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Preface

We have made substantial changes in this edition of Introduction to Mathematical
Statistics. Some of these changes help students appreciate the connection between
statistical theory and statistical practice while other changes enhance the develop-
ment and discussion of the statistical theory presented in this book.

Many of the changes in this edition reflect comments made by our readers. One
of these comments concerned the small number of real data sets in the previous
editions. In this edition, we have included more real data sets, using them to
illustrate statistical methods or to compare methods. Further, we have made these
data sets accessible to students by including them in the free R package hmcpkg.
They can also be individually downloaded in an R session at the url listed below.
In general, the R code for the analyses on these data sets is given in the text.

We have also expanded the use of the statistical software R. We selected R
because it is a powerful statistical language that is free and runs on all three main
platforms (Windows, Mac, and Linux). Instructors, though, can select another
statistical package. We have also expanded our use of R functions to compute
analyses and simulation studies, including several games. We have kept the level of
coding for these functions straightforward. Our goal is to show students that with
a few simple lines of code they can perform significant computations. Appendix B
contains a brief R primer, which suffices for the understanding of the R used in the
text. As with the data sets, these R functions can be sourced individually at the
cited url; however, they are also included in the package hmcpkg.

We have supplemented the mathematical review material in Appendix A, placing
it in the document Mathematical Primer for Introduction to Mathematical Statistics.
It is freely available for students to download at the listed url. Besides sequences,
this supplement reviews the topics of infinite series, differentiation, and integra-
tion (univariate and bivariate). We have also expanded the discussion of iterated
integrals in the text. We have added figures to clarify discussion.

We have retained the order of elementary statistical inferences (Chapter 4) and
asymptotic theory (Chapter 5). In Chapters 5 and 6, we have written brief reviews
of the material in Chapter 4, so that Chapters 4 and 5 are essentially independent
of one another and, hence, can be interchanged. In Chapter 3, we now begin the
section on the multivariate normal distribution with a subsection on the bivariate
normal distribution. Several important topics have been added. This includes
Tukey’s multiple comparison procedure in Chapter 9 and confidence intervals for
the correlation coefficients found in Chapters 9 and 10. Chapter 7 now contains a

xi
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discussion on standard errors for estimates obtained by bootstrapping the sample.
Several topics that were discussed in the Exercises are now discussed in the text.
Examples include quantiles, Section 1.7.1, and hazard functions, Section 3.3. In
general, we have made more use of subsections to break up some of the discussion.
Also, several more sections are now indicated by ∗ as being optional.

Content and Course Planning

Chapters 1 and 2 develop probability models for univariate and multivariate vari-
ables while Chapter 3 discusses many of the most widely used probability models.
Chapter 4 discusses statistical theory for much of the inference found in a stan-
dard statistical methods course. Chapter 5 presents asymptotic theory, concluding
with the Central Limit Theorem. Chapter 6 provides a complete inference (esti-
mation and testing) based on maximum likelihood theory. The EM algorithm is
also discussed. Chapters 7–8 contain optimal estimation procedures and tests of
statistical hypotheses. The final three chapters provide theory for three important
topics in statistics. Chapter 9 contains inference for normal theory methods for
basic analysis of variance, univariate regression, and correlation models. Chapter
10 presents nonparametric methods (estimation and testing) for location and uni-
variate regression models. It also includes discussion on the robust concepts of
efficiency, influence, and breakdown. Chapter 11 offers an introduction to Bayesian
methods. This includes traditional Bayesian procedures as well as Markov Chain
Monte Carlo techniques.

Several courses can be designed using our book. The basic two-semester course
in mathematical statistics covers most of the material in Chapters 1–8 with topics
selected from the remaining chapters. For such a course, the instructor would have
the option of interchanging the order of Chapters 4 and 5, thus beginning the second
semester with an introduction to statistical theory (Chapter 4). A one-semester
course could consist of Chapters 1–4 with a selection of topics from Chapter 5.
Under this option, the student sees much of the statistical theory for the methods
discussed in a non-theoretical course in methods. On the other hand, as with the
two-semester sequence, after covering Chapters 1–3, the instructor can elect to cover
Chapter 5 and finish the course with a selection of topics from Chapter 4.

The data sets and R functions used in this book and the R package hmcpkg can
be downloaded at the site:
https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources

/home/index.html

https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources/home/index.html
https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources/home/index.html
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Chapter 1

Probability and Distributions

1.1 Introduction

In this section, we intuitively discuss the concepts of a probability model which we
formalize in Secton 1.3 Many kinds of investigations may be characterized in part
by the fact that repeated experimentation, under essentially the same conditions,
is more or less standard procedure. For instance, in medical research, interest may
center on the effect of a drug that is to be administered; or an economist may be
concerned with the prices of three specified commodities at various time intervals; or
an agronomist may wish to study the effect that a chemical fertilizer has on the yield
of a cereal grain. The only way in which an investigator can elicit information about
any such phenomenon is to perform the experiment. Each experiment terminates
with an outcome. But it is characteristic of these experiments that the outcome
cannot be predicted with certainty prior to the experiment.

Suppose that we have such an experiment, but the experiment is of such a nature
that a collection of every possible outcome can be described prior to its performance.
If this kind of experiment can be repeated under the same conditions, it is called
a random experiment, and the collection of every possible outcome is called the
experimental space or the sample space. We denote the sample space by C.
Example 1.1.1. In the toss of a coin, let the outcome tails be denoted by T and let
the outcome heads be denoted by H . If we assume that the coin may be repeatedly
tossed under the same conditions, then the toss of this coin is an example of a
random experiment in which the outcome is one of the two symbols T or H ; that
is, the sample space is the collection of these two symbols. For this example, then,
C = {H, T }.
Example 1.1.2. In the cast of one red die and one white die, let the outcome be the
ordered pair (number of spots up on the red die, number of spots up on the white
die). If we assume that these two dice may be repeatedly cast under the same con-
ditions, then the cast of this pair of dice is a random experiment. The sample space
consists of the 36 ordered pairs: C = {(1, 1), . . . , (1, 6), (2, 1), . . . , (2, 6), . . . , (6, 6)}.

1
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We generally use small Roman letters for the elements of C such as a, b, or
c. Often for an experiment, we are interested in the chances of certain subsets of
elements of the sample space occurring. Subsets of C are often called events and are
generally denoted by capitol Roman letters such as A, B, or C. If the experiment
results in an element in an event A, we say the event A has occurred. We are
interested in the chances that an event occurs. For instance, in Example 1.1.1 we
may be interested in the chances of getting heads; i.e., the chances of the event
A = {H} occurring. In the second example, we may be interested in the occurrence
of the sum of the upfaces of the dice being “7” or “11;” that is, in the occurrence of
the event A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1), (5, 6), (6, 5)}.

Now conceive of our having made N repeated performances of the random ex-
periment. Then we can count the number f of times (the frequency) that the
event A actually occurred throughout the N performances. The ratio f/N is called
the relative frequency of the event A in these N experiments. A relative fre-
quency is usually quite erratic for small values of N , as you can discover by tossing
a coin. But as N increases, experience indicates that we associate with the event A
a number, say p, that is equal or approximately equal to that number about which
the relative frequency seems to stabilize. If we do this, then the number p can be
interpreted as that number which, in future performances of the experiment, the
relative frequency of the event A will either equal or approximate. Thus, although
we cannot predict the outcome of a random experiment, we can, for a large value
of N , predict approximately the relative frequency with which the outcome will be
in A. The number p associated with the event A is given various names. Some-
times it is called the probability that the outcome of the random experiment is in
A; sometimes it is called the probability of the event A; and sometimes it is called
the probability measure of A. The context usually suggests an appropriate choice of
terminology.

Example 1.1.3. Let C denote the sample space of Example 1.1.2 and let B be
the collection of every ordered pair of C for which the sum of the pair is equal to
seven. Thus B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2)(6, 1)}. Suppose that the dice are
cast N = 400 times and let f denote the frequency of a sum of seven. Suppose that
400 casts result in f = 60. Then the relative frequency with which the outcome
was in B is f/N = 60

400 = 0.15. Thus we might associate with B a number p that is
close to 0.15, and p would be called the probability of the event B.

Remark 1.1.1. The preceding interpretation of probability is sometimes referred
to as the relative frequency approach, and it obviously depends upon the fact that an
experiment can be repeated under essentially identical conditions. However, many
persons extend probability to other situations by treating it as a rational measure
of belief. For example, the statement p = 2

5 for an event A would mean to them
that their personal or subjective probability of the event A is equal to 2

5 . Hence,
if they are not opposed to gambling, this could be interpreted as a willingness on
their part to bet on the outcome of A so that the two possible payoffs are in the
ratio p/(1 − p) = 2

5/ 3
5 = 2

3 . Moreover, if they truly believe that p = 2
5 is correct,

they would be willing to accept either side of the bet: (a) win 3 units if A occurs
and lose 2 if it does not occur, or (b) win 2 units if A does not occur and lose 3 if
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it does. However, since the mathematical properties of probability given in Section
1.3 are consistent with either of these interpretations, the subsequent mathematical
development does not depend upon which approach is used.

The primary purpose of having a mathematical theory of statistics is to provide
mathematical models for random experiments. Once a model for such an experi-
ment has been provided and the theory worked out in detail, the statistician may,
within this framework, make inferences (that is, draw conclusions) about the ran-
dom experiment. The construction of such a model requires a theory of probability.
One of the more logically satisfying theories of probability is that based on the
concepts of sets and functions of sets. These concepts are introduced in Section 1.2.

1.2 Sets

The concept of a set or a collection of objects is usually left undefined. However,
a particular set can be described so that there is no misunderstanding as to what
collection of objects is under consideration. For example, the set of the first 10
positive integers is sufficiently well described to make clear that the numbers 3

4 and
14 are not in the set, while the number 3 is in the set. If an object belongs to a
set, it is said to be an element of the set. For example, if C denotes the set of real
numbers x for which 0 ≤ x ≤ 1, then 3

4 is an element of the set C. The fact that
3
4 is an element of the set C is indicated by writing 3

4 ∈ C. More generally, c ∈ C
means that c is an element of the set C.

The sets that concern us are frequently sets of numbers. However, the language
of sets of points proves somewhat more convenient than that of sets of numbers.
Accordingly, we briefly indicate how we use this terminology. In analytic geometry
considerable emphasis is placed on the fact that to each point on a line (on which
an origin and a unit point have been selected) there corresponds one and only one
number, say x; and that to each number x there corresponds one and only one point
on the line. This one-to-one correspondence between the numbers and points on a
line enables us to speak, without misunderstanding, of the “point x” instead of the
“number x.” Furthermore, with a plane rectangular coordinate system and with x
and y numbers, to each symbol (x, y) there corresponds one and only one point in the
plane; and to each point in the plane there corresponds but one such symbol. Here
again, we may speak of the “point (x, y),” meaning the “ordered number pair x and
y.” This convenient language can be used when we have a rectangular coordinate
system in a space of three or more dimensions. Thus the “point (x1, x2, . . . , xn)”
means the numbers x1, x2, . . . , xn in the order stated. Accordingly, in describing our
sets, we frequently speak of a set of points (a set whose elements are points), being
careful, of course, to describe the set so as to avoid any ambiguity. The notation
C = {x : 0 ≤ x ≤ 1} is read “C is the one-dimensional set of points x for which
0 ≤ x ≤ 1.” Similarly, C = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} can be read “C is the
two-dimensional set of points (x, y) that are interior to, or on the boundary of, a
square with opposite vertices at (0, 0) and (1, 1).”

We say a set C is countable if C is finite or has as many elements as there are
positive integers. For example, the sets C1 = {1, 2, . . . , 100} and C2 = {1, 3, 5, 7, . . .}
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are countable sets. The interval of real numbers (0, 1], though, is not countable.

1.2.1 Review of Set Theory

As in Section 1.1, let C denote the sample space for the experiment. Recall that
events are subsets of C. We use the words event and subset interchangeably in this
section. An elementary algebra of sets will prove quite useful for our purposes. We
now review this algebra below along with illustrative examples. For illustration, we
also make use of Venn diagrams. Consider the collection of Venn diagrams in
Figure 1.2.1. The interior of the rectangle in each plot represents the sample space
C. The shaded region in Panel (a) represents the event A.

A

A

Panel (a)

A ⊂ B

A

B

Panel (b)

A∪B

A B

Panel (c)

A∩B

A B

Panel (d)

Figure 1.2.1: A series of Venn diagrams. The sample space C is represented by
the interior of the rectangle in each plot. Panel (a) depicts the event A; Panel (b)
depicts A ⊂ B; Panel (c) depicts A ∪B; and Panel (d) depicts A ∩B.

We first define the complement of an event A.

Definition 1.2.1. The complement of an event A is the set of all elements in C
which are not in A. We denote the complement of A by Ac. That is, Ac = {x ∈ C :
x /∈ A}.
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The complement of A is represented by the white space in the Venn diagram in
Panel (a) of Figure 1.2.1.

The empty set is the event with no elements in it. It is denoted by φ. Note
that Cc = φ and φc = C. The next definition defines when one event is a subset of
another.

Definition 1.2.2. If each element of a set A is also an element of set B, the set A
is called a subset of the set B. This is indicated by writing A ⊂ B. If A ⊂ B and
also B ⊂ A, the two sets have the same elements, and this is indicated by writing
A = B.

Panel (b) of Figure 1.2.1 depicts A ⊂ B.
The event A or B is defined as follows:

Definition 1.2.3. Let A and B be events. Then the union of A and B is the set
of all elements that are in A or in B or in both A and B. The union of A and B
is denoted by A ∪B

Panel (c) of Figure 1.2.1 shows A ∪B.
The event that both A and B occur is defined by,

Definition 1.2.4. Let A and B be events. Then the intersection of A and B is
the set of all elements that are in both A and B. The intersection of A and B is
denoted by A ∩B

Panel (d) of Figure 1.2.1 illustrates A ∩B.
Two events are disjoint if they have no elements in common. More formally we

define

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if A∩B = φ

If A and B are disjoint, then we say A ∪B forms a disjoint union. The next two
examples illustrate these concepts.

Example 1.2.1. Suppose we have a spinner with the numbers 1 through 10 on
it. The experiment is to spin the spinner and record the number spun. Then
C = {1, 2, . . . , 10}. Define the events A, B, and C by A = {1, 2}, B = {2, 3, 4}, and
C = {3, 4, 5, 6}, respectively.

