,list(diet,supplement),mean))
z <- rep(0.656,length(x))
for( i in 1:length(x))
arrows(x[i],y[i]-z[i],x[i],y[i]+z[i],length=0.05,code=3,angle=90)

As usual, we need to make room on the y axis for the top of the highest error bars. Note the
use of as.vector to convert the tabular output of tapply into a form suitable for plotting.
Don’t forget to add the legend:

legend(locator(1),labels,gray(shade))
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The disadvantage of the ANOVA table is that it does not show us the effect sizes, and
does not allow us to work out how many levels of each of the two factors are significantly
different. As a preliminary to model simplification, summary.lm is often more useful than
summary.aov:

summary.lm(model)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 26.3485 0.6556 40.191 < 2e-16 ***
dietoats -3.0501 0.9271 -3.290 0.002248 **
dietwheat -6.7094 0.9271 -7.237 1.61e-08 ***
supplementcontrol -3.0518 0.9271 -3.292 0.002237 **
supplementsupergain -3.8824 0.9271 -4.187 0.000174 ***
supplementsupersupp -0.7732 0.9271 -0.834 0.409816
dietoats:supplementcontrol 0.2471 1.3112 0.188 0.851571
dietwheat:supplementcontrol 0.8183 1.3112 0.624 0.536512
dietoats:supplementsupergain 0.2470 1.3112 0.188 0.851652
dietwheat:supplementsupergain 1.2557 1.3112 0.958 0.344601
dietoats:supplementsupersupp -0.6650 1.3112 -0.507 0.615135
dietwheat:supplementsupersupp 0.8024 1.3112 0.612 0.544381

Residual standard error: 1.311 on 36 degrees of freedom
Multiple R-squared: 0.8607, Adjusted R-squared: 0.8182
F-statistic: 20.22 on 11 and 36 DF, p-value: 3.295e-12
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This is a rather complex model, because there are 12 estimated parameters (the number of
rows in the table): 6 main effects and 6 interactions. The output re-emphasizes that none of
the interaction terms is significant, but it suggests that the minimal adequate model will
require five parameters: an intercept, a difference due to oats, a difference due to wheat, a
difference due to control and difference due to supergain (these are the five rows with
significance stars). This draws attention to the main shortcoming of using treatment contrasts
as the default. If you look carefully at the table, you will see that the effect sizes of two of the
supplements, control and supergain, are not significantly different from one another. You
need lots of practice at doing t tests in your head, to be able to do this quickly. Ignoring the
signs (because the signs are negative for both of them) we have 3.05 versus 3.88, a
difference of 0.83. But look at the associated standard errors (both 0.927); the difference is
only about 1 standard error of the difference between two means. For significance, we would
need roughly 2 standard errors (remember the rule of thumb, in which t � 2 is significant;
see p. 83). The rows get starred in the significance column because treatment contrasts
compare all the main effects in the rows with the intercept (where each factor is set to its first
level in the alphabet, namely agrimore and barley in this case). When, as here, several
factor levels are different from the intercept, but not different from one another, they all get
significance stars. This means that you cannot count up the number of rows with stars in
order to determine the number of significantly different factor levels.

We begin model simplification by leaving out the interaction terms:

model <- lm(gain∼diet+supplement)
summary(model)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.1230 0.4408 59.258 < 2e-16 ***
dietoats -3.0928 0.4408 -7.016 1.38e-08 ***
dietwheat -5.9903 0.4408 -13.589 < 2e-16 ***
supplementcontrol -2.6967 0.5090 -5.298 4.03e-06 ***
supplementsupergain -3.3815 0.5090 -6.643 4.72e-08 ***
supplementsupersupp -0.7274 0.5090 -1.429 0.16

Residual standard error: 1.247 on 42 degrees of freedom
Multiple R-squared: 0.8531, Adjusted R-squared: 0.8356
F-statistic: 48.76 on 5 and 42 DF, p-value: < 2.2e-16

It is clear that we need to retain all three levels of diet because oats differ from wheat by
5.99� 3.10= 2.89 with a standard error of 0.44 (t � 2). It is not clear that we need all four
levels of supplement, however. Supersupp is not obviously different from the agrimore
(�0.727 with standard error 0.509). Nor is supergain obviously different from the unsup-
plemented control animals (3.38� 2.70= 0.68). We shall try a new two-level factor to replace
the four-level supplement, and see if this significantly reduces the model’s explanatory power.
Agrimore and supersupp are recoded as ‘best’ and control and supergain as ‘worst’:

supp2 <- factor(supplement)
levels(supp2)

[1] "agrimore" "control" "supergain" "supersupp"
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levels(supp2)[c(1,4)] <- "best"
levels(supp2)[c(2,3)] <- "worst"
levels(supp2)

[1] "best" "worst"

Now we fit the simpler model, then compare the two models:

model2 <- lm(gain∼diet+supp2)
anova(model,model2)

Analysis of Variance Table
Model 1: gain ∼ diet + supplement
Model 2: gain ∼ diet + supp2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 42 65.296
2 44 71.284 -2 -5.9876 1.9257 0.1584

The simpler model2 has saved 2 degrees of freedom and is not significantly worse than
the more complex model (p= 0.158). This is the minimal adequate model: now all of the
parameters are significantly different from zero and from one another:

summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.7593 0.3674 70.106 < 2e-16 ***
dietoats -3.0928 0.4500 -6.873 1.76e-08 ***
dietwheat -5.9903 0.4500 -13.311 < 2e-16 ***
supp2worst -2.6754 0.3674 -7.281 4.43e-09 ***

Residual standard error: 1.273 on 44 degrees of freedom
Multiple R-squared: 0.8396, Adjusted R-squared: 0.8286
F-statistic: 76.76 on 3 and 44 DF, p-value: < 2.2e-16

Model simplification has reduced our initial 12-parameter model to a much more tractable
four-parameter model that is far easier to communicate to readers. If maximum weight gain is
your objective, then a diet of barley and a supplement of either agrimore or supersupp is
indicated. Note that the recommendations of the model might be different if profit were the
response variable rather than weight gain because we have not taken the costs into account.

Pseudoreplication: Nested Designs and Split Plots

The model-fitting functions aov, lme and lmer have the facility to deal with complicated
error structures. Detailed analysis of these topics is beyond the scope of this book (see The R
Book (Crawley, 2013) for worked examples), but it is important that you can recognize
them, and hence avoid the pitfalls of pseudoreplication. There are two general cases:

• nested sampling, as when repeated measurements are taken from the same individual, or
observational studies are conducted at several different spatial scales (most or all of the
factors are random effects)
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• split-plot analysis, as when designed experiments are carried out with different
treatments applied to plots of different sizes (most of the factors are fixed effects)

Split-Plot Experiments

In a split-plot experiment, different treatments are applied to plots of different sizes. Each
different plot size is associated with its own error variance, so instead of having one error
variance (as in all the ANOVA tables up to this point), we have as many error terms as there
are different plot sizes. The analysis is presented as a series of component ANOVA tables,
one for each plot size, in a hierarchy from the largest plot size with the lowest replication at
the top, down to the smallest plot size with the greatest replication at the bottom.

The example refers to a designed field experiment on crop yield with three treatments:
irrigation (with two levels, irrigated and not), sowing density (with three levels, low,
medium and high), and fertilizer application (with three levels, low, medium and high):

yields <- read.csv("c:\\temp\\splityield.csv")
attach(yields)
names(yields)

[1] "yield" "block" "irrigation" "density" "fertilizer"

The largest plots were the four whole fields (block), each of which was split in half, and
irrigation was allocated at random to one half of the field. Each irrigation plot was split into
three, and one of three different seed-sowing densities (low, medium or high) was allocated
at random (independently for each level of irrigation and each block). Finally, each density
plot was divided into three and one of three fertilizer nutrient treatments (N, P, or N and P
together) was allocated at random. The model formula is specified as a factorial, using the
asterisk notation. The error structure is defined in the Error() term, with the plot sizes listed
from left to right, from largest to smallest, with each variable separated by the slash operator/.
Note that the smallest plot size, fertilizer, does not need to appear in the Error() term:

model <-
aov(yield∼irrigation*density*fertilizer+Error(block/irrigation/
density))
summary(model)

Error: block
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 194.4 64.81

Error: block:irrigation
Df Sum Sq Mean Sq F value Pr(>F)

irrigation 1 8278 8278 17.59 0.0247 *
Residuals 3 1412 471

Error: block:irrigation:density
Df Sum Sq Mean Sq F value Pr(>F)

density 2 1758 879.2 3.784 0.0532 .
irrigation:density 2 2747 1373.5 5.912 0.0163 *
Residuals 12 2788 232.3
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Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 2 1977.4 988.7 11.449 0.000142 ***
irrigation:fertilizer 2 953.4 476.7 5.520 0.008108 **
density:fertilizer 4 304.9 76.2 0.883 0.484053
irrigation:density:fertilizer 4 234.7 58.7 0.680 0.610667
Residuals 36 3108.8 86.4

Here you see the four ANOVA tables, one for each plot size: blocks are the biggest
plots, half blocks get the irrigation treatment, one third of each half block gets a sowing
density treatment, and one third of a sowing density treatment gets each fertilizer
treatment. Each plot size has a different error variance. Note that the non-significant
main effect for density (p= 0.053) does not mean that density is unimportant, because
density appears in a significant interaction with irrigation (the density terms cancel out
when averaged over the two irrigation treatments; see below). The best way to
understand the two significant interaction terms is to plot them using interac-

tion.plot like this:

interaction.plot(fertilizer,irrigation,yield)

Irrigation increases yield proportionately more on the P-fertilized plots than on the
N-fertilized plots. The irrigation:density interaction is more complicated:

interaction.plot(density,irrigation,yield)
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On the irrigated plots, yield is minimal on the low-density plots, but on control plots yield
is minimal on the high-density plots.

Random Effects and Nested Designs

Mixed effects models are so called because the explanatory variables are a mixture of fixed
effects and random effects:

• fixed effects influence only the mean of y

• random effects influence only the variance of y

A random effect should be thought of as coming from a population of effects: the
existence of this population is an extra assumption. We speak of prediction of random
effects, rather than estimation: we estimate fixed effects from data, but we intend to make
predictions about the population from which our random effects were sampled. Fixed effects
are unknown constants to be estimated from the data. Random effects govern the variance–
covariance structure of the response variable. The fixed effects are often experimental
treatments that were applied under our direction, and the random effects are either
categorical or continuous variables that are distinguished by the fact that we are typically
not interested in the parameter values, but only in the variance they explain.

One or more of the explanatory variables represents grouping in time or in space.
Random effects that come from the same group will be correlated, and this contravenes one
of the fundamental assumptions of standard statistical models: independence of errors.
Mixed effects models take care of this non-independence of errors by modelling the
covariance structure introduced by the grouping of the data. A major benefit of random
effects models is that they economize on the number of degrees of freedom used up by the
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factor levels. Instead of estimating a mean for every single factor level, the random effects
model estimates the distribution of the means (usually as the standard deviation of the
differences of the factor-level means around an overall mean). Mixed effects models are
particularly useful in cases where there is temporal pseudoreplication (repeated measure-
ments) and/or spatial pseudoreplication (e.g. nested designs or split-plot experiments).
These models can allow for:

• spatial autocorrelation between neighbours

• temporal autocorrelation across repeated measures on the same individuals

• differences in the mean response between blocks in a field experiment

• differences between subjects in a medical trial involving repeated measures

The point is that we really do not want to waste precious degrees of freedom in estimating
parameters for each of the separate levels of the categorical random effects. On the other
hand, we do want to make use of the all measurements we have taken, but because of the
pseudoreplication we want to take account of both the:

• correlation structure, used to model within-group correlation associated with temporal
and spatial dependencies, using correlation

• variance function, used to model non-constant variance in the within-group errors using
weights

Fixed or Random Effects?

It is difficult without lots of experience to know when to use categorical explanatory
variables as fixed effects and when as random effects. Some guidelines are:

• Am I interested in the effect sizes? Yes means fixed effects

• Is it reasonable to suppose that the factor levels come from a population of levels? Yes
means random effects

• Are there enough levels of the factor in the data on which to base an estimate of the
variance of the population of effects? No means fixed effects

• Are the factor levels informative? Yes means fixed effects

• Are the factor levels just numeric labels? Yes means random effects

• Am I mostly interested in making inferences about the distribution of effects, based on
the random sample of effects represented in the dataframe? Yes means random effects.

• Is there hierarchical structure? Yes means you need to ask whether the data are
experimental or observations

• Is it a hierarchical experiment, where the factor levels are experimental manipulations?
Yes means fixed effects in a split-plot design (see p. 173)
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• Is it a hierarchical observational study? Yes means random effects, perhaps in a variance
components analysis (see p. 183)

• When your model contains both fixed and random effects, use mixed effects models

• If your model structure is linear, use linear mixed effects, lmer

• Otherwise, specify the model equation and use non-linear mixed effects, nlme

Removing the Pseudoreplication

The extreme response to pseudoreplication in a data set is simply to eliminate it. Spatial
pseudoreplication can be averaged away and temporal pseudoreplication can be dealt with
by carrying out carrying out separate ANOVAs, one for each time period. This approach has
two major weaknesses:

• it cannot address questions about treatment effects that relate to the longitudinal
development of the mean response profiles (e.g. differences in growth rates between
successive times)

• inferences made with each of the separate analyses are not independent, and it is not
always clear how they should be combined

Analysis of Longitudinal Data

The key feature of longitudinal data is that the same individuals are measured repeatedly
through time. This would represent temporal pseudoreplication if the data were used
uncritically in regression or ANOVA. The set of observations on one individual subject will
tend to be positively correlated, and this correlation needs to be taken into account in
carrying out the analysis. The alternative is a cross-sectional study, with all the data gathered
at a single point in time, in which each individual contributes a single data point. The
advantage of longitudinal studies is that they are capable of separating age effects from
cohort effects; these are inextricably confounded in cross-sectional studies. This is
particularly important when differences between years mean that cohorts originating at
different times experience different conditions, so that individuals of the same age in
different cohorts would be expected to differ. There are two extreme cases in longitudinal
studies:

• a few measurements on a large number of individuals

• a large number of measurements on a few individuals

In the first case it is difficult to fit an accurate model for change within individuals, but
treatment effects are likely to be tested effectively. In the second case, it is possible to get an
accurate model of the way individuals change though time, but there is less power for testing
the significance of treatment effects, especially if variation from individual to individual is
large. In the first case, less attention will be paid to estimating the correlation structure, while in
the second case the covariance model will be the principal focus of attention. The aims are:
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• to estimate the average time course of a process

• to characterize the degree of heterogeneity from individual to individual in the rate of the
process

• identify the factors associated with both of these, including possible cohort effects

The response is not the individual measurement, but the sequence of measurements on an
individual subject. This enables us to distinguish between age effects and year effects (see
Diggle, Liang and Zeger, 1994, for details).

Derived Variable Analysis

The idea here is to get rid of the pseudoreplication by reducing the repeated measures into a
set of summary statistics (slopes, intercepts or means), and then analyse these summary
statistics using standard parametric techniques such as ANOVA or regression. The
technique is weak when the values of the explanatory variables change through time.
Derived variable analysis makes most sense when it is based on the parameters of
scientifically interpretable non-linear models from each time sequence. However, the
best model from a theoretical perspective may not be the best model from the statistical
point of view.

There are three qualitatively different sources of random variation:

• random effects: experimental units differ (e.g. genotype, history, size, physiological
condition) so that there are intrinsically high responders and other low responders

• serial correlation: there may be time-varying stochastic variation within a unit (e.g.
market forces, physiology, ecological succession, immunity) so that correlation depends
on the time separation of pairs of measurements on the same individual, with correlation
weakening with the passage of time

• measurement error: the assay technique may introduce an element of correlation (e.g.
shared bioassay of closely spaced samples; different assay of later specimens)

Dealing with Pseudoreplication

For random effects we are often more interested in the question of how much of the variation
in the response variable can be attributed to a given factor than we are in estimating means or
assessing the significance of differences between means. This procedure is called variance
components analysis.

rats <- read.csv("c:\\temp\\rats.csv")
attach(rats)
names(rats)

[1] "Glycogen" "Treatment" "Rat" "Liver"

This classic example of pseudoreplication comes from Snedecor and Cochran (1980).
Three experimental treatments were administered to rats, and the glycogen contents of the
rats’ livers were analysed as the response variable. This was the set-up: there were two rats
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per treatment, so the total sample was n= 3× 2= 6. The tricky bit was this: after each rat was
killed, its liver was cut up into three pieces: a left-hand bit, a central bit and a right-hand bit.
So now there are six rats each producing three bits of liver, for a total of 6× 3= 18 numbers.
Finally, two separate preparations were made from each macerated bit of liver, to assess the
measurement error associated with the analytical machinery. At this point there are
2× 18= 36 numbers in the dataframe as a whole. The factor levels are numbers, so we
need to declare the explanatory variables to be categorical before we begin:

Treatment <- factor(Treatment)
Rat <- factor(Rat)
Liver <- factor(Liver)

Here is the analysis done the wrong way:

model <- aov(Glycogen∼Treatment)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 2 1558 778.8 14.5 3.03e-05 ***
Residuals 33 1773 53.7

Treatment has a highly significant effect on liver glycogen content (p= 0.00003). Wrong!
We have committed a classic error of pseudoreplication. Look at the error line in the
ANOVA table: it says the residuals have 33 degrees of freedom. But there were only six rats
in the whole experiment, so the error degrees of freedom must be 6 � 1 � 2 � 3 (not 33)!

Here is the analysis of variance done properly, averaging away the pseudoreplication.
First reduce the dataframe from 36 numbers to just six numbers: one mean value per rat:

yv <- tapply(Glycogen,list(Treatment,Rat),mean)
yv

1 2
1 132.5000 148.5000
2 149.6667 152.3333
3 134.3333 136.0000

Turn this object into a vector to act as our new response variable:

( yv <- as.vector(yv))

[1] 132.5000 149.6667 134.3333 148.5000 152.3333 136.0000

From the tapply output you can see that the data appear columnwise. The columns (1
and 2) are the replicate rats, and the rows (1, 2 and 3) are the treatments (control, supplement
and supplement plus sugar). We need to produce a new factor of length 6 to contain the
treatment in the correct order, 1, 2, 3 then 1, 2, 3 (make sure you understand this):

treatment <- factor(c(1,2,3,1,2,3))

180 STATISTICS: AN INTRODUCTION USING R



Now we can fit the non-pseudoreplicated model:

model <- aov(yv∼treatment)
summary(model)

Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 259.6 129.80 2.929 0.197
Residuals 3 132.9 44.31

As you can see, the error degrees of freedom are correct (d.f.= 3, not 33), and the
interpretation is completely different: there are no significant differences in liver glycogen
under the three experimental treatments (p= 0.197).

There are two different ways of doing the analysis properly in R: ANOVA with multiple
error terms (aov) or linear mixed effects models (lmer). The problem is that the bits of the
same liver are pseudoreplicates because they are spatially correlated (they come from
the same rat); they are not independent, as required if they are to be true replicates. Likewise,
the two preparations from each liver bit are very highly correlated (the livers were macerated
before the preparations were taken, so they are essentially the same sample, and certainly not
independent replicates of the experimental treatments).

Here is the correct analysis using aov with multiple error terms. In the error term we start
with the largest scale (treatment), then rats within treatments, then liver bits within rats
within treatments. Finally, there were replicated measurements (two preparations) made for
each bit of liver (see Box 8.2):

model2 <- aov(Glycogen∼Treatment+Error(Treatment/Rat/Liver))
summary(model2)

Error: Treatment
Df Sum Sq Mean Sq

Treatment 2 1558 778.8

Error: Treatment:Rat
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 3 797.7 265.9

Error: Treatment:Rat:Liver
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 12 594 49.5

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 18 381 21.17

You can do the correct, non-pseudoreplicated analysis of variance from this output. The F
test involves the treatment variance (778.8) divided by the error variance at the spatial scale
immediately below (i.e. rats within treatments 265.9). This means that the test statistic
F= 778.8/265.9= 2.928921 is not significant (compare with the wrong analysis on p. 180).
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Note that the current version of R does not print the F values or p values. The critical value of
F would need to be

qf(0.95,2,3)

[1] 9.552094

Box 8.2. Sums of squares in hierarchical designs

The trick to understanding these sums of squares is to appreciate that with nested
categorical explanatory variables (random effects) the correction factor, which is

subtracted from the sum of squared subtotals, is not the conventional
P

y
� �2

=kn.
Instead, the correction factor is the uncorrected sum of squared subtotals from the
level in the hierarchy immediately above the level in question. This is very hard to see
without lots of practice. The total sum of squares, SSY, and the treatment sum of
squares, SSA, are computed in the usual way (see Box 8.1):

SSY � X

y2 �
P

y
� �2

n

SSA �
Pk

i�1 C
2
i

n
�

P

y
� �2

kn

The analysis is easiest to understand in the context of an example. For the rats data, the
treatment totals were based on 12 numbers (2 rats, 3 liver bits per rat and 2
preparations per liver bit). In this case, in the formula for SSA, above, has n= 12
and kn= 36. We need to calculate sums of squares for rats within treatments, SSRats,
liver bits within rats within treatments, SSLiverbits, and preparations within liver bits
within rats within treatments, SSPreparations:

SSRats �
P

R2

6
�
P

C2

12

SSLiverbits �
P

L2

2
�
P

R2

6

SSPreparations �
P

y2

1
�
P

L2

2

The correction factor at any level is the uncorrected sum of squares from the level
above. The last sum of squares could have been computed by difference:

SSPreparations � SSY � SSA � SSRats � SSLiverbits
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Variance Components Analysis (VCA)

To turn this nested ANOVA table into a variance components analysis we need to do a little
work. The thing to understand is that each row of the table includes the variability from the
level below plus the new variability introduced at that level. So at the bottom, the variance of
21.17 represents measurement error (differences between readings produced by similar
samples put through the same machine). The next level up reflects heterogeneity within
individual rats’ livers (e.g. if the middle of the liver was different in glycogen content than
the left- or right-hand ends of the liver; physiological differences, if you like). The next level
up reflects differences between rats; these will include gender effects, genetic effects,
nutritional effects and such like (although we would hope that these had been controlled in
the experimental design).

We are interested in discovering the variance entering the system at each level in the
hierarchy. To find this out we begin by calculating the difference in variance between
adjacent levels:

Level 2 versus level 1: 49.5� 21.17= 28.33 reflecting liver bit difference

Level 3 versus level 2: 265.9� 49.5= 216.4 reflecting rat differences

We stop at this point, because the next level up is a fixed effect (treatment) not a random
effect (like rat, or liver bit within rat).

The next step is to divide these differences by the number of pseudoreplicates in the lower
of the two levels (2 preparations per liver bit; 6 preparations per rat, 2 from each of 3 liver
bits). So now we have:

Residuals= preparations within liver bits: unchanged= 21.17

Liver bits within rats within treatments: (49.5� 21.17)/2= 14.165

Rats within treatments: (265.89� 49.5)/6= 36.065

These numbers are the variance components. You can see straight away that most
variation enters this experiment as a result of differences between individual rats in their
mean liver glycogen contents (36.065). Least variation is introduced by cutting each liver
into three pieces (14.165).

The results of a variance components analysis are traditionally expressed as percentages.
We add the three components together to do this:

vc <- c(21.17,14.165,36.065)
100*vc/sum(vc)

[1] 29.64986 19.83894 50.51120

That’s all there is to it. An analysis like this can be very useful in planning future
experiments. Since more than 50% of the variance is attributable to differences between the
rats, then increasing the number of rats will have the biggest positive effects on the power of
the next experiment (you might also consider controlling the rats more carefully by using the
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same age and same gender of the same genotype, for instance). There is no real point in
splitting up each liver: it makes for three times the work and explains less than 20% of the
variance.
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9
Analysis of Covariance

Analysis of covariance (ANCOVA) involves a combination of regression and analysis of
variance. The response variable is continuous, and there is at least one continuous explanatory
variable and at least one categorical explanatory variable. Typically, the maximal model
involves estimating a slope and an intercept (the regression part of the exercise) for each level
of the categorical variable(s) (the ANOVA part of the exercise). Let us take a concrete
example. Suppose we are modelling weight (the response variable) as a function of sex and
age. Sex is a factor with two levels (male and female) and age is a continuous variable. The
maximal model therefore has four parameters: two slopes (a slope for males and a slope for
females) and two intercepts (one for males and one for females) like this:

weightmale � amale � bmale � age

weightfemale � afemale � bfemale � age

Model simplification is an essential part of ANCOVA, because the principle of parsimony
requires that we keep as few parameters in the model as possible.
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There are at least six possible models in this case, and the process of model simplification
begins by asking whether we need all four parameters (top left). Perhaps we could make do
with two intercepts and a common slope (top right). Or a common intercept and two
different slopes (centre left). There again, age may have no significant effect on the
response, so we only need two parameters to describe the main effects of sex on weight; this
would show up as two separated, horizontal lines in the plot (one mean weight for each sex;
centre right). Alternatively, there may be no effect of sex at all, in which case we only need
two parameters (one slope and one intercept) to describe the effect of age on weight (bottom
left). In the limit, neither the continuous nor the categorical explanatory variables might
have any significant effect on the response, in which case model simplification will lead to
the one-parameter null model ŷ � y (a single, horizontal line; bottom right).

Decisions about model simplification are based on the explanatory power of the model: if
the simpler model does not explain significantly less of the variation in the response, then
the simpler model is preferred. Tests of explanatory power are carried out using anova or
AIC to compare two models: when using anova we shall only retain the more complicated
model if the p value from comparing the two models is less than 0.05. When using AIC we
simply prefer the model with the lower value.

Let us see how this all works by investigating a realistic example. The dataframe concerns
an experiment on a plant’s ability to regrow and produce seeds following grazing. The
initial, pre-grazing size of the plant is recorded as the diameter of the top of its rootstock.
Grazing is a two-level factor: grazed or ungrazed (protected by fences). The response is the
weight of seeds produced per plant at the end of the growing season. Our expectation is that
big plants will produce more seeds than small plants and that grazed plants will produce
fewer seeds than ungrazed plants. Let us see what actually happened:

compensation <- read.csv("c:\\temp\\ipomopsis.csv")
attach(compensation)
names(compensation)

[1] "Root" "Fruit" "Grazing"

We begin with data inspection. First: did initial plant size matter?

plot(Root,Fruit,pch=16,col="blue")
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Yes, indeed. Bigger plants produced more seeds at the end of the growing season. What
about grazing?

plot(Grazing,Fruit,col="lightgreen")

This is not at all what we expected to see. Apparently, the grazed plants produced more
seeds, not less than the ungrazed plants. Taken at face value, the effect looks to be
statistically significant (p< 0.03):

summary(aov(Fruit∼Grazing))

Df Sum Sq Mean Sq F value Pr(>F)
Grazing 1 2910 2910.4 5.309 0.0268 *
Residuals 38 20833 548.2

We shall return to this after we have carried out the statistical modelling properly.
Analysis of covariance is done in the familiar way: it is just that the explanatory variables are

a mixture of continuous and categorical variables. We start by fitting the most complicated
model, with different slopes and intercepts for the grazed and ungrazed plants. For this, we use
the asterisk operator:

model <- lm(Fruit∼Root*Grazing)

An important thing to realize about analysis of covariance is that order matters. Look at
the regression sum of squares in the ANOVA table when we fit root first:

summary.aov(model)

Df Sum Sq Mean Sq F value Pr(>F)
Root 1 16795 16795 359.968 < 2e-16 ***
Grazing 1 5264 5264 112.832 1.21e-12 ***
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Root:Grazing 1 5 5 0.103 0.75
Residuals 36 1680 47

and when we fit root second:

model <- lm(Fruit∼Grazing*Root)
summary.aov(model)

Grazing 1 2910 2910 62.380 2.26e-09 ***
Root 1 19149 19149 410.420 < 2e-16 ***
Grazing:Root 1 5 5 0.103 0.75
Residuals 36 1680 47

In both cases, the error sum of squares (1680) and the interaction sum of squares (5) are
the same, but the regression sum of squares (labelled Root) is much greater when root is
fitted to the model after grazing (19,149), than when it is fitted first (16,795). This is because
the data for ANCOVA are typically non-orthogonal. Remember, with non-orthogonal data,
order matters (Box 9.1).

Box 9.1. Corrected sums of squares in analysis of covariance

The total sum of squares, SSY, and the treatment sums of squares, SSA, are calculated in
the same way as in a straightforward analysis of variance (Box 8.1). The sums of squares
for the separate regressions within the individual factor levels, i, are calculated as shown
in Box 7.3: SSXYi, SSXi, SSRi, and SSEi are then added up across the factor levels:

SSXY total �
X

SSXYi

SSXtotal �
X

SSXi

SSRtotal �
X

SSRi

Then the overall regression sum of squares, SSR, is calculated from the total corrected
sums of products and the total corrected sums of squares of x:

SSR � SSXY total� �2
SSXtotal

The difference in the two estimates, SSR and SSRtotal, is called SSRdiff and is a measure
of the significance of the differences between the regression slopes. Now we can
compute SSE by difference:

SSE � SSY � SSA � SSR � SSRdiff
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Back to the analysis. The interaction, SSRdiff, representing differences in slope between
the grazed and ungrazed treatments, appears to be insignificant, so we remove it:

model2 <- lm(Fruit∼Grazing+Root)

Notice the use of + rather than * in the model formula. This says ‘fit different intercepts
for grazed and ungrazed plants, but fit the same slope to both graphs’. Does this simpler
model have significantly lower explanatory power? We use anova to find out:

anova(model,model2)

Analysis of Variance Table

Model 1: Fruit ∼ Grazing * Root
Model 2: Fruit ∼ Grazing + Root

Res.Df RSS Df Sum of Sq F Pr(>F)
1 36 1679.7
2 37 1684.5 -1 -4.8122 0.1031 0.75

The simpler model does not have significantly lower explanatory power (p= 0.75), so we
adopt it. Note that we did not have to do the anova in this case: the p value given in the
summary.aov(model) table gave the correct, deletion p value. Here are the parameter
estimates from our minimal adequate model:

summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) -127.829 9.664 -13.23 1.35e-15 ***
GrazingUngrazed 36.103 3.357 10.75 6.11e-13 ***
Root 23.560 1.149 20.51 < 2e-16 ***

Residual standard error: 6.747 on 37 degrees of freedom
Multiple R-squared: 0.9291, Adjusted R-squared: 0.9252
F-statistic: 242.3 on 2 and 37 DF, p-value: < 2.2e-16

The model has high explanatory power, accounting for more than 90% of the variation in
seed production (multiple r2). The hard thing about ANCOVA is understanding what the
parameter estimates mean. Starting at the top, the first row, as labelled, contains an intercept.
It is the intercept for the graph of seed production against initial rootstock size for the

But SSE is defined for the k levels in which the regressions were computed as

SSE � Xk

i�1

X �y � ai � bix�2

Of course, both methods give the same answer.
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grazing treatment whose factor level comes first in the alphabet. To see which one this is, we
can use levels:

levels(Grazing)

[1] "Grazed" "Ungrazed"

So the intercept is for the grazed plants. The second row, labelled GrazingUngrazed,
is a difference between two intercepts. To get the intercept for the ungrazed plants, we
need to add 36.103 to the intercept for the grazed plants (�127.829+ 36.103=�91.726).
The third row, labelled Root, is a slope: it is the gradient of the graph of seed production
against initial rootstock size, and it is the same for both grazed and ungrazed plants. If
there had been a significant interaction term, this would have appeared in row 4 as a
difference between two slopes.

We can now plot the fitted model through the scatterplot. It will be useful to have different
colours for the grazed (red) and ungrazed plants (green)

plot(Root,Fruit,pch=21,bg=(1+as.numeric(Grazing)))

Note the use of 1+as.numeric(Grazing) to produce the different colours: 2 (red) for
Grazed and 3 (green) for ungrazed. Let us add a legend to make this clear:

legend(locator(1),c("grazed","ungrazed"),col=c(2,3),pch=16)

Just position the cursor where you want the top left-hand corner of the key to appear,
then click:
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Now it becomes clear why we got the curious result at the beginning, in which grazing
appeared to increase seed production. Clearly what has happened is that the majority of big
plants ended up in the grazed treatment (red symbols). If you compare like with like (e.g.
plants at 7 mm initial root diameter), it is clear that the ungrazed plants (green symbols)
produced more seed than the grazed plants (36.103 more, to be precise). This will become
clearer when we fit the lines predicted by model2:

abline(-127.829,23.56,col="blue")
abline(-127.829+36.103,23.56,col="blue")

This example shows the great strength of analysis of covariance. By controlling for initial
plant size, we have completely reversed the interpretation. The naïve first impression was
that grazing increased seed production:

tapply(Fruit,Grazing,mean)

Grazed Ungrazed
67.9405 50.8805

and this was significant if we were rash enough to fit grazing on its own (p= 0.0268 as we
saw earlier). But when we do the correct ANCOVA, we find the opposite result: grazing
significantly reduces seed production for plants of comparable initial size; for example from
77.46 to 41.36 at mean rootstock size:

-127.829+36.103+23.56*mean(Root)

[1] 77.4619

-127.829+23.56*mean(Root)

[1] 41.35889
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The moral is clear. When you have covariates (like initial size in this example), then use
them. This can do no harm, because if the covariates are not significant, they will drop out
during model simplification. Also remember that in ANCOVA, order matters. So always
start model simplification by removing the highest-order interaction terms first. In
ANCOVA, these interaction terms are differences between slopes for different factor levels
(recall that in multi-way ANOVA, the interaction terms were differences between means).
Other ANCOVAs are described in Chapters 13, 14 and 15 in the context of count data,
proportion data and binary response variables.

Further Reading

Huitema, B.E. (1980) The Analysis of Covariance and Alternatives, John Wiley & Sons, New York.
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10
Multiple Regression

In multiple regression we have a continuous response variable and two or more continuous
explanatory variables (i.e. there are no categorical explanatory variables). In many
applications, multiple regression is the most difficult of all the statistical models to do
well. There are several things that make multiple regression so challenging:

• the studies are often observational (rather than controlled experiments)

• we often have a great many explanatory variables

• we often have rather few data points

• missing combinations of explanatory variables are commonplace

There are several important statistical issues, too:

• the explanatory variables are often correlated with one another (non-orthogonal)

• there are major issues about which explanatory variables to include

• there could be curvature in the response to the explanatory variables

• there might be interactions between explanatory variables

• the last three issues all tend to lead to parameter proliferation

There is a temptation to become personally attached to a particular model. Statisticians
call this ‘falling in love with your model’. It is as well to remember the following truths
about models:

• all models are wrong

• some models are better than others

• the correct model can never be known with certainty

• the simpler the model, the better it is

Fitting models to data is the central function of R. The process is essentially one of
exploration; there are no fixed rules and no absolutes. The object is to determine a minimal
adequate model from the large set of potential models that might be used to describe the
given set of data. In this book we discuss five types of model:
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• the null model

• the minimal adequate model

• the current model

• the maximal model

• the saturated model

The stepwise progression from the saturated model (or the maximal model, whichever is
appropriate) through a series of simplifications to the minimal adequate model is made on
the basis of deletion tests; these are F tests, AIC, t tests or chi-squared tests that assess the
significance of the increase in deviance that results when a given term is removed from the
current model.