Ac = {3, 4, . . . , 10}; A ∪B = {1, 2, 3, 4}; A ∩B = {2}
A ∩ C = φ; B ∩ C = {3, 4}; B ∩ C ⊂ B; B ∩ C ⊂ C

A ∪ (B ∩ C) = {1, 2} ∪ {3, 4} = {1, 2, 3, 4} (1.2.1)

(A ∪B) ∩ (A ∪ C) = {1, 2, 3, 4} ∩ {1, 2, 3, 4, 5, 6} = {1, 2, 3, 4} (1.2.2)

The reader should verify these results.

Example 1.2.2. For this example, suppose the experiment is to select a real number
in the open interval (0, 5); hence, the sample space is C = (0, 5). Let A = (1, 3),
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B = (2, 4), and C = [3, 4.5).

A ∪B = (1, 4); A ∩B = (2, 3); B ∩ C = [3, 4)

A ∩ (B ∪ C) = (1, 3) ∩ (2, 4.5) = (2, 3) (1.2.3)

(A ∩B) ∪ (A ∩ C) = (2, 3) ∪ φ = (2, 3) (1.2.4)

A sketch of the real number line between 0 and 5 helps to verify these results.

Expressions (1.2.1)–(1.2.2) and (1.2.3)–(1.2.4) are illustrations of general dis-
tributive laws. For any sets A, B, and C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C). (1.2.5)

These follow directly from set theory. To verify each identity, sketch Venn diagrams
of both sides.

The next two identities are collectively known as DeMorgan’s Laws. For any
sets A and B,

(A ∩B)c = Ac ∪Bc (1.2.6)

(A ∪B)c = Ac ∩Bc. (1.2.7)

For instance, in Example 1.2.1,

(A∪B)c = {1, 2, 3, 4}c = {5, 6, . . . , 10} = {3, 4, . . . , 10}∩{{1, 5, 6, . . . , 10} = Ac∩Bc;

while, from Example 1.2.2,

(A ∩B)c = (2, 3)c = (0, 2] ∪ [3, 5) = [(0, 1] ∪ [3, 5)] ∪ [(0, 2] ∪ [4, 5)] = Ac ∪Bc.

As the last expression suggests, it is easy to extend unions and intersections to more
than two sets. If A1, A2, . . . , An are any sets, we define

A1 ∪A2 ∪ · · · ∪An = {x : x ∈ Ai, for some i = 1, 2, . . . , n} (1.2.8)

A1 ∩A2 ∩ · · · ∩An = {x : x ∈ Ai, for all i = 1, 2, . . . , n}. (1.2.9)

We often abbreviative these by ∪n
i=1Ai and ∩n

i=1Ai, respectively. Expressions for
countable unions and intersections follow directly; that is, if A1, A2, . . . , An . . . is a
sequence of sets then

A1 ∪A2 ∪ · · · = {x : x ∈ An, for some n = 1, 2, . . .} = ∪∞
n=1An (1.2.10)

A1 ∩A2 ∩ · · · = {x : x ∈ An, for all n = 1, 2, . . .} = ∩∞
n=1An. (1.2.11)

The next two examples illustrate these ideas.

Example 1.2.3. Suppose C = {1, 2, 3, . . .}. If An = {1, 3, . . . , 2n − 1} and Bn =
{n, n + 1, . . .}, for n = 1, 2, 3, . . ., then

∪∞
n=1An = {1, 3, 5, . . .}; ∩∞

n=1An = {1}; (1.2.12)

∪∞
n=1Bn = C; ∩∞

n=1Bn = φ. (1.2.13)



1.2. Sets 7

Example 1.2.4. Suppose C is the interval of real numbers (0, 5). Suppose Cn =
(1− n−1, 2 + n−1) and Dn = (n−1, 3− n−1), for n = 1, 2, 3, . . . . Then

∪∞
n=1Cn = (0, 3); ∩∞

n=1Cn = [1, 2] (1.2.14)

∪∞
n=1Dn = (0, 3); ∩∞

n=1Dn = (1, 2). (1.2.15)

We occassionally have sequences of sets that are monotone. They are of two
types. We say a sequence of sets {An} is nondecreasing, (nested upward), if
An ⊂ An+1 for n = 1, 2, 3, . . .. For such a sequence, we define

lim
n→∞An = ∪∞

n=1An. (1.2.16)

The sequence of sets An = {1, 3, . . . , 2n − 1} of Example 1.2.3 is such a sequence.
So in this case, we write limn→∞ An = {1, 3, 5, . . .}. The sequence of sets {Dn} of
Example 1.2.4 is also a nondecreasing suquence of sets.

The second type of monotone sets consists of the nonincreasing, (nested
downward) sequences. A sequence of sets {An} is nonincreasing, if An ⊃ An+1

for n = 1, 2, 3, . . .. In this case, we define

lim
n→∞

An = ∩∞
n=1An. (1.2.17)

The sequences of sets {Bn} and {Cn} of Examples 1.2.3 and 1.2.4, respectively, are
examples of nonincreasing sequences of sets.

1.2.2 Set Functions

Many of the functions used in calculus and in this book are functions that map real
numbers into real numbers. We are concerned also with functions that map sets
into real numbers. Such functions are naturally called functions of a set or, more
simply, set functions. Next we give some examples of set functions and evaluate
them for certain simple sets.

Example 1.2.5. Let C = R, the set of real numbers. For a subset A in C, let Q(A)
be equal to the number of points in A that correspond to positive integers. Then
Q(A) is a set function of the set A. Thus, if A = {x : 0 < x < 5}, then Q(A) = 4;
if A = {−2,−1}, then Q(A) = 0; and if A = {x : −∞ < x < 6}, then Q(A) = 5.

Example 1.2.6. Let C = R2. For a subset A of C, let Q(A) be the area of A
if A has a finite area; otherwise, let Q(A) be undefined. Thus, if A = {(x, y) :
x2 + y2 ≤ 1}, then Q(A) = π; if A = {(0, 0), (1, 1), (0, 1)}, then Q(A) = 0; and if
A = {(x, y) : 0 ≤ x, 0 ≤ y, x + y ≤ 1}, then Q(A) = 1

2 .

Often our set functions are defined in terms of sums or integrals.1 With this in
mind, we introduce the following notation. The symbol∫

A

f(x) dx

1Please see Chapters 2 and 3 of Mathematical Comments, at site noted in the Preface, for a
review of sums and integrals
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means the ordinary (Riemann) integral of f(x) over a prescribed one-dimensional
set A and the symbol ∫∫

A

g(x, y) dxdy

means the Riemann integral of g(x, y) over a prescribed two-dimensional set A.
This notation can be extended to integrals over n dimensions. To be sure, unless
these sets A and these functions f(x) and g(x, y) are chosen with care, the integrals
frequently fail to exist. Similarly, the symbol∑

A

f(x)

means the sum extended over all x ∈ A and the symbol∑∑
A

g(x, y)

means the sum extended over all (x, y) ∈ A. As with integration, this notation
extends to sums over n dimensions.

The first example is for a set function defined on sums involving a geometric
series. As pointed out in Example 2.3.1 of Mathematical Comments,2 if |a| < 1,
then the following series converges to 1/(1− a):

∞∑
n=0

an =
1

1− a
, if |a| < 1. (1.2.18)

Example 1.2.7. Let C be the set of all nonnegative integers and let A be a subset
of C. Define the set function Q by

Q(A) =
∑
n∈A

(
2

3

)n

. (1.2.19)

It follows from (1.2.18) that Q(C) = 3. If A = {1, 2, 3} then Q(A) = 38/27. Suppose
B = {1, 3, 5, . . .} is the set of all odd positive integers. The computation of Q(B) is
given next. This derivation consists of rewriting the series so that (1.2.18) can be
applied. Frequently, we perform such derivations in this book.

Q(B) =
∑
n∈B

(
2

3

)n

=

∞∑
n=0

(
2

3

)2n+1

=
2

3

∞∑
n=0

[(
2

3

)2
]n

=
2

3

1

1− (4/9)
=

6

5

In the next example, the set function is defined in terms of an integral involving
the exponential function f(x) = e−x.

2Downloadable at site noted in the Preface
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Example 1.2.8. Let C be the interval of positive real numbers, i.e., C = (0,∞).
Let A be a subset of C. Define the set function Q by

Q(A) =

∫
A

e−x dx, (1.2.20)

provided the integral exists. The reader should work through the following integra-
tions:

Q[(1, 3)] =

∫ 3

1

e−x dx = −e−x

∣∣∣∣3
1

= e−1 − e−3=̇0.318

Q[(5,∞)] =

∫ 3

1

e−x dx = −e−x

∣∣∣∣∞
5

= e−5=̇0.007

Q[(1, 3) ∪ [3, 5)] =

∫ 5

1

e−x dx =

∫ 3

1

e−x dx +

∫ 5

3

e−x dx = Q[(1, 3)] + Q([3, 5)]

Q(C) =

∫ ∞

0

e−x dx = 1.

Our final example, involves an n dimensional integral.

Example 1.2.9. Let C = Rn. For A in C define the set function

Q(A) =

∫
· · ·

∫
A

dx1dx2 · · · dxn,

provided the integral exists. For example, if A = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤
x2, 0 ≤ xi ≤ 1, for 1 = 3, 4, . . . , n}, then upon expressing the multiple integral as
an iterated integral3 we obtain

Q(A) =

∫ 1

0

[∫ x2

0

dx1

]
dx2 •

n∏
i=3

[∫ 1

0

dxi

]

=
x2

2

2

∣∣∣∣1
0

• 1 =
1

2
.

If B = {(x1, x2, . . . , xn) : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}, then

Q(B) =

∫ 1

0

[∫ xn

0

· · ·
[∫ x3

0

[∫ x2

0

dx1

]
dx2

]
· · · dxn−1

]
dxn

=
1

n!
,

where n! = n(n− 1) · · · 3 · 2 · 1.

3For a discussion of multiple integrals in terms of iterated integrals, see Chapter 3 of Mathe-

matical Comments.



10 Probability and Distributions

EXERCISES

1.2.1. Find the union C1 ∪C2 and the intersection C1 ∩C2 of the two sets C1 and
C2, where

(a) C1 = {0, 1, 2, }, C2 = {2, 3, 4}.

(b) C1 = {x : 0 < x < 2}, C2 = {x : 1 ≤ x < 3}.

(c) C1 = {(x, y) : 0 < x < 2, 1 < y < 2}, C2 = {(x, y) : 1 < x < 3, 1 < y < 3}.

1.2.2. Find the complement Cc of the set C with respect to the space C if

(a) C = {x : 0 < x < 1}, C = {x : 5
8 < x < 1}.

(b) C = {(x, y, z) : x2 + y2 + z2 ≤ 1}, C = {(x, y, z) : x2 + y2 + z2 = 1}.

(c) C = {(x, y) : |x|+ |y| ≤ 2}, C = {(x, y) : x2 + y2 < 2}.

1.2.3. List all possible arrangements of the four letters m, a, r, and y. Let C1 be
the collection of the arrangements in which y is in the last position. Let C2 be the
collection of the arrangements in which m is in the first position. Find the union
and the intersection of C1 and C2.

1.2.4. Concerning DeMorgan’s Laws (1.2.6) and (1.2.7):

(a) Use Venn diagrams to verify the laws.

(b) Show that the laws are true.

(c) Generalize the laws to countable unions and intersections.

1.2.5. By the use of Venn diagrams, in which the space C is the set of points
enclosed by a rectangle containing the circles C1, C2, and C3, compare the following
sets. These laws are called the distributive laws.

(a) C1 ∩ (C2 ∪ C3) and (C1 ∩ C2) ∪ (C1 ∩ C3).

(b) C1 ∪ (C2 ∩ C3) and (C1 ∪ C2) ∩ (C1 ∪ C3).

1.2.6. Show that the following sequences of sets, {Ck}, are nondecreasing, (1.2.16),
then find limk→∞ Ck.

(a) Ck = {x : 1/k ≤ x ≤ 3− 1/k}, k = 1, 2, 3, . . . .

(b) Ck = {(x, y) : 1/k ≤ x2 + y2 ≤ 4− 1/k}, k = 1, 2, 3, . . . .

1.2.7. Show that the following sequences of sets, {Ck}, are nonincreasing, (1.2.17),
then find limk→∞ Ck.

(a) Ck = {x : 2− 1/k < x ≤ 2}, k = 1, 2, 3, . . . .

(b) Ck = {x : 2 < x ≤ 2 + 1/k}, k = 1, 2, 3, . . . .
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(c) Ck = {(x, y) : 0 ≤ x2 + y2 ≤ 1/k}, k = 1, 2, 3, . . . .

1.2.8. For every one-dimensional set C, define the function Q(C) =
∑

C f(x),
where f(x) = (2

3 )(1
3 )x, x = 0, 1, 2, . . . , zero elsewhere. If C1 = {x : x = 0, 1, 2, 3}

and C2 = {x : x = 0, 1, 2, . . .}, find Q(C1) and Q(C2).
Hint: Recall that Sn = a + ar + · · · + arn−1 = a(1 − rn)/(1 − r) and, hence, it
follows that limn→∞ Sn = a/(1− r) provided that |r| < 1.

1.2.9. For every one-dimensional set C for which the integral exists, let Q(C) =∫
C f(x) dx, where f(x) = 6x(1− x), 0 < x < 1, zero elsewhere; otherwise, let Q(C)

be undefined. If C1 = {x : 1
4 < x < 3

4}, C2 = { 1
2}, and C3 = {x : 0 < x < 10}, find

Q(C1), Q(C2), and Q(C3).

1.2.10. For every two-dimensional set C contained in R2 for which the integral
exists, let Q(C) =

∫ ∫
C(x2 + y2) dxdy. If C1 = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1},

C2 = {(x, y) : −1 ≤ x = y ≤ 1}, and C3 = {(x, y) : x2 +y2 ≤ 1}, find Q(C1), Q(C2),
and Q(C3).

1.2.11. Let C denote the set of points that are interior to, or on the boundary of, a
square with opposite vertices at the points (0, 0) and (1, 1). Let Q(C) =

∫ ∫
C

dy dx.

(a) If C ⊂ C is the set {(x, y) : 0 < x < y < 1}, compute Q(C).

(b) If C ⊂ C is the set {(x, y) : 0 < x = y < 1}, compute Q(C).

(c) If C ⊂ C is the set {(x, y) : 0 < x/2 ≤ y ≤ 3x/2 < 1}, compute Q(C).