Models are representations of reality that should be both accurate and convenient.
However, it is impossible to maximize a model’s realism, generality and holism simulta-
neously, and the principle of parsimony (Occam’s razor; see p. 8) is a vital tool in helping to
choose one model over another. Thus, we would only include an explanatory variable in a
model if it significantly improved the fit of a model. Just because we went to the trouble of
measuring something, that does not mean we have to have it in our model. Parsimony says
that, other things being equal, we prefer:

• a model with n – 1 parameters to a model with n parameters

• a model with k – 1 explanatory variables to a model with k explanatory variables

• a linear model to a model which is curved

• a model without a hump to a model with a hump

• a model without interactions to a model containing interactions between variables

Other considerations include a preference for models containing explanatory variables
that are easy to measure over variables that are difficult or expensive to measure. Also, we
prefer models that are based on a sound mechanistic understanding of the process over
purely empirical functions.

Parsimony requires that the model should be as simple as possible. This means
that the model should not contain any redundant parameters or factor levels. We
achieve this by fitting a maximal model then simplifying it by following one or more
of these steps:

• remove non-significant interaction terms

• remove non-significant quadratic or other non-linear terms

• remove non-significant explanatory variables

• group together factor levels that do not differ from one another

• in ANCOVA, set non-significant slopes of continuous explanatory variables to zero

subject, of course, to the caveats that the simplifications make good scientific sense, and
do not lead to significant reductions in explanatory power.

194 STATISTICS: AN INTRODUCTION USING R



Just as there is no perfect model, so there may be no optimal scale of measurement for a
model. Suppose, for example, we had a process that had Poisson errors with multiplicative
effects amongst the explanatory variables. Then, one must chose between three different
scales, each of which optimizes one of three different properties:

1. the scale of
ffiffiffi

y
p

would give constancy of variance

2. the scale of y2=3 would give approximately normal errors

3. the scale of ln(y) would give additivity

Thus, any measurement scale is always going to be a compromise, and you should choose
the scale that gives the best overall performance of the model.

Model Interpretation

Saturated model One parameter for every data point
Fit: perfect
Degrees of freedom: none
Explanatory power of the model: none

Maximal model Contains all (p) factors, interactions and covariates that might be of
any interest. Many of the model’s terms are likely to be insignificant

Degrees of freedom: n� p� 1
Explanatory power of the model: it depends

Minimal adequate
model

A simplified model with 0 � p´ � p parameters
Fit: less than the maximal model, but not significantly so
Degrees of freedom: n� p´ � 1
Explanatory power of the model: r2= SSR/SSY

Null model Just one parameter, the overall mean y
Fit: none; SSE= SSY
Degrees of freedom: n� 1
Explanatory power of the model: none

The Steps Involved in Model Simplification

There are no hard and fast rules, but the procedure laid out below works well in practice. With
large numbers of explanatory variables, and many interactions and non-linear terms, the
process of model simplification can take a very long time. But this is time well spent because it
reduces the risk of overlooking an important aspect of the data. It is important to realize that
there is no guaranteed way of finding all the important structures in a complex dataframe.

Step Procedure Explanation

1 Fit the maximal model Fit all the factors, interactions and covariates of
interest. Note the residual deviance. If you are
using Poisson or binomial errors, check for
overdispersion and rescale if necessary

(continued )
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(Continued )

Step Procedure Explanation

2 Begin model simplification Inspect the parameter estimates using summary.
Remove the least significant terms first, using
update -, starting with the highest-order
interactions

3 If the deletion causes an
insignificant increase in
deviance

Leave that term out of the model.
Inspect the parameter values again.
Remove the least significant term remaining

4 If the deletion causes a
significant increase in deviance

Put the term back in the model using update + .
These are the statistically significant terms as
assessed by deletion from the maximal model

5 Keep removing terms from the
model

Repeat steps 3 or 4 until the model contains
nothing but significant terms.

This is the minimal adequate model.
If none of the parameters is significant, then the

minimal adequate model is the null model

Caveats

Model simplification is an important process, but it should not be taken to extremes.
For example, the interpretation of deviances and standard errors produced with fixed
parameters that have been estimated from the data should be undertaken with caution.
Again, the search for ‘nice numbers’ should not be pursued uncritically. Sometimes
there are good scientific reasons for using a particular number (e.g. a power of 0.66 in
an allometric relationship between respiration and body mass). Again, it is much more
straightforward, for example, to say that yield increases by 2 kg per hectare for every
extra unit of fertilizer, than to say that it increases by 1.947 kg. Similarly, it may be
preferable to say that the odds of infection increase 10-fold under a given treatment,
rather than to say that the logits increase by 2.321 (without model simplification this is
equivalent to saying that there is a 10.186-fold increase in the odds). It would be
absurd, however, to fix on an estimate of 6 rather than 6.1 just because 6 is a whole
number.

Order of Deletion

Remember that when explanatory variables are correlated (as they almost always are in
multiple regression), order matters. If your explanatory variables are correlated with each
other, then the significance you attach to a given explanatory variable will depend upon
whether you delete it from a maximal model or add it to the null model. If you always test by
model simplification then you won’t fall into this trap.

The fact that you have laboured long and hard to include a particular experimental
treatment does not justify the retention of that factor in the model if the analysis shows
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it to have no explanatory power. ANOVA tables are often published containing a
mixture of significant and non-significant effects. This is not a problem in orthogonal
designs, because sums of squares can be unequivocally attributed to each factor and
interaction term. But as soon as there are missing values or unequal weights, then it is
impossible to tell how the parameter estimates and standard errors of the significant
terms would have been altered if the non-significant terms had been deleted. The best
practice is this

• say whether your data are orthogonal or not

• present a minimal adequate model

• give a list of the non-significant terms that were omitted, and the deviance changes that
resulted from their deletion

Readers can then judge for themselves the relative magnitude of the non-significant
factors, and the importance of correlations between the explanatory variables.

The temptation to retain terms in the model that are ‘close to significance’ should be
resisted. The best way to proceed is this. If a result would have been important if it had been
statistically significant, then it is worth repeating the experiment with higher replication and/
or more efficient blocking, in order to demonstrate the importance of the factor in a
convincing and statistically acceptable way.

Carrying Out a Multiple Regression

For multiple regression, the approach recommended here is that before you begin modelling
in earnest you do two things:

• use tree models to investigate whether there are complicated interactions

• use generalized additive models to investigate curvature

Let us begin with an example from air pollution studies. How is ozone concentration
related to wind speed, air temperature and the intensity of solar radiation?

ozone.pollution <- read.csv("c:\\temp\\ozone.data.csv")
attach(ozone.pollution)
names(ozone.pollution)

[1] "rad" "temp" "wind" "ozone"

In multiple regression, it is always a good idea to use the pairs function to look at all
the correlations:

pairs(ozone.pollution,panel=panel.smooth)
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The response variable, ozone concentration, is shown on the y axis of the bottom
row of panels: there is a strong negative relationship with wind speed, a positive
correlation with temperature and a rather unclear, but possibly humped relationship
with radiation.

A good way to start a multiple regression problem is using non-parametric smoothers in a
generalized additive model (gam) like this:

library(mgcv)
par(mfrow=c(2,2))
model <- gam(ozone∼s(rad)+s(temp)+s(wind))
plot(model,col= "blue")
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The confidence intervals are sufficiently narrow to suggest that the curvature in all three
relationships might be real.

The next step might be to fit a tree model to see whether complex interactions between the
explanatory variables are indicated. The older tree function is better for this graphical
search for interactions than is the more modern rpart (but the latter is much better for
statistical modelling):

par(mfrow=c(1,1))
library(tree)
model <- tree(ozone∼.,data=ozone.pollution)
plot(model)
text(model)
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This shows that temperature is far and away the most important factor affecting ozone
concentration (the longer the branches in the tree, the greater the deviance explained). Wind
speed is important at both high and low temperatures, with still air being associated with higher
mean ozone levels (the figures at the ends of the branches are mean ozone concentrations).
Radiation shows an interesting, but subtle effect. At low temperatures, radiation matters at
relatively high wind speeds (>7.15), whereas at high temperatures, radiation matters at
relatively low wind speeds (<10.6); in both cases, however, higher radiation is associated with
higher mean ozone concentration. The tree model therefore indicates that the interaction
structure of the data is not particularly complex (this is a reassuring finding).

Armed with this background information (likely curvature of responses and a relatively
uncomplicated interaction structure), we can begin the linear modelling. We start with the
most complicated model: this includes interactions between all three explanatory variables
plus quadratic terms to test for curvature in response to each of the three explanatory variables:

model1 <- lm(ozone∼temp*wind*rad+I(rad^2)+I(temp^2)+I(wind^2))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
I(rad^2) -3.619e-04 2.573e-04 -1.407 0.16265
I(temp^2) 5.833e-02 2.396e-02 2.435 0.01668 *
I(wind^2) 6.106e-01 1.469e-01 4.157 6.81e-05 ***
temp:wind 2.377e-01 1.367e-01 1.739 0.08519 .
temp:rad 8.403e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.67552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358

Residual standard error: 17.82 on 100 degrees of freedom
Multiple R-squared: 0.7394, Adjusted R-squared: 0.7133
F-statistic: 28.37 on 10 and 100 DF, p-value: < 2.2e-16

The three-way interaction is clearly not significant, so we remove it to begin the process
of model simplification:

model2 <- update(model1,∼. – temp:wind:rad)
summary(model2)

Next, we remove the least significant two-way interaction term, in this case wind:rad:

model3 <- update(model2,∼. - wind:rad)
summary(model3)

Then we try removing the temperature by wind interaction:

model4 <- update(model3,∼. - temp:wind)
summary(model4)
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We shall retain the marginally significant interaction between temp and rad

(p= 0.04578) for the time being, but leave out all other interactions. In model4, the least
significant quadratic term is for rad, so we delete this:

model5 <- update(model4,∼. - I(rad^2))
summary(model5)

This deletion has rendered the temp:rad interaction insignificant, and caused the main
effect of radiation to become insignificant. We should try removing the temp:rad interaction:

model6 <- update(model5,∼. - temp:rad)
summary(model6)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 291.16758 100.87723 2.886 0.00473 **
temp -6.33955 2.71627 -2.334 0.02150 *
wind -13.39674 2.29623 -5.834 6.05e-08 ***
rad 0.06586 0.02005 3.285 0.00139 **
I(temp^2) 0.05102 0.01774 2.876 0.00488 **
I(wind^2) 0.46464 0.10060 4.619 1.10e-05 ***

Residual standard error: 18.25 on 105 degrees of freedom
Multiple R-Squared: 0.713, Adjusted R-squared: 0.6994
F-statistic: 52.18 on 5 and 105 DF, p-value: 0

Now we are making progress. All the terms in model6 are significant. At this stage, we
should check the assumptions, using plot(model6):
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There is a clear pattern of variance increasing with the mean of the fitted values. This is
bad news (heteroscedasticity). Also, the normality plot is distinctly curved; again, this is bad
news. Let us try transformation of the response variable. There are no zeros in the response,
so a log transformation is worth trying. We need to repeat the entire process of model
simplification from the very beginning, because transformation alters the variance structure
and the linearity of all the relationships.

model7 <- lm(log(ozone)∼temp*wind*rad+I(rad^2)+I(temp^2)+I(wind^2))

We can speed up the model simplification using the step function:

model8 <- step(model7)
summary(model8)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.724e-01 6.350e-01 1.216 0.226543
temp 4.193e-02 6.237e-03 6.723 9.52e-10 ***
wind -2.211e-01 5.874e-02 -3.765 0.000275 ***
rad 7.466e-03 2.323e-03 3.215 0.001736 **
I(rad^2) -1.470e-05 6.734e-06 -2.183 0.031246 *
I(wind^2) 7.390e-03 2.585e-03 2.859 0.005126 **

Residual standard error: 0.4851 on 105 degrees of freedom
Multiple R-squared: 0.7004, Adjusted R-squared: 0.6861
F-statistic: 49.1 on 5 and 105 DF, p-value: < 2.2e-16

This simplified model following transformation has a different structure than before: all
three main effects are significant and there are still no interactions between variables, but the
quadratic term for temperature has gone and a quadratic term for radiation remains in the
model. We need to check that transformation has improved the problems that we had with
non-normality and non-constant variance:

plot(model8)
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This shows that the variance and normality are now reasonably well behaved, so we can
stop at this point. We have found the minimal adequate model. Our initial impressions from
the tree model (no interactions) and the generalized additive model (a good deal of
curvature) have been borne out by the statistical modelling.

A Trickier Example

In thisexampleweintroducetwonewbuthighly realisticdifficulties:moreexplanatoryvariables,
and fewer data points. This is another air pollution dataframe, but the response variable
this time is sulphur dioxide concentration. There are six continuous explanatory variables:

pollute <- read.csv("c:\\temp\\sulphur.dioxide.csv")
attach(pollute)
names(pollute)

[1] "Pollution" "Temp" "Industry" "Population" "Wind"
[6] "Rain" "Wet.days"

Here are the 36 paired scatterplots:

pairs(pollute,panel=panel.smooth)
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This time, let us begin with the tree model rather than the generalized additive model.

par(mfrow=c(1,1))
library(tree)
model <- tree(Pollution∼.,data=pollute)
plot(model)
text(model)
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This tree model is much more complicated than we saw in the previous ozone example. It
is interpreted as follows. The most important explanatory variable is industry, and the
threshold value separating low and high values of industry is 748. The right hand branch of
the tree indicates the mean value of air pollution for high levels of industry (67.00). The fact
that this limb is unbranched means that no other variables explain a significant amount of the
variation in pollution levels for high values of industry. The left-hand limb does not show
the mean values of pollution for low values of industry, because there are other significant
explanatory variables. Mean values of pollution are only shown at the extreme ends of
branches. For low values of industry, the tree shows us that population has a significant
impact on air pollution. At low values of population (< 190) the mean level of air pollution
was 43.43. For high values of population, the number of wet days is significant. Low
numbers of wet days (< 108) have mean pollution levels of 12.00, while temperature has a
significant impact on pollution for places where the number of wet days is large. At high
temperatures (> 59.35 °F) the mean pollution level was 15.00, while at lower temperatures
the run of wind is important. For still air (wind < 9.65) pollution was higher (33.88) than for
higher wind speeds (23.00).

The virtues of tree-based models are numerous:

• they are easy to appreciate and to describe to other people

• the most important variables stand out

• interactions are clearly displayed

• non-linear effects are captured effectively

• the complexity of the behaviour of the explanatory variables is plain to see
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We conclude that the interaction structure is highly complex. We shall need to carry out
the linear modelling with considerable care.

Start with some elementary calculations. With six explanatory variables, how many
interactions might we fit? Well, there are 5+ 4+ 3+ 2+ 1= 15 two-way interactions for a
start. Plus 20 three-way, 15 four-way and 6 five-way interactions, and 1 six-way interaction
for good luck. Then there are quadratic terms for each of the six explanatory variables. So
we are looking at about 70 parameters that might be estimated from the data with a complete
maximal model. But how many data points do we have?

length(Pollution)

[1] 41

Oops! We are planning to estimate almost twice as many parameters as there are data
points. That’s taking over-parameterization to new heights. This leads us to a very general
and extremely important question: how many data points does one need per parameter to be
estimated?

Of course there can be no hard and fast answer to this, but perhaps there are some useful
rules of thumb? To put the question another way, given that I have 41 data points, how many
parameters is it reasonable to expect that I shall be able to estimate from the data?

As an absolute minimum, one would need at least three data points per parameter
(remember that any two points can always be joined perfectly by a straight line). Applying
this to our current example means that the absolute maximum we should try to estimate
would be 41/3= 13 parameters (one for the intercept plus 12 slopes). A more conservative
rule of thumb might suggest 10 data points per parameter, under which more stringent
criteria we would be allowed to estimate an intercept and just three slopes.

It is at this stage that the reality bites. If I cannot fit all of the explanatory variables I want,
then how do I choose which ones to fit? This is a problem because:

• main effects can appear to be non-significant when a relationship is strongly curved (see
p. 148) so if I don’t fit a quadratic term (using up an extra parameter in the process) I
shan’t be confident about leaving a variable out of the model

• main effects can appear to be non-significant when interactions between two or more
variables are pronounced (see p. 174)

• interactions can only be investigated when variables appear together in the same model
(interactions between two continuous explanatory variables are typically included in the
model as a function of the product of the two variables, and both main effects should be
included when we do this)

The ideal strategy is to fit a maximal model containing all the explanatory variables, with
curvature terms for each variable, along with all possible interactions terms, and then
simplify this maximal model, perhaps using step to speed up the initial stages. In our
present example, however, this is completely out of the question. We have far too many
variables and far too few data points.
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In this example, it is impossible to fit all combinations of variables simultaneously and
hence it is highly likely that important interaction terms could be overlooked. We know
from the tree model that the interaction structure is going to be complicated, so we need to
concentrate on that. Perhaps a good place to start is by looking for curvature, to see if we can
eliminate this as a major cause of variation. Fitting all the variables and their quadratic terms
requires an intercept and 12 slopes to be estimated, and this is right at the extreme limit of
three data points per parameter:

model1 <- lm(Pollution∼Temp+I(Temp^2)+Industry+I(Industry^2)+
Population+I(Population^2)+Wind+I(Wind^2)+Rain+I(Rain^2)+Wet.
days+I(Wet.days^2))
summary(model1)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) -6.641e+01 2.234e+02 -0.297 0.76844
Temp 5.814e-01 6.295e+00 0.092 0.92708
I(Temp^2) -1.297e-02 5.188e-02 -0.250 0.80445
Industry 8.123e-02 2.868e-02 2.832 0.00847 **
I(Industry^2) -1.969e-05 1.899e-05 -1.037 0.30862
Population -7.844e-02 3.573e-02 -2.195 0.03662 *
I(Population^2) 2.551e-05 2.158e-05 1.182 0.24714
Wind 3.172e+01 2.067e+01 1.535 0.13606
I(Wind^2) -1.784e+00 1.078e+00 -1.655 0.10912
Rain 1.155e+00 1.636e+00 0.706 0.48575
I(Rain^2) -9.714e-03 2.538e-02 -0.383 0.70476
Wet.days -1.048e+00 1.049e+00 -0.999 0.32615
I(Wet.days^2) 4.555e-03 3.996e-03 1.140 0.26398

Residual standard error: 14.98 on 28 degrees of freedom
Multiple R-squared: 0.7148, Adjusted R-squared: 0.5925
F-statistic: 5.848 on 12 and 28 DF, p-value: 5.868e-05

So that’s our first bit of good news. In this unsimplified model, there is no evidence of
curvature for any of the six explanatory variables. Only the main effects of industry and
population are significant in this (highly over-parameterized) model. Let us see what step

makes of this:

model2 <- step(model1)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 54.468341 14.448336 3.770 0.000604 ***
I(Temp^2) -0.009525 0.003395 -2.805 0.008150 **
Industry 0.065719 0.015246 4.310 0.000126 ***
Population -0.040189 0.014635 -2.746 0.009457 **
I(Wind^2) -0.165965 0.089946 -1.845 0.073488 .
Rain 0.405113 0.211787 1.913 0.063980 .

Residual standard error: 14.25 on 35 degrees of freedom
Multiple R-squared: 0.6773, Adjusted R-squared: 0.6312
F-statistic: 14.69 on 5 and 35 DF, p-value: 8.951e-08
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The simpler model shows significant curvature of temperature and marginally significant
curvature for wind. Notice that step has removed the linear terms for Temp and Wind;
normally when we have a quadratic term we retain the linear term even if its slope is not
significantly different from zero. Let us remove the non-significant terms from model2 to
see what happens:

model3 <- update(model2, ∼.- Rain-I(Wind^2))
summary(model3)
Coefficients:

Estimate Std. Error t value Pr (>|t|)
(Intercept) 42.068701 9.993087 4.210 0.000157 ***
I(Temp^2) -0.005234 0.003100 -1.688 0.099752 .
Industry 0.071489 0.015871 4.504 6.45e-05 ***
Population -0.046880 0.015199 -3.084 0.003846 **

Residual standard error: 15.08 on 37 degrees of freedom
Multiple R-squared: 0.6183, Adjusted R-squared: 0.5874
F-statistic: 19.98 on 3 and 37 DF, p-value: 7.209e-08

Simplification reduces the significance of the quadratic term for temperature. We shall
need to return to this. The model supports out interpretation of the initial tree model: a main
effect for industry is very important, as is a main effect for population.

Now we need to consider the interaction terms. We shall not fit interaction terms
without both the component main effects, so we cannot fit all the two-way interaction
terms at the same time (that would be 15+ 6= 21 parameters; well above the rule of
thumb maximum value of 13). One approach is to fit the interaction terms in randomly
selected sets. With all six main effects, we can afford to assess 13 � 6= 7 interaction
terms at a time. Let us try this. Make a vector containing the names of the 15 two-way
interactions:

interactions <- c("ti","tp","tw","tr","td","ip","iw",
"ir","id","pw","pr","pd","wr","wd","rd")

Now shuffle the interactions into random order using sample without replacement:

sample(interactions)

[1] "wr" "wd" "id" "ir" "rd" "pr" "tp" "pw" "ti"
[10]"iw" "tw" "pd" "tr" "td" "ip"

It would be pragmatic to test the two-way interactions in three models each containing all
the main effects, plus two-way interaction terms five-at-a-time:

model4 <- lm(Pollution∼Temp+Industry+Population+Wind+Rain+Wet.
days+Wind:Rain+Wind:Wet.days+Industry:Wet.days+Industry:Rain+Rain:
Wet.days)
model5 <- lm(Pollution∼Temp+Industry+Population+Wind+Rain+Wet.
days+Population:Rain+Temp:Population+Population:Wind+Temp:
Industry+Industry:Wind)
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model6 <- lm(Pollution∼Temp+Industry+Population+Wind+Rain+Wet.
days+Temp:Wind+Population:Wet.days+Temp:Rain+Temp:Wet.
days+Industry:Population)

Extracting only the interaction terms from the three models, we see:

Industry:Rain -1.616e-04 9.207e-04 -0.176 0.861891
Industry:Wet.days 2.311e-04 3.680e-04 0.628 0.534949
Wind:Rain 9.049e-01 2.383e-01 3.798 0.000690 ***
Wind:Wet.days -1.662e-01 5.991e-02 -2.774 0.009593 **
Rain:Wet.days 1.814e-02 1.293e-02 1.403 0.171318

Temp:Industry -1.643e-04 3.208e-03 -0.051 0.9595
Temp:Population 1.125e-03 2.382e-03 0.472 0.6402
Industry:Wind 2.668e-02 1.697e-02 1.572 0.1267
Population:Wind -2.753e-02 1.333e-02 -2.066 0.0479 *
Population:Rain 6.898e-04 1.063e-03 0.649 0.5214

Temp:Wind 1.261e-01 2.848e-01 0.443 0.66117
Temp:Rain -7.819e-02 4.126e-02 -1.895 0.06811 .
Temp:Wet.days 1.934e-02 2.522e-02 0.767 0.44949
Industry:Population 1.441e-06 4.178e-06 0.345 0.73277
Population:Wet.days 1.979e-05 4.674e-04 0.042 0.96652

The next step might be to put all of the significant or close-to-significant interactions into
the same model, and see which survive:

model7 <- lm(Pollution∼Temp+Industry+Population+Wind+Rain+Wet.
days+Wind:Rain+Wind:Wet.days+Population:Wind+Temp:Rain)
summary(model7)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 323.054546 151.458618 2.133 0.041226 *
Temp -2.792238 1.481312 -1.885 0.069153 .
Industry 0.073744 0.013646 5.404 7.44e-06 ***
Population 0.008314 0.056406 0.147 0.883810
Wind -19.447031 8.670820 -2.243 0.032450 *
Rain -9.162020 3.381100 -2.710 0.011022 *
Wet.days 1.290201 0.561599 2.297 0.028750 *
Temp:Rain 0.017644 0.027311 0.646 0.523171
Population:Wind -0.005684 0.005845 -0.972 0.338660
Wind:Rain 0.997374 0.258447 3.859 0.000562 ***
Wind:Wet.days -0.140606 0.053582 -2.624 0.013530 *

We certainly don’t need Temp:Rain

model8 <- update(model7,∼.-Temp:Rain)
summary(model8)

or Population:Wind
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model9 <- update(model8,∼.-Population:Wind)
summary(model9)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 290.12137 71.14345 4.078 0.000281 ***
Temp -2.04741 0.55359 -3.698 0.000811 ***
Industry 0.06926 0.01268 5.461 5.19e-06 ***
Population -0.04525 0.01221 -3.707 0.000793 ***
Wind -20.17138 5.61123 -3.595 0.001076 **
Rain -7.48116 1.84412 -4.057 0.000299 ***
Wet.days 1.17593 0.54137 2.172 0.037363 *
Wind:Rain 0.92518 0.20739 4.461 9.44e-05 ***
Wind:Wet.days -0.12925 0.05200 -2.486 0.018346 *

Residual standard error: 11.75 on 32 degrees of freedom
Multiple R-squared: 0.7996, Adjusted R-squared: 0.7495
F-statistic: 15.96 on 8 and 32 DF, p-value: 3.51e-09All the terms in
model7 are significant. Time for a check on the behaviour of the model:

There are two significant two-way interactions, Wind:Rain and Wind:Wet.days. It is
time to check the assumptions:

plot(model9)
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The variance is OK, but there is a strong indication of non-normality of errors. But what
about the higher-order interactions? One way to proceed is to specify the interaction level
using ^3 in the model formula, but if we do this, we’ll run out of degrees of freedom straight
away. A sensible option is to fit three-way terms for the variables that already appear in two-
way interactions: in our case, that is just one term, Wind:Rain:Wet.days:

model10 <- update(model9,∼. + Wind:Rain:Wet.days)
summary(model10)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 278.464474 68.041497 4.093 0.000282 ***
Temp -2.710981 0.618472 -4.383 0.000125 ***
Industry 0.064988 0.012264 5.299 9.11e-06 ***
Population -0.039430 0.011976 -3.293 0.002485 **
Wind -7.519344 8.151943 -0.922 0.363444
Rain -6.760530 1.792173 -3.772 0.000685 ***
Wet.days 1.266742 0.517850 2.446 0.020311 *
Wind:Rain 0.631457 0.243866 2.589 0.014516 *
Wind:Wet.days -0.230452 0.069843 -3.300 0.002440 **
Wind:Rain:Wet.days 0.002497 0.001214 2.056 0.048247 *

Residual standard error: 11.2 on 31 degrees of freedom
Multiple R-squared: 0.8236, Adjusted R-squared: 0.7724
F-statistic: 16.09 on 9 and 31 DF, p-value: 2.231e-09

There is indeed a marginally significant three-way interaction. You should confirm that
there is no place for quadratic terms for either Temp or Wind in this model.

That’s enough for now. I’m sure you get the idea. Multiple regression is difficult, time-
consuming, and always vulnerable to subjective decisions about what to include and what to
leave out. The linear modelling confirms the early impression from the tree model: for low
levels of industry, the SO2 level depends in a simple way on population (people tend to want
to live where the air is clean) and in a complicated way on daily weather (as reflected by the
three-way interaction between wind, total rainfall and the number of wet days (i.e. on
rainfall intensity)).

Further Reading

Claeskens, G. and Hjort, N.L. (2008) Model Selection and Model Averaging, Cambridge University
Press, Cambridge.

Draper, N.R. and Smith, H. (1981) Applied Regression Analysis, John Wiley & Sons, New York.
Fox, J. (2002) An R and S-Plus Companion to Applied Regression, Sage, Thousand Oaks, CA.
Mosteller, F. and Tukey, J.W. (1977) Data Analysis and Regression, Addison-Wesley, Reading, MA.
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11
Contrasts

One of the hardest things about learning to do statistics is knowing how to interpret the output
produced by the model that you have fitted to data. The reason why the output is hard to
understand is that it is based on contrasts, and the idea of contrasts may be unfamiliar to you.

Contrasts are the essence of hypothesis testing and model simplification. They are used to
compare means or groups of means with other means or groups of means, in what are known
as single degree of freedom comparisons. There are two sorts of contrasts we might want to
carry out:

• contrasts we had planned to carry out at the experimental design stage (these are referred
to as a priori contrasts)

• contrasts that look interesting after we have seen the results (these are referred to as a
posteriori contrasts)

Some people are very snooty about a posteriori contrasts, on the grounds that they were
unplanned. You are not supposed to decide what comparisons to make after you have seen
the analysis, but scientists do this all the time. The key point is that you should only do
contrasts after the ANOVA has established that there really are significant differences to be
investigated. It is bad practice to carry out tests to compare the largest mean with the smallest
mean, if the ANOVA fails to reject the null hypothesis (tempting though this may be).

There are two important points to understand about contrasts:

• there is a huge number of possible contrasts

• there are only k� 1 orthogonal contrasts

where k is the number of factor levels. Two contrasts are said to be orthogonal to one
another if the comparisons are statistically independent. Technically, two contrasts are
orthogonal if the products of their contrast coefficients sum to zero (we shall see what this
means in a moment).

Let’s take a simple example. Suppose we have one factor with five levels and the factor
levels are called a, b, c, d and e. Let us start writing down the possible contrasts. Obviously
we could compare each mean singly with every other:

a vs: b; a vs: c; a vs: d; a vs: e; b vs: c; b vs: d; b vs: e; c vs: d; c vs: e; d vs: e

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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but we could also compare pairs of means:

fa; bg vs: fc; dg; fa; bg vs: fc; eg; fa; bg vs: fd; eg; fa; cg vs: fb; dg; fa; cg vs: fb; eg; :::
or triplets of means:

fa; b; cg vs: d; fa; b; cg vs: e; fa; b; dg vs: c; fa; b; dg vs: e; fa; c; dg vs: b; :::

or groups of four means:

fa; b; c; dg vs: e; fa; b; c; eg vs: d; fb; c; d; eg vs: a; fa; b; d; eg vs: c; fa; b; c; eg vs: d

I think you get the idea. There are absolutely masses of possible contrasts. In practice,
however, we should only compare things once, either directly or implicitly. So the two
contrasts a vs. b and a vs. c implicitly contrast b vs. c. This means that if we have carried out
the two contrasts a vs. b and a vs. c then the third contrast b vs. c is not an orthogonal
contrast because you have already carried it out, implicitly. Which particular contrasts are
orthogonal depends very much on your choice of the first contrast to make. Suppose there
were good reasons for comparing {a, b, c, e} vs. d. For example, d might be the placebo and
the other four might be different kinds of drug treatment, so we make this our first contrast.
Because k� 1= 4 we only have three possible contrasts that are orthogonal to this. There
may be a priori reasons to group {a, b} and {c, e}, so we make this our second orthogonal
contrast. This means that we have no degrees of freedom in choosing the last two orthogonal
contrasts: they have to be a vs. b and c vs. e. Just remember that with orthogonal contrasts
you compare things only once.

Contrast Coefficients

Contrast coefficients are a numerical way of embodying the hypothesis we want to test. The
rules for constructing contrast coefficients are straightforward:

• treatments to be lumped together get the same sign (plus or minus)

• groups of means to be contrasted get opposite sign

• factor levels to be excluded get a contrast coefficient of 0

• the contrast coefficients must add up to 0

Suppose that with our five-level factor fa; b; c; d; eg we want to begin by comparing the
four levels {a, b, c, e} with the single level d. All levels enter the contrast, so none of the
coefficients is 0. The four terms {a, b, c, e} are grouped together so they all get the same sign
(minus, for example, although it makes no difference which sign is chosen). They are to be
compared to d, so it gets the opposite sign (plus, in this case). The choice of what numeric
values to give the contrast coefficients is entirely up to you. Most people use whole numbers
rather than fractions, but it really doesn’t matter. All that matters is that the values chosen
sum to 0. The positive and negative coefficients have to add up to the same value. In our
example, comparing four means with one mean, a natural choice of coefficients would be
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�1 for each of {a, b, c, e} and +4 for d. Alternatively, we could have selected +0.25 for each
of {a, b, c, e} and �1 for d.

factor level: a b c d e

contrast 1 coefficients, c: -1 -1 -1 4 -1

Suppose the second contrast is to compare {a, b} with {c, e}. Because this contrast
excludes d, we set its contrast coefficient to 0. {a, b} get the same sign (say, plus) and {c, e}
get the opposite sign. Because the number of levels on each side of the contrast is equal (two
in both cases) we can use the same numeric value for all the coefficients. The value 1 is the
most obvious choice (but you could use 13.7 if you wanted to be perverse):

factor level: a b c d e

contrast 2 coefficients, c: 1 1 -1 0 -1

There are only two possibilities for the remaining orthogonal contrasts: a vs. b and c vs. e:

factor level: a b c d e
contrast 3 coefficients, c: 1 -1 0 0 0
contrast 4 coefficients, c: 0 0 1 0 -1

An Example of Contrasts in R

The example comes from the competition experiment we analysed in Chapter 9 in which the
biomass of control plants is compared to the biomass of plants grown in conditions where
competition was reduced in one of four different ways. There are two treatments in which
the roots of neighbouring plants were cut (to 5 cm depth or 10 cm) and two treatments in
which the shoots of neighbouring plants were clipped (25% or 50% of the neighbours cut
back to ground level; see p. 162).

comp <- read.csv("c:\\temp\\competition.csv")
attach(comp)
names(comp)

[1] "biomass" "clipping"

We start with the one-way ANOVA:

model1 <- aov(biomass∼clipping)
summary(model1)

Df Sum Sq Mean Sq F value Pr(>F)
clipping 4 85356 21339 4.302 0.00875 **
Residuals 25 124020 4961

Clipping treatment has a highly significant effect on biomass. But have we fully
understood the result of this experiment? I don’t think so. For example, which factor
levels had the biggest effect on biomass? Were all of the competition treatments signifi-
cantly different from the controls ? To answer these questions, we need to use summary.lm:
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summary.lm(model1)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

It looks as if we need to keep all five parameters, because all five rows of the summary
table have one or more significance stars. If fact, this is not the case. This example
highlights the major shortcoming of treatment contrasts (the default contrast method in
R): they do not show how many significant factor levels we need to retain in the minimal
adequate model.

A Priori Contrasts

In this experiment, there are several planned comparisons we should like to make. The
obvious place to start is by comparing the control plants that were exposed to the full rigours
of competition, with all of the other treatments.

levels(clipping)

[1] "control" "n25" "n50" "r10" "r5"

That is to say, we want to contrast the first level of clipping with the other four levels. The
contrast coefficients, therefore, would be 4, �1, �1, �1, �1. The next planned comparison
might contrast the shoot-pruned treatments (n25 and n50) with the root-pruned treatments
(r10 and r5). Suitable contrast coefficients for this would be 0, 1, 1, �1, �1 (because we are
ignoring the control in this contrast). A third contrast might compare the two depths of root-
pruning; 0, 0, 0, 1, �1. The last orthogonal contrast would therefore have to compare the two
intensities of shoot-pruning: 0, 1, �1, 0, 0. Because the clipping factor has five levels there
are only 5� 1= 4 orthogonal contrasts.

R is outstandingly good at dealing with contrasts, and we can associate these four user-
specified a priori contrasts with the categorical variable called clipping like this:

contrasts(clipping) <-
cbind(c(4,-1,-1,-1,-1),c(0,1,1,-1,-1),c(0,0,0,1,-1),c(0,1,-1,0,0))
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We can check that this has done what we wanted by typing

contrasts(clipping)

[,1] [,2] [,3] [,4]
control 4 0 0 0
n25 -1 1 0 1
n50 -1 1 0 -1
r10 -1 -1 1 0
r5 -1 -1 -1 0

which produces the matrix of contrast coefficients that we specified. Note that all the
columns add to zero (i.e. each set of contrast coefficients is correctly specified). Note also
that the products of any two of the columns sum to zero (this shows that all the contrasts are
orthogonal, as intended): for example comparing contrasts 1 and 2 gives products
0+ (�1)+ (�1)+ 1+ 1= 0.

Now we can refit the model and inspect the results of our specified contrasts, rather than
the default treatment contrasts:

model2 <- aov(biomass∼clipping)
summary.lm(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 561.80000 12.85926 43.688 < 2e-16 ***
clipping1 -24.15833 6.42963 -3.757 0.000921 ***
clipping2 -24.62500 14.37708 -1.713 0.099128 .
clipping3 0.08333 20.33227 0.004 0.996762
clipping4 -8.00000 20.33227 -0.393 0.697313

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

Instead of requiring five parameters (as suggested by our initial treatment contrasts), this
analysis shows that we need only two parameters: the overall mean (561.8) and the contrast
between the controls and the four competition treatments (p= 0.000921). All the other
contrasts are non-significant. Notice than the rows are labelled by the variable name
clipping pasted to the contrast number (1 to 4).

Treatment Contrasts

We have seen how to specify our own customized contrasts (above) but we need to
understand the default behaviour of R. This behaviour is called treatment contrasts and it is
set like this:

options(contrasts=c("contr.treatment","contr.poly"))

The first argument, "contr.treatment", says we want to use treatment contrasts
(rather than Helmert contrasts or sum contrasts), while the second, "contr.poly", sets the
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default method for comparing ordered factors (where the levels are semi-quantitative like
‘low’, ‘medium’ and ‘high’). We shall see what these unfamiliar terms mean in a moment.
Because we had associated our explanatory variable clipping with a set of user-defined
contrasts (above), we need to remove these to get back to the default treatment contrasts, like
this:

contrasts(clipping) <- NULL

Now let us refit the model and work out exactly what the summary is showing:

model3 <- lm(biomass∼clipping)
summary(model3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.75 16.177 9.4e-15 ***
clippingn25 88.17 40.66 2.168 0.03987 *
clippingn50 104.17 40.66 2.562 0.01683 *
clippingr10 145.50 40.66 3.578 0.00145 **
clippingr5 145.33 40.66 3.574 0.00147 **

Residual standard error: 70.43 on 25 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3129
F-statistic: 4.302 on 4 and 25 DF, p-value: 0.008752

First things first. There are five rows in the summary table, labelled (Intercept),
clippingn25, clippingn50, clippingr10 and clippingr55. Why are there five
rows? There are five rows in the summary table because this model has estimated five
parameters from the data (one for each factor level). This is a very important point. Different
models will produce summary tables with different numbers of rows. You should always be
aware of how many parameters your model is estimating from the data, so you should never
be taken by surprise by the number of rows in the summary table.

Next we need to think what the individual rows are telling us. Let us work out the overall
mean value of biomass, to see if that appears anywhere in the table:

mean(biomass)

[1] 561.8

No. I can’t see that number anywhere. What about the five treatment means? We obtain
these with the extremely useful tapply function:

tapply(biomass,clipping, mean)

control n25 n50 r10 r5
465.1667 553.3333 569.3333 610.6667 610.5000

This is interesting. The first treatment mean (465.1667 for the controls) does appear (in row
number 1), but none of the other means are shown. So what does the value of 88.17 in row
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number 2 of the table mean? Inspection of the individual treatment means lets you see that
88.17 is the difference between the mean biomass for n25 and the mean biomass for the
control. What about 104.17 ? That turns out to be the difference between the mean biomass
for n50 and the mean biomass for the control. Treatment contrasts are expressed as the
difference between themean for a particular factor level and themean for the factor level that
comes first in the alphabet. No wonder they are hard to understand on first encounter.

Why does it all have to be so complicated? What’s wrong with just showing the five mean
values? The answer has to do with parsimony and model simplification. We want to know
whether the differences between the means that we observe (e.g. using tapply) are
statistically significant. To assess this, we need to know the difference between the means
and (crucially) the standard error of the difference between two means (see p. 91 for a
refresher on this). The summary.lm table is designed to make this process as simple as
possible. It does this by showing us just one mean (the intercept) and all the other rows are
differences between means. Likewise, in the second column, it shows us just one standard
error (the standard error of the mean for the intercept – the control treatment in this
example), and all of the other values are the standard error of the difference between two
means. So the value in the top row (28.75) is much smaller than the values in the other four
rows (40.66) because the standard error of a mean is

ffiffiffiffi

s2

n

r

while the standard error of the difference between two means is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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You can see that for the simplest case where (as here) we have equal replication in all five
factor levels (n = 6) and we intend to use the pooled error variance s2, the standard error of
the difference between two means is

ffiffiffi

2
p � 1:414 times the size of the standard error of a

mean. Let us check this out for our example

28.75*sqrt(2)

[1] 40.65864

So that checks out. What if it is not convenient to compare the means with the factor level
that happens to come first in the alphabet ? Then all we need to do is change the order of the
levels with a new factor declaration, in which we specify the order in which the factor
levels are to be considered. You can see an example of this on p. 242. Alternatively, you can
define the contrasts attributes of the factor, as we saw earlier in this chapter.

Model Simplification by Stepwise Deletion

Model simplification with treatment contrasts requires that we aggregate non-significant
factor levels in a stepwise a posteriori procedure. The results we get by doing this are exactly
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the same as those obtained by defining the contrast attributes of the explanatory variable as
we did earlier.

Looking down the list of parameter estimates, we see that the most similar effect sizes are
for r5 and r10 (the effects of root pruning to 5 and 10 cm): 145.33 and 145.5, respectively.
We shall begin by simplifying these to a single root-pruning treatment called root. The
trick is to use ‘levels gets’ to change the names of the appropriate factor levels. Start by
copying the original factor name:

clip2 <- clipping

Now inspect the level numbers of the various factor level names:

levels(clip2)

[1] "control" "n25" "n50" "r10" "r5"

The plan is to lump together r10 and r5 under the same name, ‘root’. These are the fourth
and fifth levels of clip2 (count them from the left), so we write:

levels(clip2)[4:5] <- "root"

and to see what has happened we type:

levels(clip2)

[1] "control" "n25" "n50" "root"

We see that "r10" and "r5" have been merged and replaced by "root". The next step is
to fit a new model with clip2 in place of clipping, and to use anova to test whether the
new simpler model with only four factor levels is significantly worse as a description of
the data:

model4 <- lm(biomass∼clip2)

anova(model3,model4)

Analysis of Variance Table

Model 1: biomass ∼ clipping
Model 2: biomass ∼ clip2

Res.Df RSS Df Sum of Sq F Pr(>F)
1 25 124020
2 26 124020 -1 -0.0833333 0.0000168 0.9968
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As we expected, this model simplification was completely justified. The next step is to
investigate the effects using summary:

summary(model4)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 28.20 16.498 2.72e-15 ***
clip2n25 88.17 39.87 2.211 0.036029 *
clip2n50 104.17 39.87 2.612 0.014744 *
clip2root 145.42 34.53 4.211 0.000269 ***

Residual standard error: 69.07 on 26 degrees of freedom
Multiple R-squared: 0.4077, Adjusted R-squared: 0.3393
F-statistic: 5.965 on 3 and 26 DF, p-value: 0.003099

Next, we want to compare the two shoot-pruning treatments with their effect sizes of
88.17 and 104.17. They differ by 16.0 (much more than the root-pruning treatments did), but
you will notice that the standard error of the difference if 39.87. You will soon get used to
doing t tests in your head and using the rule of thumb that t needs to be bigger than 2 for
significance. In this case, the difference would need to be at least 2× 39.87= 79.74 for
significance, so we predict that merging the two shoot pruning treatments will not cause a
significant reduction in the explanatory power of the model. We can lump these together
into a single shoot-pruning treatment as follows:

clip3 <- clip2
levels(clip3)[2:3] <- "shoot"
levels(clip3)

[1] "control" "shoot" "root"

Then we fit a new model with clip3 in place of clip2:

model5 <- lm(biomass∼clip3)
anova(model4,model5)

Analysis of Variance Table

Model 1: biomass ∼ clip2
Model 2: biomass ∼ clip3

Res.Df RSS Df Sum of Sq F Pr(>F)
1 26 124020
2 27 124788 -1 -768 0.161 0.6915

Again, this simplification was fully justified. Do the root and shoot competition
treatments differ?
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summary(model5)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 465.17 27.75 16.760 8.52e-16 ***
clip3shoot 96.17 33.99 2.829 0.008697 **
clip3root 145.42 33.99 4.278 0.000211 ***

Residual standard error: 67.98 on 27 degrees of freedom
Multiple R-squared: 0.404, Adjusted R-squared: 0.3599
F-statistic: 9.151 on 2 and 27 DF, p-value: 0.0009243

The two effect sizes differ by 145.42� 96.17= 49.25 with a standard error of 33.99
(giving t< 2) so we shall be surprised if merging the two factor levels causes a significant
reduction in the model’s explanatory power:

clip4 <- clip3
levels(clip4)[2:3] <- "pruned"
levels(clip4)

[1] "control" "pruned"

Now we fit a new model with clip4 in place of clip3:

model6 <- lm(biomass∼clip4)
anova(model5,model6)

Analysis of Variance Table

Model 1: biomass ∼ clip3
Model 2: biomass ∼ clip4

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27 124788
2 28 139342 -1 -14553 3.1489 0.08726 .

This simplification was close to significant, but we are ruthless (p > 0.05), so we accept
the simplification. Now we have the minimal adequate model:

summary(model6)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) 465.2 28.8 16.152 1.01e-15 ***
clip4pruned 120.8 32.2 3.751 0.000815 ***

Residual standard error: 70.54 on 28 degrees of freedom
Multiple R-squared: 0.3345, Adjusted R-squared: 0.3107
F-statistic: 14.07 on 1 and 28 DF, p-value: 0.0008149

It has just two parameters: the mean for the controls (465.2) and the difference between
the control mean and the four other treatment means (465.2+ 120.8= 586.0):
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tapply(biomass,clip4,mean)

control pruned
465.1667 585.9583

We know from the p value= 0.000815 (above) that these two means are significantly
different, but just to show how it is done, we can make a final model7 that has no
explanatory variable at all (it fits only the overall mean). This is achieved by writing y∼1 in
the model formula (parameter 1, you will recall, is the intercept in R):

model7 <- lm(biomass∼1)
anova(model6,model7)

Analysis of Variance Table

Model 1: biomass ∼ clip4
Model 2: biomass ∼ 1

Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 139342
2 29 209377 -1 -70035 14.073 0.0008149 ***

Note that the p value is exactly the same as in model6. The p values in R are calculated
such that they avoid the need for this final step in model simplification: they are ‘p on
deletion’ values.

It is informative to compare what we have just done by stepwise factor-level reduction
with what we did earlier by specifying the contrast attribute of the factor.

Contrast Sums of Squares by Hand

The key point to understand is that the treatment sum of squares SSA is the sum of all k� 1
orthogonal sums of squares. It is very useful to know which of the contrasts contributes
most to SSA, and to work this out, we compute a set of contrast sums of squares SSC
as follows:

SSC �
P ciTi

ni

� �2

P c2
i

ni

or, when all the sample sizes are the same for each factor level:

SSC �
1
n

P

ciTi

� �2

1
n

X

ci
2

The significance of a contrast is judged in the usual way by carrying out an F test to
compare the contrast variance with the pooled error variance, s2 from the ANOVA table.
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Since all contrasts have a single degree of freedom, the contrast variance is equal to SSC, so
the F test is just

F � SSC

s2

The contrast is significant (i.e. the two contrasted groups have significantly different
means) if the calculated value of the test statistic is larger than the critical value of F with 1
and k(n� 1) degrees of freedom. We demonstrate these ideas by continuing our example.
When we did factor-level reduction in the previous section, we obtained the following sums
of squares for the four orthogonal contrasts that we carried out (the figures come from the
model-comparison ANOVA tables, above):

Contrast Sum of squares

Control vs. the rest 70 035

Shoot pruning vs. root pruning 14 553

Intense vs. light shoot pruning 768

Deep vs. shallow root pruning 0.083

Total

What we shall do now is carry out the calculations involved in the a priori contrasts in
order to demonstrate that the results are identical. The new quantities we need to compute
the contrast sums of squares SSC are the treatment totals, Ti, in the formula above and the
contrast coefficients ci. It is worth writing down the contrast coefficients again (see p. 214,
above):

Contrast Contrast coefficients

Control vs. the rest 4 �1 �1 �1 �1

Shoot pruning vs. root pruning 0 1 1 �1 �1

Intense vs. light shoot pruning 0 1 �1 0 0

Deep vs. shallow root pruning 0 0 0 1 �1

We use tapply to obtain the five treatment totals:

tapply(biomass,clipping,sum)
control n25 n50 r10 r5

2791 3320 3416 3664 3663
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For the first contrast, the contrast coefficients are 4, �1, �1, �1, and �1. The formula for
SSC is therefore

1
6
� 4 � 2791� � � �1 � 3320� � � �1 � 3416� � � �1 � 3664� � � �1 � 3663� �f g

� �2

1
6
� 42 � �1� �2 � �1� �2 � �1� �2 � �1� �2� �

�
1
6
� �2899

� �2

20
6

� 233 450
3:33333

� 70 035

In the second contrast, the coefficient for the control is zero, so we leave this out:

1
6
� 1 � 3320� � � 1 � 3416� � � �1 � 3664� � � �1 � 3663� �f g

� �2

1
6

� �1� �2 � �1� �2 � �1� �2 � �1� �2� �

�
1
6
� �591

� �2

4
6

� 9702:25
0:666666

� 14 553

The third contrast ignores the root treatments, so:

1
6
� 1 � 3320� � � �1 � 3416� �f g

� �2

1
6
� �1� �2 � 1� �2� �

�
1
6
� �96

� �2

2
6

� 256
0:33333

� 768

Finally, we compare the two root pruning treatments:

1
6
� 1 � 3664� � � �1 � 3663� �f g

� �2

1
6
� �1� �2 � 1� �2� �

�
1
6
� 1

� �2

2
6

� 0:027778
0:333333

� 0:083333

You will see that these sums of squares are exactly the same as we obtained by stepwise
factor-level reduction. So don’t let anyone tell you that these procedures are different or that
one of them is superior to the other.

The Three Kinds of Contrasts Compared

You are very unlikely to need to use Helmert contrasts or sum contrasts in your work, but
if you need to find out about them, they are explained in detail in The R Book (Crawley,
2013).
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12
Other Response Variables

Up to now, the response variable has been a continuous real number such as a weight, length
or concentration. We made several important assumptions about the behaviour of the
response variable, and it is worth reiterating those assumptions here, ranked in order of
importance:

• random sampling

• constant variance

• normal errors

• independent errors

• additive effects

So far, when we found that one or more of the assumptions was wrong, our typical resort
was transformation of the response variable, coupled perhaps with transformation of one or
more of the explanatory variables.

In our line of work, we often meet with response variables where the key assumptions are
rarely if ever met. In these cases, it is sensible to look for alternatives to transformation that
might improve our ability to model these systems effectively. In this book we cover four
new kinds of response variable that are very common in practice:

• count data

• proportion data

• binary response data

• age-at-death data

all of which routinely fail the assumptions about constancy of variance and normality of
errors. It turns out that these different kinds of response variables have more in common than
you might first imagine, and that they can all be dealt with in the framework of generalized
linear models (GLMs). These models allow variance to be non-constant and errors to be
non-normally distributed. It is worth noting, however, that they still assume random
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sampling and independence of errors. Effects in GLMs may be additive or multiplicative,
depending on the circumstances.

We begin by thinking about variance. Count data are whole numbers (integers) so you can
see immediately that when the mean is low, the data are likely to consist only of zeros, ones
and twos, with the odd three of four thrown in. This being the case, the variance of count
data is bound to be low when the mean is low (recall that variance is the sum of the squares
of the departures of the counts from the mean count, divided by the degrees of freedom).
However, when the mean of count data is high, the range of individual counts can be from
zero to potentially very large numbers, and when we work out the residuals and square them
we can expect to obtain very large numbers, and a consequently high variance. For count
data, therefore, the variance is expected to increase with the mean, rather than being constant
as assumed in linear models. For the kind of count data we are talking about here, we know
the number of times that something happened (lightning strikes, cells on a microscope slide,
insects on a leaf), but not the number of times it did not happen.

For proportion data based we typically have a count of the number of individuals doing
one thing and another count of the number not doing that thing. Both these counts are free to
vary and both counts are important in analysing the data properly. In general the numbers
doing the thing in question are known as successes and the numbers not doing it are known
as failures. This can be rather macabre, as when the response variable is the number of
people dying in a medical trail. Examples of proportion data based on counts are:

Successes Failures

dead alive

female male

diseased healthy

occupied unoccupied

pollinated not pollinated

adult juvenile

You can see that this kind of proportion data based on counts arises in a great many kinds
of circumstances. Let us think about the variance of proportion data like this. If the success
rate is 100% then all the individuals are alike and the variance is zero. Again, if the success
rate is zero, then all the individuals are alike and the variance is zero. If, however, the
success rate is intermediate (50%, say) then some of the individuals are in one class and
some are in the other, so variance is high. This means that unlike count data (above) where
the variance increased monotonically with the mean, for proportion data the variance is a
humped function of the mean. The binomial distribution is an important example of the kind
of distribution used in the analysis of proportion data: if p is the probability of success and n
is the number of trails, then the mean number of successes is np and the variance in the
number of successes is np(1� p). As you can see, the variance is 0 when p= 1 and 0 when
p= 0, reaching a peak when p= 0.5.
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Another sort of proportion data (such as percentage cover data from plant ecology), is not
based on counts, but involves continuous numbers that are bounded both above and below
(for instance, you cannot have negative percentage cover, or cover values that are greater
than 100%). These kinds of proportion data are arcsine transformed prior to analysis, then
analysed using linear models (see p. 257).

A very particular kind of response variable is analysed by medical researchers: this is the
age at death. The research questions centre on the effect of a particular treatment on
(hopefully) increasing the age at death of the patients receiving this treatment compared to
patients receiving the placebo (the controls). Age-at-death data are notorious for their non-
constant variance. We saw that for count data the variance increases with the mean, but for
age-at-death data the situation is even more extreme than this: the variance increases with
the square of the mean.

Here are graphs of the variance as a function of the mean for four contrasting kinds of
response variable: data suitable for analysis using linear models (constant variance, top
left); count data (linearly increasing variance, top right); proportion data (humped variance
mean relationship, bottom left) and age-at-death data (quadratically increasing variance,
bottom right).

Introduction to Generalized Linear Models

A generalized linear model has three important properties:

• the error structure

• the linear predictor

• the link function
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These are all likely to be unfamiliar concepts. The ideas behind them are straightforward,
however, and it is worth learning what each of the concepts involves.

The Error Structure

Up to this point, we have dealt with the statistical analysis of data with normal errors. In
practice, however, many kinds of data have non-normal errors:

• errors that are strongly skewed

• errors that are kurtotic

• errors that are strictly bounded (as in proportions)

• errors that cannot lead to negative fitted values (as in counts)

In the past, the only tools available to deal with these problems were transformation of the
response variable or the adoption of non-parametric methods. A GLM allows the specifi-
cation of a variety of different error distributions:

• Poisson errors, useful with count data

• binomial errors, useful with data on proportions

• gamma errors, useful with data showing a constant coefficient of variation

• exponential errors, useful with data on time to death (survival analysis)

The error structure is defined by means of the family directive, used as part of the model
formula like this:

glm(y ∼ z, family = poisson)

which means that the response variable y has Poisson errors. Or

glm(y ∼ z, family = binomial)

which means that the response is binary, and the model has binomial errors. As with
previous models, the explanatory variable z can be continuous (leading to a regression
analysis) or categorical (leading to an ANOVA-like procedure called analysis of deviance,
as described below).

The Linear Predictor

The structure of the model relates each observed y value to a predicted value. The predicted
value is obtained by transformation of the value emerging from the linear predictor. The
linear predictor, η (eta), is a linear sum of the effects of one or more explanatory variables, xj,
and is what we see when we ask for summary.lm:

ηi �
X

p

j�1

xibβj
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where the xs are the values of the p different explanatory variables, and the βs are the
(usually) unknown parameters to be estimated from the data. The right-hand side of the
equation is called the linear structure.

There are as many terms in the linear predictor as there are parameters, p, to be estimated
from the data. Thus with a simple regression, the linear predictor is the sum of two terms
whose parameters are the intercept and the slope. With a one-way ANOVA with four
treatments, the linear predictor is the sum of four terms leading to the estimation of the mean
for each level of the factor. If there are covariates in the model, they add one term each to the
linear predictor (the slope of each relationship). Interaction terms in a factorial ANOVA add
one or more parameters to the linear predictor, depending upon the degrees of freedom of
each factor (e.g. there would be three extra parameters for the interaction between a two-
level factor and a four-level factor, because (2� 1)× (4 – 1)= 3).

The linear predictor can be inspected by typing summary.lm: there are as many rows as
there are parameters in your model, and for every parameter you get the effect size and the
standard error of the effect in the first two columns. The other columns are less important
because you could easily work them out yourself: the t value, the p value and the
significance stars.

What you will find difficult at first is knowing exactly what effects are being shown on
each row. In an analysis of covariance, for example, the top row will contain an intercept and
the second row might contain a slope, but the other rows will all be differences between
intercepts and/or differences between slopes (i.e. there is only one slope in the table and only
one intercept, no matter how many slopes or intercepts there are in the fitted model).

Fitted Values

One of the great strengths of GLMs is that different models can be compared on the same
scale of measurement as the response variable. Up to now, we have used variance to
measure the lack of fit between the model and the data: this was the sum of the squares of the
difference between the response variable y and the fitted values predicted by the model ŷ,
which is

P

y � ŷ� �2 divided by the degrees of freedom. Now if you fit a different model, say
log(y)= a+ bx, then obviously the variance is completely different because it is based on
P

log y� � � ŷ� �2. This makes model comparison difficult, because there is no common
currency for measuring the fit of the two models to the data. In a GLM, however, we always
compare y and ŷ on the same scale on which the response was measured (as a count, for
instance, or as a proportion based on two counts). This makes model comparison much more
straightforward.

A General Measure of Variability

The difference is that the measure of lack of fit of the model to the data depends on the
context. We give it the new, more general name of deviance. The technical definition won’t
mean much to you at this stage, but here it is:

deviance � �2 � log likelihood

where the log likelihood depends on the model given the data. We don’t need to unlearn
anything, because deviance is the same as variance when we have constant variance and
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normal errors (as in linear regression, ANOVA or ANCOVA). But for count data we do need a
different measure of lack of fit (it is based on y log y=ŷ� � rather than on y � ŷ� �2) and we need a
different definition of deviance for proportion data, and so on. But the point is that for
measuring the fit, we compare y and ŷ on the same original untransformed scale. We shall
discuss the various deviance measures in more detail in the following chapters, but so that you
can compare them with one another, here are the main measures of lack of fit side-by-side:

Model Deviance Error Link

linear
X

y � ŷ� �2 Gaussian identity

log linear
2
X

y log
y

ŷ

� �

Poisson log

logistic
2
X

y log
y

ŷ

� �

� n � y� �log
n � y

n � ŷ

� �

binomial logit

gamma
2
X y � ŷ� �

y
� log

y

ŷ

� �

gamma reciprocal

To determine the fit of a given model, a GLM evaluates the linear predictor for each value
of the response variable, then back-transforms the predicted value to compare it with
the observed value of y. The parameters are then adjusted, and the model refitted on the
transformed scale in an iterative procedure until the fit stops improving. It will take some
time before you understand what is going on here, and why it is so revolutionary. Don’t
worry; it will come with practice.

The Link Function

One of the difficult things to grasp about GLMs is the relationship between the values of the
response variable (as measured in the data and predicted by the model as fitted values) and
the linear predictor.

The transformation to be employed is specified in the link function. The fitted value is
computed by applying the reciprocal of the link function, in order to get back to the original
scale of measurement of the response variable. Thus, with a log link, the fitted value is the
antilog of the linear predictor, and with the reciprocal link, the fitted value is the reciprocal
of the linear predictor.

The thing to remember is that the link function relates the mean value of y to its linear
predictor. In symbols, this means that:

η � g�μ�
which is simple, but needs thinking about. The linear predictor, η, emerges from the linear
model as a sum of the terms for each of the p parameters. This is not a value of y (except in
the special case of the identity link that we have been using (implicitly) up to now). The
value of η is obtained by transforming the value of y by the link function, and the predicted
value of y is obtained by applying the inverse link function to η.
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The most frequently used link functions are shown below. An important criterion in
the choice of link function is to ensure that the fitted values stay within reasonable
bounds. We would want to ensure, for example, that counts were all greater than or
equal to zero (negative count data would be nonsense). Similarly, if the response
variable was the proportion of individuals who died, then the fitted values would have to
lie between 0 and 1 (fitted values greater than 1 or less than 0 would be meaningless). In
the first case, a log link is appropriate because the fitted values are antilogs of the linear
predictor, and all antilogs are greater than or equal to zero. In the second case, the logit
link is appropriate because the fitted values are calculated as the antilogs of the log odds,
log(p/q).

By using different link functions, the performance of a variety of models can be compared
directly. The total deviance is the same in each case, and we can investigate the conse-
quences of altering our assumptions about precisely how a given change in the linear
predictor brings about a response in the fitted value of y. The most appropriate link function
is the one which produces the minimum residual deviance.

Canonical Link Functions

The canonical link functions are the default options employed when a particular error
structure is specified in the family directive in the model formula. Omission of a link

directive means that the following settings are used:

Error Canonical link

gaussian identity

poisson log

binomial logit

Gamma reciprocal

You should try to memorize these canonical links and to understand why each is
appropriate to its associated error distribution. Note that only gamma errors have a capital
initial letter in R.

Choosing between using a link function (e.g. log link) in a GLM and transforming the
response variable (i.e. having log(y) as the response variable rather than y) and using a linear
model takes a certain amount of experience.

As you read the following four chapters you will gradually become more familiar with
these new concepts. Of course they are hard to understand at first, and it would be wrong to
pretend otherwise. But they do become easier with practice. The key is to understand that
when variance is not constant and when the errors are not normally distributed, we have to
do something about it. And using a generalized linear model instead of a linear model is
often the best solution. Learning about deviance, link functions and linear predictors is a
small price to pay.
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Akaike’s Information Criterion (AIC) as a Measure of the Fit of a Model

Unexplained variation is bound to go down with every parameter added to the model. The
more parameters that there are in the model, the better will be the fit. You could obtain a
perfect fit if you had a separate parameter for every data point (the saturated model; p. 195),
but this model would have absolutely no explanatory power. There is always going to be a
trade-off between the goodness of fit and the number of parameters required by parsimony.

What we would like to do is to judge the usefulness of each parameter. A simple way of
doing this is to penalize each parameter, and only allow the parameter to stay in the model if
it more than pays for itself (i.e. if the unexplained variation does down by more than the
penalty). When comparing two models, the smaller the AIC, the better the fit. This is the
basis of automated model simplification using step. AIC uses a penalty of 2 per parameter,
so for a given model AIC is calculated as

AIC � deviance � 2p

and when the deviance goes down by less than 2, then inclusion of the extra parameter is not
justified. Other systems (like the Bayesian Information Criterion, BIC) employ stiffer
penalties and so typically lead to fewer parameters being included in the minimal adequate
model (e.g. BIC penalizes each parameter by log(n) where n is the number of observations).

Further Reading

Aitkin, M., Francis, B., Hinde, J. and Darnell, R. (2009) Statistical Modelling in R, Clarendon Press,
Oxford.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd edn, Chapman & Hall,
London.

McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and Mixed Models, John Wiley & Sons,
New York.
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13
Count Data

Up to this point, the response variables have all been continuous measurements such as
weights, heights, lengths, temperatures and growth rates. A great deal of the data collected by
scientists, medical statisticians and economists, however, is in the form of counts (whole
numbers or integers). The number of individuals who died, the number of firms going bankrupt,
the number of days of frost, the number of red blood cells on a microscope slide, or the number
of craters in a sector of lunar landscape are all potentially interesting variables for study. With
count data, the number 0 often appears as a value of the response variable (consider, for
example, what a 0 would mean in the context of the examples just listed). In this chapter we deal
with data on frequencies, where we count how many times something happened, but we have
no way of knowing how often it did not happen (e.g. lightening strikes, bankruptcies, deaths,
births). This is in contrast with count data on proportions, where we know the number doing a
particular thing, but also the number not doing that thing (e.g. the proportion dying, sex ratios at
birth, proportions of different groups responding to a questionnaire).

Straightforward linear regression methods (assuming constant variance and normal
errors) are not appropriate for count data for four main reasons:

• the linear model might lead to the prediction of negative counts

• the variance of the response variable is likely to increase with the mean

• the errors will not be normally distributed

• zeros are difficult to handle in transformations

In R, count data are handled very elegantly in a generalized linear model by specifying
family=poisson which uses Poisson errors and the log link (see Chapter 12). The log link
ensures that all the fitted values are positive, while the Poisson errors take account of the fact
that the data are integer and have variances that are equal to their means.

A Regression with Poisson Errors

This example has a count (the number of reported cancer cases per year per clinic) as the
response variable, and a single continuous explanatory variable (the distance from a nuclear
plant to the clinic in kilometres). The question is whether or not proximity to the reactor
affects the number of cancer cases.

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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clusters <- read.csv("c:\\temp\\clusters.csv")
attach(clusters)
names(clusters)

[1] "Cancers" "Distance"

plot(Distance,Cancers,pch=21,bg="lightblue")
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As is typical of count data, the values of the response don’t cluster around a regression
line, but they are dispersed in discrete rows within a roughly triangular area. As you can see
there are lots of zeros all the way from distances of 0 to 100 km. The only really large count
(6) was very close to the source. There seems to be a downward trend in cancer cases with
distance. But is the trend significant? To find out, we do a regression of cases against
distance, using a GLM with Poisson errors:

model1 <- glm(Cancers∼Distance,poisson)
summary(model1)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.186865 0.188728 0.990 0.3221
Distance -0.006138 0.003667 -1.674 0.0941 .

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: 262.41

Number of Fisher Scoring iterations: 5
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The trend does not look to be significant, but we need first to look at the residual
deviance. It is assumed that this is the same as the residual degrees of freedom. The
fact that residual deviance is larger than residual degrees of freedom indicates that
we have overdispersion (extra, unexplained variation in the response). We compen-
sate for the overdispersion by refitting the model using quasipoisson rather than
Poisson errors:

model2 <- glm(Cancers∼Distance,quasipoisson)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.186865 0.235364 0.794 0.429
Distance -0.006138 0.004573 -1.342 0.183

(Dispersion parameter for quasipoisson family taken to be 1.555271)

Null deviance: 149.48 on 93 degrees of freedom
Residual deviance: 146.64 on 92 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Compensating for the overdispersion has increased the p value to 0.183, so there is no
compelling evidence to support the existence of a trend in cancer incidence with distance
from the nuclear plant. To draw the fitted model through the data, you need to understand
that the GLM with Poisson errors uses the log link, so the parameter estimates and the
predictions from the model (the ‘linear predictor’ above) are in logs, and need to be
antilogged before the (non-significant) fitted line is drawn.