1.2.12. Let C be the set of points interior to or on the boundary of a cube with
edge of length 1. Moreover, say that the cube is in the first octant with one vertex
at the point (0, 0, 0) and an opposite vertex at the point (1, 1, 1). Let Q(C) =∫ ∫ ∫

C dxdydz.

(a) If C ⊂ C is the set {(x, y, z) : 0 < x < y < z < 1}, compute Q(C).

(b) If C is the subset {(x, y, z) : 0 < x = y = z < 1}, compute Q(C).

1.2.13. Let C denote the set {(x, y, z) : x2 + y2 + z2 ≤ 1}. Using spherical coordi-
nates, evaluate

Q(C) =

∫ ∫ ∫
C

√
x2 + y2 + z2 dxdydz.

1.2.14. To join a certain club, a person must be either a statistician or a math-
ematician or both. Of the 25 members in this club, 19 are statisticians and 16
are mathematicians. How many persons in the club are both a statistician and a
mathematician?

1.2.15. After a hard-fought football game, it was reported that, of the 11 starting
players, 8 hurt a hip, 6 hurt an arm, 5 hurt a knee, 3 hurt both a hip and an arm,
2 hurt both a hip and a knee, 1 hurt both an arm and a knee, and no one hurt all
three. Comment on the accuracy of the report.
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1.3 The Probability Set Function

Given an experiment, let C denote the sample space of all possible outcomes. As
discussed in Section 1.1, we are interested in assigning probabilities to events, i.e.,
subsets of C. What should be our collection of events? If C is a finite set, then we
could take the set of all subsets as this collection. For infinite sample spaces, though,
with assignment of probabilities in mind, this poses mathematical technicalities that
are better left to a course in probability theory. We assume that in all cases, the
collection of events is sufficiently rich to include all possible events of interest and is
closed under complements and countable unions of these events. Using DeMorgan’s
Laws, (1.2.6)–(1.2.7), the collection is then also closed under countable intersections.
We denote this collection of events by B. Technically, such a collection of events is
called a σ-field of subsets.

Now that we have a sample space, C, and our collection of events, B, we can define
the third component in our probability space, namely a probability set function. In
order to motivate its definition, we consider the relative frequency approach to
probability.

Remark 1.3.1. The definition of probability consists of three axioms which we
motivate by the following three intuitive properties of relative frequency. Let C be
a sample space and let A ⊂ C. Suppose we repeat the experiment N times. Then
the relative frequency of A is fA = #{A}/N , where #{A} denotes the number of
times A occurred in the N repetitions. Note that fA ≥ 0 and fC = 1. These are
the first two properties. For the third, suppose that A1 and A2 are disjoint events.
Then fA1∪A2 = fA1 + fA2 . These three properties of relative frequencies form the
axioms of a probability, except that the third axiom is in terms of countable unions.
As with the axioms of probability, the readers should check that the theorems we
prove below about probabilities agree with their intuition of relative frequency.

Definition 1.3.1 (Probability). Let C be a sample space and let B be the set of
events. Let P be a real-valued function defined on B. Then P is a probability set
function if P satisfies the following three conditions:

1. P (A) ≥ 0, for all A ∈ B.

2. P (C) = 1.

3. If {An} is a sequence of events in B and Am ∩An = φ for all m 
= n, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An).

A collection of events whose members are pairwise disjoint, as in (3), is said to
be a mutually exclusive collection and its union is often referred to as a disjoint
union. The collection is further said to be exhaustive if the union of its events is
the sample space, in which case

∑∞
n=1 P (An) = 1. We often say that a mutually

exclusive and exhaustive collection of events forms a partition of C.
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A probability set function tells us how the probability is distributed over the set
of events, B. In this sense we speak of a distribution of probability. We often drop
the word “set” and refer to P as a probability function.

The following theorems give us some other properties of a probability set func-
tion. In the statement of each of these theorems, P (A) is taken, tacitly, to be a
probability set function defined on the collection of events B of a sample space C.

Theorem 1.3.1. For each event A ∈ B, P (A) = 1− P (Ac).

Proof: We have C = A ∪Ac and A ∩Ac = φ. Thus, from (2) and (3) of Definition
1.3.1, it follows that

1 = P (A) + P (Ac),

which is the desired result.

Theorem 1.3.2. The probability of the null set is zero; that is, P (φ) = 0.

Proof: In Theorem 1.3.1, take A = φ so that Ac = C. Accordingly, we have

P (φ) = 1− P (C) = 1− 1 = 0

and the theorem is proved.

Theorem 1.3.3. If A and B are events such that A ⊂ B, then P (A) ≤ P (B).

Proof: Now B = A∪ (Ac ∩B) and A∩ (Ac ∩B) = φ. Hence, from (3) of Definition
1.3.1,

P (B) = P (A) + P (Ac ∩B).

From (1) of Definition 1.3.1, P (Ac ∩B) ≥ 0. Hence, P (B) ≥ P (A).

Theorem 1.3.4. For each A ∈ B, 0 ≤ P (A) ≤ 1.

Proof: Since φ ⊂ A ⊂ C, we have by Theorem 1.3.3 that

P (φ) ≤ P (A) ≤ P (C) or 0 ≤ P (A) ≤ 1,

the desired result.

Part (3) of the definition of probability says that P (A∪B) = P (A) +P (B) if A
and B are disjoint, i.e., A ∩ B = φ . The next theorem gives the rule for any two
events regardless if they are disjoint or not.

Theorem 1.3.5. If A and B are events in C, then

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof: Each of the sets A∪B and B can be represented, respectively, as a union of
nonintersecting sets as follows:

A ∪B = A ∪ (Ac ∩B) and B = (A ∩B) ∪ (Ac ∩B). (1.3.1)
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That these identities hold for all sets A and B follows from set theory. Also, the
Venn diagrams of Figure 1.3.1 offer a verification of them.

Thus, from (3) of Definition 1.3.1,

P (A ∪B) = P (A) + P (Ac ∩B)

and
P (B) = P (A ∩B) + P (Ac ∩B).

If the second of these equations is solved for P (Ac∩B) and this result is substituted
in the first equation, we obtain

P (A ∪B) = P (A) + P (B)− P (A ∩B).

This completes the proof.

Panel (a)

A∪B = A∪(Ac∩B)
A B

A = (A∩Bc)∪(A∩B)
A B

Panel (b)

Figure 1.3.1: Venn diagrams depicting the two disjoint unions given in expression
(1.3.1). Panel (a) depicts the first disjoint union while Panel (b) shows the second
disjoint union.

Example 1.3.1. Let C denote the sample space of Example 1.1.2. Let the proba-
bility set function assign a probability of 1

36 to each of the 36 points in C; that is, the
dice are fair. If C1 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)} and C2 = {(1, 2), (2, 2), (3, 2)},
then P (C1) = 5

36 , P (C2) = 3
36 , P (C1 ∪ C2) = 8

36 , and P (C1 ∩ C2) = 0.

Example 1.3.2. Two coins are to be tossed and the outcome is the ordered pair
(face on the first coin, face on the second coin). Thus the sample space may be
represented as C = {(H, H), (H, T ), (T, H), (T, T )}. Let the probability set function
assign a probability of 1

4 to each element of C. Let C1 = {(H, H), (H, T )} and
C2 = {(H, H), (T, H)}. Then P (C1) = P (C2) = 1

2 , P (C1 ∩ C2) = 1
4 , and, in

accordance with Theorem 1.3.5, P (C1 ∪ C2) = 1
2 + 1

2 − 1
4 = 3

4 .
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For a finite sample space, we can generate probabilities as follows. Let C =
{x1, x2, . . . , xm} be a finite set of m elements. Let p1, p2, . . . , pm be fractions such
that

0 ≤ pi ≤ 1 for i = 1, 2, . . . , m and
∑m

i=1 pi = 1. (1.3.2)

Suppose we define P by

P (A) =
∑
xi∈A

pi, for all subsets A of C. (1.3.3)

Then P (A) ≥ 0 and P (C) = 1. Further, it follows that P (A ∪ B) = P (A) + P (B)
when A ∩ B = φ. Therefore, P is a probability on C. For illustration, each of the
following four assignments forms a probability on C = {1, 2, . . . , 6}. For each, we
also compute P (A) for the event A = {1, 6}.

p1 = p2 = · · · = p6 =
1

6
; P (A) =

1

3
. (1.3.4)

p1 = p2 = 0.1, p3 = p4 = p5 = p6 = 0.2; P (A) = 0.3.

pi =
i

21
, i = 1, 2, . . . , 6; P (A) =

7

21
.

p1 =
3

π
, p2 = 1− 3

π
, p3 = p4 = p5 = p6 = 0.0; P (A) =

3

π
.

Note that the individual probabilities for the first probability set function,
(1.3.4), are the same. This is an example of the equilikely case which we now
formally define.

Definition 1.3.2 (Equilikely Case). Let C = {x1, x2, . . . , xm} be a finite sample
space. Let pi = 1/m for all i = 1, 2, . . . , m and for all subsets A of C define

P (A) =
∑
xi∈A

1

m
=

#(A)

m
,

where #(A) denotes the number of elements in A. Then P is a probability on C and
it is refereed to as the equilikely case.

Equilikely cases are frequently probability models of interest. Examples include:
the flip of a fair coin; five cards drawn from a well shuffled deck of 52 cards; a spin of
a fair spinner with the numbers 1 through 36 on it; and the upfaces of the roll of a
pair of balanced dice. For each of these experiments, as stated in the definition, we
only need to know the number of elements in an event to compute the probability
of that event. For example, a card player may be interested in the probability of
getting a pair (two of a kind) in a hand of five cards dealt from a well shuffled deck
of 52 cards. To compute this probability, we need to know the number of five card
hands and the number of such hands which contain a pair. Because the equilikely
case is often of interest, we next develop some counting rules which can be used to
compute the probabilities of events of interest.
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1.3.1 Counting Rules

We discuss three counting rules that are usually discussed in an elementary algebra
course.

The first rule is called the mn-rule (m times n-rule), which is also called the
multiplication rule. Let A = {x1, x2, . . . , xm} be a set of m elements and let
B = {y1, y2, . . . , yn} be a set of n elements. Then there are mn ordered pairs,
(xi, yj), i = 1, 2, . . . , m and j = 1, 2, . . . , n, of elements, the first from A and the
second from B. Informally, we often speak of ways, here. For example there are five
roads (ways) between cities I and II and there are ten roads (ways) between cities
II and III. Hence, there are 5 ∗ 10 = 50 ways to get from city I to city III by going
from city I to city II and then from city II to city III. This rule extends immediately
to more than two sets. For instance, suppose in a certain state that driver license
plates have the pattern of three letters followed by three numbers. Then there are
263 ∗ 103 possible license plates in this state.

Next, let A be a set with n elements. Suppose we are interested in k-tuples
whose components are elements of A. Then by the extended mn rule, there are
n · n · · ·n = nk such k-tuples whose components are elements of A. Next, suppose
k ≤ n and we are interested in k-tuples whose components are distinct (no repeats)
elements of A. There are n elements from which to choose for the first component,
n−1 for the second component, . . . , n− (k−1) for the kth. Hence, by the mn rule,
there are n(n − 1) · · · (n − (k − 1)) such k-tuples with distinct elements. We call
each such k-tuple a permutation and use the symbol P n

k to denote the number of
k permutations taken from a set of n elements. This number of permutations, Pn

k

is our second counting rule. We can rewrite it as

Pn
k = n(n− 1) · · · (n− (k − 1)) =

n!

(n− k)!
. (1.3.5)

Example 1.3.3 (Birthday Problem). Suppose there are n people in a room. As-
sume that n < 365 and that the people are unrelated in any way. Find the proba-
bility of the event A that at least 2 people have the same birthday. For convenience,
assign the numbers 1 though n to the people in the room. Then use n-tuples to
denote the birthdays of the first person through the nth person in the room. Using
the mn-rule, there are 365n possible birthday n-tuples for these n people. This
is the number of elements in the sample space. Now assume that birthdays are
equilikely to occur on any of the 365 days. Hence, each of these n-tuples has prob-
ability 365−n. Notice that the complement of A is the event that all the birthdays
in the room are distinct; that is, the number of n-tuples in Ac is P 365

n . Thus, the
probability of A is

P (A) = 1− P 365
n

365n
.

For instance, if n = 2 then P (A) = 1 − (365 ∗ 364)/(3652) = 0.0027. This formula
is not easy to compute by hand. The following R function4 computes the P (A) for
the input n and it can be downloaded at the sites mentioned in the Preface.

4An R primer for the course is found in Appendix B.
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bday = function(n){ bday = 1; nm1 = n - 1

for(j in 1:nm1){bday = bday*((365-j)/365)}

bday <- 1 - bday; return(bday)}

Assuming that the file bday.R contains this function, here is the R segment com-
puting P (A) for n = 10:

> source("bday.R")

> bday(10)

[1] 0.1169482

For our last counting rule, as with permutations, we are drawing from a set A
of n elements. Now, suppose order is not important, so instead of counting the
number of permutations we want to count the number of subsets of k elements
taken from A. We use the symbol

(
n
k

)
to denote the total number of these subsets.

Consider a subset of k elements from A. By the permutation rule it generates
P k

k = k(k − 1) · · · 1 = k! permutations. Furthermore, all these permutations are
distinct from the permutations generated by other subsets of k elements from A.
Finally, each permutation of k distinct elements drawn from A must be generated
by one of these subsets. Hence, we have shown that P n

k =
(
n
k

)
k!; that is,(

n

k

)
=

n!

k!(n− k)!
. (1.3.6)

We often use the terminology combinations instead of subsets. So we say that there
are

(
n
k

)
combinations of k things taken from a set of n things. Another common

symbol for
(
n
k

)
is Cn

k .
It is interesting to note that if we expand the binomial series,

(a + b)n = (a + b)(a + b) · · · (a + b),

we get

(a + b)n =

n∑
k=0

(
n

k

)
akbn−k, (1.3.7)

because we can select the k factors from which to take a in
(
n
k

)
ways. So

(
n
k

)
is also

referred to as a binomial coefficient.

Example 1.3.4 (Poker Hands). Let a card be drawn at random from an ordinary
deck of 52 playing cards that has been well shuffled. The sample space C consists of
52 elements, each element represents one and only one of the 52 cards. Because the
deck has been well shuffled, it is reasonable to assume that each of these outcomes
has the same probability 1

52 . Accordingly, if E1 is the set of outcomes that are
spades, P (E1) = 13

52 = 1
4 because there are 13 spades in the deck; that is, 1

4 is the
probability of drawing a card that is a spade. If E2 is the set of outcomes that
are kings, P (E2) = 4

52 = 1
13 because there are 4 kings in the deck; that is, 1

13 is
the probability of drawing a card that is a king. These computations are very easy
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because there are no difficulties in the determination of the number of elements in
each event.

However, instead of drawing only one card, suppose that five cards are taken,
at random and without replacement, from this deck; i.e, a five card poker hand. In
this instance, order is not important. So a hand is a subset of five elements drawn
from a set of 52 elements. Hence, by (1.3.6) there are

(
52
5

)
poker hands. If the

deck is well shuffled, each hand should be equilikely; i.e., each hand has probability
1/

(
52
5

)
. We can now compute the probabilities of some interesting poker hands. Let

E1 be the event of a flush, all five cards of the same suit. There are
(
4
1

)
= 4 suits

to choose for the flush and in each suit there are
(
13
5

)
possible hands; hence, using

the multiplication rule, the probability of getting a flush is

P (E1) =

(
4
1

)(
13
5

)(
52
5

) =
4 · 1287

2598960
= 0.00198.

Real poker players note that this includes the probability of obtaining a straight
flush.

Next, consider the probability of the event E2 of getting exactly three of a kind,
(the other two cards are distinct and are of different kinds). Choose the kind for
the three, in

(
13
1

)
ways; choose the three, in

(
4
3

)
ways; choose the other two kinds,

in
(
12
2

)
ways; and choose one card from each of these last two kinds, in

(
4
1

)(
4
1

)
ways.

Hence the probability of exactly three of a kind is

P (E2) =

(
13
1

)(
4
3

)(
12
2

)(
4
1

)2(
52
5

) = 0.0211.

Now suppose that E3 is the set of outcomes in which exactly three cards are
kings and exactly two cards are queens. Select the kings, in

(
4
3

)
ways, and select

the queens, in
(
4
2

)
ways. Hence, the probability of E3 is

P (E3) =

(
4

3

)(
4

2

)/(
52

5

)
= 0.0000093.

The event E3 is an example of a full house: three of one kind and two of another
kind. Exercise 1.3.19 asks for the determination of the probability of a full house.

1.3.2 Additional Properties of Probability

We end this section with several additional properties of probability which prove
useful in the sequel. Recall in Exercise 1.2.6 we said that a sequence of events
{Cn} is a nondecreasing sequence if Cn ⊂ Cn+1, for all n, in which case we wrote
limn→∞ Cn = ∪∞

n=1Cn. Consider limn→∞ P (Cn). The question is: can we legiti-
mately interchange the limit and P? As the following theorem shows, the answer
is yes. The result also holds for a decreasing sequence of events. Because of this
interchange, this theorem is sometimes referred to as the continuity theorem of
probability.
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Theorem 1.3.6. Let {Cn} be a nondecreasing sequence of events. Then

lim
n→∞

P (Cn) = P ( lim
n→∞

Cn) = P

( ∞⋃
n=1

Cn

)
. (1.3.8)

Let {Cn} be a decreasing sequence of events. Then

lim
n→∞

P (Cn) = P ( lim
n→∞

Cn) = P

( ∞⋂
n=1

Cn

)
. (1.3.9)

Proof. We prove the result (1.3.8) and leave the second result as Exercise 1.3.20.
Define the sets, called rings, as R1 = C1 and, for n > 1, Rn = Cn ∩ Cc

n−1. It
follows that

⋃∞
n=1 Cn =

⋃∞
n=1 Rn and that Rm ∩ Rn = φ, for m 
= n. Also,

P (Rn) = P (Cn) − P (Cn−1). Applying the third axiom of probability yields the
following string of equalities:

P
[

lim
n→∞

Cn

]
= P

( ∞⋃
n=1

Cn

)
= P

( ∞⋃
n=1

Rn

)
=

∞∑
n=1

P (Rn) = lim
n→∞

n∑
j=1

P (Rj)

= lim
n→∞

⎧⎨⎩P (C1)+
n∑

j=2

[P (Cj)− P (Cj−1)]

⎫⎬⎭= lim
n→∞

P (Cn). (1.3.10)

This is the desired result.

Another useful result for arbitrary unions is given by

Theorem 1.3.7 (Boole’s Inequality). Let {Cn} be an arbitrary sequence of events.
Then

P

( ∞⋃
n=1

Cn

)
≤

∞∑
n=1

P (Cn). (1.3.11)

Proof: Let Dn =
⋃n

i=1 Ci. Then {Dn} is an increasing sequence of events that go
up to

⋃∞
n=1 Cn. Also, for all j, Dj = Dj−1 ∪ Cj . Hence, by Theorem 1.3.5,

P (Dj) ≤ P (Dj−1) + P (Cj),

that is,
P (Dj)− P (Dj−1) ≤ P (Cj).

In this case, the Cis are replaced by the Dis in expression (1.3.10). Hence, using
the above inequality in this expression and the fact that P (C1) = P (D1), we have

P

( ∞⋃
n=1

Cn

)
= P

( ∞⋃
n=1

Dn

)
= lim

n→∞

⎧⎨⎩P (D1) +

n∑
j=2

[P (Dj)− P (Dj−1)]

⎫⎬⎭
≤ lim

n→∞

n∑
j=1

P (Cj) =

∞∑
n=1

P (Cn).
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Theorem 1.3.5 gave a general additive law of probability for the union of two
events. As the next remark shows, this can be extended to an additive law for an
arbitrary union.

Remark 1.3.2 (Inclusion Exclusion Formula). It is easy to show (Exercise 1.3.9)
that

P (C1 ∪ C2 ∪ C3) = p1 − p2 + p3,

where

p1 = P (C1) + P (C2) + P (C3)

p2 = P (C1 ∩ C2) + P (C1 ∩C3) + P (C2 ∩ C3)

p3 = P (C1 ∩ C2 ∩ C3). (1.3.12)

This can be generalized to the inclusion exclusion formula:

P (C1 ∪ C2 ∪ · · · ∪ Ck) = p1 − p2 + p3 − · · ·+ (−1)k+1pk, (1.3.13)

where pi equals the sum of the probabilities of all possible intersections involving i
sets.

When k = 3, it follows that p1 ≥ p2 ≥ p3, but more generally p1 ≥ p2 ≥ · · · ≥ pk.
As shown in Theorem 1.3.7,

p1 = P (C1) + P (C2) + · · ·+ P (Ck) ≥ P (C1 ∪ C2 ∪ · · · ∪ Ck).

For k = 2, we have

1 ≥ P (C1 ∪ C2) = P (C1) + P (C2)− P (C1 ∩C2),

which gives Bonferroni’s inequality,

P (C1 ∩C2) ≥ P (C1) + P (C2)− 1, (1.3.14)

that is only useful when P (C1) and P (C2) are large. The inclusion exclusion formula
provides other inequalities that are useful, such as

p1 ≥ P (C1 ∪ C2 ∪ · · · ∪Ck) ≥ p1 − p2

and

p1 − p2 + p3 ≥ P (C1 ∪ C2 ∪ · · · ∪ Ck) ≥ p1 − p2 + p3 − p4.

EXERCISES

1.3.1. A positive integer from one to six is to be chosen by casting a die. Thus the
elements c of the sample space C are 1, 2, 3, 4, 5, 6. Suppose C1 = {1, 2, 3, 4} and
C2 = {3, 4, 5, 6}. If the probability set function P assigns a probability of 1

6 to each
of the elements of C, compute P (C1), P (C2), P (C1 ∩ C2), and P (C1 ∪C2).
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1.3.2. A random experiment consists of drawing a card from an ordinary deck of
52 playing cards. Let the probability set function P assign a probability of 1

52 to
each of the 52 possible outcomes. Let C1 denote the collection of the 13 hearts and
let C2 denote the collection of the 4 kings. Compute P (C1), P (C2), P (C1 ∩ C2),
and P (C1 ∪ C2).

1.3.3. A coin is to be tossed as many times as necessary to turn up one head.
Thus the elements c of the sample space C are H, TH, TTH, TTTH, and so
forth. Let the probability set function P assign to these elements the respec-
tive probabilities 1

2 , 1
4 , 1

8 , 1
16 , and so forth. Show that P (C) = 1. Let C1 = {c :

c is H, TH, TTH, TTTH, or TTTTH}. Compute P (C1). Next, suppose that C2 =
{c : c is TTTTH or TTTTTH}. Compute P (C2), P (C1 ∩ C2), and P (C1 ∪ C2).

1.3.4. If the sample space is C = C1 ∪C2 and if P (C1) = 0.8 and P (C2) = 0.5, find
P (C1 ∩ C2).

1.3.5. Let the sample space be C = {c : 0 < c < ∞}. Let C ⊂ C be defined by
C = {c : 4 < c < ∞} and take P (C) =

∫
C e−x dx. Show that P (C) = 1. Evaluate

P (C), P (Cc), and P (C ∪Cc).

1.3.6. If the sample space is C = {c : −∞ < c <∞} and if C ⊂ C is a set for which
the integral

∫
C

e−|x| dx exists, show that this set function is not a probability set
function. What constant do we multiply the integrand by to make it a probability
set function?

1.3.7. If C1 and C2 are subsets of the sample space C, show that

P (C1 ∩ C2) ≤ P (C1) ≤ P (C1 ∪ C2) ≤ P (C1) + P (C2).

1.3.8. Let C1, C2, and C3 be three mutually disjoint subsets of the sample space
C. Find P [(C1 ∪C2) ∩C3] and P (Cc

1 ∪ Cc
2).

1.3.9. Consider Remark 1.3.2.

(a) If C1, C2, and C3 are subsets of C, show that

P (C1 ∪ C2 ∪ C3) = P (C1) + P (C2) + P (C3)− P (C1 ∩C2)

−P (C1 ∩C3)− P (C2 ∩ C3) + P (C1 ∩ C2 ∩ C3).

(b) Now prove the general inclusion exclusion formula given by the expression
(1.3.13).

Remark 1.3.3. In order to solve Exercises (1.3.10)–(1.3.19), certain reasonable
assumptions must be made.

1.3.10. A bowl contains 16 chips, of which 6 are red, 7 are white, and 3 are blue. If
four chips are taken at random and without replacement, find the probability that:
(a) each of the four chips is red; (b) none of the four chips is red; (c) there is at
least one chip of each color.
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1.3.11. A person has purchased 10 of 1000 tickets sold in a certain raffle. To
determine the five prize winners, five tickets are to be drawn at random and without
replacement. Compute the probability that this person wins at least one prize.
Hint: First compute the probability that the person does not win a prize.

1.3.12. Compute the probability of being dealt at random and without replacement
a 13-card bridge hand consisting of: (a) 6 spades, 4 hearts, 2 diamonds, and 1 club;
(b) 13 cards of the same suit.

1.3.13. Three distinct integers are chosen at random from the first 20 positive
integers. Compute the probability that: (a) their sum is even; (b) their product is
even.

1.3.14. There are five red chips and three blue chips in a bowl. The red chips
are numbered 1, 2, 3, 4, 5, respectively, and the blue chips are numbered 1, 2, 3,
respectively. If two chips are to be drawn at random and without replacement, find
the probability that these chips have either the same number or the same color.

1.3.15. In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines
five bulbs, which are selected at random and without replacement.

(a) Find the probability of at least one defective bulb among the five.

(b) How many bulbs should be examined so that the probability of finding at least
one bad bulb exceeds 1

2?

1.3.16. For the birthday problem, Example 1.3.3, use the given R function bday to
determine the value of n so that p(n) ≥ 0.5 and p(n − 1) < 0.5, where p(n) is the
probability that at least two people in the room of n people have the same birthday.

1.3.17. If C1, . . . , Ck are k events in the sample space C, show that the probability
that at least one of the events occurs is one minus the probability that none of them
occur; i.e.,

P (C1 ∪ · · · ∪ Ck) = 1− P (Cc
1 ∩ · · · ∩ Cc

k). (1.3.15)

1.3.18. A secretary types three letters and the three corresponding envelopes. In
a hurry, he places at random one letter in each envelope. What is the probability
that at least one letter is in the correct envelope? Hint: Let Ci be the event that
the ith letter is in the correct envelope. Expand P (C1 ∪C2 ∪C3) to determine the
probability.

1.3.19. Consider poker hands drawn from a well-shuffled deck as described in Ex-
ample 1.3.4. Determine the probability of a full house, i.e, three of one kind and
two of another.

1.3.20. Prove expression (1.3.9).

1.3.21. Suppose the experiment is to choose a real number at random in the in-
terval (0, 1). For any subinterval (a, b) ⊂ (0, 1), it seems reasonable to assign the
probability P [(a, b)] = b−a; i.e., the probability of selecting the point from a subin-
terval is directly proportional to the length of the subinterval. If this is the case,
choose an appropriate sequence of subintervals and use expression (1.3.9) to show
that P [{a}] = 0, for all a ∈ (0, 1).
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1.3.22. Consider the events C1, C2, C3.

(a) Suppose C1, C2, C3 are mutually exclusive events. If P (Ci) = pi, i = 1, 2, 3,
what is the restriction on the sum p1 + p2 + p3?

(b) In the notation of part (a), if p1 = 4/10, p2 = 3/10, and p3 = 5/10, are
C1, C2, C3 mutually exclusive?

For the last two exercises it is assumed that the reader is familiar with σ-fields.

1.3.23. Suppose D is a nonempty collection of subsets of C. Consider the collection
of events

B = ∩{E : D ⊂ E and E is a σ-field}.
Note that φ ∈ B because it is in each σ-field, and, hence, in particular, it is in each
σ-field E ⊃ D. Continue in this way to show that B is a σ-field.

1.3.24. Let C = R, where R is the set of all real numbers. Let I be the set of all
open intervals in R. The Borel σ-field on the real line is given by

B0 = ∩{E : I ⊂ E and E is a σ-field}.

By definition, B0 contains the open intervals. Because [a,∞) = (−∞, a)c and B0

is closed under complements, it contains all intervals of the form [a,∞), for a ∈ R.
Continue in this way and show that B0 contains all the closed and half-open intervals
of real numbers.

1.4 Conditional Probability and Independence

In some random experiments, we are interested only in those outcomes that are
elements of a subset A of the sample space C. This means, for our purposes, that
the sample space is effectively the subset A. We are now confronted with the
problem of defining a probability set function with A as the “new” sample space.