We want the x values to go from 0 to 100, so we can put:

xv <- 0:100

To draw attention to the relationship between the linear predictor and the values of y
we want to draw on our scatterplot, we shall work out the y values long-hand. The
intercept is 0.186865 and the slope is �0.006138 (see above), so the linear predictor
gives yv as:

yv <- 0.186865-0.006138*xv

The important point to bear in mind is that yv is on a logarithmic scale. We want to plot y

(the raw numbers of cases, not their logarithms) so we need to take antilogs (to back-
transform, in other words):

y <- exp(yv)
lines(xv,y,col="red")
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The red fitted line is curved, but very shallow. The trend is not significant (p> 0.18).
Once you have understood the relationship between the linear predictor, the link function
and the predicted count data, y, you can speed up the curve drawing with the predict

function, because you can specify type="response", which carries out the back-
transformation automatically:

y <- predict(model2,list(Distance=xv), type="response")
lines(xv,y,col="red")

Analysis of Deviance with Count Data

The response variable is a count of infected blood cells per mm2 on microscope slides
prepared from randomly selected individuals. The explanatory variables are smoker
(a logical variable with values ‘yes’ or ‘no’), age (three levels: under 20, 21 to 59, 60 and
over), sex (male or female) and a body mass score (three levels: normal, overweight,
obese).

count <- read.csv("c:\\temp\\cells.csv")
attach(count)
names(count)

[1] "cells" "smoker" "age" "sex" "weight"

It is always a good idea with count data to get a feel for the overall frequency distribution
of counts using table:

table(cells)

0 1 2 3 4 5 6 7
314 75 50 32 18 13 7 2
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Most subjects (314 of them) showed no damaged cells, and the maximum of 7 was
observed in just two patients. We begin data inspection by tabulating the main effect
means:

tapply(cells,smoker,mean)

FALSE TRUE
0.5478723 1.9111111

tapply(cells,weight,mean)

normal obese over
0.5833333 1.2814371 0.9357143

tapply(cells,sex,mean)

female male
0.6584507 1.2202643

tapply(cells,age,mean)

mid old young
0.8676471 0.7835821 1.2710280

It looks as if smokers have a substantially higher mean count than non-smokers,
that overweight and obese subjects had higher counts than those of normal weight,
males had a higher count that females, and young subjects had a higher mean count
than middle-aged or older people. We need to test whether any of these differences
are significant and to assess whether there are any interactions between the
explanatory variables:

model1 <- glm(cells∼smoker*sex*age*weight,poisson)
summary(model1)

You should scroll down to the bottom of the (voluminous) output to find the
residual deviance and residual degrees of freedom, because we need to test for
overdispersion:

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 736.33 on 477 degrees of freedom
AIC: 1318

Number of Fisher Scoring iterations: 6
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The residual deviance (736.33) is much greater than the residual degrees of freedom
(477), indicating substantial overdispersion, so before interpreting any of the effects, we
should refit the model using quasipoisson errors:

model2 <- glm(cells∼smoker*sex*age*weight,quasipoisson)
summary(model2)

Coefficients: (2 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.8329 0.4307 -1.934 0.0537 .
smokerTRUE -0.1787 0.8057 -0.222 0.8246
sexmale 0.1823 0.5831 0.313 0.7547
ageold -0.1830 0.5233 -0.350 0.7267
ageyoung 0.1398 0.6712 0.208 0.8351
weightobese 1.2384 0.8965 1.381 0.1678
weightover -0.5534 1.4284 -0.387 0.6986
smokerTRUE:sexmale 0.8293 0.9630 0.861 0.3896
smokerTRUE:ageold -1.7227 2.4243 -0.711 0.4777
smokerTRUE:ageyoung 1.1232 1.0584 1.061 0.2892
sexmale:ageold -0.2650 0.9445 -0.281 0.7791
sexmale:ageyoung -0.2776 0.9879 -0.281 0.7788
smokerTRUE:weightobese 3.5689 1.9053 1.873 0.0617 .
smokerTRUE:weightover 2.2581 1.8524 1.219 0.2234
sexmale:weightobese -1.1583 1.0493 -1.104 0.2702
sexmale:weightover 0.7985 1.5256 0.523 0.6009
ageold:weightobese -0.9280 0.9687 -0.958 0.3386
ageyoung:weightobese -1.2384 1.7098 -0.724 0.4693
ageold:weightover 1.0013 1.4776 0.678 0.4983
ageyoung:weightover 0.5534 1.7980 0.308 0.7584
smokerTRUE:sexmale:ageold 1.8342 2.1827 0.840 0.4011
smokerTRUE:sexmale:ageyoung -0.8249 1.3558 -0.608 0.5432
smokerTRUE:sexmale:weightobese -2.2379 1.7788 -1.258 0.2090
smokerTRUE:sexmale:weightover -2.5033 2.1120 -1.185 0.2365
smokerTRUE:ageold:weightobese 0.8298 3.3269 0.249 0.8031
smokerTRUE:ageyoung:weightobese -2.2108 1.0865 -2.035 0.0424 *
smokerTRUE:ageold:weightover 1.1275 1.6897 0.667 0.5049
smokerTRUE:ageyoung:weightover -1.6156 2.2168 -0.729 0.4665
sexmale:ageold:weightobese 2.2210 1.3318 1.668 0.0960 .
sexmale:ageyoung:weightobese 2.5346 1.9488 1.301 0.1940
sexmale:ageold:weightover -1.0641 1.9650 -0.542 0.5884
sexmale:ageyoung:weightover -1.1087 2.1234 -0.522 0.6018
smokerTRUE:sexmale:ageold:weightobese -1.6169 3.0561 -0.529 0.5970

smokerTRUE:sexmale:ageyoung:weightobese NA NA NA NA

smokerTRUE:sexmale:ageold:weightover NA NA NA NA
smokerTRUE:sexmale:ageyoung:weightover 2.4160 2.6846 0.900 0.3686

(Dispersion parameter for quasipoisson family taken to be 1.854815)

Null deviance: 1052.95 on 510 degrees of freedom

Residual deviance: 736.33 on 477 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 6

The first thing to notice is that there are NA (missing value) symbols in the table
of the linear predictor (the message reads Coefficients: (2 not defined

because of singularities). This is the first example we have met of aliasing
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(p. 16): these symbols indicate that there are no data in the dataframe from which to
estimate two of the terms in the four-way interaction between smoking, sex, age and
weight.

It does look as if there might be three-way interaction between smoking, age and
obesity (p= 0.0424). With a complicated model like this, it is a good idea to speed up
the early stages of model simplification by using the step function, but this is not
available with quasipoisson errors, so we need to work through the analysis long-
land. Start by removing the aliased four-way interaction, then try removing what looks
(from the p values) to be the least significant three-way interaction, the sex–age–weight
interaction:

model3 <- update(model2, ∼. -smoker:sex:age:weight)
model4 <- update(model3, ∼. -sex:age:weight)
anova(model4,model3,test="F")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 483 745.31
2 479 737.87 4 7.4416 1.0067 0.4035

That model simplification was not significant (p= 0.4035) so we leave it out and try
deleting the next least significant interaction

model5 <- update(model4, ∼. -smoker:sex:age)
anova(model5,model4,test="F")

Again, that was not significant, so we leave it out.

model6 <- update(model5, ∼. -smoker:age:weight)
anova(model6,model5,test="F")

Despite one-star significance for one of the interaction terms, this was not significant
either, so we leave it out.

model7 <- update(model6, ∼. -smoker:sex:weight)
anova(model7,model6,test="F")

That is the last of the three-way interactions, so we can start removing the two-way
interactions, starting, as usual, with the least significant:

model8 <- update(model7, ∼. -smoker:age)
anova(model8,model7,test="F")

Not significant. Next:

model9 <- update(model8, ∼. -sex:weight)
anova(model9,model8,test="F")

240 STATISTICS: AN INTRODUCTION USING R



Not significant. Next:

model10 <- update(model9, ∼. -age:weight)
anova(model10,model9,test="F")

Not significant. Next:

model11 <- update(model10, ∼. -smoker:sex)
anova(model11,model10,test="F")

Not significant. Next:

model12 <- update(model11, ∼. -sex:age)
anova(model12,model11,test="F")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 502 791.59
2 500 778.69 2 12.899 3.4805 0.03154 *

That is significant so the sex–age interaction needs to stay int the model. What about the
smoker–weight interaction? We need to compare it with model11 (not model12):

model13 <- update(model11, ∼. -smoker:weight)
anova(model13,model11,test="F")

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 502 790.08
2 500 778.69 2 11.395 3.0747 0.04708 *

That is significant too, so we retain it. It appears that model11 is the minimal adequate
model. There are two-way interactions between smoking and weight and between sex and
age, so all four of the explanatory variables need to remain in the model as main effects (you
must not delete main effects from a model, even if they look to be non-significant (like sex
and age in this case) when they appear in significant interaction terms. The biggest main
effect (to judge by the p values) is smoking. The significance of the intercept is not
interesting in this case (it just says the mean number of cells for non-smoking, middle-aged
females of normal weight is greater than zero – but it is a count, so it would be).

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.09888 0.33330 -3.297 0.00105 **
smokerTRUE 0.79483 0.26062 3.050 0.00241 **
sexmale 0.32917 0.34468 0.955 0.34004
ageold 0.12274 0.34991 0.351 0.72590
ageyoung 0.54004 0.36558 1.477 0.14025
weightobese 0.49447 0.23376 2.115 0.03490 *

COUNT DATA 241



weightover 0.28517 0.25790 1.106 0.26937
sexmale:ageold 0.06898 0.40297 0.171 0.86414
sexmale:ageyoung -0.75914 0.41819 -1.815 0.07007 .
smokerTRUE:weightobese 0.75913 0.31421 2.416 0.01605 *
smokerTRUE:weightover 0.32172 0.35561 0.905 0.36606

(Dispersion parameter for quasipoisson family taken to be 1.853039)

Null deviance: 1052.95 on 510 degrees of freedom
Residual deviance: 778.69 on 500 degrees of freedom

This model shows a significant interaction between smoking and weight in determining
the number of damaged cells (p= 0.05):

tapply(cells,list(smoker,weight),mean)

normal obese over
FALSE 0.4184397 0.689394 0.5436893
TRUE 0.9523810 3.514286 2.0270270

and an interaction between sex and age (p= 0.03):

tapply(cells,list(sex,age),mean)

mid old young
female 0.4878049 0.5441176 1.435897
male 1.0315789 1.5468750 1.176471

The summary table shows that the gender effect is much smaller for young people (where
the count was slightly higher in females) than for middle-aged or older people (where the
count was much higher in males).

With complicated interactions like this, it is often useful to produce graphs of the effects.
The relationship between smoking and weight is shown like this:

barplot(tapply(cells,list(smoker,weight),mean),beside=T)

This is OK, but the bars are not in the best order; the obese category should be on the right
of the figure. To correct this we need to change the order of the factor levels for weight

away from the default (alphabetical order) to a user-specified order, with normal of the left
and obese on the right. We do this using the function called factor:

weight <- factor(weight,c("normal","over","obese"))
barplot(tapply(cells,list(smoker,weight),mean),beside=T)

242 STATISTICS: AN INTRODUCTION USING R



That’s more like it. Finally, we need to add a legend showing which bars are the
smokers:

barplot(tapply(cells,list(smoker,weight),mean),beside=T)
legend(locator(1),c("non smoker","smoker"),fill=gray(c(0.2,0.8)))

Just click when the cursor is over the spot on the graph where you want the top left-hand
corner of the legend to appear:
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The Danger of Contingency Tables

We have already dealt with simple contingency tables and their analysis using Fisher’s exact
test or Pearson’s chi-squared test (see Chapter 6). But there is an important further issue to
be dealt with. In observational studies we quantify only a limited number of explanatory
variables. It is inevitable that we shall fail to measure a number of factors that have an
important influence on the behaviour of the system in question. That’s life, and given that
we make every effort to note the important factors, there’s little we can do about it. The
problem comes when we ignore factors that have an important influence on the response
variable. This difficulty can be particularly acute if we aggregate data over important
explanatory variables. An example should make this clear.

Suppose we are carrying out a study of induced defences in trees. A preliminary trial has
suggested that early feeding on a leaf by aphids may cause chemical changes in the leaf
which reduce the probability of that leaf being attacked later in the season by hole-making
caterpillars. To this end we mark a large cohort of leaves, then score whether they were
infested by aphids early in the season and whether they were holed by insects later in the
year. The work was carried out on two different trees and the results were as follows:

Tree Aphids Holed Intact Total leaves Proportion holed

Tree1 Without 35 1750 1785 0.0196

With 23 1146 1169 0.0197

Tree2 Without 146 1642 1788 0.0817

With 30 333 363 0.0826

There are four variables: the response variable, count, with eight values (highlighted
above), a two-level factor for late season feeding by caterpillars (holed or intact), a two-level
factor for early season aphid feeding (with or without aphids) and a two-level factor for tree
(the observations come from two separate trees, imaginatively named Tree1 and Tree2).

induced <- read.csv("c:\\temp\\induced.csv")
attach(induced)
names(induced)

[1] "Tree" "Aphid" "Caterpillar" "Count"

We begin by fitting what is known as a saturatedmodel. This is a curious thing, which has as
many parameters as there are values of the response variable. The fit of the model is perfect, so
there are no residual degrees of freedom and no residual deviance. The reason why we fit a
saturated model is that it is always the best place to start modelling complex contingency
tables. If we fit the saturated model, then there is no risk that we inadvertently leave out
important interactions between the so-called ‘nuisance variables’. These are the parameters
that need to be in the model to ensure that the marginal totals are properly constrained.

model <- glm(Count∼Tree*Aphid*Caterpillar,family=poisson)
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The asterisk notation ensures that the saturated model is fitted, because all of the main
effects and two-way interactions are fitted, along with the three-way, tree–aphid–caterpillar
interaction. The model fit involves the estimation of 2× 2× 2= 8 parameters, and exactly
matches the eight values of the response variable, Count. There is no point looking at
the saturated model in any detail, because the reams of information it contains are all
superfluous. The first real step in the modelling is to use update to remove the three-way
interaction from the saturated model, and then to use anova to test whether the three-
way interaction is significant or not:

model2 <- update(model, ∼ . - Tree:Aphid:Caterpillar)

The punctuation here is very important (it is comma, tilde, dot, minus) and note the use of
colons rather than asterisks to denote interaction terms rather than main effects plus
interaction terms. Now we can see whether the three-way interaction was significant by
specifying test="Chi" like this:

anova(model,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count ∼ Tree * Aphid * Caterpillar
Model 2: Count ∼ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar + Aphid:Caterpillar

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 0 0.00000000
2 1 0.00079137 -1 -0.00079137 0.9776

This shows clearly that the interaction between caterpillar attack and leaf holing does not
differ from tree to tree (p= 0.9776). Note that if this interaction had been significant, then
we would have stopped the modelling at this stage. But it wasn’t, so we leave it out and
continue. What about the main question? Is there an interaction between caterpillar attack
and leaf holing? To test this we delete the aphid–caterpillar interaction from the model, and
assess the results using anova:

model3 <- update(model2, ∼ . - Aphid:Caterpillar)
anova(model3,model2,test="Chi")

Analysis of Deviance Table

Model 1: Count ∼ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar
Model 2: Count ∼ Tree + Aphid + Caterpillar + Tree:Aphid +
Tree:Caterpillar + Aphid:Caterpillar

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2 0.0040853
2 1 0.0007914 1 0.003294 0.9542
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There is absolutely no hint of an interaction (p= 0.954). The interpretation is clear: this
work provides no evidence for induced defences caused by early season caterpillar
feeding.

But look what happens when we do the modelling the wrong way. Suppose we went
straight for the aphid–caterpillar interaction of interest. We might proceed like this:

wrong <- glm(Count∼Aphid*Caterpillar,family=poisson)
wrong1 <- update(wrong,∼. - Aphid:Caterpillar)
anova(wrong,wrong1,test="Chi")

Analysis of Deviance Table

Model 1: Count ∼ Aphid * Caterpillar
Model 2: Count ∼ Aphid + Caterpillar

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 4 550.19
2 5 556.85 -1 -6.6594 0.009864 **

The aphid–caterpillar interaction is highly significant (p< 0.01) providing strong evi-
dence for induced defences. Wrong! By failing to include the tree variable in the model we
have omitted an important explanatory variable. As it turns out, and we should really have
determined by more thorough preliminary analysis, the trees differ enormously in their
average levels of leaf holing:

tapply(Count,list(Tree,Caterpillar),sum)

holed not
Tree1 58 2896
Tree2 176 1975

The proportion of leaves with holes on Tree1 was 58/(58+ 2896)= 0.0196, but on Tree2
was 176/(176+ 1975)= 0.0818. Tree2 has more than four times the proportion of its leaves
holed by caterpillars. If we had been paying more attention when we did the modelling the
wrong way, we should have noticed that the model containing only aphid and caterpillar had
massive overdispersion, and this should have alerted us that all was not well.

The moral is simple and clear. Always fit a saturated model first, containing all the
variables of interest and all the interactions involving the nuisance variables (tree in this
case). Only delete from the model those interactions that involve the variables of interest
(aphid and caterpillar in this case). Main effects are meaningless in contingency tables, as
are the model summaries. Always test for overdispersion. It will never be a problem if you
follow the advice of simplifying down from a saturated model, because you only ever leave
out non-significant terms, and you never delete terms involving any of the nuisance
variables, except for the highest-order interaction at the first step in model simplification
(Tree:Aphid:Caterpillar in this example).
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Analysis of Covariance with Count Data

In this example the response is a count of the number of plant species on plots that have
different biomass (a continuous explanatory variable) and different soil pH (a categorical
variable with three levels: high, mid and low):

species <- read.csv("c:\\temp\\species.csv")
attach(species)
names(species)

[1] "pH" "Biomass" "Species"

We start by plotting the data, using different colours for each of the three pH classes:

plot(Biomass,Species,pch=21,bg=(1+as.numeric(pH)))

Now we fit a straightforward analysis of covariance and use abline to draw lines of the
appropriate colour through the scatterplot:

model <- lm(Species∼Biomass*pH)
summary(model)

Call:
lm(formula = Species ∼ Biomass * pH)

Residuals:
Min 1Q Median 3Q Max

-9.290 -2.554 -0.124 2.208 15.677

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 40.60407 1.36701 29.703 < 2e-16 ***
Biomass -2.80045 0.23856 -11.739 < 2e-16 ***
pHlow -22.75667 1.83564 -12.397 < 2e-16 ***
pHmid -11.57307 1.86926 -6.191 2.1e-08 ***
Biomass:pHlow -0.02733 0.51248 -0.053 0.958
Biomass:pHmid 0.23535 0.38579 0.610 0.543

Residual standard error: 3.818 on 84 degrees of freedom
Multiple R-squared: 0.8531, Adjusted R-squared: 0.8444
F-statistic: 97.58 on 5 and 84 DF, p-value: < 2.2e-16

There is no evidence in the linear model for any difference between the slopes at different
levels of pH. Make sure you understand how I got the intercepts and slopes for abline out
of the model summary:

abline(40.60407,-2.80045,col="red")
abline(40.60407-22.75667,-2.80045-0.02733,col="green")
abline(40.60407-11.57307,-2.80045+0.23535,col="blue")
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It is clear that species declines with biomass, and that soil pH has a big effect on species,
but does the slope of the relationship between species and biomass depend on pH? The
biggest problem with this linear model is that it predicts negative values for species richness
above biomass values of 6 for the low pH plots. Count data are strictly bounded below, and
our model should really take account of this.

Let us refit the model using a GLM with Poisson errors instead of a linear model:

model <- glm(Species∼Biomass*pH,poisson)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.76812 0.06153 61.240 < 2e-16 ***
Biomass -0.10713 0.01249 -8.577 < 2e-16 ***
pHlow -0.81557 0.10284 -7.931 2.18e-15 ***
pHmid -0.33146 0.09217 -3.596 0.000323 ***
Biomass:pHlow -0.15503 0.04003 -3.873 0.000108 ***
Biomass:pHmid -0.03189 0.02308 -1.382 0.166954

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 452.346 on 89 degrees of freedom
Residual deviance: 83.201 on 84 degrees of freedom
AIC: 514.39

Number of Fisher Scoring iterations: 4

The residual deviance is not larger than the residual degrees of freedom, so we don’t need to
correct for overdispersion. Do we need to retain the interaction term? We test this by deletion:

model2 <- glm(Species∼Biomass+pH,poisson)
anova(model,model2,test="Chi")
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Analysis of Deviance Table

Model 1: Species ∼ Biomass * pH
Model 2: Species ∼ Biomass + pH

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 84 83.201
2 86 99.242 -2 -16.04 0.0003288 ***

Yes, we do. There is a highly significant difference between the slopes at different levels
of pH. So our first model is minimal adequate.

Finally, we draw the fitted curves through the scatterplot, using predict. The trick is that
we need to draw three separate curves; one for each level of soil pH.

plot(Biomass,Species,pch=21,bg=(1+as.numeric(pH)))
xv <- seq(0,10,0.1)
length(xv)

[1] 101

acidity <- rep("low",101)

yv <- predict(model,list(Biomass=xv,pH=acidity),type="response")
lines(xv,yv,col="green")

acidity <- rep("mid",101)

yv <- predict(model,list(Biomass=xv,pH=acidity),type="response")
lines(xv,yv,col="blue")

acidity <- rep("high",101)

yv <- predict(model,list(Biomass=xv,pH=acidity),type="response")
lines(xv,yv,col="red")
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Note the use of type="response" in the predict function. This ensures that the
response variable is calculated as species rather than log(species), and means we do not need
to back-transform using antilogs before drawing the lines. You could make the R code more
elegant by writing a function to plot any number of lines, depending on the number of levels
of the factor (three levels of pH in this case).

Frequency Distributions

Given data on the numbers of bankruptcies in 80 districts, we want to know whether there is
any evidence that some districts show greater than expected numbers of cases.

What would we expect? Of course we should expect some variation. But how much,
exactly? Well, that depends on our model of the process. Perhaps the simplest model is that
absolutely nothing is going on, and that every single bankruptcy case is absolutely
independent of every other. That leads to the prediction that the numbers of cases per
district will follow a Poisson process: a distribution in which the variance is equal to the
mean (Box 13.1).

Box 13.1. The Poisson distribution

The Poisson distribution is widely used for the description of count data. We know
how many times something happened (e.g. kicks from cavalry horses, lightening
strikes, bomb hits), but we have no way of knowing how many times it did not happen.
The Poisson is a one-parameter distribution, specified entirely by the mean. The
variance is identical to the mean (λ), so the variance–mean ratio is equal to 1. The
probability of observing a count of x is given by

P�x� � e�λλx
x!

This can be calculated very simply on a hand calculator because:

P�x� � P�x � 1� λ
x

which means that if you start with the zero term

P�0� � e�λ

then each successive probability is obtained simply by multiplying by the mean and
dividing by x.
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Let us see what the data show:

case.book <- read.csv("c:\\temp\\cases.csv")
attach(case.book)
names(case.book)

[1] "cases"

First we need to count the numbers of districts with no cases, one case, two cases, and so
on. The R function that does this is called table:

frequencies <- table(cases)
frequencies

cases
0 1 2 3 4 5 6 7 8 9 10

34 14 10 7 4 5 2 1 1 1 1

There were no cases at all in 34 districts, but one district had 10 cases. A good way to
proceed is to compare our distribution (called frequencies) with the distribution that would
be observed if the data really did come from a Poisson distribution as postulated by our
model. We can use the R function dpois to compute the probability density of each of the
11 frequencies from 0 to 10 (we multiply the probability produced by dpois by the total
sample of 80 to obtain the predicted frequencies). We need to calculate the mean number of
cases per district – this is the Poisson distribution’s only parameter:

mean(cases)

[1] 1.775

The plan is to draw two distributions side by side, so we set up the plotting region:

windows(7,4)
par(mfrow=c(1,2))

Now we plot the observed frequencies in the left-hand panel:

barplot(frequencies,ylab="Frequency",xlab="Cases",
col="red",main="observed")

and the predicted, Poisson frequencies in the right-hand panel:

barplot(dpois(0:10,1.775)*80,names=as.character(0:10),
ylab="Frequency",xlab="Cases",col="blue",main="expected")
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The distributions are very different: the mode of the observed data is zero, but the mode of
the Poisson with the same mean is 1; the observed data contained examples of 8, 9 and 10
cases, but these would be highly unlikely under a Poisson process. We would say that the
observed data are highly aggregated; they have a variance–mean ratio of nearly 3 (the
Poisson, of course, has a variance–mean ratio of 1):

var(cases)/mean(cases)

[1] 2.99483

So, if the data are not Poisson distributed, how are they distributed? A good candidate
distribution where the variance–mean ratio is this big (c. 3.0) is the negative binomial
distribution (Box 13.2).

Box 13.2. The negative binomial distribution

This discrete, two-parameter distribution is useful for describing the distribution of
count data, where the variance is often much greater than the mean. The two
parameters are the mean μ and the clumping parameter k. The smaller the value of
k, the greater the degree of clumping. The density function is

p�x� � 1 � μ

k

� ��k Γ�k � x�
x!Γ�k�

μ

μ � k

� �x

where Γ is the gamma function. The zero term is found by setting x = 0 and
simplifying:

p�0� � 1 � μ

k

� ��k

Successive terms in the distribution can be computed iteratively from

p�x� � p�x � 1� k � x � 1
x

� �

μ

μ � k

� �

An initial estimate of the value of k can be obtained from the sample mean and
variance:

k � μ2

s2 � μ

Since k cannot be negative, it is clear that the negative binomial distribution should not
be fitted to data where the variance is less than the mean (use a binomial distribution
instead). The precise maximum likelihood estimate of k is found numerically, by
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As described in Box 13.2, this a two-parameter distribution. We have already worked out
the mean number of cases, which is 1.775. We need an estimate of the clumping parameter,
k, to establish the degree of aggregation in the data (a small value of k (such as k< 1) would
show high aggregation, while a large value (such as k> 5) would indicate randomness). We
can get an approximate estimate of magnitude using the formula in Box 13.2:

k � μ2

s2 � μ

We have:

mean(cases)^2/(var(cases)-mean(cases))

[1] 0.8898003

so we shall work with k= 0.8898.
How do we compute the expected frequencies? The density function for the negative

binomial distribution is dnbinom and it has three arguments: the frequency for which we
want the probability (in our case 0 to 10), the clumping parameter (size= 0.8898), and the
mean number of cases (mu= 1.775); we multiply by the total number of cases (80) to obtain
the expected frequencies

expected <- dnbinom(0:10,size=0.8898,mu=1.775)*80

iterating progressively more fine-tuned values of k until the left- and right-hand sides
of the following equation are equal:

n ln 1 � μ

k

� �

� X

max

x�0

A�x�
k � x

� �

where the vector A(x) contains the total frequency of values greater than x.

You could create a function to work out the probability densities like this:

negbin <- function(x,u,k)
(1+u/k)^(-k)*(u/(u+k))^x*gamma(k+x)/(factorial(x)*gamma(k))

then use the function to produce a barplot of probability densities for a range of x
values (say 0 to 10, for a distribution with specified mean and aggregation parameter
(say μ � 0:8; k � 0:2) like this:

xf <- numeric(11)
for (i in 0:10) xf[i+1] <- negbin(i,0.8,0.2)
barplot(xf)
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The plan is to draw a single figure in which the observed and expected frequencies are
drawn side by side. The trick is to produce a new vector (called both) which is twice as long
as the observed and expected frequency vectors (2× 11= 22). Then we put the observed
frequencies in the odd numbered elements (using modulo 2 to calculate the values of the
subscripts), and the expected frequencies in the even numbered elements:

both <- numeric(22)
both[1:22 %% 2 != 0] <- frequencies
both[1:22 %% 2 == 0] <- expected

On the x axis, we intend to label only every other bar:

labels <- character(22)
labels[1:22 %% 2 == 0] <- as.character(0:10)

Now we can produce the barplot, using light grey for the observed frequencies and dark
grey for the negative binomial frequencies:

barplot(both,col=rep(c("lightgray","darkgray"),11),names=labels,
ylab="Frequency",xlab="Cases")

We need to add a legend to show what the two colours of the bars mean. You can locate
the legend by trial and error, or by left-clicking mouse when the cursor is in the correct
position, using the locator(1) function (see p. 169):

legend(locator(1),c("Observed","Expected"),
fill=c("lightgray","darkgray"))
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The fit to the negative binomial distribution is much better than it was with the Poisson
distribution, especially in the right-hand tail. But the observed data have too many zeros and
too few ones to be represented perfectly by a negative binomial distribution. If you want to
quantify the lack of fit between the observed and expected frequency distributions, you can
calculate Pearson’s chi square

P �O � E�2=E based on the number of comparisons that have
expected frequency greater than 4.

expected

[1] 30.1449097 17.8665264 11.2450066 7.2150606 4.6734866 3.0443588
[7] 1.9905765 1.3050321 0.8572962 0.5640455 0.3715655

If we accumulate the rightmost six frequencies, then all the values of expected will be
bigger than 4. The degrees of freedom are then given by the number of comparisons (6)
minus the number of parameters estimated from the data (2 in our case; the mean and k)
minus 1 for contingency (because the total frequency must add up to 80), so there are 3
degrees of freedom. We use ‘levels gets’ to reduce the lengths of the observed and expected
vectors, creating an upper interval called ‘5+’ for ‘5 or more’:

cs <- factor(0:10)
levels(cs)[6:11] <- "5+"
levels(cs)

[1] "0" "1" "2" "3" "4" "5+"

Now make the two shorter vectors of and ef (for observed and expected frequencies):

ef <- as.vector(tapply(expected,cs,sum))
of <- as.vector(tapply(frequencies,cs,sum))

Finally, we can compute the chi-squared value measuring the difference between the
observed and expected frequency distributions, and use 1-pchisq to work out the p value:

sum((of-ef)^2/ef)

[1] 2.581842

1 - pchisq(2.581842,3)

[1] 0.4606818

We conclude that a negative binomial description of these data is reasonable (the
observed and expected distributions are not significantly different; p= 0.46).

Further Reading

Agresti, A. (1990) Categorical Data Analysis, John Wiley & Sons, New York.
Santer, T.J. and Duffy, D.E. (1990) The Statistical Analysis of Discrete Data, Springer-Verlag,

New York.
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14
Proportion Data

An important class of problems involves data on proportions:

• studies on percentage mortality

• infection rates of diseases

• proportion responding to clinical treatment

• proportion admitting to particular voting intentions

• sex ratios

• data on proportional response to an experimental treatment

These are count data, but what they have in common is that we know how many of the
experimental objects are in one category (dead, insolvent, male or infected) and we also
know how many are in another (alive, solvent, female or uninfected). This differs from
Poisson count data, where we knew how many times an event occurred, but not how many
times it did not occur (Chapter 13).

We model processes involving proportional response variables in R by specifying a
generalized linear model (GLM) with family=binomial. The only complication is that
whereas with Poisson errors we could simply say family=poisson, with binomial errors
we must specify the number of failures as well as the numbers of successes by creating a
two-vector response variable. To do this we bind together two vectors using cbind into a
single object, y, comprising the numbers of successes and the number of failures. The
binomial denominator, n, is the total sample, and

number.of.failures <- binomial.denominator – number.of.successes
y <- cbind(number.of.successes, number.of.failures)

The old-fashioned way of modelling this sort of data was to use the percentage mortality
as the response variable. There are four problems with this:

• the errors are not normally distributed

• the variance is not constant
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• the response is bounded (by 100 above and by 0 below)

• by calculating the percentage, we lose information of the size of the sample, n, from
which the proportion was estimated

By using a GLM, we cause R to carry out a weighted regression, with the sample sizes, n,
as weights, and employing the logit link function to ensure linearity. There are some kinds of
proportion data, such as percentage cover, that are best analysed using conventional linear
models (with normal errors and constant variance) following arcsine transformation. In such
cases, the response variable, measured in radians, is sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:01 � p
p

, where p is percentage
cover. If, however, the response variable takes the form of a percentage change in some
continuous measurement (such as the percentage change in weight on receiving a particular
diet), then rather than arcsine transform the data, it is usually better treated by either

• analysis of covariance (see Chapter 9), using final weight as the response variable and
initial weight as a covariate, or

• by specifying the response variable as a relative growth rate, measured as log(final
weight/initial weight)

both of which can then be analysed with normal errors without further transformation.

Analyses of Data on One and Two Proportions

For comparisons of one binomial proportion with a constant, use binom.test (see p. 98).
For comparison of two samples of proportion data, use prop.test (see p. 100). The
methods of this chapter are required only for more complex models of proportion data,
including regression and contingency tables, where GLMs are used.

Averages of Proportions

A classic beginner’s mistake is to average proportions as you would with any other kind of
real number. We have four estimates of the sex ratio: 0.2, 0.17, 0.2 and 0.53. They add up to
1.1, so the mean is 1.1/4= 0.275. Wrong! This is not how you average proportions. These
proportions are based on count data and we should use the counts to determine the average.
For proportion data, the mean success rate is given by:

mean proportion � total number of successes
total number of attempts

We need to go back and look at the counts on which our four proportions were calculated. It
turns out they were 1 out of 5, 1 out of 6, 2 out of 10 and 53 out of 100, respectively. The
total number of successes was 1+ 1+ 2+ 53= 57 and the total number of attempts was
5+ 6+ 10+ 100= 121. The correct mean proportion is 57/121= 0.4711. This is nearly
double the answer we got by doing it the wrong way. So beware.

Count Data on Proportions

The traditional transformations of proportion data were arcsine and probit. The arcsine
transformation took care of the error distribution, while the probit transformation was used
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to linearize the relationship between percentage mortality and log dose in a bioassay. There
is nothing wrong with these transformations, and they are available within R, but a simpler
approach is often preferable, and is likely to produce a model that is easier to interpret.

The major difficulty with modelling proportion data is that the responses are strictly
bounded. There is no way that the percentage dying can be greater than 100% or less than
0%. But if we use simple techniques such as linear regression or analysis of covariance, then
the fitted model could quite easily predict negative values or values greater than 100%,
especially if the variance was high and many of the data were close to 0 or close to 100%.

The logistic curve is commonly used to describe data on proportions, because, unlike the
straight line model, it asymptotes at 0 and 1 so that negative proportions and responses of
more than 100% cannot be predicted. Throughout this discussion we shall use p to describe
the proportion of individuals observed to respond in a given way. Because much of their
jargon was derived from the theory of gambling, statisticians call these successes, although
to a demographer measuring death rates this may seem a little eccentric. The individuals that
respond in other ways (the statistician’s failures) are therefore 1� p and we shall call the
proportion of failures q (so that p+ q= 1). The third variable is the size of the sample,
n, from which p was estimated (it is the binomial denominator, and the statistician’s number
of attempts).

An important point about the binomial distribution is that the variance is not constant.
In fact, the variance of a binomial distribution with mean np is:

s2 � npq

so that the variance changes with the mean like this:

The variance is low when p is very high or very low (when all or most of the outcomes are
identical), and the variance is greatest when p= q= 0.5. As p gets smaller, so the binomial
distribution gets closer and closer to the Poisson distribution. You can see why this is so by
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considering the formula for the variance of the binomial (above). Remember that for the
Poisson, the variance is equal to the mean, s2 � np. Now, as p gets smaller, so q gets closer
and closer to 1, so the variance of the binomial converges to the mean:

s2 � npq � np �q � 1�
Odds

The logistic model for p as a function of x looks like this:

p � ea�bx
1 � ea�bx

and there are no prizes for realizing that the model is not linear. When confronted with a new
equation like this, it is a good idea to work out its behaviour at the limits. This involves
asking what the value of y is when x= 0, and what the value of y is when x is very large (say,
x= infinity)?

When x= 0 then p= exp(a)/(1+ exp(a)), so this is the intercept. There are two results
that you should memorize: exp(∞)=∞ and exp(�∞)= 1/exp(∞)= 0. So when x is a very
large positive number, we have p= 1 and when x is a very large negative number, we have
p= 0/1= 0, so the model is strictly bounded.

The trick of linearizing the logistic turns out to involve a very simple transformation. You
may have come across the way in which bookmakers specify probabilities by quoting the
odds against a particular horse winning a race (they might give odds of 2 to 1 on a reasonably
good horse or 25 to 1 on an outsider). What they mean by 2 to 1 is that if there were three
races, then our horse would be expected to lose two of them and win one of them (with a
built-in margin of error in favour of the bookmaker, needless to say).

This is a rather different way of presenting information on probabilities than scientists are
used to dealing with. Thus, where the scientist might state a proportion as 0.3333 (1 success
out of 3), the bookmaker would give odds of 2 to 1. In symbols, this is the difference
between the scientist stating the probability p, and the bookmaker stating the odds p/q. Now
if we take the odds p/q and substitute this into the formula for the logistic, we get:

p

q
� ea�bx

1 � ea�bx 1 � ea�bx
1 � ea�bx

� ��1

which looks awful. But a little algebra shows that:

p

q
� ea�bx

1 � ea�bx
1

1 � ea�bx
� ��1

� ea�bx

Now, taking natural logs and recalling that ln�ex� � xwill simplify matters even further, so that

ln
p

q

� �

� a � bx
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This gives a linear predictor, a+ bx, not for p but for the logit transformation of p, namely
ln(p/q). In the jargon of R, the logit is the link function relating the linear predictor to the
value of p.

Here is p as a function of x (left panel) and logit(p) as a function of x (right panel) for the
logistic with a= 0.2 and b= 0.1:

You might ask at this stage ‘why not simply do a linear regression of ln(p/q) against the
explanatory x variable?’ R has three great advantages here:

• it allows for the non-constant binomial variance

• it deals with the fact that logits for ps near 0 or 1 are infinite

• it allows for differences between the sample sizes by weighted regression

Overdispersion and Hypothesis Testing

All the different modelling procedures that we have met in earlier chapters can also be used
with data on proportions. Factorial analysis of variance, analysis of covariance and multiple
regression can all be carried out using GLMs. The only difference is that we assess the
significance of terms on the basis of chi-squared; this is the increase in scaled deviance that
results from removal of a term from the current model.

The important point to bear in mind is that hypothesis testing with binomial errors is less
clear-cut than with normal errors. While the chi-squared approximation for changes in
scaled deviance is reasonable for large samples (i.e. bigger than about 30), it is poorer with
small samples. Most worrisome is the fact that the degree to which the approximation is
satisfactory is itself unknown. This means that considerable care must be exercised in the
interpretation of tests of hypotheses on parameters, especially when the parameters are
marginally significant or when they explain a very small fraction of the total deviance. With
binomial or Poisson errors we cannot hope to provide exact p values for our tests of
hypotheses.

As with Poisson errors, we need to address the question of overdispersion (see Chapter 13).
When we have obtained the minimal adequate model, the residual scaled deviance
should be roughly equal to the residual degrees of freedom. When the residual deviance
is larger than the residual degrees of freedom there are two possibilities: either the model is
misspecified, or the probability of success, p, is not constant within a given treatment level.
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The effect of randomly varying p is to increase the binomial variance from npq to

s2 � npq � n�n � 1�σ2

leading to a larger-than-expected residual deviance. This occurs even for models that would
fit well if the random variation were correctly specified.

One simple solution is to assume that the variance is not npq but npqs, where s is an
unknown scale parameter (s> 1). We obtain an estimate of the scale parameter by dividing
the Pearson chi-squared by the degrees of freedom, and use this estimate of s to compare the
resulting scaled deviances. To accomplish this, we use family = quasibinomial rather
than family = binomial when there is overdispersion.

The most important points to emphasize in modelling with binomial errors are:

• create a two-column object for the response, using cbind to join together the two
vectors containing the counts of success and failure

• check for overdispersion (residual deviance greater than residual degrees of freedom),
and correct for it by using family=quasibinomial rather than family=binomial if
necessary

• remember that you do not obtain exact p values with binomial errors; the chi-
squared approximations are sound for large samples, but small samples may present
a problem

• the fitted values are counts, like the response variable

• because of this the raw residuals are also in counts

• the linear predictor that you see when you ask for summary(model) is in logits (the log
of the odds, ln(p/q))

• you can back-transform from logits (z) to proportions (p) by p= 1/(1+ 1/exp(z))

Applications

You can do as many kinds of modelling in a GLM as in a linear model: here we show
examples of:

• regression with binomial errors (continuous explanatory variables)

• analysis of deviance with binomial errors (categorical explanatory variables)

• analysis of covariance with binomial errors (both kinds of explanatory variables)

Logistic Regression with Binomial Errors

This example concerns sex ratios in insects (the proportion of all individuals that are males).
In the species in question, it has been observed that the sex ratio is highly variable, and an
experiment was set up to see whether population density was involved in determining the
fraction of males.
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numbers <- read.csv("c:\\temp\\sexratio.csv")
numbers

density females males
1 1 1 0
2 4 3 1
3 10 7 3
4 22 18 4
5 55 22 33
6 121 41 80
7 210 52 158
8 444 79 365

It certainly looks as if there are proportionally more males at high density, but we should
plot the data as proportions to see this more clearly:

attach(numbers)
windows(7,4)
par(mfrow=c(1,2))
p <- males/(males+females)
plot(density,p,ylab="Proportion male")
plot(log(density),p,ylab="Proportion male")

Evidently, a logarithmic transformation of the explanatory variable is likely to improve
the model fit. We shall see in a moment.

Does increasing population density lead to a significant increase in the proportion of
males in the population? Or, more succinctly, is the sex ratio density dependent? It certainly
looks from the plot as if it is.

The response variable is a matched pair of counts that we wish to analyse as proportion
data using a GLM with binomial errors. First we bind together the vectors of male and
female counts into a single object that will be the response in our analysis:

y <- cbind(males,females)

This means that y will be interpreted in the model as the proportion of all individuals that
were male. The model is specified like this:

model <- glm(y∼density,binomial)
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This says that the object called model gets a generalized linear model in which y (the
sex ratio) is modelled as a function of a single continuous explanatory variable called
density, using an error distribution from the family = binomial. The output looks
like this:

summary(model)

Coefficients:
Estimate Std. Error z value Pr (>|z|)

(Intercept) 0.0807368 0.1550376 0.521 0.603
density 0.0035101 0.0005116 6.862 6.81e-12 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 71.159 on 7 degrees of freedom
Residual deviance: 22.091 on 6 degrees of freedom
AIC: 54.618

Number of Fisher Scoring iterations: 4

The model table looks just as it would for a straightforward regression. The first
parameter is the intercept and the second is the slope of the graph of sex ratio against
population density. The slope is highly significantly steeper than zero (proportionately more
males at higher population density; p= 6.81× 10�12). We can see if log transformation of
the explanatory variable reduces the residual deviance below 22.091:

model <- glm(y∼log(density),binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr (>|z|)

(Intercept) -2.65927 0.48758 -5.454 4.92e-08 ***
log(density) 0.69410 0.09056 7.665 1.80e-14 ***

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 71.1593 on 7 degrees of freedom
Residual deviance: 5.6739 on 6 degrees of freedom
AIC: 38.201

Number of Fisher Scoring iterations: 4

This is a big improvement, so we shall adopt it. There is a technical point here, too. In a
GLM like this, it is assumed that the residual deviance is the same as the residual degrees of
freedom. If the residual deviance is larger than the residual degrees of freedom, this is called
overdispersion. It means that there is extra, unexplained variation, over and above the
binomial variance assumed by the model specification. In the model with log(density) there
is no evidence of overdispersion (residual deviance= 5.67 on 6 d.f.), whereas the lack of fit
introduced by the curvature in our first model caused substantial overdispersion (residual
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deviance= 22.09 on 6 d.f.) when we had density instead of log(density) as the explanatory
variable.

Model checking involves the use of plot(model). As you will see, there is no
worryingly great pattern in the residuals against the fitted values, and the normal plot is
reasonably linear. Point number 4 is highly influential (it has a big value of Cook’s
distance), and point number 8 has high leverage (but the model is still significant with this
point omitted). We conclude that the proportion of animals that are males increases
significantly with increasing density, and that the logistic model is linearized by logarithmic
transformation of the explanatory variable (population density). We finish by drawing the
fitted line though the scatterplot:

xv <- seq(0,6,0.1)
plot(log(density),p,ylab="Proportion male",pch=21,bg="blue")
lines(xv,predict(model,list(density=exp(xv)),
type="response"),col="brown")

Note the use of type="response" to back-transform from the logit scale to the S-shaped
proportion scale and exp(xv) to back-transform the logs from the x axis to densities as
required by the model formula (where they are then logged again). As you can see, the model
is very poor fit for the lowest density and for log(density)≈ 3, but a reasonably good fit over
the rest of the range. I suspect that the replication was simply too low at very low population
densities to get an accurate estimate of the sex ratio. Of course, we should not discount the
possibility that the data point is not an outlier, but rather that the model is wrong.

Proportion Data with Categorical Explanatory Variables

This example concerns the germination of seeds of two genotypes of the parasitic plant
Orobanche and two extracts from host plants (bean and cucumber) that were used to
stimulate germination. It is a two-way factorial analysis of deviance.
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germination <- read.csv("c:\\temp\\germination.csv")
attach(germination)
names(germination)

[1] "count" "sample" "Orobanche" "extract"

The response variable count is the number of seeds that germinated out of a batch of
size= sample. So the number that didn’t germinate is sample – count, and we construct
the response vector like this:

y <- cbind(count, sample-count)

Each of the categorical explanatory variables has two levels:

levels(Orobanche)

[1] "a73" "a75"

levels(extract)

[1] "bean" "cucumber"

We want to test the hypothesis that there is no interaction between Orobanche genotype
(a73 or a75) and plant extract (bean or cucumber) on the germination rate of the seeds.
This requires a factorial analysis using the asterisk * operator like this:

model <- glm(y ∼ Orobanche * extract, binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr (>|z|)

(Intercept) -0.4122 0.1842 -2.238 0.0252 *
Orobanchea75 -0.1459 0.2232 -0.654 0.5132
extractcucumber 0.5401 0.2498 2.162 0.0306 *
Orobanchea75:extractcucumber 0.7781 0.3064 2.539 0.0111 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom
Residual deviance: 33.278 on 17 degrees of freedom
AIC: 117.87

Number of Fisher Scoring iterations: 4

At first glance, it looks as if there is a highly significant interaction (p= 0.0111). But we
need to check that the model is sound. The first thing is to check for is overdispersion. The
residual deviance is 33.278 on 17 d.f. so the model is quite badly overdispersed:

33.279 / 17

[1] 1.957588

PROPORTION DATA 265



The overdispersion factor is almost 2. The simplest way to take this into account is
to use what is called an ‘empirical scale parameter’ to reflect the fact that the errors
are not binomial as we assumed, but were larger than this (overdispersed) by a factor
of 1.9576. We refit the model using quasibinomial to account for the
overdispersion:

model <- glm(y ∼ Orobanche * extract, quasibinomial)

Then we use update to remove the interaction term in the normal way:

model2 <- update(model, ∼ . - Orobanche:extract)

The only difference is that we use an F test instead of a chi-squared test to compare the
original and simplified models:

anova(model,model2,test="F")

Analysis of Deviance Table

Model 1: y ∼ Orobanche * extract
Model 2: y ∼ Orobanche + extract

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 17 33.278
2 18 39.686 -1 -6.408 3.4419 0.08099 .

Now you see that the interaction is not significant (p= 0.081). There is no compelling
evidence that different genotypes of Orobanche respond differently to the two plant
extracts. The next step is to see if any further model simplification is possible:

anova(model2,test="F")

Analysis of Deviance Table

Model: quasibinomial, link: logit

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 20 98.719
Orobanche 1 2.544 19 96.175 1.1954 0.2887
extract 1 56.489 18 39.686 26.5412 6.692e-05 ***
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There is a highly significant difference between the two plant extracts on germination
rate, but it is not obvious that we need to keep Orobanche genotype in the model. We try
removing it:

model3 <- update(model2, ∼ . - Orobanche)
anova(model2,model3,test="F")

Analysis of Deviance Table

Model 1: y ∼ Orobanche + extract
Model 2: y ∼ extract

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 18 39.686
2 19 42.751 -1 -3.065 1.4401 0.2457

There is no justification for retaining Orobanche in the model. So the minimal adequate
model contains just two parameters:

coef(model3)

(Intercept) extractcucumber
-0.5121761 1.0574031

What, exactly, do these two numbers mean? Remember that the coefficients are from the
linear predictor. They are on the transformed scale, so because we are using quasi-binomial
errors, they are in logits (ln(p/(1� p)). To turn them into the germination rates for the two
plant extracts requires a little calculation. To go from a logit x to a proportion p, you need to
do the following sum:

p � 1

1 � 1
ex

So our first x value is �0.5122 and we calculate

1/(1+1/(exp(-0.5122)))

[1] 0.3746779

This says that the mean germination rate of the seeds with the first plant extract was 37%.
What about the parameter for cucumber extract (1.057)? Remember that with categorical
explanatory variables the parameter values are differences between means. So to get the
second germination rate we add 1.057 to the intercept before back-transforming:

1/(1+1/(exp(-0.5122+1.0574)))

[1] 0.6330212

This says that the germination rate was nearly twice as great (63%) with the second plant
extract (cucumber). Obviously we want to generalize this process, and also to speed up the
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calculations of the estimated mean proportions. We can use predict to help here, because
type="response" makes predictions on the back-transformed scale automatically:

tapply(predict(model3,type="response"),extract,mean)

bean cucumber
0.3746835 0.6330275

It is interesting to compare these figures with the averages of the raw proportions. First we
need to calculate the proportion germinating, p, in each sample:

p <- count/sample

Then we can find the average the germination rates for each extract:

tapply(p,extract,mean)

bean cucumber
0.3487189 0.6031824

You see that this gives different answers. Not too different in this case, it’s true, but
different nonetheless. The correct way to average proportion data is to add up the total
counts for the different levels of abstract, and only then to turn them into proportions:

tapply(count,extract,sum)

bean cucumber
148 276

This means that 148 seeds germinated with bean extract and 276 with cucumber. But how
many seeds were involved in each case?

tapply(sample,extract,sum)

bean cucumber
395 436

This means that 395 seeds were treated with bean extract and 436 seeds were treated with
cucumber. So the answers we want are 148/395 and 276/436 (i.e. the correct mean
proportions). We automate the calculation like this:

as.vector(tapply(count,extract,sum))/
as.vector(tapply(sample,extract,sum))

[1] 0.3746835 0.6330275

These are the correct mean proportions as produced by the GLM. The moral here is that
you calculate the average of proportions by using total counts and total samples and not by
averaging the raw proportions.
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To summarize this analysis:

• make a two-column response vector containing the successes and failures

• use glm with family=binomial (you don’t need to include family=)

• fit the maximal model (in this case it had four parameters)

• test for overdispersion

• if, as here, you find overdispersion then use quasibinomial errors

• begin model simplification by removing the interaction term

• this was non-significant once we had adjusted for overdispersion

• try removing main effects (we didn’t need Orobanche genotype in the model)

• use plot to obtain your model-checking diagnostics

• back transform using predict with the option type="response" to obtain means

Analysis of Covariance with Binomial Data

This example concerns flowering in five varieties of perennial plants. Replicated individuals
in a fully randomized design were sprayed with one of six doses of a controlled mixture of
growth promoters. After 6 weeks, plants were scored as flowering or not flowering. The
count of flowering individuals forms the response variable. This is an ANCOVA because
we have both continuous (dose) and categorical (variety) explanatory variables. We use
logistic regression because the response variable is a count (flowered) that can be
expressed as a proportion (flowered/number).

props <- read.csv("c:\\temp\\flowering.csv")
attach(props)
names(props)

[1] "flowered" "number" "dose" "variety"

y <- cbind(flowered,number-flowered)
pf <- flowered/number
pfc <- split(pf,variety)
dc <- split(dose,variety)

With count data like these, it is common for points from different treatments to hide one
another. Note the use of jitter to move points left or right and up or down by a small
random amount so that all of the symbols at a different point can be seen:

plot(dose,pf,type="n",ylab="Proportion flowered")
points(jitter(dc[[1]]),jitter(pfc[[1]]),pch=21,bg="red")
points(jitter(dc[[2]]),jitter(pfc[[2]]),pch=22,bg="blue")
points(jitter(dc[[3]]),jitter(pfc[[3]]),pch=23,bg="gray")
points(jitter(dc[[4]]),jitter(pfc[[4]]),pch=24,bg="green")
points(jitter(dc[[5]]),jitter(pfc[[5]]),pch=25,bg="yellow")
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There is clearly a substantial difference between the plant varieties in their response to the
flowering stimulant. The modelling proceeds in the normal way. We begin by fitting the
maximal model with different slopes and intercepts for each variety (estimating 10
parameters in all):

model1 <- glm(y∼dose*variety,binomial)
summary(model1)

The model exhibits substantial overdispersion (51.083/20> 2), so we fit the model again
with quasi-binomial errors:

model2 <- glm(y∼dose*variety,quasibinomial)
summary(model2)

Coefficients:
Estimate Std. Error t value Pr (>|t|)

(Intercept) -4.59165 1.56314 -2.937 0.00814 **
dose 0.41262 0.15195 2.716 0.01332 *
varietyB 3.06197 1.65555 1.850 0.07922 .
varietyC 1.23248 1.79934 0.685 0.50123
varietyD 3.17506 1.62828 1.950 0.06534 .
varietyE -0.71466 2.34511 -0.305 0.76371
dose:varietyB -0.34282 0.15506 -2.211 0.03886 *
dose:varietyC -0.23039 0.16201 -1.422 0.17043
dose:varietyD -0.30481 0.15534 -1.962 0.06380 .
dose:varietyE -0.00649 0.20130 -0.032 0.97460

(Dispersion parameter for quasibinomial family taken to be 2.293557)

Null deviance: 303.350 on 29 degrees of freedom
Residual deviance: 51.083 on 20 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5
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Do we need to retain the interaction term (it appears to be significant in only one case)?
We leave it out and compare the two models using anova:

model3 <- glm(y∼dose+variety,quasibinomial)
anova(model2,model3,test="F")

Analysis of Deviance Table

Model 1: y ∼ dose * variety
Model 2: y ∼ dose + variety

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 20 51.083
2 24 96.769 -4 -45.686 4.9798 0.005969 **

Yes, we do. The interaction term is much more significant than indicated by any one of
the t tests (p= 0.005969).

Let us draw the five fitted curves through the scatterplot. The values on the dose axis need
to go from 0 to 30:

xv <- seq(0,32,0.25)
length(xv)

[1] 129

This means we shall need to provide the predict function with 129 repeats of each
factor level in turn:

yv <- predict(model3,list(dose=xv,variety=rep("A",129)),
type="response")
lines(xv,yv,col="red")
yv <- predict(model3,list(dose=xv,variety=rep("B",129)),
type="response")
lines(xv,yv,col="blue")
yv <- predict(model3,list(dose=xv,variety=rep("C",129)),
type="response")
lines(xv,yv,col="gray")
yv <- predict(model3,list(dose=xv,variety=rep("D",129)),
type="response")
lines(xv,yv,col="green")
yv <- predict(model3,list(dose=xv,variety=rep("E",129)),
type="response")
lines(xv,yv,col="yellow")
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As you can see, the model is a reasonable fit for two of the varieties (A and E, represented
red circles and yellow down-triangles, respectively), not bad for one variety (C, grey
diamonds) but very poor for two of them: B (blue squares) and D (green up-triangles). For
several varieties, the model overestimates the proportion flowering at zero dose, and for
variety B there seems to be some inhibition of flowering at the highest dose because the
graph falls from 90% flowering at dose 16 to just 50% at dose 32 (the fitted model is
assumed to be asymptotic). Variety D appears to be asymptoting at less than 80% flowering.
These failures of the model focus attention for future work.

The moral is that just because we have proportion data, that does not mean that the data
will necessarily be well described by the logistic. For instance, in order to describe the
response of variety B, the model would need to have a hump, rather than to asymptote at
p= 1 for large doses, and to model variety D the model would need an extra parameter to
estimate an asymptotic value that was less than 100%.

Further Reading

Hosmer, D.W. and Lemeshow, S. (2000) Applied Logistic Regression, 2nd edn, John Wiley & Sons,
New York.
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15
Binary Response Variable

Many statistical problems involve binary response variables. For example, we often classify
things as dead or alive, occupied or empty, healthy or diseased, male or female, literate or
illiterate, mature or immature, solvent or insolvent, employed or unemployed, and it is
interesting to understand the factors that are associated with an individual being in one class
or the other. In a study of company insolvency, for instance, the data would consist of a list
of measurements made on the insolvent companies (their age, size, turnover, location,
management experience, workforce training, and so on) and a similar list for the solvent
companies. The question then becomes which, if any, of the explanatory variables increase
the probability of an individual company being insolvent.

The response variable contains only 0s or 1s; for example, 0 to represent dead individuals
and 1 to represent live ones. Thus, there is only a single column of numbers for the response,
in contrast to proportion data where two vectors (successes and failures) were bound
together to form the response (see Chapter 14). An alternative is allowed by R in which the
values of the response variable are represented by a two-level factor (like ‘dead’ or ‘alive’,
‘male’ or ‘female’, etc.).

The way that R treats binary data is to assume that the values of the response come from a
binomial trial with sample size 1. If the probability that an individual is dead is p, then the
probability of obtaining y (where y is either dead or alive, 0 or 1) is given by an abbreviated
form of the binomial distribution with n= 1, known as the Bernoulli distribution:

P�y� � py�1 � p�1�y

The random variable y has a mean of p and a variance of p(1� p), and the object is to
determine how the explanatory variables influence the value of p. The trick to using binary
response variables effectively is to know when it is worth using them, and when it is better to
lump the successes and failures together and analyse the total counts of dead individuals,
occupied patches, insolvent firms or whatever. The question you need to ask yourself is
whether or not you have unique values of one or more explanatory variables for each and
every individual case. If the answer is ‘yes’, then analysis with a binary response variable is
likely to be fruitful. If the answer is ‘no’, then there is nothing to be gained, and you should
reduce your data by aggregating the counts to the resolution at which each count does have a

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



unique set of explanatory variables. For example, suppose that all your explanatory
variables were categorical (say sex (male or female), employment (employed or
unemployed) and region (urban or rural)). In this case there is nothing to be gained
from analysis using a binary response variable because none of the individuals in the study
have unique values of any of the explanatory variables. It might be worthwhile if you had
each individual’s body weight, for example; then you could ask whether, when you control
for sex and region, heavy people are more likely to be unemployed than light people. In the
absence of unique values for any explanatory variables, there are two useful options:

• analyse the data as a contingency table using Poisson errors, with the count of the total
number of individuals in each of the eight contingencies (2× 2× 2) as the response
variable (see Chapter 13) in a dataframe with just eight rows

• decide which of your explanatory variables is the key (perhaps you are interested in
gender differences), then express the data as proportions (the number of males and the
number of females) and recode the binary response as a count of a two-level factor – the
analysis is now of proportion data (e.g. the proportion of all individuals that are female)
using binomial errors (see Chapter 14)

If you do have unique measurements of one or more explanatory variables for each
individual, these are likely to be continuous variables such as body weight, income, medical
history, distance to the nuclear reprocessing plant, geographic isolation, and so on. This
being the case, successful analyses of binary response data tend to be multiple regression
analyses or complex analyses of covariance, and you should consult Chapters 10 and 11 for
details on model simplification and model criticism.

In order to carry out modelling on a binary response variable we take the following steps:

• create a single vector containing 0s and 1s (or one of two factor levels) as the response
variable

• use glm with family=binomial

• you can change the link function from the default logit to complementary log-log

• fit the model in the usual way

• test significance by deletion of terms from the maximal model, and compare the change
in deviance with chi-squared

• note that there is no such thing as overdispersion with a binary response variable,
and hence no need to change to using quasi-binomial when the residual deviance
is large

• plot(model) is rarely informative with binary response variables, so model checking
is more than usually challenging

The choice of link function is generally made by trying both links and selecting the link
that gives the lowest deviance. The logit link that we used earlier is symmetric in p and q, but
the complementary log-log link is asymmetric.
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Incidence Functions

In this example, the response variable is called incidence; a value of 1 means that an
island was occupied by a particular species of bird, and 0 means that the bird did not breed
there. The explanatory variables are the area of the island (km2) and the isolation of the
island (distance from the mainland, km).

island <- read.csv("c:\\temp\\isolation.csv")
attach(island)
names(island)

[1] "incidence" "area" "isolation"

There are two continuous explanatory variables, so the appropriate analysis is multiple
regression. The response is binary, so we shall do logistic regression with binomial errors.
We begin by fitting a complex model involving an interaction between isolation and area:

model1 <- glm(incidence∼area*isolation,binomial)

Then we fit a simpler model with only main effects for isolation and area:

model2 <- glm(incidence∼area+isolation,binomial)

Now we compare the two models using anova:

anova(model1,model2,test="Chi")

Analysis of Deviance Table

Model 1: incidence ∼ area * isolation
Model 2: incidence ∼ area + isolation

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 46 28.252
2 47 28.402 -1 -0.15043 0.6981

The simpler model is not significantly worse, so we accept this for the time being, and
inspect the parameter estimates and standard errors:

summary(model2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.6417 2.9218 2.273 0.02302 *
area 0.5807 0.2478 2.344 0.01909 *
isolation -1.3719 0.4769 -2.877 0.00401 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.029 on 49 degrees of freedom
Residual deviance: 28.402 on 47 degrees of freedom

AIC: 34.402

Number of Fisher Scoring iterations: 6
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The estimates and their standard errors are in logits. Area has a significant positive effect
(larger islands are more likely to be occupied), but isolation has a very strong negative effect
(isolated islands are much less likely to be occupied). This is the minimal adequate model.
We should plot the fitted model through the scatterplot of the data. It is much easier to do this
for each variable separately, like this:

windows(7,4)
par(mfrow=c(1,2))
xv <- seq(0,9,0.01)

modela <- glm(incidence∼area,binomial)
modeli <- glm(incidence∼isolation,binomial)

yv <- predict(modela,list(area=xv),type="response")
plot(area,incidence,pch=21,bg="yellow")
lines(xv,yv,col="blue")

xv2 <- seq(0,10,0.1)
yv2 <- predict(modeli,list(isolation=xv2),type="response")
plot(isolation,incidence,pch=21,bg="yellow")
lines(xv2,yv2,col="red")

This is well and good, but it is very difficult to know how good the fit of the model is
when the data are shown only as 0s or 1s. It is sensible to compute one or more intermediate
probabilities from the data, and to show these empirical estimates (ideally with their
standard errors) on the plot in order to judge whether the fitted line is a reasonable
description of the data.

For the purposes of demonstration, we divide the ranges of area and of isolation into (say)
three, count how many successes and failures occurred in each interval, calculate the mean
proportion incidence in each third, p, and add these estimates to the plot as points along with
their standard error bars

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�1 � p�=np
. Start by using cut to obtain the break points on the

two axes:

276 STATISTICS: AN INTRODUCTION USING R



ac <- cut(area,3)
ic <- cut(isolation,3)
tapply(incidence,ac,sum)

(0.144,3.19] (3.19,6.23] (6.23,9.28]
7 8 14

tapply(incidence,ic,sum)

(2.02,4.54] (4.54,7.06] (7.06,9.58]
12 17 0

There were seven data points indicating occupation (success) in the lowest third of the
area axis and 14 in the highest third. There were 12 data points indicating occupation
(success) in the lowest third of range of values for isolation and none in the highest third.
Note the convention for labelling intervals: (a, b] means include the right-hand endpoint, b

(the square bracket), but not the left one, a (the round bracket).
Now count the total number of islands in each interval using table:

table(ac)

ac
(0.144,3.19] (3.19,6.23] (6.23,9.28]

21 15 14

table(ic)

ic
(2.02,4.54] (4.54,7.06] (7.06,9.58]

12 25 13

The probability of occupation is given by dividing the number of successes by the number
of cases:

tapply(incidence,ac,sum)/ table(ac)

(0.144,3.19] (3.19,6.23] (6.23,9.28]
0.3333333 0.5333333 1.0000000

tapply(incidence,ic,sum)/ table(ic)

(2.02,4.54] (4.54,7.06] (7.06,9.58]
1.00 0.68 0.00

The idea is to plot these mean proportions and their standard errors (
ffiffiffiffiffiffiffiffiffiffi

pq=n
p

) along with
the regression line from the model to see how close the model gets to the three calculated
proportions:

xv <- seq(0,9,0.01)
yv <- predict(modela,list(area=xv),type="response")
plot(area,incidence,pch=21,bg="yellow")
lines(xv,yv,col="blue")
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d <- (max(area)-min(area))/3
left <- min(area)+d/2
mid <- left+d
right <- mid+d
xva <- c(left,mid,right)
pa <- as.vector(tapply(incidence,ac,sum)/ table(ac))
se <- sqrt(pa*(1-pa)/table(ac))

xv <- seq(0,9,0.01)
yv <- predict(modela,list(area=xv),type="response")
lines(xv,yv,col="blue")

points(xva,pa,pch=16,col="red")
for (i in 1:3) lines(c(xva[i],xva[i]),
c(pa[i]+se[i],pa[i]-se[i]),col="red")

xv2 <- seq(0,10,0.1)
yv2 <- predict(modeli,list(isolation=xv2),type="response")
plot(isolation,incidence,pch=21,bg="yellow")
lines(xv2,yv2,col="red")

d <- (max(isolation)-min(isolation))/3
left <- min(isolation)+d/2
mid <- left+d
right <- mid+d
xvi <- c(left,mid,right)
pi <- as.vector(tapply(incidence,ic,sum)/ table(ic))
se <- sqrt(pi*(1-pi)/table(ic))

points(xvi,pi,pch=16,col="blue")
for (i in 1:3) lines(c(xvi[i],xvi[i]),
c(pi[i]+se[i],pi[i]-se[i]),col="blue")

You can see at once that the fit for the right-hand graph of incidence against isolation is
excellent; the logistic is a very good model for these data. In contrast, the fit for the left-hand
graph of incidence against area is poor; at low values of area the model (blue line)
underestimates the observed data (red point with error bars) while for intermediate values of
area the model (blue line) overestimates the observed data (red point with error bars).

278 STATISTICS: AN INTRODUCTION USING R



This approach of plotting the two effects separately would not work, of course, if there
were a significant interaction between area and isolation; then you would need to produce
conditioning plots of incidence against area for different degrees of isolation.

ANCOVA with a Binary Response Variable

In this example the binary response variable is parasite infection (infected or not) and the
explanatory variables are weight and age (continuous) and sex (categorical). We begin with
data inspection:

infection <- read.csv("c:\\temp\\infection.csv")
attach(infection)
names(infection)

[1] "infected" "age" "weight" "sex"

For the continuous explanatory variables, weight and age, it is useful to look at box-and-
whisker plots of the data:

windows(7,4)
par(mfrow=c(1,2))
plot(infected,weight,xlab="Infection",ylab="Weight",
col="lightblue")
plot(infected,age,xlab="Infection",ylab="Age", col="lightgreen")

Infected individuals are substantially lighter than uninfected individuals, and occur in a
much narrower range of ages. To see the relationship between infection and gender (both
categorical variables) we can use table:

table(infected,sex)

sex
infected female male

absent 17 47
present 11 6

This indicates that the infection is much more prevalent in females (11/28) than in males (6/53).
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We get down to business, as usual, by fitting a maximal model with different slopes for
each level of the categorical variable:

model <- glm(infected∼age*weight*sex,family=binomial)
summary(model)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.109124 1.375388 -0.079 0.937
age 0.024128 0.020874 1.156 0.248
weight -0.074156 0.147678 -0.502 0.616
sexmale -5.969109 4.278066 -1.395 0.163
age:weight -0.001977 0.002006 -0.985 0.325
age:sexmale 0.038086 0.041325 0.922 0.357
weight:sexmale 0.213830 0.343265 0.623 0.533
age:weight:sexmale -0.001651 0.003419 -0.483 0.629

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 55.706 on 73 degrees of freedom
AIC: 71.706

Number of Fisher Scoring iterations: 6

It certainly does not look as if any of the high-order interactions are significant. Instead of
using update and anova for model simplification, we can use step to compute the AIC for
each term in turn:

model2 <- step(model)

Start: AIC= 71.71

First, it tests whether the three-way interaction is required:

Df Deviance AIC
- age:weight:sex 1 55.943 69.943
<none> 55.706 71.706

Step: AIC= 69.94

This causes a reduction in AIC of just 71.7 – 69.9= 1.8 and hence is not significant, so the
three-way interaction is eliminated.

Next, it looks at the two-way interactions and decides which of the three to delete first:

Df Deviance AIC
- weight:sex 1 56.122 68.122
- age:sex 1 57.828 69.828
<none> 55.943 69.943
- age:weight 1 58.674 70.674

Step: AIC= 68.12
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Only the removal of the weight–sex interaction causes a reduction in AIC, so this
interaction in deleted and the other two interactions are retained. Let us see if we would have
been this lenient:

summary(model2)

Call:
glm(formula = infected ∼ age + weight + sex + age:weight + age:sex,

family = binomial)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.391572 1.264850 -0.310 0.7569
age 0.025764 0.014918 1.727 0.0842 .
weight -0.036493 0.128907 -0.283 0.7771
sexmale -3.743698 1.786011 -2.096 0.0361 *
age:weight -0.002221 0.001365 -1.627 0.1037
age:sexmale 0.020464 0.015199 1.346 0.1782

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 56.122 on 75 degrees of freedom
AIC: 68.122

Neither of the two interactions retained by step would figure in our model (p> 0.10).
We shall use update to simplify model2:

model3 <- update(model2,∼.-age:weight)
anova(model2,model3,test="Chi")

Analysis of Deviance Table

Model 1: infected ∼ age + weight + sex + age:weight + age:sex
Model 2: infected ∼ age + weight + sex + age:sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 75 56.122
2 76 58.899 -1 -2.777 0.09562 .

So there is no really persuasive evidence of an age–weight term (p= 0.096).

model4 <- update(model2,∼.-age:sex)
anova(model2,model4,test="Chi")

Analysis of Deviance Table

Model 1: infected ∼ age + weight + sex + age:weight + age:sex
Model 2: infected ∼ age + weight + sex + age:weight

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 75 56.122
2 76 58.142 -1 -2.0203 0.1552
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Note that we are testing all the two-way interactions by deletion from the model that
contains all two-way interactions (model2): p= 0.1552, so nothing there, then.

What about the three main effects?

model5 <- glm(infected∼age+weight+sex,family=binomial)
summary(model5)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.609369 0.803288 0.759 0.448096
age 0.012653 0.006772 1.868 0.061701 .
weight -0.227912 0.068599 -3.322 0.000893 ***
sexmale -1.543444 0.685681 -2.251 0.024388 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 59.859 on 77 degrees of freedom
AIC: 67.859

Number of Fisher Scoring iterations: 5

Weight is highly significant, as we expected from the initial boxplot, sex is quite
significant, and age is marginally significant. It is worth establishing whether there is any
evidence of non-linearity in the response of infection to weight or age. We might begin by
fitting quadratic terms for the two continuous explanatory variables:

model6 <- glm(infected∼age+weight+sex+I(weight^2)+I(age^2),
family=binomial)
summary(model6)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.4475839 1.7978359 -1.918 0.0552 .
age 0.0829364 0.0360205 2.302 0.0213 *
weight 0.4466284 0.3372352 1.324 0.1854
sexmale -1.2203683 0.7683288 -1.588 0.1122
I(weight^2) -0.0415128 0.0209677 -1.980 0.0477 *
I(age^2) -0.0004009 0.0002004 -2.000 0.0455 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.620 on 75 degrees of freedom
AIC: 60.62

Number of Fisher Scoring iterations: 6

Evidently, both relationships are significantly non-linear. It is worth looking at these
non-linearities in more detail, to see if we can do better with other kinds of models (e.g. non-
parametric smoothers, piecewise linear models or step functions). A good start is often a
generalized additive model when we have continuous covariates:
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library(mgcv)
model7 <- gam(infected∼sex+s(age)+s(weight),family=binomial)
plot.gam(model7)

These non-parametric smoothers are excellent at showing the humped relationship between
infection and age, and at highlighting the possibility of a threshold at weight � 8 in the
relationship between weight and infection.