Let the probability set function P (A) be defined on the sample space C and let
A be a subset of C such that P (A) > 0. We agree to consider only those outcomes
of the random experiment that are elements of A; in essence, then, we take A
to be a sample space. Let B be another subset of C. How, relative to the new
sample space A, do we want to define the probability of the event B? Once defined,
this probability is called the conditional probability of the event B, relative to the
hypothesis of the event A, or, more briefly, the conditional probability of B, given
A. Such a conditional probability is denoted by the symbol P (B|A). The “|” in this
symbol is usually read as “given.” We now return to the question that was raised
about the definition of this symbol. Since A is now the sample space, the only
elements of B that concern us are those, if any, that are also elements of A, that
is, the elements of A∩B. It seems desirable, then, to define the symbol P (B|A) in
such a way that

P (A|A) = 1 and P (B|A) = P (A ∩B|A).
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Moreover, from a relative frequency point of view, it would seem logically incon-
sistent if we did not require that the ratio of the probabilities of the events A ∩ B
and A, relative to the space A, be the same as the ratio of the probabilities of these
events relative to the space C; that is, we should have

P (A ∩B|A)

P (A|A)
=

P (A ∩B)

P (A)
.

These three desirable conditions imply that the relation conditional probability is
reasonably defined as

Definition 1.4.1 (Conditional Probability). Let B and A be events with P (A) > 0.
Then we defined the conditional probability of B given A as

P (B|A) =
P (A ∩B)

P (A)
. (1.4.1)

Moreover, we have

1. P (B|A) ≥ 0.

2. P (A|A) = 1.

3. P (∪∞
n=1Bn|A) =

∑∞
n=1 P (Bn|A), provided that B1, B2, . . . are mutually ex-

clusive events.

Properties (1) and (2) are evident. For Property (3), suppose the sequence of
events B1, B2, . . . is mutually exclusive. It follows that also (Bn∩A)∩(Bm∩A) = φ,
n 
= m. Using this and the first of the distributive laws (1.2.5) for countable unions,
we have

P (∪∞
n=1Bn|A) =

P [∪∞
n=1(Bn ∩A)]

P (A)

=

∞∑
n=1

P [Bn ∩A]

P (A)

=
∞∑

n=1

P [Bn|A].

Properties (1)–(3) are precisely the conditions that a probability set function must
satisfy. Accordingly, P (B|A) is a probability set function, defined for subsets of A.
It may be called the conditional probability set function, relative to the hypothesis
A, or the conditional probability set function, given A. It should be noted that
this conditional probability set function, given A, is defined at this time only when
P (A) > 0.

Example 1.4.1. A hand of five cards is to be dealt at random without replacement
from an ordinary deck of 52 playing cards. The conditional probability of an all-
spade hand (B), relative to the hypothesis that there are at least four spades in the
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hand (A), is, since A ∩B = B,

P (B|A) =
P (B)

P (A)
=

(
13
5

)
/
(
52
5

)[(
13
4

)(
39
1

)
+

(
13
5

)]
/
(
52
5

)
=

(
13
5

)(
13
4

)(
39
1

)
+

(
13
5

) = 0.0441.

Note that this is not the same as drawing for a spade to complete a flush in draw
poker; see Exercise 1.4.3.

From the definition of the conditional probability set function, we observe that

P (A ∩B) = P (A)P (B|A).

This relation is frequently called the multiplication rule for probabilities. Some-
times, after considering the nature of the random experiment, it is possible to make
reasonable assumptions so that both P (A) and P (B|A) can be assigned. Then
P (A ∩B) can be computed under these assumptions. This is illustrated in Exam-
ples 1.4.2 and 1.4.3.

Example 1.4.2. A bowl contains eight chips. Three of the chips are red and
the remaining five are blue. Two chips are to be drawn successively, at random
and without replacement. We want to compute the probability that the first draw
results in a red chip (A) and that the second draw results in a blue chip (B). It is
reasonable to assign the following probabilities:

P (A) = 3
8 and P (B|A) = 5

7 .

Thus, under these assignments, we have P (A ∩B) = (3
8 )(5

7 ) = 15
56 = 0.2679.

Example 1.4.3. From an ordinary deck of playing cards, cards are to be drawn
successively, at random and without replacement. The probability that the third
spade appears on the sixth draw is computed as follows. Let A be the event of two
spades in the first five draws and let B be the event of a spade on the sixth draw.
Thus the probability that we wish to compute is P (A∩B). It is reasonable to take

P (A) =

(
13
2

)(
39
3

)(
52
5

) = 0.2743 and P (B|A) =
11

47
= 0.2340.

The desired probability P (A ∩B) is then the product of these two numbers, which
to four places is 0.0642.

The multiplication rule can be extended to three or more events. In the case of
three events, we have, by using the multiplication rule for two events,

P (A ∩B ∩ C) = P [(A ∩B) ∩ C]

= P (A ∩B)P (C|A ∩B).



26 Probability and Distributions

But P (A ∩B) = P (A)P (B|A). Hence, provided P (A ∩B) > 0,

P (A ∩B ∩C) = P (A)P (B|A)P (C|A ∩B).

This procedure can be used to extend the multiplication rule to four or more
events. The general formula for k events can be proved by mathematical induction.

Example 1.4.4. Four cards are to be dealt successively, at random and without
replacement, from an ordinary deck of playing cards. The probability of receiving a
spade, a heart, a diamond, and a club, in that order, is (13

52 )(13
51 )(13

50 )(13
49 ) = 0.0044.

This follows from the extension of the multiplication rule.

Consider k mutually exclusive and exhaustive events A1, A2, . . . , Ak such that
P (Ai) > 0, i = 1, 2, . . . , k; i.e., A1, A2, . . . , Ak form a partition of C. Here the events
A1, A2, . . . , Ak do not need to be equally likely. Let B be another event such that
P (B) > 0. Thus B occurs with one and only one of the events A1, A2, . . . , Ak; that
is,

B = B ∩ (A1 ∪A2 ∪ · · ·Ak)

= (B ∩A1) ∪ (B ∩A2) ∪ · · · ∪ (B ∩Ak).

Since B ∩Ai, i = 1, 2, . . . , k, are mutually exclusive, we have

P (B) = P (B ∩A1) + P (B ∩A2) + · · ·+ P (B ∩Ak).

However, P (B ∩Ai) = P (Ai)P (B|Ai), i = 1, 2, . . . , k; so

P (B) = P (A1)P (B|A1) + P (A2)P (B|A2) + · · ·+ P (Ak)P (B|Ak)

=
k∑

i=1

P (Ai)P (B|Ai). (1.4.2)

This result is sometimes called the law of total probability and it leads to the
following important theorem.

Theorem 1.4.1 (Bayes). Let A1, A2, . . . , Ak be events such that P (Ai) > 0, i =
1, 2, . . . , k. Assume further that A1, A2, . . . , Ak form a partition of the sample space
C. Let B be any event. Then

P (Aj |B) =
P (Aj)P (B|Aj)∑k
i=1 P (Ai)P (B|Ai)

, (1.4.3)

Proof: Based on the definition of conditional probability, we have

P (Aj |B) =
P (B ∩Aj)

P (B)
=

P (Aj)P (B|Aj)

P (B)
.

The result then follows by the law of total probability, (1.4.2).
This theorem is the well-known Bayes’ Theorem. This permits us to calculate

the conditional probability of Aj , given B, from the probabilities of A1, A2, . . . , Ak

and the conditional probabilities of B, given Ai, i = 1, 2, . . . , k. The next three
examples illustrate the usefulness of Bayes Theorem to determine probabilities.
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Example 1.4.5. Say it is known that bowl A1 contains three red and seven blue
chips and bowl A2 contains eight red and two blue chips. All chips are identical
in size and shape. A die is cast and bowl A1 is selected if five or six spots show
on the side that is up; otherwise, bowl A2 is selected. For this situation, it seems
reasonable to assign P (A1) = 2

6 and P (A2) = 4
6 . The selected bowl is handed to

another person and one chip is taken at random. Say that this chip is red, an event
which we denote by B. By considering the contents of the bowls, it is reasonable
to assign the conditional probabilities P (B|A1) = 3

10 and P (B|A2) = 8
10 . Thus the

conditional probability of bowl A1, given that a red chip is drawn, is

P (A1|B) =
P (A1)P (B|A1)

P (A1)P (B|A1) + P (A2)P (B|A2)

=
(2
6 )( 3

10 )

(2
6 )( 3

10 ) + (4
6 )( 8

10 )
=

3

19
.

In a similar manner, we have P (A2|B) = 16
19 .

In Example 1.4.5, the probabilities P (A1) = 2
6 and P (A2) = 4

6 are called prior
probabilities of A1 and A2, respectively, because they are known to be due to the
random mechanism used to select the bowls. After the chip is taken and is observed
to be red, the conditional probabilities P (A1|B) = 3

19 and P (A2|B) = 16
19 are called

posterior probabilities. Since A2 has a larger proportion of red chips than does
A1, it appeals to one’s intuition that P (A2|B) should be larger than P (A2) and,
of course, P (A1|B) should be smaller than P (A1). That is, intuitively the chances
of having bowl A2 are better once that a red chip is observed than before a chip
is taken. Bayes’ theorem provides a method of determining exactly what those
probabilities are.

Example 1.4.6. Three plants, A1, A2, and A3, produce respectively, 10%, 50%,
and 40% of a company’s output. Although plant A1 is a small plant, its manager
believes in high quality and only 1% of its products are defective. The other two, A2

and A3, are worse and produce items that are 3% and 4% defective, respectively.
All products are sent to a central warehouse. One item is selected at random
and observed to be defective, say event B. The conditional probability that it
comes from plant A1 is found as follows. It is natural to assign the respective prior
probabilities of getting an item from the plants as P (A1) = 0.1, P (A2) = 0.5, and
P (A3) = 0.4, while the conditional probabilities of defective items are P (B|A1) =
0.01, P (B|A2) = 0.03, and P (B|A3) = 0.04. Thus the posterior probability of A1,
given a defective, is

P (A1|B) =
P (A1 ∩B)

P (B)
=

(0.10)(0.01)

(0.1)(0.01) + (0.5)(0.03) + (0.4)(0.04)
=

1

32
.

This is much smaller than the prior probability P (A1) = 1
10 . This is as it should be

because the fact that the item is defective decreases the chances that it comes from
the high-quality plant A1.
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Example 1.4.7. Suppose we want to investigate the percentage of abused children
in a certain population. The events of interest are: a child is abused (A) and its
complement a child is not abused (N = Ac). For the purposes of this example, we
assume that P (A) = 0.01 and, hence, P (N) = 0.99. The classification as to whether
a child is abused or not is based upon a doctor’s examination. Because doctors are
not perfect, they sometimes classify an abused child (A) as one that is not abused
(ND, where ND means classified as not abused by a doctor). On the other hand,
doctors sometimes classify a nonabused child (N) as abused (AD). Suppose these
error rates of misclassification are P (ND |A) = 0.04 and P (AD |N) = 0.05; thus
the probabilities of correct decisions are P (AD |A) = 0.96 and P (ND |N) = 0.95.
Let us compute the probability that a child taken at random is classified as abused
by a doctor. Because this can happen in two ways, A ∩AD or N ∩AD, we have

P (AD) = P (AD |A)P (A)+P (AD |N)P (N) = (0.96)(0.01)+(0.05)(0.99) = 0.0591,

which is quite high relative to the probability of an abused child, 0.01. Further, the
probability that a child is abused when the doctor classified the child as abused is

P (A |AD) =
P (A ∩AD)

P (AD)
=

(0.96)(0.01)

0.0591
= 0.1624,

which is quite low. In the same way, the probability that a child is not abused
when the doctor classified the child as abused is 0.8376, which is quite high. The
reason that these probabilities are so poor at recording the true situation is that the
doctors’ error rates are so high relative to the fraction 0.01 of the population that
is abused. An investigation such as this would, hopefully, lead to better training of
doctors for classifying abused children. See also Exercise 1.4.17.

1.4.1 Independence

Sometimes it happens that the occurrence of event A does not change the probability
of event B; that is, when P (A) > 0,

P (B|A) = P (B).

In this case, we say that the events A and B are independent . Moreover, the
multiplication rule becomes

P (A ∩B) = P (A)P (B|A) = P (A)P (B). (1.4.4)

This, in turn, implies, when P (B) > 0, that

P (A|B) =
P (A ∩B)

P (B)
=

P (A)P (B)

P (B)
= P (A).

Note that if P (A) > 0 and P (B) > 0, then by the above discussion, independence
is equivalent to

P (A ∩B) = P (A)P (B). (1.4.5)

What if either P (A) = 0 or P (B) = 0? In either case, the right side of (1.4.5) is 0.
However, the left side is 0 also because A∩B ⊂ A and A ∩B ⊂ B. Hence, we take
Equation (1.4.5) as our formal definition of independence; that is,
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Definition 1.4.2. Let A and B be two events. We say that A and B are inde-
pendent if P (A ∩B) = P (A)P (B).

Suppose A and B are independent events. Then the following three pairs of
events are independent: Ac and B, A and Bc, and Ac and Bc. We show the first
and leave the other two to the exercises; see Exercise 1.4.11. Using the disjoint
union, B = (Ac ∩B) ∪ (A ∩B), we have

P (Ac∩B) = P (B)−P (A∩B) = P (B)−P (A)P (B) = [1−P (A)]P (B) = P (Ac)P (B).
(1.4.6)

Hence, Ac and B are also independent.

Remark 1.4.1. Events that are independent are sometimes called statistically in-
dependent, stochastically independent, or independent in a probability sense. In
most instances, we use independent without a modifier if there is no possibility of
misunderstanding.

Example 1.4.8. A red die and a white die are cast in such a way that the numbers
of spots on the two sides that are up are independent events. If A represents a
four on the red die and B represents a three on the white die, with an equally
likely assumption for each side, we assign P (A) = 1

6 and P (B) = 1
6 . Thus, from

independence, the probability of the ordered pair (red = 4, white = 3) is

P [(4, 3)] = (1
6 )(1

6 ) = 1
36 .

The probability that the sum of the up spots of the two dice equals seven is

P [(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)]

=
(

1
6

) (
1
6

)
+

(
1
6

) (
1
6

)
+

(
1
6

) (
1
6

)
+

(
1
6

) (
1
6

)
+

(
1
6

) (
1
6

)
+

(
1
6

) (
1
6

)
= 6

36 .