We can now return to a GLM to incorporate these ideas. We shall fit age and age^2 as
before, but try a piecewise linear fit for weight, estimating the threshold weight at a range
of values (say, 8–14) and selecting the threshold that gives the lowest residual deviance; this
turns out to be a threshold of 12 (a bit higher than it appears from the gam plot, above). The
piecewise regression is specified by the term:

I((weight – 12) * (weight > 12))

The I (‘as is’) is necessary to stop the * being evaluated as an interaction term in the
model formula. What this expression says is: regress infection on the value of weight–12,
but only do this when weight>12 is true; otherwise, assume that infection is independent
of weight.

model8 <- glm(infected∼sex+age+I(age^2)+
I((weight-12)*(weight>12)),family=binomial)
summary(model8)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7511382 1.3678824 -2.011 0.0443 *
sexmale -1.2864683 0.7349201 -1.750 0.0800 .
age 0.0798629 0.0348184 2.294 0.0218 *
I(age^2) -0.0003892 0.0001955 -1.991 0.0465 *
I((weight - 12) * (weight > 12)) -1.3547520 0.5350853 -2.532 0.0113 *

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 48.687 on 76 degrees of freedom
AIC: 58.687

Number of Fisher Scoring iterations: 7
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model9 <- update(model8,∼.-sex)
anova(model8,model9,test="Chi")
model10 <- update(model8,∼.-I(age^2))
anova(model8,model10,test="Chi")

The effect of sex on infection is not quite significant (p= 0.071 for a chi-squared test on
deletion), so we leave it out. The quadratic term for age does not look highly significant here
(p= 0.0465), but a deletion test gives p= 0.011, so we retain it. The minimal adequate
model is therefore model9:

summary(model9)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1207552 1.2665593 -2.464 0.0137 *
age 0.0765784 0.0323376 2.368 0.0179 *
I(age^2) -0.0003843 0.0001846 -2.081 0.0374 *
I((weight - 12) * (weight > 12)) -1.3511706 0.5134681 -2.631 0.0085 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 51.953 on 77 degrees of freedom
AIC: 59.953

Number of Fisher Scoring iterations: 7

We conclude there is a humped relationship between infection and age, and a threshold
effect of weight on infection. The effect of sex is marginal, but might repay further
investigation (p= 0.071).

Further Reading

Collett, D. (1991) Modelling Binary Data, Chapman & Hall, London.
Cox, D.R. and Snell, E.J. (1989) Analysis of Binary Data, Chapman & Hall, London.
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16
Death and Failure Data

Time-to-death data, and data on failure times, are often encountered in statistical modelling.
The main problem is that the variance in such data is almost always non-constant, and so
standard methods are inappropriate. If the errors are gamma distributed, then the variance is
proportional to the square of the mean (recall that with Poisson errors, the variance is equal
to the mean). It is straightforward to deal with such data using a generalized linear model
(GLM) with gamma errors.

This case study has 50 replicates in each of three treatments: an untreated control, low
dosage and high dosage of a novel cancer treatment. The response is the age at death for the
rats (expressed as an integer number of months):

mortality <- read.csv("c:\\temp\\deaths.csv")
attach(mortality)
names(mortality)

[1] "death" "treatment"

tapply(death,treatment,mean)

control high low
3.46 6.88 4.70

The animals receiving the high dose lived roughly twice as long as the untreated controls.
The low dose increased life expectancy by more than 35%. The variance in age at death,
however, is not constant:

tapply(death,treatment,var)

control high low
0.4167347 2.4751020 0.8265306

The variance is much greater for the longer-lived individuals, so we should not use
standard statistical models which assume constant variance and normal errors. But we can
use a GLM with gamma errors:

model <- glm(death∼treatment,Gamma)
summary(model)

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.289017 0.008327 34.708 < 2e-16 ***
treatmenthigh -0.143669 0.009321 -15.414 < 2e-16 ***
treatmentlow -0.076251 0.010340 -7.374 1.11e-11 ***

(Dispersion parameter for Gamma family taken to be 0.04150576)

Null deviance: 17.7190 on 149 degrees of freedom
Residual deviance: 5.8337 on 147 degrees of freedom
AIC: 413.52

Number of Fisher Scoring iterations: 4

The link function with gamma errors is the reciprocal: that is why the parameter for the
high dose appears as a negative term in the summary table: the mean value for high dose is
calculated as 0.289� 0.1437= 0.1453, and 1/0.1453= 6.882. Checking the model using
plot(model) shows that it is reasonably well behaved (you might like to compare the
behaviour of lm(death∼treatment)). We conclude that all three treatment levels are
significantly different from one another.

A common difficulty with data on time at death is that some (or even many) of the
individuals do not die during the trial, so their age at death remains unknown (they might
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recover, they might leave the trial, or the experiment might end before they die). These
individuals are said to be censored. Censoring makes the analysis much more complicated,
because the censored individuals provide some information (we know the age at which they
were last seen alive) but the data are of a different type from the information on age at death
which is the response variable in the main analysis. There is a whole field of statistical
modelling for such data: it is called survival analysis.

detach(mortality)

Survival Analysis with Censoring

The next example comes from a study of mortality in 150 wild male sheep. There were three
experimental groups, and the animals were followed for 50 months. The groups were treated
with three different medicines against their gut parasites: group A received a bolus with a high
dose of worm-killer, group B received a low dose, and group C received the placebo (a bolus
with no worm-killingcontents). The initial body mass of each individual (weight) was recorded
as a covariate. The month in which each animal died (death) was recorded, and animals which
survived up to the 50th month (the end of the study) were recorded as being censored (they thus
have censoring indicator status= 0, whereas the animals that died all have status= 1).

library(survival)
sheep <- read.csv("c:\\temp\\sheep.deaths.csv")
attach(sheep)
names(sheep)

[1] "death" "status" "weight" "group"

The overall survivorship curves for the three groups of animals are obtained like this:

plot(survfit(Surv(death,status)∼group),col=c(2,3,4),
xlab="Age at death (months)")
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The crosses + at the end of the survivorship curves for groups A (red) and B (green)
indicate that there was censoring in these groups (not all of the individuals were dead at the
end of the experiment). Parametric regression in survival models uses the survreg

function, for which you can specify a wide range of different error distributions. Here
we use the exponential distribution for the purposes of demonstration (you can chose from
dist = "extreme", "logistic", "gaussian" or "exponential" and from link =
"log" or "identity"). We fit the full analysis of covariance model to begin with:

model <- survreg(Surv(death,status)∼weight*group,dist="exponential")
summary(model)

Call:
survreg(formula = Surv(death, status) ∼ weight * group, dist =
"exponential")

Value Std. Error z p
(Intercept) 3.8702 0.3854 10.041 1.00e-23
weight -0.0803 0.0659 -1.219 2.23e-01
groupB -0.8853 0.4508 -1.964 4.95e-02
groupC -1.7804 0.4386 -4.059 4.92e-05
weight:groupB 0.0643 0.0674 0.954 3.40e-01
weight:groupC 0.0796 0.0674 1.180 2.38e-01

Scale fixed at 1

Exponential distribution
Loglik(model)= -480.6 Loglik(intercept only)= -502.1

Chisq= 43.11 on 5 degrees of freedom, p= 3.5e-08
Number of Newton-Raphson Iterations: 5
n= 150

Model simplification proceeds in the normal way. You could use update, but here (for
variety only) we refit progressively simpler models and test them using anova. First we take
out the different slopes for each group:

model2 <- survreg(Surv(death,status)∼weight+group,dist="exponential")
anova(model,model2,test="Chi")

Terms Resid. Df -2*LL Test Df Deviance P(>|Chi|)
1 weight * group 144 961.1800 NA NA NA
2 weight + group 146 962.9411 -weight:group -2 -1.761142 0.4145462

The interaction is not significant so we leave it out and try deleting weight:

model3 <- survreg(Surv(death,status)∼group,dist="exponential")
anova(model2,model3,test="Chi")

Terms Resid. Df -2*LL Test Df Deviance P(>|Chi|)
1 weight + group 146 962.9411 NA NA NA
2 group 147 963.9393 -weight -1 -0.9981333 0.3177626
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This is not significant, so we leave it out and try deleting group:

model4 <- survreg(Surv(death,status)∼1,dist="exponential")
anova(model3,model4,test="Chi")

Terms Resid. Df -2*LL Test Df Deviance P(>|Chi|)
1 group 147 963.9393 NA NA NA
2 1 149 1004.2865 -2 -40.34721 1.732661e-09

This is highly significant, so we add it back. The minimal adequate model is model3 with
the three-level factor group, but there is no evidence that initial body weight had any
influence on survival.

summary(model3)

Call:
survreg(formula = Surv(death, status) ∼ group, dist = "exponential")

Value Std. Error z p
(Intercept) 3.467 0.167 20.80 3.91e-96
groupB -0.671 0.225 -2.99 2.83e-03
groupC -1.386 0.219 -6.34 2.32e-10

Scale fixed at 1

Exponential distribution
Loglik(model)= -482 Loglik(intercept only)= -502.1

Chisq= 40.35 on 2 degrees of freedom, p= 1.7e-09
Number of Newton-Raphson Iterations: 5
n= 150

We need to retain all three groups (group B is significantly different from both group A
and group C).

It is straightforward to compare error distributions for the same model structure:

model3 <- survreg(Surv(death,status)∼group,dist="exponential")
model4 <- survreg(Surv(death,status)∼group,dist="extreme")
model5 <- survreg(Surv(death,status)∼group,dist="gaussian")
model6 <- survreg(Surv(death,status)∼group,dist="logistic")
anova(model3,model4,model5,model6)

Terms Resid. Df -2*LL Test Df Deviance Pr(>Chi)
1 group 147 963.9393 NA NA NA
2 group 146 1225.3512 = 1 -261.411949 NA
3 group 146 1178.6582 = 0 46.692975 NA
4 group 146 1173.9478 = 0 4.710457 NA

Our initial choice of exponential was clearly the best, giving much the lowest residual
deviance (963.94).
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You can immediately see the advantage of doing proper survival analysis when you
compare the predicted mean ages at death from model3 with the crude arithmetic averages
of the raw data on age at death:

tapply(predict(model3,type="response"),group,mean)

A B C
32.05555 16.38635 8.02

tapply(death,group,mean)

A B C
23.08 14.42 8.02

If there is no censoring (as in group C, where all the individuals died) then the estimated
mean ages at death are identical. But when there is censoring, the arithmetic mean
underestimates the age at death, and when the censoring is substantial (as in group A)
this underestimate is very large (23.08 vs. 32.06 months).

Further Reading

Cox, D.R. and Oakes, D. (1984) Analysis of Survival Data, Chapman & Hall, London.
Kalbfleisch, J. and Prentice, R.L. (1980) The Statistical Analysis of Failure Time Data, John Wiley &

Sons, New York.
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Appendix
Essentials of the R Language

R as a Calculator

The command line after the screen prompt > is an excellent calculator:

> log(42/7.3)

[1] 1.749795

By default, logs in R are base e (natural or Napierian, not base 10 logs), but you
can specify any base you want, as a second argument to the log function. Here is log base
2 of 16:

> log(16,2)

[1] 4

Each line can have many characters, but if you want to evaluate a complicated
expression, you might like to continue it on one or more further lines for clarity. The
way you do this is by ending the line at a place where the line is obviously incomplete (e.g.
with a trailing comma, operator, or with more left parentheses than right parentheses,
implying that more right parentheses will follow). When continuation is expected, the line
prompt changes from > to +

> 5+6+3+6+4+2+4+8+
+ 3+2+7

[1] 50

Note that the + continuation prompt does not carry out arithmetic plus. If you have made a
mistake, and you want to get rid of the + prompt and return to the > prompt, then press the
Esc key and use the Up arrow to edit the last (incomplete) line.

From here onwards (and throughout the book), the prompt character > is omitted.
The material that you should type on the command line is shown in red font in this book.
Just press the Return key to see the answer. The output from R is shown in dark blue

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



Courier New font, which uses absolute rather than proportional spacing, so that columns
of numbers remain neatly aligned on the page and on the screen.

Two or more expressions can be placed on a single line so long as they are separated by
semicolons:

2+3; 5*7; 3-7

[1] 5
[1] 35
[1] -4

All of the usual calculations can be done directly, and the standard order of precedence
applies: powers and roots are evaluated first, then multiplication and division, then finally
addition and subtraction. Although there is a named function for square roots, sqrt, roots
are generally calculated as fractional powers. Exponentiation (powers) uses the caret (‘hat’)
^ operator (not ** as in some computing languages like Fortran or GLIM). So the cube root
of 8 is

8^(1/3)

[1] 2

The exponentiation operator ^ groups right to left, but all other operators group left to
right. Thus, 2 ^ 2 ^ 3 is 2 ^ 8, not 4 ^ 3, whereas 1 - 1 - 1 is - 1, not 1. Use brackets as

necessary to override the precedence. For a t test, where the value required is
yA � yBj j
SEdiff

and

the numbers are 5.7, 6.8 and 0.38, you type:

abs(5.7-6.8)/0.38

[1] 2.894737

The default number of digits printed out by R is 7 (as above). You can control the number
of digits printed using the digits option like this:

options(digits=3)
abs(5.7-6.8)/0.38

[1] 2.89

Built-in Functions

All the mathematical functions you could ever want are here (Table A.1). We have already
met the log function; the antilog function to the base e is exp:

exp(1)

[1] 2.718282
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The trigonometric functions in R measure angles in radians. A circle is 2π radians, and
this is 360°, so a right-angle (90°) is π=2 radians. R knows the value of π as pi:

pi

[1] 3.141593

sin(pi/2)

[1] 1

cos(pi/2)

[1] 6.123032e-017

Notice that the cosine of a right-angle does not come out as exactly zero, even though the
sine came out as exactly 1. The e-017 means ‘times 10�17

’. While this is a very small
number it is clearly not exactly zero (so you need to be careful when testing for exact
equality of real numbers; see p. 313).

Table A.1 Mathematical functions used in R

Function Meaning

log(x) log to base e of x
exp(x) antilog of x (=2.7818x)
log(x,n) log to base n of x
log10(x) log to base 10 of x
sqrt(x) square root of x
factorial(x) x!
choose(n,x) binomial coefficients

n!/(x! (n – x)!)
gamma(x) Γ�x�

(x – 1)! for integer x
lgamma(x) natural log of gamma(x)

floor(x) greatest integer < x
ceiling(x) smallest integer > x
trunc(x) closest integer to x between x and 0: trunc

(1.5)= 1, trunc(�1.5)=�1
trunc is like floor for positive values and like

ceiling for negative values
round(x, digits=0) round the value of x to an integer
signif(x, digits=6) give x to six digits in scientific notation
runif(n) generates n random numbers between

0 and 1 from a uniform distribution
cos(x) cosine of x in radians
sin(x) sine of x in radians

(continued )
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Numbers with Exponents

For very big numbers or very small numbers R uses the following scheme:

1.2e3 means 1200 because the e3 means ‘move the decimal point 3 places to the
right’

1.2e-2 means 0.012 because the e-2 means ‘move the decimal point 2 places to the
left’

3.9+4.5i is a complex number with real (3.9) and imaginary (4.5) parts, and i is the
square root of �1

Modulo and Integer Quotients

Integer quotients and remainders are obtained using the notation %/% (percent, divide,
percent) and %% (percent, percent) respectively. Suppose we want to know the integer part of
a division – say, how many 13s are there in 119:

119 %/% 13

[1] 9

Now suppose we wanted to know the remainder (what is left over when 119 is divided by
13), known in maths as modulo:

119 %% 13

[1] 2

Modulo is very useful for testing whether numbers are odd or even: odd numbers are 1
modulo 2 and even numbers are 0 modulo 2:

9 %% 2

[1] 1
8 %% 2

[1] 0

Table A.1 (Continued )

Function Meaning

tan(x) tangent of x in radians
acos(x), asin(x), atan(x) inverse trigonometric transformations of real or

complex numbers.
acosh(x), asinh(x), atanh(x) inverse hyperbolic trigonometric transformations

on real or complex numbers
abs(x) the absolute value of x, ignoring the minus sign if

there is one
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Likewise, you use modulo to test if one number is an exact multiple of some other
number. For instance, to find out whether 15 421 is a multiple of 7, type:

15421 %% 7 == 0

[1] TRUE

Assignment

Objects obtain values in R by assignment (‘x gets a value’). This is achieved by the
gets arrow which is a composite symbol made up from ‘less than’ and ‘minus’ <- without a
space between them. Thus, to create a scalar constant x with value 5 we type

x <- 5

and not x = 5. Notice that there is a potential ambiguity if you get the spacing wrong.
Compare our x <- 5 meaning ‘x gets 5’ and x < -5 which is a logical question, asking ‘is
x less than minus 5?’ and producing the answer TRUE or FALSE.

Rounding

Various sorts of rounding (rounding up, rounding down, rounding to the nearest integer)
can be done easily. Take 5.7 as an example. The ‘greatest integer less than’ function is
floor:

floor(5.7)

[1] 5

The ‘next integer’ function is ceiling:

ceiling(5.7)

[1] 6

You can round to the nearest integer by adding 0.5 to the number then using floor. There
is a built-in function for this, but we can easily write one of our own to introduce the notion
of writing functions. Call it rounded, then define it as a function like this:

rounded <- function(x) floor(x+0.5)

Now we can use the new function:

rounded(5.7)

[1] 6
rounded(5.4)

[1] 5
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Infinity and Things that Are Not a Number (NaN)

Calculations can lead to answers that are plus infinity, represented in R by Inf:

3/0

[1] Inf

or minus infinity, which is –Inf in R:

-12/0

[1] -Inf

Calculations involving infinity can be evaluated:

exp(-Inf)

[1] 0

0/Inf

[1] 0

(0:3)^Inf

[1] 0 1 Inf Inf

The syntax 0:3 is very useful. It generaters a series (0, 1, 2, 3 in this case) and the function
is evaluated for each of the values to produce a vector of answers. In this case, the vector is
of length = 4.

Other calculations, however, lead to quantities that are not numbers. These are repre-
sented in R by NaN (‘not a number’). Here are some of the classic cases:

0/0

[1] NaN

Inf-Inf

[1] NaN

Inf/Inf

[1] NaN

You need to understand clearly the distinction between NaN and NA (this stands for ‘not
available’ and is the missing value symbol in R; see below). There are built-in tests to check
whether a number is finite or infinite:

is.finite(10)

[1] TRUE
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is.infinite(10)

[1] FALSE

is.infinite(Inf)

[1] TRUE

Missing Values (NA)

Missing values in dataframes are a real source of irritation because they affect the way that
model-fitting functions operate, and they can greatly reduce the power of the modelling that
we would like to do.

Some functions do not work with their default settings when there are missing values in
the data, and mean is a classic example of this:

x <- c(1:8,NA)
mean(x)

[1] NA

In order to calculate the mean of the non-missing values, you need to specify that the NA
are to be removed, using the na.rm=TRUE argument:

mean(x,na.rm=T)

[1] 4.5

To check for the location of missing values within a vector, use the function is.na(x).
Here is an example where we want to find the locations (7 and 8) of missing values within a
vector called vmv:

(vmv <- c(1:6,NA,NA,9:12))

[1] 1 2 3 4 5 6 NA NA 9 10 11 12

Note the use of round brackets to get the answer printed as well as allocated. Making an
index of the missing values in an array could use the seq function:

seq(along=vmv)[is.na(vmv)]

[1] 7 8

However, the result is achieved more simply using which like this:

which(is.na(vmv))

[1] 7 8

If the missing values are genuine counts of zero, you might want to edit the NA to 0. Use
the is.na function to generate subscripts for this:

(vmv[is.na(vmv)] <- 0)

[1] 1 2 3 4 5 6 0 0 9 10 11 12
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Alternatively, use the ifelse function like this:

vmv <- c(1:6,NA,NA,9:12)
ifelse(is.na(vmv),0,vmv)

[1] 1 2 3 4 5 6 0 0 9 10 11 12

Operators

R uses the following operator tokens

+ - * / %% ^ arithmetic
> >= < <= == != relational
! & | logical
∼ model formulae
<- -> assignment
$ list indexing (the ‘element name’ operator)
: create a sequence

Several of the operators have different meaning inside model formulas. Thus in a model
formula * indicates the main effects plus interaction, : indicates the interaction between two
variables and ^ means all interactions up to the indicated power.

Creating a Vector

Vectors are variables with one or more values of the same type: logical, integer, real,
complex, string (or character) or raw. Values can be assigned to vectors in many different
ways. They can be generated by R: here the vector called y gets the sequence of integer
values 10 to 16 using : (colon), the sequence operator:

y <- 10:16

You can type the values into the command line, using the concatenation function c:

y <- c(10, 11, 12, 13, 14, 15, 16)

Alternatively, you can enter then numbers from the keyboard one at a time using scan:

y <- scan()

1: 10
2: 11
3: 12
4: 13
5: 14
6: 15
7: 16
8:
Read 7 items
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Press the Enter key twice to indicate that data input is complete. However, the commonest
way to allocate values to a vector is to read the data from an external file, using read.csv

or read.table (p. 25).

Named Elements within Vectors

It is often useful to have the values in a vector labelled in some way. For instance, if our data
are counts of 0, 1, 2, . . . occurrences in a vector called counts,

(counts <- c(25,12,7,4,6,2,1,0,2))

[1] 25 12 7 4 6 2 1 0 2

so that there were 25 zeros, 12 ones and so on, it would be useful to name each of the counts
with the relevant number 0, 1, . . . , 8:

names(counts) <- 0:8

Now when we inspect the vector called counts we see both the names and the
frequencies:

counts

0 1 2 3 4 5 6 7 8
25 12 7 4 6 2 1 0 2

If you have computed a table of counts, and you want to remove the names, then use
the as.vector function like this:

(st <- table(rpois(2000,2.3)))

0 1 2 3 4 5 6 7 8 9
205 455 510 431 233 102 43 13 7 1

as.vector(st)

[1] 205 455 510 431 233 102 43 13 7 1

Vector Functions

One of the great strengths of R is its ability to evaluate functions over entire vectors, thereby
avoiding the need for loops and subscripts. The most important vector functions are shown
in Table A.2.
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Summary Information from Vectors by Groups

One of the most important and useful vector functions to master is tapply. The ‘t’ stands
for ‘table’ and the idea is to apply a function to produce a table from the values in the
vector, based on one or more grouping variables (often the grouping is by factor levels). This
sounds much more complicated than it really is:

data <- read.csv("c:\\temp\\daphnia.csv")
attach(data)
names(data)

[1] "Growth.rate" "Water" "Detergent" "Daphnia"

Table A.2 Vector functions in R

Operation Meaning

max(x) maximum value in x
min(x) minimum value in x
sum(x) total of all the values in x
mean(x) arithmetic average of the values in x
median(x) median value in x
range(x) vector of min(x) and max(x)

var(x) sample variance of x, with degrees of freedom= length(x)�1

cor(x,y) correlation between vectors x and y
sort(x) a sorted version of x
rank(x) vector of the ranks of the values in x
order(x) an integer vector containing the permutation to sort x into ascending

order
quantile(x) vector containing the minimum, lower quartile, median, upper

quartile, and maximum of x
cumsum(x) vector containing the sum of all of the elements up to that point
cumprod(x) vector containing the product of all of the elements up to that point
cummax(x) vector of non-decreasing numbers which are the cumulative maxima

of the values in x up to that point.
cummin(x) vector of non-increasing numbers which are the cumulative minima

of the values in x up to that point.
pmax(x,y,z) vector, of length equal to the longest of x, y, or z containing the

maximum of x, y or z for the ith position in each
pmin(x,y,z) vector, of length equal to the longest of x, y, or z containing the

minimum of x, y or z for the ith position in each
colMeans(x) column means of dataframe or matrix x
colSums(x) column totals of dataframe or matrix x
rowMeans(x) row means of dataframe or matrix x
rowSums(x) row totals of dataframe or matrix x
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The response variable is Growth.rate and the other three variables are factors. Suppose
we want the mean growth rate for each Detergent:

tapply(Growth.rate,Detergent,mean)

BrandA BrandB BrandC BrandD
3.88 4.01 3.95 3.56

This produces a table with four entries, one for each level of the factor called Detergent.
To produce a two-dimensional table we put the two grouping variables in a list. Here we
calculate the median growth rate for Water type and Daphnia clone:

tapply(Growth.rate,list(Water,Daphnia),median)

Clone1 Clone2 Clone3
Tyne 2.87 3.91 4.62
Wear 2.59 5.53 4.30

The first variable in the list creates the rows of the table and the second the
columns.

Subscripts and Indices

While we typically aim to apply functions to vectors as a whole, there are circumstances
where we want to select only some of the elements of a vector. This selection is done
using subscripts (also known as indices). Subscripts have square brackets [2], while
functions have round brackets (2). Subscripts on vectors, matrices, arrays and data-
frames have one set of square brackets [6], [3,4] or [2,3,2,1], while subscripts on
lists have double square brackets [[2]] or [[i,j]] (see p. 309). When there are two
subscripts to an object like a matrix or a dataframe, the first subscript refers to the row
number (the rows are defined as margin number 1) and the second subscript refers to the
column number (the columns are margin number 2). There is an important and powerful
convention in R such that when a subscript appears as a blank it is understood to mean
‘all of’. Thus

• [,4] means all rows in column 4 of an object

• [2,] means all columns in row 2 of an object

There is another indexing convention in R which is used to extract named components
from objects using the $ operator like this: model$coef or model$resid (p. 317). This is
known as ‘indexing tagged lists’ using the element names operator $.

Working with Vectors and Logical Subscripts

Take the example of a vector containing the 11 numbers 0 to 10:

x <- 0:10
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There are two quite different kinds of things we might want to do with this. We might
want to add up the values of the elements:

sum(x)

[1] 55

Alternatively, we might want to count the elements that passed some logical criterion.
Suppose we wanted to know how many of the values were less than 5:

sum(x<5)

[1] 5

You see the distinction. We use the vector function sum in both cases. But sum(x)

adds up the values of the xs and sum(x<5) counts up the number of cases that pass
the logical condition ‘x is less than 5’. This works because of coercion (p. 314).
Logical TRUE has been coerced to numeric 1 and logical FALSE has been coerced to
numeric 0.

That’s all well and good, but how do you add up the values of just some of the elements of
x? We specify a logical condition, but we don’t want to count the number of cases that pass
the condition, we want to add up all the values of the cases that pass. This is the final piece of
the jigsaw, and involves the use of logical subscripts. Note that when we counted the
number of cases, the counting was applied to the entire vector, using sum(x<5). To find
the sum of the x values that are less than 5, we write:

sum(x[x<5])

[1] 10

Let us look at this in more detail. The logical condition x<5 is either true or false:

x<5

[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[10] FALSE FALSE

You can imagine false as being numeric 0 and true as being numeric 1. Then the vector of
subscripts [x<5] is five 1s followed by six 0s:

1*(x<5)

[1] 1 1 1 1 1 0 0 0 0 0 0

Now imagine multiplying the values of x by the values of the logical vector:

x*(x<5)

[1] 0 1 2 3 4 0 0 0 0 0 0
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When the function sum is applied, it gives us the answer we want: the sum of the values of
the numbers 0+ 1+ 2+ 3+ 4= 10.

sum(x*(x<5))

[1] 10

This produces the same answer as sum(x[x<5]), but is rather less elegant. Suppose we
want to work out the sum of the three largest values in a vector. There are two steps: first sort
the vector into descending order; then add up the values of the first three elements of the
sorted array. Let us do this in stages. First, the values of y:

y <- c(8,3,5,7,6,6,8,9,2,3,9,4,10,4,11)

Now if you apply sort to this, the numbers will be in ascending sequence, and this makes
life slightly harder for the present problem:

sort(y)

[1] 2 3 3 4 4 5 6 6 7 8 8 9 9 10 11

We can use the reverse function rev like this (use the Up arrow key to save typing):

rev(sort(y))

[1] 11 10 9 9 8 8 7 6 6 5 4 4 3 3 2

So the answer to our problem is 11+ 10+ 9= 30. But how to compute this? We can use
specific subscripts to discover the contents of any element of a vector. We can see that 10 is
the second element of the sorted array. To compute this we just specify the subscript [2]:

rev(sort(y))[2]

[1] 10

A range of subscripts is simply a series generated using the colon operator. We want the
subscripts 1 to 3, so this is:

rev(sort(y))[1:3]

[1] 11 10 9

So the answer to the exercise is just:

sum(rev(sort(y))[1:3])

[1] 30

Note that we have not changed the vector y in any way, nor have we created any new
space-consuming vectors during intermediate computational steps.
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Addresses within Vectors

There are two important functions for finding addresses within arrays. The function which

is very easy to understand. The vector y (see above) looks like this:

y

[1] 8 3 5 7 6 6 8 9 2 3 9 4 10 4 11

Suppose we wanted to know the addresses of the elements of y that contained values
bigger than 5:

which(y>5)

[1] 1 4 5 6 7 8 11 13 15

Notice that the answer to this enquiry is a set of subscripts. We don’t use subscripts inside
the which function itself. The function is applied to the whole array. To see the values of y
that are larger than 5 we just type:

y[y>5]

[1] 8 7 6 6 8 9 9 10 11

Note that this is a shorter vector than y itself, because values of 5 or less have been left out.

length(y)

[1] 15

length(y[y>5])

[1] 9

Trimming Vectors Using Negative Subscripts

An extremely useful facility is to use negative subscripts to drop terms from a vector.
Suppose we wanted a new vector, z, to contain everything but the first element of x:

x <- c(5,8,6,7,1,5,3)

z <- x[-1]
z

[1] 8 6 7 1 5 3

Our task is to calculate a trimmed mean of x which ignores both the smallest and largest
values (i.e. we want to leave out the 1 and the 8 in this example). There are two steps to this.
First we sort the vector x. Then we remove the first element using x[-1] and the last using
x[-length(x)]. We can do both drops at the same time by concatenating both instructions
like this: -c(1,length(x)). Then we use the built-in function mean:

trim.mean <- function (x) mean(sort(x)[-c(1,length(x))])
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The answer should be mean(c(5,6,7,5,3)) = 26/5 = 5.2. Let us try it out:

trim.mean(x)

[1] 5.2

Logical Arithmetic

Arithmetic involving logical expressions is very useful in programming and in selection of
variables (see Table A.3). If logical arithmetic is unfamiliar to you, then persevere with it,
because it will become clear how useful it is, once the penny has dropped. The key thing to
understand is that logical expressions evaluate to either true or false (represented in R by
TRUE or FALSE), and that R can coerce TRUE or FALSE into numerical values: 1 for
TRUE and 0 for FALSE.

Repeats

You will often want to generate repeats of numbers or characters, for which the function is
rep. The object that is named in the first argument is repeated a number of times as specified
in the second argument. At its simplest, we would generate five 9s like this:

rep(9,5)

[1] 9 9 9 9 9

You can see the issues involved by a comparison of these three increasingly complicated
uses of the rep function:

rep(1:4, 2)

[1] 1 2 3 4 1 2 3 4

rep(1:4, each = 2)

[1] 1 1 2 2 3 3 4 4

Table A.3 Logical operations

Symbol Meaning

! logical not
& logical and
| logical or
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== logical equals (double =)
!= not equal
&& and with if
|| or with if
xor(x,y) exclusive or
isTRUE(x) an abbreviation of identical(TRUE,x)
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rep(1:4, each = 2, times = 3)

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

When each element of the series is to be repeated a different number of times, then the
second argument must be a vector of the same length as the vector comprising the first
argument. Suppose that we need four 9s, one 15, four 21s and two 83s. We use the
concatenation function c to create two vectors, one for the target numbers and another for
the repeats of each element of the target:

rep(c(9,15,21,83),c(4,1,4,2))

[1] 9 9 9 9 15 21 21 21 21 83 83

Generate Factor Levels

The function gl (‘generate levels’) is useful when you want to encode long vectors of factor
levels. The syntax for the three arguments is this:

gl(‘up to’, ‘with repeats of’, ‘to total length’)
Here is the simplest case where we want factor levels up to 4 with repeats of 3 repeated

only once (i.e. to total length= 12):

gl(4,3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

Here is the function when we want that whole pattern repeated twice:

gl(4,3,24)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4
Levels: 1 2 3 4

If the total length is not a multiple of the length of the pattern, the vector is truncated:

gl(4,3,20)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 1 1 1 2 2 2 3 3
Levels: 1 2 3 4

If you want text for the factor levels, rather than numbers, use labels like this:

gl(3,2,24,labels=c("A","B","C"))

[1] A A B B C C A A B B C C A A B B C C A A B B C C
Levels: A B C

Generating Regular Sequences of Numbers

For regular series of whole numbers use the colon operator (: as on p. 296). When the
interval is not 1.0 you need to use the seq function. In general, the three arguments to seq
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are: initial value, final value, and increment (or decrement for a declining sequence). Here
we want to go from 0 up to 1.5 in steps of 0.2:

seq(0,1.5,0.2)

[1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Note that seq stops before it gets to the second argument (1.5) if the increment does not
match exactly (our sequence stops at 1.4). If you want to seq downwards, the third
argument needs to be negative

seq(1.5,0,-0.2)

[1] 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1

Again, zero did not match the decrement, so was excluded and the sequence stopped at
0.1. If you want to create a sequence of the same length as an existing vector, then use
along like this. Suppose that our existing vector, x, contains 18 random numbers from a
normal distribution with a mean of 10.0 and a standard deviation of 2.0:

x <- rnorm(18,10,2)

Suppose also that we want to generate a sequence of the same length as this (18) starting at
88 and stepping down to exactly 50 for x[18]:

seq(88,50,along=x)

[1] 88.00000 85.76471 83.52941 81.29412 79.05882 76.82353 74.58824 72.35294
[9] 70. 11765 67.88235 65.64706 63.41176 61.17647 58.94118 56.70588 54.47059

[17] 52.23529 50.00000

This is useful when you do not want to go to the trouble of working out the size of the
increment but you do know the starting value (88 in this case) and the final value (50).