In a similar manner, it is easy to show that the probabilities of the sums of the
upfaces 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are, respectively,

1
36 , 2

36 , 3
36 , 4

36 , 5
36 , 6

36 , 5
36 , 4

36 , 3
36 , 2

36 , 1
36 .

Suppose now that we have three events, A1, A2, and A3. We say that they are
mutually independent if and only if they are pairwise independent :

P (A1 ∩A3) = P (A1)P (A3), P (A1 ∩A2) = P (A1)P (A2),

P (A2 ∩A3) = P (A2)P (A3),

and
P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3).

More generally, the n events A1, A2, . . . , An are mutually independent if and only
if for every collection of k of these events, 2 ≤ k ≤ n, and for every permutation
d1, d2, . . . , dk of 1, 2, . . . , k,

P (Ad1 ∩Ad2 ∩ · · · ∩Adk
) = P (Ad1)P (Ad2) · · ·P (Adk

).
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In particular, if A1, A2, . . . , An are mutually independent, then

P (A1 ∩A2 ∩ · · · ∩An) = P (A1)P (A2) · · ·P (An).

Also, as with two sets, many combinations of these events and their complements
are independent, such as

1. The events Ac
1 and A2 ∪Ac

3 ∪A4 are independent,

2. The events A1 ∪Ac
2 , Ac

3 and A4 ∩Ac
5 are mutually independent.

If there is no possibility of misunderstanding, independent is often used without the
modifier mutually when considering more than two events.

Example 1.4.9. Pairwise independence does not imply mutual independence. As
an example, suppose we twice spin a fair spinner with the numbers 1, 2, 3, and 4.
Let A1 be the event that the sum of the numbers spun is 5, let A2 be the event that
the first number spun is a 1, and let A3 be the event that the second number spun
is a 4. Then P (Ai) = 1/4, i = 1, 2, 3, and for i 
= j, P (Ai ∩ Aj) = 1/16. So the
three events are pairwise independent. But A1 ∩A2 ∩A3 is the event that (1, 4) is
spun, which has probability 1/16 
= 1/64 = P (A1)P (A2)P (A3). Hence the events
A1, A2, and A3 are not mutually independent.

We often perform a sequence of random experiments in such a way that the
events associated with one of them are independent of the events associated with
the others. For convenience, we refer to these events as as outcomes of independent
experiments, meaning that the respective events are independent. Thus we often
refer to independent flips of a coin or independent casts of a die or, more generally,
independent trials of some given random experiment.

Example 1.4.10. A coin is flipped independently several times. Let the event Ai

represent a head (H) on the ith toss; thus Ac
i represents a tail (T). Assume that Ai

and Ac
i are equally likely; that is, P (Ai) = P (Ac

i ) = 1
2 . Thus the probability of an

ordered sequence like HHTH is, from independence,

P (A1 ∩A2 ∩Ac
3 ∩A4) = P (A1)P (A2)P (Ac

3)P (A4) = (1
2 )4 = 1

16 .

Similarly, the probability of observing the first head on the third flip is

P (Ac
1 ∩Ac

2 ∩A3) = P (Ac
1)P (Ac

2)P (A3) = (1
2 )3 = 1

8 .

Also, the probability of getting at least one head on four flips is

P (A1 ∪A2 ∪A3 ∪A4) = 1− P [(A1 ∪A2 ∪A3 ∪A4)
c]

= 1− P (Ac
1 ∩Ac

2 ∩Ac
3 ∩Ac

4)

= 1−
(

1
2

)4
= 15

16 .

See Exercise 1.4.13 to justify this last probability.
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Example 1.4.11. A computer system is built so that if component K1 fails, it is
bypassed and K2 is used. If K2 fails, then K3 is used. Suppose that the probability
that K1 fails is 0.01, that K2 fails is 0.03, and that K3 fails is 0.08. Moreover, we
can assume that the failures are mutually independent events. Then the probability
of failure of the system is

(0.01)(0.03)(0.08) = 0.000024,

as all three components would have to fail. Hence, the probability that the system
does not fail is 1− 0.000024 = 0.999976.

1.4.2 Simulations

Many of the exercises at the end of this section are designed to aid the reader in
his/her understanding of the concepts of conditional probability and independence.
With diligence and patience, the reader will derive the exact answer. Many real
life problems, though, are too complicated to allow for exact derivation. In such
cases, scientists often turn to computer simulations to estimate the answer. As an
example, suppose for an experiment, we want to obtain P (A) for some event A.
A program is written that performs one trial (one simulation) of the experiment
and it records whether or not A occurs. We then obtain n independent simulations
(runs) of the program. Denote by p̂n the proportion of these n simulations in which
A occurred. Then p̂n is our estimate of the P (A). Besides the estimation of P (A),
we also obtain an error of estimation given by 1.96 ∗

√
p̂n(1− p̂n)/n. As we discuss

theoretically in Chapter 4, we are 95% confident that P (A) lies in the interval

p̂n ± 1.96

√
p̂n(1− p̂n)

n
. (1.4.7)

In Chapter 4, we call this interval a 95% confidence interval for P (A). For now,
we make use of this confidence interval for our simulations.

Example 1.4.12. As an example, consider the game:

Person A tosses a coin and then person B rolls a die. This is repeated
independently until a head or one of the numbers 1, 2, 3, 4 appears, at
which time the game is stopped. Person A wins with the head and B
wins with one of the numbers 1, 2, 3, 4. Compute the probability P (A)
that person A wins the game.

For an exact derivation, notice that it is implicit in the statement A wins the game
that the game is completed. Using abbreviated notation, the game is completed if
H or T {1, . . . , 4} occurs. Using independence, the probability that A wins is thus
the conditional probability (1/2)/[(1/2) + (1/2)(4/6)] = 3/5.

The following R function, abgame, simulates the problem. This function can be
downloaded and sourced at the site discussed in the Preface. The first line of the
program sets up the draws for persons A and B, respectively. The second line sets
up a flag for the while loop and the returning values, Awin and Bwin are initialized
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at 0. The command sample(rngA,1,pr=pA) draws a sample of size 1 from rngA

with pmf pA. Each execution of the while loop returns one complete game. Further,
the executions are independent of one another.

abgame <- function(){

rngA <- c(0,1); pA <- rep(1/2,2); rngB <- 1:6; pB <- rep(1/6,6)

ic <- 0; Awin <- 0; Bwin <- 0

while(ic == 0){

x <- sample(rngA,1,pr=pA)

if(x==1){

ic <- 1; Awin <- 1

} else {

y <- sample(rngB,1,pr=pB)

if(y <= 4){ic <- 1; Bwin <- 1}

}

}

return(c(Awin,Bwin))

}

Notice that one and only one of Awin or Bwin receives the value 1 depending on
whether or not A or B wins. The next R segment simulates the game 10,000 times
and computes the estimate that A wins along with the error of estimation.

ind <- 0; nsims <- 10000

for(i in 1:nsims){

seeA <- abgame ()

if(seeA[1] == 1){ind <- ind + 1}

}

estpA <- ind/nsims

err <- 1.96*sqrt(estpA*(1-estpA)/nsims)

estpA; err

An execution of this code resulted in estpA = 0.6001 and err = 0.0096. As noted
above the probability that A wins is 0.6 which is in the interval 0.6001±0.0096. As
discussed in Chapter 4, we expect this to occur 95% of the time when using such a
confidence interval.

EXERCISES

1.4.1. If P (A1) > 0 and if A2, A3, A4, . . . are mutually disjoint sets, show that

P (A2 ∪A3 ∪ · · · |A1) = P (A2|A1) + P (A3|A1) + · · · .

1.4.2. Assume that P (A1 ∩A2 ∩A3) > 0. Prove that

P (A1 ∩A2 ∩A3 ∩A4) = P (A1)P (A2|A1)P (A3|A1 ∩A2)P (A4|A1 ∩A2 ∩A3).



1.4. Conditional Probability and Independence 33

1.4.3. Suppose we are playing draw poker. We are dealt (from a well-shuffled deck)
five cards, which contain four spades and another card of a different suit. We decide
to discard the card of a different suit and draw one card from the remaining cards
to complete a flush in spades (all five cards spades). Determine the probability of
completing the flush.

1.4.4. From a well-shuffled deck of ordinary playing cards, four cards are turned
over one at a time without replacement. What is the probability that the spades
and red cards alternate?

1.4.5. A hand of 13 cards is to be dealt at random and without replacement from
an ordinary deck of playing cards. Find the conditional probability that there are
at least three kings in the hand given that the hand contains at least two kings.

1.4.6. A drawer contains eight different pairs of socks. If six socks are taken at
random and without replacement, compute the probability that there is at least one
matching pair among these six socks. Hint: Compute the probability that there is
not a matching pair.

1.4.7. A pair of dice is cast until either the sum of seven or eight appears.

(a) Show that the probability of a seven before an eight is 6/11.

(b) Next, this pair of dice is cast until a seven appears twice or until each of a
six and eight has appeared at least once. Show that the probability of the six
and eight occurring before two sevens is 0.546.

1.4.8. In a certain factory, machines I, II, and III are all producing springs of the
same length. Machines I, II, and III produce 1%, 4%, and 2% defective springs,
respectively. Of the total production of springs in the factory, Machine I produces
30%, Machine II produces 25%, and Machine III produces 45%.

(a) If one spring is selected at random from the total springs produced in a given
day, determine the probability that it is defective.

(b) Given that the selected spring is defective, find the conditional probability
that it was produced by Machine II.

1.4.9. Bowl I contains six red chips and four blue chips. Five of these 10 chips
are selected at random and without replacement and put in bowl II, which was
originally empty. One chip is then drawn at random from bowl II. Given that this
chip is blue, find the conditional probability that two red chips and three blue chips
are transferred from bowl I to bowl II.

1.4.10. In an office there are two boxes of thumb drives: Box A1 contains seven 100
GB drives and three 500 GB drives, and box A2 contains two 100 GB drives and
eight 500 GB drives. A person is handed a box at random with prior probabilities
P (A1) = 2

3 and P (A2) = 1
3 , possibly due to the boxes’ respective locations. A drive

is then selected at random and the event B occurs if it is a 500 GB drive. Using an
equally likely assumption for each drive in the selected box, compute P (A1|B) and
P (A2|B).
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1.4.11. Suppose A and B are independent events. In expression (1.4.6) we showed
that Ac and B are independent events. Show similarly that the following pairs of
events are also independent: (a) A and Bc and (b) Ac and Bc.

1.4.12. Let C1 and C2 be independent events with P (C1) = 0.6 and P (C2) = 0.3.
Compute (a) P (C1 ∩ C2), (b) P (C1 ∪ C2), and (c) P (C1 ∪Cc

2).

1.4.13. Generalize Exercise 1.2.5 to obtain

(C1 ∪ C2 ∪ · · · ∪ Ck)c = Cc
1 ∩ Cc

2 ∩ · · · ∩ Cc
k.

Say that C1, C2, . . . , Ck are independent events that have respective probabilities
p1, p2, . . . , pk. Argue that the probability of at least one of C1, C2, . . . , Ck is equal
to

1− (1− p1)(1 − p2) · · · (1− pk).

1.4.14. Each of four persons fires one shot at a target. Let Ck denote the event that
the target is hit by person k, k = 1, 2, 3, 4. If C1, C2, C3, C4 are independent and
if P (C1) = P (C2) = 0.7, P (C3) = 0.9, and P (C4) = 0.4, compute the probability
that (a) all of them hit the target; (b) exactly one hits the target; (c) no one hits
the target; (d) at least one hits the target.

1.4.15. A bowl contains three red (R) balls and seven white (W) balls of exactly
the same size and shape. Select balls successively at random and with replacement
so that the events of white on the first trial, white on the second, and so on, can be
assumed to be independent. In four trials, make certain assumptions and compute
the probabilities of the following ordered sequences: (a) WWRW; (b) RWWW; (c)
WWWR; and (d) WRWW. Compute the probability of exactly one red ball in the
four trials.

1.4.16. A coin is tossed two independent times, each resulting in a tail (T) or a head
(H). The sample space consists of four ordered pairs: TT, TH, HT, HH. Making
certain assumptions, compute the probability of each of these ordered pairs. What
is the probability of at least one head?

1.4.17. For Example 1.4.7, obtain the following probabilities. Explain what they
mean in terms of the problem.

(a) P (ND).

(b) P (N |AD).

(c) P (A |ND).

(d) P (N |ND).

1.4.18. A die is cast independently until the first 6 appears. If the casting stops
on an odd number of times, Bob wins; otherwise, Joe wins.

(a) Assuming the die is fair, what is the probability that Bob wins?
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(b) Let p denote the probability of a 6. Show that the game favors Bob, for all p,
0 < p < 1.

1.4.19. Cards are drawn at random and with replacement from an ordinary deck
of 52 cards until a spade appears.

(a) What is the probability that at least four draws are necessary?

(b) Same as part (a), except the cards are drawn without replacement.

1.4.20. A person answers each of two multiple choice questions at random. If there
are four possible choices on each question, what is the conditional probability that
both answers are correct given that at least one is correct?

1.4.21. Suppose a fair 6-sided die is rolled six independent times. A match occurs
if side i is observed on the ith trial, i = 1, . . . , 6.

(a) What is the probability of at least one match on the six rolls? Hint: Let Ci

be the event of a match on the ith trial and use Exercise 1.4.13 to determine
the desired probability.

(b) Extend part (a) to a fair n-sided die with n independent rolls. Then determine
the limit of the probability as n→∞.

1.4.22. Players A and B play a sequence of independent games. Player A throws
a die first and wins on a “six.” If he fails, B throws and wins on a “five” or “six.”
If he fails, A throws and wins on a “four,” “five,” or “six.” And so on. Find the
probability of each player winning the sequence.

1.4.23. Let C1, C2, C3 be independent events with probabilities 1
2 , 1

3 , 1
4 , respec-

tively. Compute P (C1 ∪ C2 ∪ C3).

1.4.24. From a bowl containing five red, three white, and seven blue chips, select
four at random and without replacement. Compute the conditional probability of
one red, zero white, and three blue chips, given that there are at least three blue
chips in this sample of four chips.

1.4.25. Let the three mutually independent events C1, C2, and C3 be such that
P (C1) = P (C2) = P (C3) = 1

4 . Find P [(Cc
1 ∩Cc

2) ∪ C3].