Matrices

There are several ways of making a matrix. You can create one directly like this:

X <- matrix(c(1,0,0,0,1,0,0,0,1),nrow=3)
X

[,1] [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Here, by default, the numbers are entered columnwise. The class and attributes of
X indicate that it is a matrix of 3 rows and 3 columns (these are its dim attributes):
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class(X)

[1] "matrix"

attributes(X)

$dim
[1] 3 3

In the next example, the data in the vector appear row-wise, so we indicate this with
byrow=T:

vector <- c(1,2,3,4,4,3,2,1)
V <- matrix(vector,byrow=T,nrow=2)
V

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1

Another way to convert a vector into a matrix is by providing the vector object with two
dimensions (rows and columns) using the dim function like this:

dim(vector) <- c(4,2)

and we can check that vector has now become a matrix:

is.matrix(vector)

[1] TRUE

We need to be careful, however, because we have made no allowance at this stage for the
fact that the data were entered row-wise into vector:

vector

[,1] [,2]
[1,] 1 4
[2,] 2 3
[3,] 3 2
[4,] 4 1

The matrix we want is the transpose, t, of this matrix:

(vector <- t(vector))

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1
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Character Strings

In R, character strings are defined by double quotation marks. We being by defining a phrase:

phrase <- "the quick brown fox jumps over the lazy dog"

The function called substr is used to extract substrings of a specified number of
characters from a character string. Here is the code to extract the first, the first and second,
the first, second and third, and so on (up to 20) characters from our phrase:

q <- character(20)
for (i in 1:20) q[i] <- substr(phrase,1,i)
q

[1] "t" "th" "the"
[4] "the " "the q" "the qu"
[7] "the qui" "the quic" "the quick"
[10] "the quick " "the quick b" "the quick br"
[13] "the quick bro" "the quick brow" "the quick brown"
[16] "the quick brown " "the quick brown f" "the quick brown fo"
[19] "the quick brown fox" "the quick brown fox "

The second argument in substr is the number of the character at which extraction is to
begin (in this case always the first), and the third argument is the number of the character at
which extraction is to end (in this case, the ith). To split up a character string into individual
characters, we use strsplit like this:

strsplit(phrase,split=character(0))

[[1]]
[1] "t" "h" "e" " " "q" "u" "i" "c" "k" " " "b" "r" "o" "w" "n" " "
[17] "f" "o" "x" " " "j" "u" "m" "p" "s" " " "o" "v" "e" "r"
[31] " " "t" "h" "e" " " "l" "a" "z" "y" " " "d" "o" "g"

The table function is useful for counting the number of occurrences of characters of
different kinds:

table(strsplit(phrase,split=character(0)))

a b c d e f g h i j k l m n o p q r s t u v w x y z
8 1 1 1 1 3 1 1 2 1 1 1 1 1 1 4 1 1 2 1 2 2 1 1 1 1 1

This demonstrates that all of the letters of the alphabet were used at least once within our
phrase, and that there were eight blanks within phrase. This suggests a way of counting the
number of words in a phrase, given that this will always be one more than the number of
blanks:

words <- 1+table(strsplit(phrase,split=character(0)))[1]
words

9

APPENDIX: ESSENTIALS OF THE R LANGUAGE 309



It is easy to switch between upper and lower cases using the toupper and tolower

functions:

toupper(phrase)

[1] "THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG"

tolower(toupper(phrase))

[1] "the quick brown fox jumps over the lazy dog"

Writing Functions in R

Functions in R are objects that carry out operations on arguments that are supplied to them
and return one or more values. The syntax for writing a function is

function (argument list) body

The first component of the function declaration is the keyword function which indicates
to R that you want to create a function. An argument list is a comma-separated list of formal
arguments. A formal argument can be a symbol (i.e. a variable name like x or y), a statement
of the form symbol = expression (e.g. pch=16) or the special formal argument ... (dot
dot dot). The body can be any valid R expression or set of R expressions. Generally, the
body is a group of expressions contained in curly brackets { } with each expression on a
separate line. Functions are typically assigned to symbols, but they do not need to be. This
will only begin to mean anything after you have seen several examples in operation.

Arithmetic Mean of a Single Sample

The mean is the sum of the numbers
P

y divided by the number of numbers n � P
1

(summing over the number of numbers in the vector called y). The R function for n is
length(y) and for

P
y is sum(y), so a function to compute arithmetic means is:

arithmetic.mean <- function(x) sum(x)/length(x)

We should test the function with some data where we know the right answer:

y <- c(3,3,4,5,5)
arithmetic.mean(y)

[1] 4

Needless to say, there is a built- in function for arithmetic means called mean:

mean(y)

[1] 4

Median of a Single Sample

The median (or 50th percentile) is the middle value of the sorted values of a vector of
numbers:

sort(y)[ceiling(length(y)/2)
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There is slight hitch here, of course, because if the vector contains an even number of
numbers, then there is no middle value. The logic is that we need to work out the arithmetic
average of the two values of y on either side of the middle. The question now arises as to how
we know, in general, whether the vector y contains an odd or an even number of numbers, so
that we can decide which of the two methods to use. The trick here is to use modulo 2 (p. 46).
Now we have all the tools we need to write a general function to calculate medians. Let us
call the function med and define it like this:

med <- function(x) {
odd.even <- length(x)%%2
if (odd.even == 0) (sort(x)[length(x)/2]+sort(x)[1+ length(x)/2])/2
else sort(x)[ceiling(length(x)/2)]
}

Notice that when the if statement is true (i.e. we have an even number of numbers) then
the expression immediately following the if function is evaluated (this is the code for
calculating the median with an even number of numbers). When the if statement is false
(i.e. we have an odd number of numbers, and odd.even == 1) then the expression
following the else function is evaluated (this is the code for calculating the median with an
odd number of numbers). Let us try it out, first with the odd-numbered vector y, then with
the even-numbered vector y[-1], after the first element of y (which is y[1] = 3) has been
dropped (using the negative subscript):

med(y)

[1] 4

med(y[-1])

[1] 4.5

Again, you won’t be surprised that there is a built-in function for calculating medians, and
helpfully it is called median.

Loops and Repeats

The classic, Fortran-like loop is available in R. The syntax is a little different, but the idea is
identical; you request that an index, i, takes on a sequence of values, and that one or more
lines of commands are executed as many times as there are different values of i. Here is a
loop executed five times with the values of i: we print the square of each value

for (i in 1:5) print(i^2)

[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
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For multiple lines of code, you use curly brackets {} to enclose material over which the
loop is to work. Note that the ‘hard return’ (the Enter key) at the end of each command line is
an essential part of the structure (you can replace the hard returns by semicolons if you like,
but clarity is improved if you put each command on a separate line).

Here is a function that uses the while function in converting a specified number to its
binary representation. The trick is that the smallest digit (0 for even or 1 for odd numbers) is
always at the right-hand side of the answer (in location 32 in this case):

binary <- function(x) {
if (x == 0) return(0)
i <- 0

string <- numeric(32)
while(x>0) {

string[32-i] <- x %% 2
x <- x%/% 2
i <- i+1 }

first <- match(1,string)
string[first:32] }

The leading zeros (1 to first – 1) within the string are not printed. We run the function to
find the binary representation of the numbers 15 through 17:

sapply(15:17,binary)

[[1]]
[1] 1 1 1 1

[[2]]
[1] 1 0 0 0 0

[[3]]
[1] 1 0 0 0 1

The ifelse Function

Sometimes you want to do one thing if a condition is true and a different thing if the
condition is false (rather than do nothing, as in the last example). The ifelse function
allows you to do this for entire vectors without using for loops. We might want to replace
any negative values of y by �1 and any positive values and zero by +1:

z <- ifelse( y < 0, -1, 1)

Evaluating Functions with apply

The apply function is used for applying functions to the rows (subscript 1) or columns
(subscript 2) of matrices or dataframes:

(X <- matrix(1:24,nrow=4))

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 5 9 13 17 21
[2,] 2 6 10 14 18 22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16 20 24
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Here are the row totals (four of them) across margin 1 of the matrix:

apply(X,1,sum)

[1] 66 72 78 84

Here are the column totals (six of them) across margin 2 of the matrix:

apply(X,2,sum)

[1] 10 26 42 58 74 90

Note that in both cases, the answer produced by apply is a vector rather than a matrix.
You can apply functions to the individual elements of the matrix rather than to the margins.
The margin you specify influences only the shape of the resulting matrix.

apply(X,1,sqrt)

[,1] [,2] [,3] [,4]
[1,] 1.000000 1.414214 1.732051 2.000000
[2,] 2.236068 2.449490 2.645751 2.828427
[3,] 3.000000 3.162278 3.316625 3.464102
[4,] 3.605551 3.741657 3.872983 4.000000
[5,] 4.123106 4.242641 4.358899 4.472136
[6,] 4.582576 4.690416 4.795832 4.898979

apply(X,2,sqrt)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.000000 2.236068 3.000000 3.605551 4.123106 4.582576
[2,] 1.414214 2.449490 3.162278 3.741657 4.242641 4.690416
[3,] 1.732051 2.645751 3.316625 3.872983 4.358899 4.795832
[4,] 2.000000 2.828427 3.464102 4.000000 4.472136 4.898979

Testing for Equality

You need to be careful in programming when you want to test whether or not two computed
numbers are equal. R will assume that you mean ‘exactly equal’ and what that means
depends upon machine precision. Most numbers are rounded to 53 binary digits accuracy.
Typically therefore, two floating point numbers will not reliably be equal unless they were
computed by the same algorithm, and not always even then. You can see this by squaring the
square root of 2: surely these values are the same?

x <- sqrt(2)
x * x == 2

[1] FALSE

We can see by how much the two values differ by subtraction:

x * x – 2

[1] 4.440892e-16
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Testing and Coercing in R

Objects have a type, and you can test the type of an object using an is.type function (see
Table A.4). For instance, mathematical functions expect numeric input and text-processing
functions expect character input. Some types of objects can be coerced into other types
(again see Table A.4). A familiar type of coercion occurs when we interpret the TRUE and
FALSE of logical variables as numeric 1 and 0, respectively. Factor levels can be coerced to
numbers. Numbers can be coerced into characters, but non-numeric characters cannot be
coerced into numbers.

as.numeric(factor(c("a","b","c")))

[1] 1 2 3

as.numeric(c("a","b","c"))

[1] NA NA NA
Warning message:
NAs introduced by coercion

as.numeric(c("a","4","c"))

[1] NA 4 NA
Warning message:
NAs introduced by coercion

If you try to coerce complex numbers to numeric the imaginary part will be discarded.
Note that is.complex and is.numeric are never both TRUE.

Table A.4 Testing and coercing

Type Testing Coercing

Array is.array as.array

Character is.character as.character

Complex is.complex as.complex

Dataframe is.data.frame as.data.frame

Double is.double as.double

Factor is.factor as.factor

Raw is.raw as.raw

List is.list as.list

Logical is.logical as.logical

Matrix is.matrix as.matrix

Numeric is.numeric as.numeric

Time series (ts) is.ts as.ts

Vector is.vector as.vector
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We often want to coerce tables into the form of vectors as a simple way of stripping off
their dimnames (using as.vector), and to turn matrices into dataframes (as.data.

frame). A lot of testing involves the ‘not’ operator ! in functions to return an error message
if the wrong type is supplied. For instance, if you were writing a function to calculate
geometric means you might want to test to ensure that the input was numeric using the !is.

numeric function

geometric <- function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
exp(mean(log(x))) }

Here is what happens when you try to work out the geometric mean of character data:

geometric(c("a","b","c"))

Error in geometric(c("a", "b", "c")) : Input must be numeric

You might also want to check that there are no zeros or negative numbers in the input,
because it would make no sense to try to calculate a geometric mean of such data:

geometric <- function(x){
if(!is.numeric(x)) stop ("Input must be numeric")
if(min(x)<=0) stop ("Input must be greater than zero")
exp(mean(log(x))) }

Testing this:

geometric(c(2,3,0,4))

Error in geometric(c(2, 3, 0, 4)) : Input must be greater than zero

But when the data are OK there will be no messages, just the numeric answer:

geometric(c(10,1000,10,1,1))

[1] 10

Dates and Times in R

The measurement of time is highly idiosyncratic. Successive years start on different days of
the week. There are months with different numbers of days. Leap years have an extra day in
February. Americans and Britons put the day and the month in different places: 3/4/2006 is 4
March in one case and 3 April in another. Occasional years have an additional ‘leap second’
added to them because friction from the tides is slowing down the rotation of the earth from
when the standard time was set on the basis of the tropical year in 1900. The cumulative
effect of having set the atomic clock too slow accounts for the continual need to insert leap
seconds (32 of them since 1958). There is currently a debate about abandoning leap seconds
and introducing a ‘leap minute’ every century or so, instead. Calculations involving times
are complicated by the operation of time zones and daylight saving schemes in different
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countries. All these things mean that working with dates and times is excruciatingly
complicated. Fortunately, R has a robust system for dealing with this complexity. To see
how R handles dates and times, have a look at Sys.time():

Sys.time()

[1] "2015-03-23 08:56:26 GMT"

The answer is strictly hierarchical from left to right: the longest time scale (year= 2015)
comes first, then month (March= 03) then day (the 23rd) separated by hyphens, then there is
a blank space and the time hours first (08 in the 24-hour clock) then minutes (56), then
seconds (26) separated by colons. Finally, there is a character string explaining the time zone
(GMT=Greenwich Mean Time). Now obviously, there is a lot going on here. To
accommodate this, R uses the Portable Operating System Interface system (POSIX) for
representing times and dates:

class(Sys.time())

[1] "POSIXct" "POSIXt"

There are two quite different ways of expressing time, each useful in a different context.
For doing graphs and regression analyses where time is the explanatory variable, you want
time to be a continuous number. But where you want to do summary statistics (say, monthly
means across a long run of years), you want month to be a factor with 12 levels. In R this
distinction is handled by the two classes POSIXct and POSIXlt. The first class, with suffix
ct, you can think of as continuous time (i.e. a number of seconds). The other class, with
suffix lt, you can think of as list time (i.e. a named list of vectors, representing all of the
various categorical descriptions of the time, including day of the week and so forth). It is
hard to remember these acronyms, but it is well worth making the effort. You can see
(above) that Sys.time is of both class ct and class t. Times that are of class lt are also of
class t. What this means is that class POSIXt tells you that an object is a time, but not what
sort of time it is; it does not distinguish between continuous time ct and list times lt.
Naturally, you can easily convert from one representation to the other:

time.list <- as.POSIXlt(Sys.time())
class(time.list)

[1] "POSIXlt" "POSIXt"

unlist(time.list)

sec min hour mday mon year wday yday isdst
26 56 8 23 2 115 1 81 0

Here you see the nine components of the list of class POSIXlt. The time is represented by
the number of seconds (sec), minutes (min) and hours (hour on the 24-hour clock). Next
comes the day of the month (mday, starting from 1), then the month of the year (mon, starting
(non-intuitively, perhaps) at January= 0; you can think of it as ‘months completed so far’),
then the year (starting at 0= 1900). The day of the week (wday) is coded from Sunday= 0
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to Saturday= 6. The day within the year (yday) is coded from 0= January 1 (you can think
of it as ‘days completed so far’). Finally, there is a logical variable isdst which asks
whether daylight saving time is in operation (0=FALSE in this case because we are on
Greenwich Mean Time). The ones you are most likely to use include year (to get yearly
mean values), mon (to get monthly means) and wday (to get means for the different days of
the week, useful for answering questions like ‘are Fridays different from Mondays?’).

You can use the element name operator $ to extract parts of the date and time from this
object using the names: sec, min, hour, mday, mon, year, wday, yday and isdst.
Here we extract the day of the week (date$wday=0 meaning Sunday) and the Julian date
(day of the year after 1 January as date$yday):

time.list$wday

[1] 1

time.list$yday

[1] 81

meaning that today is a Monday and the 82nd day of the year (81 days are completed so far).
It is important to know how to read dates and times into R. Here we illustrate two of the

commonest methods:

• Excel dates

• dates stored in separate variables for year, month, day, hour, minute, second

The Excel date convention uses forward slashes to separate the numerical components.
The English way to give a date is day/month/year and the American way is month/day/year.
Single-figure days and months can have a leading zero. So 03/05/2015 means 3 May in
England but 5 March in America. Because of the appearance of the slashes these are
character strings rather than numbers, and R will interpret them as factors when they are read
from a file into a dataframe. You have to convert this factor into a date–time object using a
function called strptime (you can remember this as ‘stripping the time’ out of a character
string). We start by reading the Excel dates into a dataframe:

data <- read.table("c:\\temp\\date.txt",header=T)
head(data)

x date
1 3 15/06/2014
2 1 16/06/2014
3 6 17/06/2014
4 7 18/06/2014
5 8 19/06/2014
6 9 20/06/2014

As things stand, the date is not recognized by R:

class(date)

[1] "factor"
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The strptime function takes the name of the factor (date) and a format statement
showing exactly what each element of the character string represents and what symbols are
used as separators (forward slashes in this case). In our example, the day of the month comes
first (%d) then a slash, then the month (%m) then another slash, then the year in full (%Y; if the
year was just the last two digits ‘15’ then the appropriate code would be %y in lower case).
We give the translated date a new name like this:

Rdate <- strptime(date,"%d/%m/%Y")
class(Rdate)

[1] "POSIXlt" "POSIXt"

That’s more like it. Now we can do date-related things. For instance, what is the mean
value of x for each day of the week? You need to know that the name of the day of the week
within the list called Rdate is wday, then

tapply(x,Rdate$wday,mean)

0 1 2 3 4 5 6
5.660 2.892 5.092 7.692 8.692 9.692 8.892

The value was lowest on Mondays (day 1) and highest on Fridays (day 5).
For cases where your data file has several variables representing the components of date

or a time (say, hours, minutes and seconds separately), you use the paste function to join
the components up into a single character string, using the appropriate separators (hyphens
for dates, colons for times). Here is the data file:

time <- read.csv("c:\\temp\\times.csv")
attach(time)
head(time)

hrs min sec experiment
1 2 23 6 A
2 3 16 17 A
3 3 2 56 A
4 2 45 0 A
5 3 4 42 A
6 2 56 25 A

Create a vector of times y using paste with a colon separator:

y <- paste(hrs,min,sec,sep=":")
y

[1] "2:23:6" "3:16:17" "3:2:56" "2:45:0" "3:4:42" "2:56:25"
[7] "3:12:28" "1:57:12" "2:22:22" "1:42:7" "2:31:17" "3:15:16"

[13] "2:28:4" "1:55:34" "2:17:7" "1:48:48"

You then need to convert these character strings into something that R will recognize as a
date and/or a time. If you use strptime then R will automatically add today’s date to the
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POSIXct object. Note that "%T" is a shortcut for "%H:%M:%S". For more details and a full
list of codes, see The R Book (Crawley, 2013).

strptime(y,"%T")

[1] "2014-01-22 02:23:06" "2014-01-22 03:16:17" "2014-01-22 03:02:56"
[4] "2014-01-22 02:45:00" "2014-01-22 03:04:42" "2014-01-22 02:56:25"

....

When you only have times rather than dates and times, then you may want to use the as.

difftime function rather than as.POSIXct to create the variables to work with:

( Rtime <- as.difftime(y))

Time differences in hours
[1] 2.385000 3.271389 3.048889 2.750000 3.078333 2.940278 3.207778
[8] 1.953333 2.372778 1.701944 2.521389 3.254444 2.467778 1.926111

[15] 2.285278 1.813333

This converts all of the times into decimal hours in this case (it would convert to minutes if
there were no hours in the examples). Here is the mean time for each of the two experiments
(A and B):

tapply(Rtime,experiment,mean)

A B
2.829375 2.292882

Calculations with Dates and Times

You can subtract one date from another, but you cannot add two dates together. The
following calculations are allowed for dates and times:

• time+ number

• time� number

• time1� time2

• time1 ‘logical operation’ time2

where the logical operations are one of ==, !=, <, <=, > or >=.
The thing you need to grasp is that you should convert your dates and times into POSIXlt

objects before starting to do any calculations. Once they are POSIXlt objects, it is
straightforward to calculate means, differences and so on. Here we want to calculate the
number of days between two dates, 22 October 2003 and 22 October 2005:

y2 <- as.POSIXlt("2018-10-22")
y1 <- as.POSIXlt("2015-10-22")
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Now you can do calculations with the two dates:

y2-y1

Time difference of 1096 days

Note that you cannot add two dates. It is easy to calculate differences between times using
this system. Note that the dates are separated by hyphens whereas the times are separated by
colons:

y3 <- as.POSIXlt("2018-10-22 09:30:59")
y4 <- as.POSIXlt("2018-10-22 12:45:06")
y4-y3

Time difference of 3.235278 hours

Alternatively, you can do these calculations using the difftime function:

difftime("2018-10-22 12:45:06","2018-10-22 09:30:59")

Time difference of 3.235278 hours

Here is an example of logical operation on date time objects. We want to know whether
y4 was later than y3:

y4 > y3

[1] TRUE

Understanding the Structure of an R Object Using str

We finish with a simple but important function for understanding what kind of object is
represented by a given name in the current R session. We look at three objects of increasing
complexity: a vector of numbers, a list of various classes and a linear model.

x <- runif(23)
str(x)

num [1:23] 0.971 0.23 0.645 0.697 0.537 ...

We see that x is a number (num) in a vector of length 23 ([1:23]) with the first five
values as shown (0.971, . . . ).

In this example of intermediate complexity the variable called basket is a list:

basket <- list(rep("a",4),c("b0","b1","b2"),9:4,gl(5,3))
basket

[[1]]
[1] "a" "a" "a" "a"

[[2]]
[1] "b0" "b1" "b2"

[[3]]
[1] 9 8 7 6 5 4

[[4]]
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Levels: 1 2 3 4 5
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The first element is a character vector of length 4 (all "a"), while the second has three
different character strings. The third is a numeric vector and the fourth is a factor of length
12 with four levels. Here is what you get from str:

str(basket)

List of 4
$ : chr [1:4] "a" "a" "a" "a"
$ : chr [1:3] "b0" "b1" "b2"
$ : int [1:6] 9 8 7 6 5 4
$ : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 2 2 2 3 3 3 4 ...

First you see the length of the list (4) then the attributes of each of the four components:
the first two are character strings (chr), the third contains integers (int) and the fourth is a
factor with five levels.

Finally, we look at an example of a complex structure – a quadratic linear model:

xv <- seq(0,30)
yv <- 2+0.5*xv+rnorm(31,0,2)
model <- lm(yv∼xv+I(xv^2))
str(model)

List of 12
$ coefficients : Named num [1:3] 2.51317 0.38809 0.00269
..- attr(*, "names")= chr [1:3] "(Intercept)" "xv" "I(xv^2)"

$ residuals : Named num [1:31] -1.712 -1.869 4.511 0.436 -0.207 ...
..- attr(*, "names")= chr [1:31] "1" "2" "3" "4" ...

$ effects : Named num [1:31] -50.965 23.339 -1.068 0.646 0.218 ...
..- attr(*, "names")= chr [1:31] "(Intercept)" "xv" "I(xv^2)" "" ...

$ rank : int 3
$ fitted.values: Named num [1:31] 2.51 2.9 3.3 3.7 4.11 ...

..- attr(*, "names")= chr [1:31] "1" "2" "3" "4" ...
$ assign : int [1:3] 0 1 2
$ qr :List of 5
..$ qr : num [1:31, 1:3] -5.57 0.18 0.18 0.18 0.18 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:31] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:3] "(Intercept)" "xv" "I(xv^2)"
.. ..- attr(*, "assign")= int [1:3] 0 1 2
..$ qraux: num [1:3] 1.18 1.24 1.13
..$ pivot: int [1:3] 1 2 3
..$ tol : num 1e-07
..$ rank : int 3
..- attr(*, "class")= chr "qr"

$ df.residual : int 28
$ xlevels : Named list()
$ call : language lm(formula = yv ∼ xv + I(xv^2))
$ terms :Classes ’terms’, ’formula’ length 3 yv ∼ xv + I(xv^2)
.. ..- attr(*, "variables")= language list(yv, xv, I(xv^2))
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.. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..$ : chr [1:3] "yv" "xv" "I(xv^2)"

.. .. .. ..$ : chr [1:2] "xv" "I(xv^2)"

.. ..- attr(*, "term.labels")= chr [1:2] "xv" "I(xv^2)"

.. ..- attr(*, "order")= int [1:2] 1 1

.. ..- attr(*, "intercept")= int 1

.. ..- attr(*, "response")= int 1

.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>

.. ..- attr(*, "predvars")= language list(yv, xv, I(xv^2))

.. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric"
"numeric"

.. .. ..- attr(*, "names")= chr [1:3] "yv" "xv" "I(xv^2)"
$ model :’data.frame’: 31 obs. of 3 variables:
..$ yv : num [1:31] 0.802 1.035 7.811 4.138 3.901 ...
..$ xv : int [1:31] 0 1 2 3 4 5 6 7 8 9 ...
..$ I(xv^2):Class ’AsIs’ num [1:31] 0 1 4 9 16 25 36 49 64 81 ...
..- attr(*, "terms")=Classes ’terms’, ’formula’ length 3 yv ∼ xv +

I(xv^2)
.. .. ..- attr(*, "variables")= language list(yv, xv, I(xv^2))
.. .. ..- attr(*, "factors")= int [1:3, 1:2] 0 1 0 0 0 1
.. .. .. ..- attr(*, "dimnames")=List of 2
.. .. .. .. ..$ : chr [1:3] "yv" "xv" "I(xv^2)"
.. .. .. .. ..$ : chr [1:2] "xv" "I(xv^2)"
.. .. ..- attr(*, "term.labels")= chr [1:2] "xv" "I(xv^2)"
.. .. ..- attr(*, "order")= int [1:2] 1 1
.. .. ..- attr(*, "intercept")= int 1
.. .. ..- attr(*, "response")= int 1
.. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
.. .. ..- attr(*, "predvars")= language list(yv, xv, I(xv^2))
.. .. ..- attr(*, "dataClasses")= Named chr [1:3] "numeric" "numeric"

"numeric"
.. .. .. ..- attr(*, "names")= chr [1:3] "yv" "xv" "I(xv^2)"

- attr(*, "class")= chr "lm"

This complex structure consists of a list of 12 objects, covering every detail of the model
from the variables, their values, the coefficients, the residuals, the effects, and so on.

Reference
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Entries in bold are R functions

1 parameter “1” as the intercept, 114
1:6 generate a sequence 1 to 6, 297, 298
= = (“double equals”) logical EQUALS, 113,

155, 161, 253
!= logical NOT EQUAL, 98

for barplot, 251
influence testing, 159, 200
with subsets, 133

/ division, 294
/ nesting of explanatory variables, 171, 173
"\n" new line in output, with cat, 310
%% modulo, 46
& logical AND, 29
j conditioning (“given”), 302
( ) arguments to functions, 26
(a,b] from and including a, up to but not, 70
including b, 277
* main effects and interaction terms in a model,

170
* multiplication, 295
: generate a sequence; e.g. 1:6, 28, 298
[[ ]] subscripts for lists, 301
[ ] subscripts, 26, 299
[a,b) include b but not a, 70
\\ double backslash in file paths, 20
^ for powers and roots, 47, 292
{ } in defining functions, 43
in for loops, 119
<- gets operator, 25
< less than, 57
> greater than, 44
1st Quartile with summary, 27, 67
3rd Quartile with summary, 30, 67

a intercept in linear regression, 114
a priori contrasts, 212
abline function for adding straight lines to a

plots, 116
after Ancova, 191
in Anova, 152
with a linear model as its argument, 150

abline(h = 3) draw a horizontal line, 51, 82,
83

abline(lm(y∼ x)) draw a line with a and b
estimated from the linear model y∼ x, 136,

140
abline(v = 10) draw a vertical line at x = 10,

51, 82
absence of evidence, 3
acceptance null hypothesis, 4
age effects longitudinal data, 178
age-at-death data using glm, 226, 228
aggregation and randomization, 10
aggregation count data, 253
AIC Akaike’s Information Criterion, 236, 238
air pollution correlations, 197, 205
aliasing introduction, 161, 239
analysis of covariance, see Ancova
analysis of deviance count data, 237

proportion data, 268
analysis of variance, see Anova
Ancova, 185

contrasts, 31
order matters, 187
subscripts, 254, 297
with binary response, 279
with count data, 247
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anova and Anova: anova is an R function for
comparing two models, while Anova stands
for analysis of variance, 271

anova analysis of deviance, 266
Ancova, 189
comparing models, 186
function for comparing models, 141
model simplification, 170
non-linear regression, 140
test="Chi", 244, 274, 284
test="F", 266
with contrasts, 212

Anova essence of, 150
choice, 1
introduction, 150
longhand calculations for one-way, 156
model formula, 141, 174, 222, 229
one-way, 150

Anova table in regression, 128
one-way Anova, 158
and non-orthogonal data, 188

antilogs exp, 47, 292
ants in trees, 105
aov function for fitting linear models with

categorical explanatory variables,
132, 146

analysis of variance models, 123
competition example, 214
Error for rats example, 179
factorial experiments, 168
model for analysis of variance, 157
multiple error terms using Error, 171
with contrasts, 212

appearance of graphs, improvements, 38
arcsine transformation of percentage data,

257
arithmetic mean definition, 43

with summary, 29
array function creating an array specifying its

dimensions, 303, 304
array, 301
as.character for labels, 251, 254, 314

in barplot labels, 254
as.matrix, 107
as.numeric, 177
as.POSIX, 319
as.vector, 180

to estimate proportions, 241, 247
with tapply, 255, 268

assignment, <- not =, 295

association, contingency tables, 105
asymptotic exponential in non-linear

regression, 135
attach a dataframe, 25, 42, 66
autocorrelation random effects, 177
average of proportions, 268
averaging speeds, 49
axis change tic mark locations, 144, 271, 277

b slope in linear regression, 114
b = SSXY/SSX, 123
barplot factorial experiments, 167

frequencies, 250
negative binomial distribution, 252
table using tapply, 242
two data sets compared, 117
with error bars, 162
with two sets of bars, 251

Bernoulli distribution n = , 273
binary response variable, 2

Ancova, 279
introduction, 273

binom.test exact binomial test, 99
binomial variance/mean ratio, 252
binomial data introduction, 256
binomial denominator, 256
binomial distribution dbinom density

function, 257
pbinom probabilities
qbinom quantiles
rbinom random numbers

binomial errors glm, 229
logit link, 257, 274

binomial test comparing two proportions with
prop.test, 98

binomial trials Bernoulli distribution, 273
blank plots use type="n", 59
blocks, 9

split plot design, 173
and paired t-test, 97

bootstrap confidence interval for mean, 62
hypothesis testing with single samples, 81

bounded count data, 227
bounded proportion data, 227, 228
box and whisker plots, see boxplot
boxplot function, 67, 93

garden ozone, 90
notch = T for hypothesis testing,

93, 167
with split, 309
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c concatenation function, 298, 306
making a vector, 44, 45, 54, 296

calculator, 291
cancer with distance example, 235
canonical link functions glm, 232
Cartesian coordinates, 119
categorical variables in data frames, 1, 23

use cut to create from continuous, 279
cbind function to bind columns together

in Ancova, 269
making contrasts, 212
proportion data, 262, 265
creating the response variable for proportion

data, 256
ceiling function for “the smallest integer greater

than”, 44
censoring introduction, 287
central, a function for central tendency, 42–44
central limit theorem, introduction, 42, 70, 72,

73
central tendency central function, 42–44

introduction, 42
chance and variation, 2
character mode for variable, 251
chi squared comparing two distributions, 255
test = "Chi", 245
distribution pchisq probabilites qchisq

quantiles, 255
chisq.test Pearson’s Chi-squared test, 104
chi-square contingency tables, 100
choice of model, usually a compromise, 135
choose combinatorial function in R, 293
classical tests, 88, 90
clear the workspace rm(list = ls()), 22
clumps, selecting a random individual, 11
coef extract coefficients from a model object, 267
coefficients Ancova, 189

Anova, 219
binary infection, 279
coef function, 267
extract, as in model$coef, 267
factorial experiments, 168
gam, 146
glm with Gamma errors, 281, 282
quadratic regression, 140
regression, 118, 133
regression with proportion data, 262
treatment contrasts, 161
with contrasts, 216

cohort effects in longitudinal data, 178

col = "red" colour in barplot, 254
column totals in contingency tables, 100
columns selecting from an array, 301

selecting using subscripts, 27
columnwise data entry for matrices, 104
comparing two means, 90
comparing two proportions, 98, 99
comparing two variances, 88
competition experiment, 162, 214
concatenation function, c, 298, 306
confidence intervals as error bars, 165

introduction, 62
constant variance glm, 17, 229

model checking, 134
contingency tables dangers of aggregation, 244

introduction, 100
rather than binary analysis, 273

continuous variables, 1
convert to categorical using cut, 305
in data frames, 23
using cut to create categorical variables, 277

contr.treatment treatment contrasts, 216
contrast coefficients, 213
contrast conventions compared, 213
contrast sum of squares example by hand, 222
contrasts Ancova, 212

as factor attribute, 214, 215
Helmert, 224
introduction, 161, 212
sum, 224
treatment, 222

contrasts = c("contr.treatment",
"contr.poly")) options, 212

controls, 7
Cook’s distance plot in model checking, 135
cor correlation in R, 110

paired data, 110
cor.test scale dependent correlation, 111

significance of correlation, 111
correct=F in chisq.test, 105
corrected sums of squares Ancova, 188

one-way Anova, 158
correction factor hierarchical designs, 182
correlation and paired-sample t-test, 96

contingency tables, 103
introduction, 108
partial, 111
problems of scale-dependence, 112, 113
variance of differences, 111

correlation coefficient r, 108
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correlation of explanatory variables model
checking, 114

multiple regression, 193
correlation structure, random effects, 173
count data analysis of deviance, 237

analysis using contingency tables, 100
Fisher’s Exact Test, 107
introduction, 234
negative binomial distribution, 252
on proportions, 258

counting, use table, 305
using sum(d > 0), 96
elements of vectors using table function, 69

counts, 1
covariance and the variance of a difference, 92

introduction, 108
paired samples, 97

critical value and rejection of the null, 92
hypothesis, 92
F-test, 88
rule of thumb for t = 2, 9, 83
Student’s t, 92

cross-sectional studies longitudinal data,
178

cumprod cumulative product function, 300
current model, 194
curvature and model simplification, 200

in regression, 135
model checking, 134
multiple regression, 193

curves on plots, Ancova with Poisson errors, 248
cut, produce category data from continuous, 274

d.f., see degrees of freedom
dangers of contingency tables, 244
data, fitting models to, 193
data Ancovacontrasts, 231

cases, 250
cells, 237
clusters, 235
compensation, 186
competition, 162, 214
Daphnia, 300, 301
deaths, 285
decay, 136
f.test.data, 89
fisher, 107
flowering, 269
gardens, 56
germination, 264

growth, 168
hump, 141, 146
induced, 244
infection, 279
isolation, 278
jaws, 142
light, 80
oneway, 150
ozone, 197–199
paired, 110
pollute, 203
productivity, 113
rats, 176
sexratio, 262
sheep, 287
skewdata, 64, 85
smoothing, 146
splits, 309
splityield, 173
streams, 97
sulphur.dioxide, 203
t.test.data, 93
tannin, 117
two sample, 109
worms, 25
yvalues, 42

data dredging using cor, 110
data editing, 68
data exploration, 193
data frame, introduction, 23
data summary one sample case, 66
dataframe create using cbind, 157

create using read.table, 299
name the same as variable name, 310

dates and times in R, 315
death data introduction, 285
deer jaws example, 142
degree of fit r2, 133
degrees of freedom checking for

pseudoreplication, 177
contingency tables, 103
definition, 53
factorial experiments, 168
in a paired t-test, 97
in an F test of two variances, 58, 88
in Anova, 153
in different models, 217
in nested designs, 177
in the linear predictor, 229
model simplification, 144
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number of parameters, 54
one-way Anova, 150, 158
spotting pseudoreplication, 7

deletion tests, steps involved, 194, 284
density function binomial,

negative binomial, 248
Normal, 296
Poisson, 251

derived variable analysis longitudinal data, 178
detach a dataframe, 21, 34, 90, 287
deviations, introduction, 51
diet supplement example, 168
diff function generating differences, 69
differences vs. paired t-test, 97
differences between means aliasing, 239

in Anova model formula, 160
differences between slopes Ancova, 190
differences between intercepts Ancova, 190
difftime, 320
dim dimensions of an object, 307, 308
dimensions of a matrix, 107
dimensions of an array, 301
dimensions of an object x - 1:12; dim(x) <- c