1.4.26. Each bag in a large box contains 25 tulip bulbs. It is known that 60% of
the bags contain bulbs for 5 red and 20 yellow tulips, while the remaining 40% of
the bags contain bulbs for 15 red and 10 yellow tulips. A bag is selected at random
and a bulb taken at random from this bag is planted.

(a) What is the probability that it will be a yellow tulip?

(b) Given that it is yellow, what is the conditional probability it comes from a
bag that contained 5 red and 20 yellow bulbs?
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1.4.27. The following game is played. The player randomly draws from the set of
integers {1, 2, . . . , 20}. Let x denote the number drawn. Next the player draws at
random from the set {x, . . . , 25}. If on this second draw, he draws a number greater
than 21 he wins; otherwise, he loses.

(a) Determine the sum that gives the probability that the player wins.

(b) Write and run a line of R code that computes the probability that the player
wins.

(c) Write an R function that simulates the game and returns whether or not the
player wins.

(d) Do 10,000 simulations of your program in Part (c). Obtain the estimate and
confidence interval, (1.4.7), for the probability that the player wins. Does
your interval trap the true probability?

1.4.28. A bowl contains 10 chips numbered 1, 2, . . . , 10, respectively. Five chips are
drawn at random, one at a time, and without replacement. What is the probability
that two even-numbered chips are drawn and they occur on even-numbered draws?

1.4.29. A person bets 1 dollar to b dollars that he can draw two cards from an
ordinary deck of cards without replacement and that they will be of the same suit.
Find b so that the bet is fair.

1.4.30 (Monte Hall Problem). Suppose there are three curtains. Behind one curtain
there is a nice prize, while behind the other two there are worthless prizes. A
contestant selects one curtain at random, and then Monte Hall opens one of the
other two curtains to reveal a worthless prize. Hall then expresses the willingness
to trade the curtain that the contestant has chosen for the other curtain that has
not been opened. Should the contestant switch curtains or stick with the one that
she has? To answer the question, determine the probability that she wins the prize
if she switches.

1.4.31. A French nobleman, Chevalier de Méré, had asked a famous mathematician,
Pascal, to explain why the following two probabilities were different (the difference
had been noted from playing the game many times): (1) at least one six in four
independent casts of a six-sided die; (2) at least a pair of sixes in 24 independent
casts of a pair of dice. From proportions it seemed to de Méré that the probabilities
should be the same. Compute the probabilities of (1) and (2).

1.4.32. Hunters A and B shoot at a target; the probabilities of hitting the target
are p1 and p2, respectively. Assuming independence, can p1 and p2 be selected so
that

P (zero hits) = P (one hit) = P (two hits)?

1.4.33. At the beginning of a study of individuals, 15% were classified as heavy
smokers, 30% were classified as light smokers, and 55% were classified as nonsmok-
ers. In the five-year study, it was determined that the death rates of the heavy and



1.5. Random Variables 37

light smokers were five and three times that of the nonsmokers, respectively. A ran-
domly selected participant died over the five-year period: calculate the probability
that the participant was a nonsmoker.

1.4.34. A chemist wishes to detect an impurity in a certain compound that she is
making. There is a test that detects an impurity with probability 0.90; however,
this test indicates that an impurity is there when it is not about 5% of the time.
The chemist produces compounds with the impurity about 20% of the time. A
compound is selected at random from the chemist’s output. The test indicates that
an impurity is present. What is the conditional probability that the compound
actually has the impurity?

1.5 Random Variables

The reader perceives that a sample space C may be tedious to describe if the elements
of C are not numbers. We now discuss how we may formulate a rule, or a set of
rules, by which the elements c of C may be represented by numbers. We begin the
discussion with a very simple example. Let the random experiment be the toss of
a coin and let the sample space associated with the experiment be C = {H, T },
where H and T represent heads and tails, respectively. Let X be a function such
that X(T ) = 0 and X(H) = 1. Thus X is a real-valued function defined on the
sample space C which takes us from the sample space C to a space of real numbers
D = {0, 1}. We now formulate the definition of a random variable and its space.

Definition 1.5.1. Consider a random experiment with a sample space C. A func-
tion X, which assigns to each element c ∈ C one and only one number X(c) = x, is
called a random variable. The space or range of X is the set of real numbers
D = {x : x = X(c), c ∈ C}.

In this text, D generally is a countable set or an interval of real numbers. We call
random variables of the first type discrete random variables, while we call those of
the second type continuous random variables. In this section, we present examples
of discrete and continuous random variables and then in the next two sections we
discuss them separately.

Given a random variable X , its range D becomes the sample space of interest.
Besides inducing the sample space D, X also induces a probability which we call
the distribution of X .

Consider first the case where X is a discrete random variable with a finite space
D = {d1, . . . , dm}. The only events of interest in the new sample spaceD are subsets
of D. The induced probability distribution of X is also clear. Define the function
pX(di) on D by

pX(di) = P [{c : X(c) = di}], for i = 1, . . . , m. (1.5.1)

In the next section, we formally define pX(di) as the probability mass function
(pmf) of X . Then the induced probability distribution, PX(·), of X is

PX(D) =
∑

di∈D

pX(di), D ⊂ D.



38 Probability and Distributions

As Exercise 1.5.11 shows, PX(D) is a probability on D. An example is helpful here.

Example 1.5.1 (First Roll in the Game of Craps). Let X be the sum of the
upfaces on a roll of a pair of fair 6-sided dice, each with the numbers 1 through 6
on it. The sample space is C = {(i, j) : 1 ≤ i, j ≤ 6}. Because the dice are fair,
P [{(i, j)}] = 1/36. The random variable X is X(i, j) = i + j. The space of X is
D = {2, . . . , 12}. By enumeration, the pmf of X is given by

Range value x 2 3 4 5 6 7 8 9 10 11 12

Probability pX(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

To illustrate the computation of probabilities concerning X , suppose B1 = {x : x =
7, 11} and B2 = {x : x = 2, 3, 12}. Then, using the values of pX(x) given in the
table,

PX(B1) =
∑

x∈B1

pX(x) =
6

36
+

2

36
=

8

36

PX(B2) =
∑

x∈B2

pX(x) =
1

36
+

2

36
+

1

36
=

4

36
.

The second case is when X is a continuous random variable. In this case, D
is an interval of real numbers. In practice, continuous random variables are often
measurements. For example, the weight of an adult is modeled by a continuous
random variable. Here we would not be interested in the probability that a person
weighs exactly 200 pounds, but we may be interested in the probability that a
person weighs over 200 pounds. Generally, for the continuous random variables,
the simple events of interest are intervals. We can usually determine a nonnegative
function fX(x) such that for any interval of real numbers (a, b) ∈ D, the induced
probability distribution of X , PX(·), is defined as

PX [(a, b)] = P [{c ∈ C : a < X(c) < b}] =

∫ b

a

fX(x) dx; (1.5.2)

that is, the probability that X falls between a and b is the area under the curve
y = fX(x) between a and b. Besides fX(x) ≥ 0, we also require that PX(D) =∫
D fX(x) dx = 1 (total area under the curve over the sample space of X is 1). There

are some technical issues in defining events in general for the space D; however, it
can be shown that PX(D) is a probability on D; see Exercise 1.5.11. The function
fX is formally defined as the probability density function (pdf) of X in Section
1.7. An example is in order.

Example 1.5.2. For an example of a continuous random variable, consider the
following simple experiment: choose a real number at random from the interval
(0, 1). Let X be the number chosen. In this case the space of X is D = (0, 1). It is
not obvious as it was in the last example what the induced probability PX is. But
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there are some intuitive probabilities. For instance, because the number is chosen
at random, it is reasonable to assign

PX [(a, b)] = b− a, for 0 < a < b < 1. (1.5.3)

It follows that the pdf of X is

fX(x) =

{
1 0 < x < 1
0 elsewhere.

(1.5.4)

For example, the probability that X is less than an eighth or greater than seven
eighths is

P

[{
X <

1

8

}
∪

{
X >

7

8

}]
=

∫ 1
8

0

dx +

∫ 1

7
8

dx =
1

4
.

Notice that a discrete probability model is not a possibility for this experiment. For
any point a, 0 < a < 1, we can choose n0 so large such that 0 < a − n−1

0 < a <
a + n−1

0 < 1, i.e., {a} ⊂ (a− n−1
0 , a + n−1

0 ). Hence,

P (X = a) ≤ P

(
a− 1

n
< X < a +

1

n

)
=

2

n
, for all n ≥ n0. (1.5.5)

Since 2/n → 0 as n → ∞ and a is arbitrary, we conclude that P (X = a) = 0 for
all a ∈ (0, 1). Hence, the reasonable pdf, (1.5.4), for this model excludes a discrete
probability model.

Remark 1.5.1. In equations (1.5.1) and (1.5.2), the subscript X on pX and fX

identifies the pmf and pdf, respectively, with the random variable. We often use
this notation, especially when there are several random variables in the discussion.
On the other hand, if the identity of the random variable is clear, then we often
suppress the subscripts.

The pmf of a discrete random variable and the pdf of a continuous random
variable are quite different entities. The distribution function, though, uniquely
determines the probability distribution of a random variable. It is defined by:

Definition 1.5.2 (Cumulative Distribution Function). Let X be a random variable.
Then its cumulative distribution function (cdf) is defined by FX(x), where

FX(x) = PX((−∞, x]) = P ({c ∈ C : X(c) ≤ x}). (1.5.6)

As above, we shorten P ({c ∈ C : X(c) ≤ x}) to P (X ≤ x). Also, FX(x) is
often called simply the distribution function (df). However, in this text, we use the
modifier cumulative as FX(x) accumulates the probabilities less than or equal to x.

The next example discusses a cdf for a discrete random variable.

Example 1.5.3. Suppose we roll a fair die with the numbers 1 through 6 on it.
Let X be the upface of the roll. Then the space of X is {1, 2, . . . , 6} and its pmf
is pX(i) = 1/6, for i = 1, 2, . . . , 6. If x < 1, then FX(x) = 0. If 1 ≤ x < 2, then
FX(x) = 1/6. Continuing this way, we see that the cdf of X is an increasing step
function which steps up by pX(i) at each i in the space of X . The graph of FX is
given by Figure 1.5.1. Note that if we are given the cdf, then we can determine the
pmf of X .
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F(x)

x
1 2 3 4 5 6

1.0

0.5

(0, 0)

Figure 1.5.1: Distribution function for Example 1.5.3.

The following example discusses the cdf for the continuous random variable
discussed in Example 1.5.2.

Example 1.5.4 (Continuation of Example 1.5.2). Recall that X denotes a real
number chosen at random between 0 and 1. We now obtain the cdf of X . First, if
x < 0, then P (X ≤ x) = 0. Next, if x ≥ 1, then P (X ≤ x) = 1. Finally, if 0 < x <
1, it follows from expression (1.5.3) that P (X ≤ x) = P (0 < X ≤ x) = x − 0 = x.
Hence the cdf of X is

FX(x) =

⎧⎨⎩ 0 if x < 0
x if 0 ≤ x < 1
1 if x ≥ 1.

(1.5.7)

A sketch of the cdf of X is given in Figure 1.5.2. Note, however, the connection
between FX(x) and the pdf for this experiment fX(x), given in Example 1.5.2, is

FX(x) =

∫ x

−∞
fX(t) dt, for all x ∈ R,

and d
dxFX(x) = fX(x), for all x ∈ R, except for x = 0 and x = 1.

Let X and Y be two random variables. We say that X and Y are equal in

distribution and write X
D
= Y if and only if FX(x) = FY (x), for all x ∈ R. It

is important to note while X and Y may be equal in distribution, they may be
quite different. For instance, in the last example define the random variable Y as
Y = 1−X . Then Y 
= X . But the space of Y is the interval (0, 1), the same as X .
Further, the cdf of Y is 0 for y < 0; 1 for y ≥ 1; and for 0 ≤ y < 1, it is

FY (y) = P (Y ≤ y) = P (1−X ≤ y) = P (X ≥ 1− y) = 1− (1 − y) = y.

Hence, Y has the same cdf as X , i.e., Y
D
= X , but Y 
= X .
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F(x)

x
1

1

(0, 0)

Figure 1.5.2: Distribution function for Example 1.5.4.

The cdfs displayed in Figures 1.5.1 and 1.5.2 show increasing functions with lower
limits 0 and upper limits 1. In both figures, the cdfs are at least right continuous.
As the next theorem proves, these properties are true in general for cdfs.

Theorem 1.5.1. Let X be a random variable with cumulative distribution function
F (x). Then

(a) For all a and b, if a < b, then F (a) ≤ F (b) (F is nondecreasing).

(b) limx→−∞ F (x) = 0 (the lower limit of F is 0).

(c) limx→∞ F (x) = 1 (the upper limit of F is 1).

(d) limx ↓ x0
F (x) = F (x0) (F is right continuous).

Proof: We prove parts (a) and (d) and leave parts (b) and (c) for Exercise 1.5.10.
Part (a): Because a < b, we have {X ≤ a} ⊂ {X ≤ b}. The result then follows
from the monotonicity of P ; see Theorem 1.3.3.
Part (d): Let {xn} be any sequence of real numbers such that xn ↓ x0. Let Cn =
{X ≤ xn}. Then the sequence of sets {Cn} is decreasing and ∩∞

n=1Cn = {X ≤ x0}.
Hence, by Theorem 1.3.6,

lim
n→∞

F (xn) = P

( ∞⋂
n=1

Cn

)
= F (x0),

which is the desired result.

The next theorem is helpful in evaluating probabilities using cdfs.

Theorem 1.5.2. Let X be a random variable with the cdf FX . Then for a < b,
P [a < X ≤ b] = FX(b)− FX(a).
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Proof: Note that

{−∞ < X ≤ b} = {−∞ < X ≤ a} ∪ {a < X ≤ b}.
The proof of the result follows immediately because the union on the right side of
this equation is a disjoint union.

Example 1.5.5. Let X be the lifetime in years of a mechanical part. Assume that
X has the cdf

FX(x) =

{
0 x < 0
1− e−x 0 ≤ x.

The pdf of X , d
dxFX(x), is

fX(x) =

{
e−x 0 < x < ∞
0 elsewhere.

Actually the derivative does not exist at x = 0, but in the continuous case the next
theorem (1.5.3) shows that P (X = 0) = 0 and we can assign fX(0) = 0 without
changing the probabilities concerning X . The probability that a part has a lifetime
between one and three years is given by

P (1 < X ≤ 3) = FX(3)− FX(1) =

∫ 3

1

e−x dx.