(3,4), 307, 308
division /, 46
dnbinom function for probability density of the

negative binomial, 253
dnorm, 76

plot of, 83
probability density of the Normal distribution,

72
dredging through data using cor, 110
drop elements of an array using negative

subscripts, 304
drop the last element of an array using length,

296
dt density function of Student’s t, plot of, 83
dummy variables in the Anova model formula,

16
duration of experiments, 14

E = R x C/G expected frequencies in
contingency tables, 101

each in repeats, 311
edges, selecting a random individual, 11
effect size and power, 9

factorial experiments, 168
fixed effects, 174
one-way Anova, 150, 158

else with the if function, 46

empty plots use type = "n", 59
equals, logical == (“double equals”), 34
Error with aov, introduction, 132

multiple error terms in aov, 171
error bars, function for drawing, 163

least significant difference, 166
on proportions, 175
overlap and significance, 165

error correction, 81, 96
error structure introduction, 173, 174

model criticism, 274
error sum of squares SSE in regression, 118
error variance contrast sum of squares, 222

in regression, 125
error.bars function for plotting, 164
errors Poisson for count data, 234
eta the linear predictor, 229
even numbers, %%2 is zero, 46
everything varies, 2
exact binomial test binom.test, 98, 99
Excel dates in R, 317
exit a function using stop, 315
exp antilogs (base e) in R, 47

predicted value, 131, 140
with glm and quasipoisson errors, 236

expectation of the vector product, 108
expected frequencies E = R x C / G, 101

Fisher’s Exact Test, 105
negative binomial distribution, 252

experiment, 8
experimental design, 7
explained variation in Anova, 154

in regression, 125
explanatory power of different models, 125
explanatory variables, 1

continuous regression, 114
dangers of aggregation, 244
specifying, see predict
transformation, 135
unique values for each binary response, 274

exponential errors, in survival analysis, 288
expression, complex text on plots, 294
extract $, 309
extreme value distribution in survival analysis, 289
extrinsic aliasing, 17
eye colour, contingency tables, 100

F as logical False, 27
F ratio, 89

in regression, 128
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F-test, comparing two variances, 58
factor, numerical factor levels, 177
factor levels Fisher’s Exact Test, 107

generate with gl, 293
informative, 177, 200
in model formula, 166

factorial, Fisher’s Exact Test, 105
factorial designs, introduction, 150
factorial experiments introduction, 168
factor-level reduction in model simplification,

172
factors categorical variables in Anova, 1, 150

in data frames, 23
plot, 162

failure data, introduction, 2, 285
failures proportion data, 256
FALSE or F, influence testing, 164

logical variable, 27
falsifiable hypotheses, 3
family = binomial binary response variable, 274

proportion data, 269
family = poisson for count data, 234
famous five; sums, sums of squares and sums of

products, 122
file names, 25
fill colour for legends, 254

in barplot legend, 242, 254
fisher.test Fisher’s Exact Test, 105, 106

with 2 arguments as factor levels, 107
Fisher’s Exact Test, contingency tables, 105
Fisher’s F-Test, see F-test,
fit of different models, 137, 194, 230
fitted values definition, 120
proportion data, 262
fitting models to data, 193
fixed effects, introduction, 174
for loops, 119, 121, 164, 299, 311

drawing error bars, 163
for plotting residuals, 120
negative binomial distribution, 252
residuals in Anova, 151
with abline and split, 247

formula, model for Anova, 157, 158
F-ratio, contrast sum of squares, 220

one-way Anova, 158
frequencies count data, 234

using table, 237, 305
frequency distributions, introduction, 250
F-test, introduction, 88
functions written in R, 43, 302

error bars, 163
exit using stop, 315
for a sign test, 95
for variance, 54
leverage, 135, 139
median, 46
negative binomial distribution, 252

gam generalized additive models, 146
data exploration, 193
introduction, 141
library(mgcv), 142
with a binary response, 283
y∼s(x), 142

Gamma distribution, variance/mean ratio, 252
Gamma errors glm, 229, 232, 285

introduction, 285, 286
gardenA, 56
Gaussian distribution in survival analysis, 289
generalized additive models, see gam,
generalized linear model, see glm,
generate factor levels gl, 306
geometric mean, definition, 47, 315
gl generate levels for factors, 306
glm analysis of deviance, 238, 262

Ancova with binomial errors, 262
Ancova with poisson errors, 248
binary infection, 282
binary response variable, 274
cancers example, 235
Gamma errors, 286
proportion data, 262
regression with proportion data, 263
saturated model with Poisson errors, 248

gradient, see slope,
graphs, two adjacent, par(mfrow=c(1,2)), 143
graphs, two by two array,

par(mfrow=c(2,2)), 198, 199
Gregor Mendel effect, 15
grouping random effects, 176

h, leverage measure, 135
hair colour, contingency tables, 100
harmonic mean, 49, 304
header = T, 317
Helmert contrasts Ancova, 216, 224

example, 222
heteroscedasticity introduction, 35, 202

model checking, 134
multiple regression, 197
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hierarchical designs, correction factor, 178
hierarchy random effects, 182

rats example, 179
hist function for producing histograms, 42

speed, 80
values, 85
with bootstrap, 81
with skew, 84

histograms,, see hist
history(Inf) for list of input commands, 20
honest significant differences TukeyHSD, 18
horizontal lines on plot abline(h=3), 82, 83
how many samples? plot of variance and sample

size, 60
humped relationships significance testing, 146

model simplification, 144
testing for, 155
testing a binary response model, 284

hypotheses good and bad, 3
hypotheses testing, 81

using chi-square, 103
with F, 89

I “as is” in multiple regression
model formulas, 298

identity link glm, 231
Normal errors, 97, 229

if function, 46
if with logical subscripts, 28, 29
incidence functions using logistic regression,

273, 275
independence, 9
independence assumption in contingency tables,

100
independence of errors, 15

random effects, 173
index in one-variable plots, 153
induced defences example, 244
infection example, 279
inference with single samples, 81
influence introduction

model checking, 134
one-way Anova, 150
testing in multiple regression, 194, 200

informative factor levels, fixed effects, 174
initial conditions, 16
input from keyboard using scan(), 298
insecticide, 11
interaction, multiple regression, 193

terms with continuous explanatory variables, 114

terms model formulae, 174
terms in multiple regression, 195, 196

interaction.plot split plot example, 172
interactions factorial experiments, 150

selecting variables, 203
value of tree models, 203

intercept a, 114
calculations longhand, 124
differences between intercepts, 190
estimate, 124
maximum likelihood estimate, 6, 118
treatment contrasts, 161

intercepts Ancova, 230
interquartile range, 80

plots, 162
intrinsic aliasing, 17
inverse, and harmonic means, 49

k of the negative binomial distribution, 252
key, see , see legend,
kinds of years, 15
known values in a system of linear equations, 320
kurtosis definition, 86

error structure, 114
function for, 86, 87
values, 87

labels changing font size, cex.lab
for barplot, 251

least significant difference (LSD) error bars,
166

introduction, 165, 166
least-squares estimates of slope and intercept in

linear regression, 118
legend barplot with two sets of bars,

243, 254
plot function for keys, 167

length function for determining the length of a
vector, 43, 44, 51, 69, 84

drop the last element of an array, 301
in a sign test function, 95, 97
length with tapply, 318

levels of factors, 1
levels, generate with gl, 293
levels, use split to separate vectors, 309
levels introduction, 170

model simplification, 170
proportion data, 262
regression in Ancova, 185
with contrasts, 215
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“levels gets” comparing two distributions, 252
factor-level reduction, 170
with contrasts, 217

leverage and SSX, 124
leverage function, 135, 139

influence testing, 135
library ctest for classical tests
mgcv for gam, 146, 198, 283
nlme for mixed effects models, 178
survival for survival analysis, 287
tree for tree models, 197, 200

linear function, 6
linear mixed effects model lme, 178
linear predictor introduction

logit link, 257
linear regression example using growth and

tannin, 117
linearizing the logistic, 259
lines adds lines to a plots (cf. points), 68, 115

binary response variable, 279
drawing error bars, 163
dt and dnorm, 83
exponential decay, 140
for errors with proportion data, 278
non-linear regression, 140
ordered x values, 141
over histograms, 72
polynomial regression, 136
showing residuals, 120
type = "response" for proportion data, 264
with glm and quasipoisson errors, 236
with qt, 82
with subscripts, 152

link, log for count data, 234
link function complementary log-log, 274

logit, 260, 274
list, in non-linear regression, 142
lists, subscripts, 301, 320
liver, rats example, 180
lm
lm fit a linear model lm(y∼x), 119

Ancova, 187
in regression, 130
linear models, 120
the predict function, 120

lme linear mixed effects model, 173
handling pseudoreplication, 173

locator function for determining coordinates on
as plot, 116
with barplot, 167

loess local regression non-parametric models,
18

log exponential decay, 140
log logarithms (base e) in R, 47, 291, 292
log link for count data, 231, 232
log odds, logit, 232
log transformation in multiple regression, 202,

263
logarithms and variability, 48
logical subscripts, 301, 302
logical tests using subscripts, 27
logical variables, T or F, 27, 29

in data frames, 23
logistic model, caveats, 264
logistic S-shaped model for proportion data, 264

distribution in survival analysis, 289
logistic regression, binary response variable,

275
example, 261

logit link binomial errors, 260
definition, 259, 260

log-linear models for count data, 235
longitudinal data analysis, 178
loops in R, see for loops
LSD least significant difference, 166

plots, 166
lty line type (e.g. dotted is lty=2), 64

m3 third moment, 84
m4 fourth moment, 86
marginal totals in contingency tables, 104
margins in contingency tables, 101
matrices, columnwise data entry, 104
matrix function in R, 104

with nrow, 312
matrix multiplication %*%, 312
maximum. with summary, 30
max, 67

maximum likelihood definition, 6
estimates in linear regression, 118
estimate of k of the negative binomial, 252

mean function determining arithmetic mean,
44

mean, arithmetic, 65, 160, 297
geometric, 47
harmonic, 49

mean age at death with censoring, 290
mean squared deviation, introduction, 54
means, tapply for tables, 161, 250

two-way tables using tapply, 168
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measurement error, 179
med function for determining medians, 46, 67
median built-in function, 46

with summary, 29
writing a function, 47

mgcv, binomial, 146, 198, 283
Michelson’s light data, 80
minimal adequate model, 5, 6, 144

analysis of deviance, 240
multiple regression, 197

minimum, min, with summary, 30, 67
mixed effects models, 18
library(nlme), 178

mode, the most frequent value, 42
model for Anova, 159

contingency tables, 100
linear regression, 159

model checking, introduction, 134
in regression, 134, 135

model criticism, introduction, 274
model formula for Anova, 174
model objects, generic functions, 19
model selection, 5
model simplification analysis of deviance, 265,

266
Ancova, 188
caveats, 196
factorial experiments, 168
factor-level reduction, 222–224
multiple regression, 193, 211
non-linear regression, 142
with contrasts, 216

model, structure of a linear models using str,
321

modulo %%
for barplot, 251
remainder, 46
with logical subscripts, 301

moments of a distribution, 83
multiple comparisons, 167
multiple error terms, introduction, 181
multiple graphs per page,

par(mfrow = c(1,2)), 143
multiple regression, introduction, 193

difficulties in, 203
minimal adequate model, 197
number of parameters, 161, 255
quadratic terms, 140

multiplication, *, 302
n, sample size, 10

and degrees of freedom, 54
and power, 9
and standard error, 61

names in barplot, 168, 251
names of variables in a dataframe, 25, 66
natural experiments, 14
negative binomial distribution definition, 252
dnbinom density function, 253

negative correlation in contingency tables, 109
negative skew, 80, 84, 86
negative subscripts to drop elements of an array,

304
nested Anova, model formulae, 183
nesting model formulae, 176

of explanatory variables, %in%, 176
new line of output using "\n", 302
nice numbers in model simplification, 196
nlme library for mixed effects models, 178

non-linear mixed effects model, 178
nls non-linear least squares models, 142
non-constant variance count data, 138, 177, 202

model criticism, 274
proportion data, 256

non-linear least squares, see nls
non-linear mixed effects model, see nlme
non-linear regression introduction, 142
non-linear terms in model formulae, 195

use of nls, 143, 144
non-linearity in regression, 282, 283
non-Normal errors introduction, 229

count data, 234
model checking, 134, 135
model criticism, 274
proportion data, 256

non-orthogonal data observational studies, 16
order matters, 187

non-parametric smoothers gam, 38, 146, 147,
198, 283

pairs, 197
with a binary response, 273

Normal and Student’s t distributions compared,
83

Normal calculations using z, 76, 77
Normal curve, drawing the, 78
Normal distribution, introduction, 70
dnorm density function, 72, 73, 79, 83
pnorm probabilities, 75
qnorm quantiles, 75, 76
rnorm random numbers, 58, 307
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Normal errors identity link, 229, 231, 257, 260
model checking, 134

Normal q-q plot in model checking, 134
normality, tests of, 79
not equal, !=, 98
notch=T in boxplot for significance testing, 93,

167
plots for Anova, 166
with boxplot, 282

nrow, number of rows in a matrix, 312
n-shaped humped relationships, 141
nuisance variables, marginal totals in

contingency tables, 244
null hypotheses, 3

rejection and critical values, 129
with F-tests, 88, 89

null model y∼ 1, 186
numbers as factor levels, 177
numeric, definition of the mode of a variable,

63, 81

observational data, 7
observed frequencies in contingency tables,

102
Occam’s Razor, 8

and choice of test, 88
contingency tables, 100

odd numbers, %%2 is one, 46
odds, p/q, definition, 259
one-sample t-test, 98
one-way Anova introduction, 150
options contrasts = c("contr.helmert",

"contr.poly")), 224
contrasts = c("contr.sum", "contr.

poly")), 228
contrasts = c("contr.treatment",

"contr.poly")), 217, 222, 228
order function, 303

in sorting dataframes, 28
with scatter plots, 141
with subscripts, 303

order matters Ancova, 187, 192
non-orthogonal data, 16

ordering, introduction, 303
orthogonal contrasts, 212, 213
orthogonal designs, 16

Anova tables, 129, 132
outliers definition, 66, 80

in box and whisker plots, 93
new line using "\n", 303

overdispersion and transformation of
explanatory variables, 263

no such thing with binary data, 275
proportion data, 257, 258
use quasibinomial for proportion data,

261, 266
use quasipoisson for count data, 236

over-parameterization in multiple regression,
206

ozone and lettuce growth in gardens, 56,
157

Π Greek Pi, meaning the product of, 47
p number of parameters, 54, 55

and influence, 135
in the linear predictor, 115, 116
estimated parameters in the model, 103

p values, 3
compared for t-test and Wilcoxon Rank Sum

Test, 96
paired samples t-test, 97
pairs mutli-panel scatterplots, 197
panel.smooth in pairs, 197
par graphics parameters, 135, 294
par(mfrow=c(1,1)) single graph per page,

136
par(mfrow=c(1,2)) two graphs side by side,

143, 251, 262, 276, 279
par(mfrow=c(2,2)) four plots in a 2×2 array,

198
parallel lines in Ancova, 189
parameter estimation in non-linear regression,

138
parameters 2-parameter model, 5, 6

in multiple regression, 211
parsimony, 7
partial correlation, introduction, 111
paste to concatenate text, 298
path analysis, 111
path name for files, 25
pch with split, 247
pch = 35, 136

solid circle plotting symbols, 117
with split, 306

pchisq cumulative probability of chi squared
distribution, 255

Pearson’s chi-squared definition, 102
for comparing two distributions, 255

Pearson’s Product-Moment Correlation,
cor.test, 113
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percentage data and the arcsine transformation,
257

from counts, 256
percentiles, 67

plots, 162
in box and whisker plots, 69
with summary, 29

pf cumulative probability from the F
distribution, 58
in F-tests, 89
in regression, 128
one-way Anova, 158

piece-wise regression, with a binary response,
283

Pivot Table in Excel, 25
plot 5, 50, 59, 64, 83, 135
abline for adding straight lines, 117
adding points to a plot, 59
binary response variable, 279
box and whisker, 162
compensation example, 186
correlation, 109
count data, 235
growth and tannin, 117
in Anova, 150
in error checking, 35, 36
las=1 for vertical axis labels, 299
multiple using pairs, 193, 200
multiple using par(mfrow = c(1,2)), 141
non-linear scatterplot, 140
proportion data, 262, 269
regression with proportion data, 264
scale dependent correlation, 113
the locator function for determining

coordinates, 119
type = "n" for blank plotting area, 82, 115,

190, 301, 309
with index, 153
with split, 269

plot(model) introduction, 134
for gam, 146, 198
and transformation of explanatory variables,

262
for tree models, 197
glm with Gamma errors, 286
model checking, 134
multiple regression, 211
one-way Anova, 150

plot.gam with a binary response, 283
plots, box and whisker, 162

pairs for many scatterplots, 190
for binary response example, 279

plotting symblols pch in plot, 116, 136
pnorm probabilities from the Normal

distribution, 74
probabilities of z values, 77

points adding points to a plot (cf. lines), 59,
119

with gam plot, 146
with split, 269, 309
with subscripts, 254

Poisson distribution definition, 250
dpois density function, 251
rpois random number generator, 299

poisson errors count data, 234, 235
glm for count data, 229, 235

pollution, example of multiple regression,
203, 204

polygon function for shading complex shapes,
79

polynomial regression, introduction, 140
population growth, simulation model, 263
positive correlation, and paired-sample

t-test, 98
contingency tables, 105

POSIX, 316
power, probability of rejecting a false null

hypothesis, 9
functions for estimating sample size, 10
power.t.test, 10

powers ^, 47, 292
p/q, see odds
predict, function to predict values from a model

for specified values of the explanatory
variables, 120

binary response variable, 279
non-linear regression, 142
polynomial regression, 140
type = "response" for proportion data,

256, 264
with glm and quasipoisson errors, 236

predicted value, standard error of ^y, 130
predictions, 14
probabilities, contingency tables, 100
probability density, binomial distribution, 72

Normal, 72
negative binomial distribution, 252
Poisson distribution, 250

products, cumprod function for cumulative
products, 105
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prop.test binomial test for comparing two
proportions, 100

proportion, transformation from logit, 262,
267

proportion data introduction, 1, 256
analysis of deviance, 264
Ancova, 269
binomial errors, 256, 260
rather than binary analysis, 274

proportions from tapply with as.vector, 256,
268

pseudoreplication, 15
analysis with, 173
checking degrees of freedom, 176
removing it, 178
split plots, 173

pt cumulative probabilities of Student’s t
distribution

garden ozone, 93
test for skew, 85

qchisq quantiles of the chi-square distribution,
104

qf quantiles of the F distribution, 88
contrast sum of squares, 222
in regression, 129
one-way Anova, 155

qnorm quantiles of the Normal distribution, 75
qqline introduction, 79
qqnorm introduction, 79

in regression, 135
qt quantiles of the t distribution, 64

confidence interval for mean, 165
critical value of Student’s t, 92

quadratic regression. introduction, 140
multiple regression, 196
in a binary response model, 282
model formulae, 298

quantile function in R, 64
of the chi-square distribution using qchisq,

104
of the F distribution usibng qf, 88,

129, 155
of the Normal distribution using qnorm, 75
of the t distribution usibng qt, 62

quartile plots, 163
with summary, 29

quasibinomial analysis of deviance, 261, 266
family for overdispersed proportion data,

261

quasipoisson analysis of deviance, 236, 239
family for overdispersed count data, 236

r correlation coefficient, 108
in terms of covariance, 110
in terms of SSXY, 109

R download, xii
R language, xi
r2 as a measure of explanatory power of a model,

133
definition, 131
r2 = SSR/SSY, 133

random effects introduction, 176
longitudinal data, 178
uninformative factor levels, 180, 181

random numbers from the normal distribution,
58

rnorm, 59, 307
from the Poisson distribution, rpois, 299
from the uniform distribution, runif, 293,

320
randomization in sampling and experimental

design, 7, 10
randomizing variable selection, 208
range function returning maximum and

minimum, 50, 300
rank function in R, 95
read.table introduction, 25, 42, 55
reading data from a file, 25, 296
reciprocal link with Gamma errors, 231, 232
reciprocals, 49, 286
regression introduction, 114

anova table, 128
at different factor levels Ancova, 185
binary response variable, 273
by eye, 117
calculations longhand, 121, 122
choice, 1
exponential decay, 137
linear, 114
logistic, 261
non-linear, 140
parameter estimation in non-linear, 138
piece-wise, 283
polynomial, 140
predict in non-linear, 140
quadratic, 140
summary in non-linear, 141
testing for humped relationships, 141
testing for non-linearity, 134
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rejection critical values, 94
null hypothesis, 3, 4
using F-tests, 89

relative growth rate with percentage data, 257
removing variables with rm, 22, 297
rep function for generating repeats, 95, 96, 293

error bars, 163
for subject identities, 307
LSD bars, 166, 167
repeat function, 96
text, 94, 95

repeated measures, 9
random effects, 176

repeats, generating repeats, see rep
replace = T sampling with replacement, 81
replication 7, 8, 9

checking with table, 164
residual deviance in proportion data, 261
residual errors, 4
residual plots in model checking, 132
residuals definition, 3, 120

extract residuals from a model object, 122
in Anova, 150
model checking, 134
pattern and heteroscedasticity, 202

response, predict with type = "response",
247, 268, 276

response variable and the choice of model, 1, 114
regression, 114
types of, 2

rev with order in sorting dataframes, 28
rev(sort(y)) sort into reverse order, 303
rm removing variables from the work space, 22
rm(list = ls()) clear everything, 22
rnorm random normally distributed numbers,

59, 307
roots, ^(fraction), 47, 292

in calculating geometric mean, 47
row names in data frames, 23
row totals contingency tables, 101
row.names in read.table, 25
rows selecting from an array, 301

selecting using subscripts, 27
rules of thumb

parameters in multiple regression p/3, 202
power 80% requires n > = 16 s2/d2, 10
t >2 is significant, 83

runif uniform random numbers, 293, 320

Σ Greek Sigma, meaning summation, 43

S language, background, xi
s(x) smoother in gam, 146P�y � �y� � 0 proof, 52P

(y � a � bx) = 0 proof, 122
sample, function for sampling at random from a

vector, 71
with replacement, replace = T, 81
selecting variables, 203
for shuffling, replace = F, 208

sample size and degrees of freedom, 54
sampling with replacement; sample with

replace = T, 63
saturated model, 194, 195

contingency tables, 244
saving your work from an R session, 20
scale location plot, used in model checking,

135
scale parameter, overdispersion, 260
scale-dependent correlation, 113
scan() input from keyboard, 299
scatter, measuring degree of fit with r2, 133
scatterplot, graphic for regression, 114
sd standard deviation function in R, 72
seed production compensation example, 190
selecting a random individual, 10
selecting certain columns of an array, 301
selecting certain rows of an array, 301
selection of models, introduction, 117
self-starting functions in non-linear regression,

142
seq generate a series, 64, 72, 76, 83, 297

values for x axis in predict, 236
sequence generation, see seq
serial correlation, 66

random effects, 173
sex discrimination, test of proportions, 100
shuffling using sample, 208
sign test definition, 95

garden ozone, 96
significance, 3

in boxplots using notch = T, 93
of correlation using cor.test, 113
overlap of error bars, 165

significant differences in contingency tables,
102

simplicity, see Occam’s Razor
simplification, see model simplification
simulation experiment on the central limit

theorem, 72
single sample tests, 66
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skew definition, 84
asymmetric confidence intervals, 64, 65
function for, 84
in histograms, 71
negative, 86
values, 85

slope b, 114
calculations longhand, 124
definition, 115
differences between slopes, 190
maximum likelihood estimate, 6, 118
standard error, 129

slopes Ancova, 230
removal in model simplification, 189

smoothing gam, 18
model formulae, 298
panel.smooth in pairs, 197

sort function for sorting a vector, 44, 303
rev(sort(y)) for reverse order, 303

sorting a dataframe, 27
sorting, introduction, 303
spaces in variable names or factor levels, 25
spatial autocorrelation random effects, 177
spatial correlation and paired t-test, 98
spatial pseudoreplication, 15
Spearman’s Rank Correlation, 113
split for species data, 269

proportion data, 270, 271
separate on the basis of factor levels,

190, 306
split-plots Error terms, 174, 175

introduction, 174
different plotting symbols, 305

spreadsheets and data frames, 24
sqrt square root function in R, 63, 64, 84
square root function, see sqrt
SSA explained variation in Anova, 154

one-way Anova, 158
shortcut formula, 157

SSC contrast sum of squares, 222
SSE error sum of squares, 118

in Ancova, 189
in Anova, 153
in regression, 133
one-way Anova, 158
the sum of the squares of the residuals, 120

S-shaped curve logistic, 264
SSR Ancova, 188

in regression, 133
regression sum of squares, 125

SSX corrected sum of squares of x, 122
calculations longhand, 124, 125

SSXY corrected sum of products, 109, 123
Ancova, 187, 188
calculations longhand, 124, 125
shortcut formula, 124

SSY total sum of squares defined, 122
calculations longhand, 123, 124
in Anova, 150
null model, 145, 146
one-way Anova, 158

SSY = SSR+SSE, 128
standard deviation, sd function in R, 72

and skew, 84
in calculating z, 77

standard error
as error bars, 164
difference between two means, 92, 160
Helmert contrasts, 224
mean, 61, 160
of kurtosis, 86
of skew, 84
of slope and intercept in linear regression,

129
standard normal deviate, see z
start, initial parameter values in nls, 141
statistical modelling, introduction, 187, 199
status with censoring, 287
step automated model simplification, 274,

280
str, the structure of an R object, 320
straight line, 6
strong inference, 14
strptime, in R, 315
Student’s t-distribution introduction, 82
pt probabilities, 85, 94
qt quantiles, 75, 88, 104

Student’s t-test statistic, 91
normal errors and constant variance, 96,

97
subjects, random effects, 174
subscripts [ ] introduction, 301
barplot with two sets of bars, 251
data selection, 161
factor-level reduction, 170
for computing subsets of data, 115
in data frames, 33
in lists [[ ]], 197, 301
in calculations for Anova, 153, 154
influence testing, 199, 200
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lm for Ancova, 231
residuals in Anova, 151
with order, 303
using the which function, 68

subset in model checking, 134
influence testing, 176
multiple regression, 199

subsets of data using logical subscripts, 301
substitute, complex text on plots

in plot labels, 163
successes, proportion data, 256
sulphur dioxide, multiple regression, 203
sum function for calculating totals, 43,

51, 84
sum contrasts, 224
sum of squares introduction, 52

computation, 51, 54
contrast sum of squares, 223
shortcut formula, 55

summary introduction
analysis of deviance, 267
Ancova, 191
Ancova with poisson errors, 244
factorial experiments, 168
glm with Gamma errors, 286
glm with poisson errors, 235
in regression, 130
non-linear regression, 139, 140
of a vector, 67
regression with proportion data, 262
speed, 80
split plot aov, 171
with data frames, 25
with quasipoisson errors, 235

summary(model)
gam, 146
piece-wise regression, 284
with survreg, 287

summary.aov
Ancova, 188
in regression, 131
one-way Anova, 158

summary.lm
Ancova, 231
effect sizes in Anova, 159
factorial experiments, 168
Helmert contrasts, 224
in Anova, 214, 215
two-way Anova, 154
with contrasts, 215

sums of squares in hierarchical designs, 182
suppress axis labelling xaxt = "n", 277
survfit plot survivorship curves, 287
survival analysis introduction
library(survival), 287

survivorship curves, plot(surfit), 288
survreg analysis of deviance, 288
symbols in model formulae, 298
symbols on plots complex text on plots, 293

different symbols, 305
Sys.time, 316

T logical True, 302
t distribution, see Student’s t distribution,
t.test garden ozone, 94

one sample, 98
paired = T, 98

table, function for counting elements in vectors,
70

binary response variable, 273
checking replication, 168, 170
counting frequencies, 251, 254, 255
counting values in a vector, 303
determining frequency distribution, 237, 250
with cut, 277

tables of means introduction, 304
tapply on proportions, 277

tails of the Normal distribution, 74, 75
tails of the Normal and Student’s t compared, 83
tapply for tables of means, 161, 191, 240, 304

for proportions, 268
function in R, 95
mean age at death, 285
mean age at death with censoring, 290
reducing vector lengths, 177
table of totals, with sum, 95, 157
table of variances, with var, 285
two-way tables of means, 168
with contrasts, 219
with count data, 237
with cut, 277
with length, 305

temporal autocorrelation random effects, 177
temporal pseudoreplication, 15, 177
test statistic for Student’s t, 91
test = "Chi" contingency table, 244
test = "F" anova, 266
tests of hypotheses, 14, 81, 260
tests of normality, 79
text(model) for tree models, 199, 200
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theory, 8
three-way Anova, model formulae, 150
thresholds in piece-wise regression, 283
ties, problems in Wilcoxon Rank Sum Test, 95
tilde ∼ means “is modelled as a function of ” in

lm or aov, 117
model formulae, 298
time and date in R, 315
time at death, 1
time series, random effects, 176
time series, 9, 15
time-at-death data, introduction, 285
transformation

arcsine for percentage data, 257
count data, 234
explanatory variables, 105, 262, 263
from logit to p, 261, 267
linear models, 117
logistic, 259
model criticism, 274
model formulae, 298
the linear predictor, 229

transpose, using concatenate, c, 308
transpose function for a matrix, t
treatment contrasts introduction, 161, 222
treatment totals, contrast sum of squares, 223

in Anova, 155, 156
tree models, 199, 200, 203

advantages of, 203
data exploration, 193
ozone example, 197

trees, selecting a random individual, 10
Tribolium, 11

logical variable, 23
t-test definition, 91

paired samples, 97
rule of thumb for t = 9, 165

TukeyHSD, Tukey’s Honest significant
differences, 18

two sample problems, 88
t-test with paired data, 97

two-parameter model, linear regression, 135, 144
two-tailed tests, 57, 61, 94

Fisher’s Exact Test, 105
two-way Anova, model formulae, 154
Type I Errors, 4, 104
Type II Errors, 4
type = "b" both points and lines, 64
type = "l" line rather than points in plot,

72, 76

type = "n" for blank plots, 59, 64, 152, 190
proportion data, 272
with split, 309

type = "response", model output on back-
transformed scale

Ancova with poisson errors, 246
with binary data, 273
with proportion data, 264, 268, 272

unexplained variation, 5
in Anova, 152, 153
in regression, 125

uniform random numbers with runif function,
293, 320

uninformative factor levels, 69
rats example, 180

unlist, 316
unplanned comparisons, a posteriori contrasts,

212, 213
unreliability, estimation of, 60, 61

intercept, 129, 130
predicted value, 131
slope, 127

update in model simplification, 144,
after step, 281, 282
analysis of deviance, 237, 240, 264
contingency table, 244
multiple regression, 196, 197, 200, 201

using variance to estimate unreliability, 60, 61
testing hypotheses, 59

var variance function in R, 55, 64, 83, 84, 88,
89, 291

var(x,y) function for covariance, 108, 109
var.test F-test in R, 57, 58

for garden ozone, 89
variable names in dataframes, 25
variance, definition and derivation, 50

and corrected sums of squares, 122, 123
and power, 9
and sample size, 58, 59
and standard error, 60, 61
constancy in a glm, 226, 227, 229
count data, 234
data on time-at-death, 286
F-test to compare two variances, 58
formula, 54, 55
gamma distribution, 285
in Anova, 150
minimizing estimators, 6
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of a difference, 91, 113
of the binomial distribution, 252, 253, 255
plot against sample size, 63
random effects, 173
sum of squares / degrees of freedom, 54, 128
var function in R, 43
VCA, variance components analysis, 178,

179
variance components analysis, 178, 179

rats example, 179
variance constancy model checking, 134
variance function, random effects, 177
variance/mean ratio

aggregation in count data, 253
examples, 116

variation, 12
using logs in graphics, 86

variety and split, 269
VCA, see variance components analysis,
vector functions in R, 299

weak inference, 14
web address of this book, xii

proportion data, 256
Welch Two Sample t-test, 94
which, R function to find subscripts, 84, 86
whiskers in box and whisker plots, 67
wilcox.test Wilcoxon Rank Sum Test, 91, 95, 96

Wilcoxon Rank Sum Test, 91, 95
non-normal errors, 88

worms dataframe, 25
writing functions in R, see functions

x, continuous explanatory variable in regression,
114

xlab labels for the x axis, 58, 63
in Anova, 150

y response variable in regression, 114
y∼ 1 null model, 145, 146
y∼ x-1 removing the intercept, 114, 115
Yates’ correction Pearson’s Chi-squared test,

104
yaxt = "n" suppress axis labelling, 295
yield experiment, split plot example, 173, 174
ylab labels for the y axis, 58, 63

in Anova, 150
ylim controlling the scale of the y axis in plots

in Anova, 150

z of the Normal distribution, 76
approximation in Wilcoxon Rank Sum Test,

95
zero term negative binomial distribution, 252

Poisson distribution, 250, 251
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