That is, the probability can be found by FX(3)− FX(1) or evaluating the integral.
In either case, it equals e−1 − e−3 = 0.318.

Theorem 1.5.1 shows that cdfs are right continuous and monotone. Such func-
tions can be shown to have only a countable number of discontinuities. As the next
theorem shows, the discontinuities of a cdf have mass; that is, if x is a point of
discontinuity of FX , then we have P (X = x) > 0.

Theorem 1.5.3. For any random variable,

P [X = x] = FX(x)− FX(x−), (1.5.8)

for all x ∈ R, where FX(x−) = limz↑x FX(z).

Proof: For any x ∈ R, we have

{x} =

∞⋂
n=1

(
x− 1

n
, x

]
;

that is, {x} is the limit of a decreasing sequence of sets. Hence, by Theorem 1.3.6,

P [X = x] = P

[ ∞⋂
n=1

{
x− 1

n
< X ≤ x

}]

= lim
n→∞

P

[
x− 1

n
< X ≤ x

]
= lim

n→∞
[FX(x)− FX(x− (1/n))]

= FX(x)− FX(x−),
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which is the desired result.

Example 1.5.6. Let X have the discontinuous cdf

FX(x) =

⎧⎨⎩
0 x < 0
x/2 0 ≤ x < 1
1 1 ≤ x.

Then

P (−1 < X ≤ 1/2) = FX(1/2)− FX(−1) =
1

4
− 0 =

1

4
and

P (X = 1) = FX(1)− FX(1−) = 1− 1

2
=

1

2
.

The value 1/2 equals the value of the step of FX at x = 1.

Since the total probability associated with a random variable X of the discrete
type with pmf pX(x) or of the continuous type with pdf fX(x) is 1, then it must be
true that ∑

x∈D pX(x) = 1 and
∫
D fX(x) dx = 1,

where D is the space of X . As the next two examples show, we can use this
property to determine the pmf or pdf if we know the pmf or pdf down to a constant
of proportionality.

Example 1.5.7. Suppose X has the pmf

pX(x) =

{
cx x = 1, 2, . . . , 10
0 elsewhere,

for an appropriate constant c. Then

1 =

10∑
x=1

pX(x) =

10∑
x=1

cx = c(1 + 2 + · · ·+ 10) = 55c,

and, hence, c = 1/55.

Example 1.5.8. Suppose X has the pdf

fX(x) =

{
cx3 0 < x < 2
0 elsewhere,

for a constant c. Then

1 =

∫ 2

0

cx3 dx = c

[
x4

4

]2

0

= 4c,

and, hence, c = 1/4. For illustration of the computation of a probability involving
X , we have

P

(
1

4
< X < 1

)
=

∫ 1

1/4

x3

4
dx =

255

4096
= 0.06226.
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EXERCISES

1.5.1. Let a card be selected from an ordinary deck of playing cards. The outcome
c is one of these 52 cards. Let X(c) = 4 if c is an ace, let X(c) = 3 if c is a king,
let X(c) = 2 if c is a queen, let X(c) = 1 if c is a jack, and let X(c) = 0 otherwise.
Suppose that P assigns a probability of 1

52 to each outcome c. Describe the induced
probability PX(D) on the space D = {0, 1, 2, 3, 4} of the random variable X .

1.5.2. For each of the following, find the constant c so that p(x) satisfies the con-
dition of being a pmf of one random variable X .

(a) p(x) = c(2
3 )x, x = 1, 2, 3, . . . , zero elsewhere.

(b) p(x) = cx, x = 1, 2, 3, 4, 5, 6, zero elsewhere.

1.5.3. Let pX(x) = x/15, x = 1, 2, 3, 4, 5, zero elsewhere, be the pmf of X . Find
P (X = 1 or 2), P (1

2 < X < 5
2 ), and P (1 ≤ X ≤ 2).

1.5.4. Let pX(x) be the pmf of a random variable X . Find the cdf F (x) of X and
sketch its graph along with that of pX(x) if:

(a) pX(x) = 1, x = 0, zero elsewhere.

(b) pX(x) = 1
3 , x = −1, 0, 1, zero elsewhere.

(c) pX(x) = x/15, x = 1, 2, 3, 4, 5, zero elsewhere.

1.5.5. Let us select five cards at random and without replacement from an ordinary
deck of playing cards.

(a) Find the pmf of X , the number of hearts in the five cards.

(b) Determine P (X ≤ 1).

1.5.6. Let the probability set function of the random variable X be PX(D) =∫
D

f(x) dx, where f(x) = 2x/9, for x ∈ D = {x : 0 < x < 3}. Define the events
D1 = {x : 0 < x < 1} and D2 = {x : 2 < x < 3}. Compute PX(D1), PX(D2), and
PX(D1 ∪D2).

1.5.7. Let the space of the random variable X be D = {x : 0 < x < 1}. If
D1 = {x : 0 < x < 1

2} and D2 = {x : 1
2 ≤ x < 1}, find PX(D2) if PX(D1) = 1

4 .

1.5.8. Suppose the random variable X has the cdf

F (x) =

⎧⎨⎩
0 x < −1
x+2
4 −1 ≤ x < 1

1 1 ≤ x.

Write an R function to sketch the graph of F (x). Use your graph to obtain the
probabilities: (a) P (− 1

2 < X ≤ 1
2 ); (b) P (X = 0); (c) P (X = 1); (d) P (2 < X ≤ 3).
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1.5.9. Consider an urn that contains slips of paper each with one of the num-
bers 1, 2, . . . , 100 on it. Suppose there are i slips with the number i on it for
i = 1, 2, . . . , 100. For example, there are 25 slips of paper with the number 25. As-
sume that the slips are identical except for the numbers. Suppose one slip is drawn
at random. Let X be the number on the slip.

(a) Show that X has the pmf p(x) = x/5050, x = 1, 2, 3, . . . , 100, zero elsewhere.

(b) Compute P (X ≤ 50).

(c) Show that the cdf of X is F (x) = [x]([x] + 1)/10100, for 1 ≤ x ≤ 100, where
[x] is the greatest integer in x.

1.5.10. Prove parts (b) and (c) of Theorem 1.5.1.

1.5.11. Let X be a random variable with space D. For D ⊂ D, recall that the
probability induced by X is PX(D) = P [{c : X(c) ∈ D}]. Show that PX(D) is a
probability by showing the following:

(a) PX(D) = 1.

(b) PX(D) ≥ 0.

(c) For a sequence of sets {Dn} in D, show that

{c : X(c) ∈ ∪nDn} = ∪n{c : X(c) ∈ Dn}.

(d) Use part (c) to show that if {Dn} is sequence of mutually exclusive events,
then

PX (∪∞
n=1Dn) =

∞∑
n=1

PX(Dn).

Remark 1.5.2. In a probability theory course, we would show that the σ-field
(collection of events) forD is the smallest σ-field which contains all the open intervals
of real numbers; see Exercise 1.3.24. Such a collection of events is sufficiently rich
for discrete and continuous random variables.

1.6 Discrete Random Variables

The first example of a random variable encountered in the last section was an
example of a discrete random variable, which is defined next.

Definition 1.6.1 (Discrete Random Variable). We say a random variable is a
discrete random variable if its space is either finite or countable.

Example 1.6.1. Consider a sequence of independent flips of a coin, each resulting
in a head (H) or a tail (T). Moreover, on each flip, we assume that H and T are
equally likely; that is, P (H) = P (T ) = 1

2 . The sample space C consists of sequences
like TTHTHHT· · · . Let the random variable X equal the number of flips needed
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to obtain the first head. Hence, X(TTHTHHT· · · ) = 3. Clearly, the space of X is
D = {1, 2, 3, 4, . . .}. We see that X = 1 when the sequence begins with an H and
thus P (X = 1) = 1

2 . Likewise, X = 2 when the sequence begins with TH, which
has probability P (X = 2) = (1

2 )(1
2 ) = 1

4 from the independence. More generally,
if X = x, where x = 1, 2, 3, 4, . . . , there must be a string of x − 1 tails followed
by a head; that is, TT· · ·TH, where there are x − 1 tails in TT· · ·T. Thus, from
independence, we have a geometric sequence of probabilities, namely,

P (X = x) =

(
1

2

)x−1 (
1

2

)
=

(
1

2

)x

, x = 1, 2, 3, . . . , (1.6.1)

the space of which is countable. An interesting event is that the first head appears
on an odd number of flips; i.e., X ∈ {1, 3, 5, . . .}. The probability of this event is

P [X ∈ {1, 3, 5, . . .}] =
∞∑

x=1

(
1

2

)2x−1

=
1

2

∞∑
x=1

(
1

4

)x−1

=
1/2

1− (1/4)
=

2

3
.

As the last example suggests, probabilities concerning a discrete random vari-
able can be obtained in terms of the probabilities P (X = x), for x ∈ D. These
probabilities determine an important function, which we define as

Definition 1.6.2 (Probability Mass Function (pmf)). Let X be a discrete random
variable with space D. The probability mass function (pmf) of X is given by

pX(x) = P [X = x], for x ∈ D. (1.6.2)

Note that pmfs satisfy the following two properties:

(i) 0 ≤ pX(x) ≤ 1 , x ∈ D, and (ii)
∑

x∈D pX(x) = 1. (1.6.3)

In a more advanced class it can be shown that if a function satisfies properties (i)
and (ii) for a discrete set D, then this function uniquely determines the distribution
of a random variable.

Let X be a discrete random variable with space D. As Theorem 1.5.3 shows,
discontinuities of FX(x) define a mass; that is, if x is a point of discontinuity of FX ,
then P (X = x) > 0. We now make a distinction between the space of a discrete
random variable and these points of positive probability. We define the support of
a discrete random variable X to be the points in the space of X which have positive
probability. We often use S to denote the support of X . Note that S ⊂ D, but it
may be that S = D.

Also, we can use Theorem 1.5.3 to obtain a relationship between the pmf and
cdf of a discrete random variable. If x ∈ S, then pX(x) is equal to the size of the
discontinuity of FX at x. If x 
∈ S then P [X = x] = 0 and, hence, FX is continuous
at this x.

Example 1.6.2. A lot, consisting of 100 fuses, is inspected by the following proce-
dure. Five of these fuses are chosen at random and tested; if all five “blow” at the
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correct amperage, the lot is accepted. If, in fact, there are 20 defective fuses in the
lot, the probability of accepting the lot is, under appropriate assumptions,(

80
5

)(
100
5

) = 0.31931.

More generally, let the random variable X be the number of defective fuses among
the five that are inspected. The pmf of X is given by

pX(x) =

{
(20

x )( 80
5−x)

(100
5 )

for x = 0, 1, 2, 3, 4, 5

0 elsewhere.
(1.6.4)

Clearly, the space of X is D = {0, 1, 2, 3, 4, 5}, which is also its support. This is an
example of a random variable of the discrete type whose distribution is an illustra-
tion of a hypergeometric distribution, which is formally defined in Chapter 3.
Based on the above discussion, it is easy to graph the cdf of X ; see Exercise 1.6.5.

1.6.1 Transformations

A problem often encountered in statistics is the following. We have a random
variable X and we know its distribution. We are interested, though, in a random
variable Y which is some transformation of X , say, Y = g(X). In particular,
we want to determine the distribution of Y . Assume X is discrete with space DX .
Then the space of Y is DY = {g(x) : x ∈ DX}. We consider two cases.

In the first case, g is one-to-one. Then, clearly, the pmf of Y is obtained as

pY (y) = P [Y = y] = P [g(X) = y] = P [X = g−1(y)] = pX(g−1(y)). (1.6.5)

Example 1.6.3. Consider the random variable X of Example 1.6.1. Recall that X
was the flip number on which the first head appeared. Let Y be the number of flips
before the first head. Then Y = X − 1. In this case, the function g is g(x) = x− 1,
whose inverse is given by g−1(y) = y +1. The space of Y is DY = {0, 1, 2, . . .}. The
pmf of X is given by (1.6.1); hence, based on expression (1.6.5), the pmf of Y is

pY (y) = pX(y + 1) =

(
1

2

)y+1

, for y = 0, 1, 2, . . . .

Example 1.6.4. Let X have the pmf

pX(x) =

{
3!

x!(3−x)!

(
2
3

)x (
1
3

)3−x
x = 0, 1, 2, 3

0 elsewhere.

We seek the pmf pY (y) of the random variable Y = X2. The transformation
y = g(x) = x2 maps DX = {x : x = 0, 1, 2, 3} onto DY = {y : y = 0, 1, 4, 9}. In
general, y = x2 does not define a one-to-one transformation; here, however, it does,
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for there are no negative values of x in DX = {x : x = 0, 1, 2, 3}. That is, we have
the single-valued inverse function x = g−1(y) =

√
y (not −√y), and so

pY (y) = pX(
√

y) =
3!

(
√

y)!(3 −√y)!

(
2

3

)√
y (

1

3

)3−√
y

, y = 0, 1, 4, 9.

The second case is where the transformation, g(x), is not one-to-one. Instead of
developing an overall rule, for most applications involving discrete random variables
the pmf of Y can be obtained in a straightforward manner. We offer two examples
as illustrations.

Consider the geometric random variable in Example 1.6.3. Suppose we are
playing a game against the“house”(say, a gambling casino). If the first head appears
on an odd number of flips, we pay the house one dollar, while if it appears on an
even number of flips, we win one dollar from the house. Let Y denote our net gain.
Then the space of Y is {−1, 1}. In Example 1.6.1, we showed that the probability
that X is odd is 2

3 . Hence, the distribution of Y is given by pY (−1) = 2/3 and
pY (1) = 1/3.

As a second illustration, let Z = (X − 2)2, where X is the geometric random
variable of Example 1.6.1. Then the space of Z is DZ = {0, 1, 4, 9, 16, . . .}. Note
that Z = 0 if and only if X = 2; Z = 1 if and only if X = 1 or X = 3; while for the
other values of the space there is a one-to-one correspondence given by x =

√
z + 2,

for z ∈ {4, 9, 16, . . .}. Hence, the pmf of Z is

pZ(z) =

⎧⎨⎩
pX(2) = 1

4 for z = 0
pX(1) + pX(3) = 5

8 for z = 1

pX(
√

z + 2) = 1
4

(
1
2

)√z
for z = 4, 9, 16, . . . .

(1.6.6)

For verification, the reader is asked to show in Exercise 1.6.11 that the pmf of Z
sums to 1 over its space.

EXERCISES

1.6.1. Let X equal the number of heads in four independent flips of a coin. Using
certain assumptions, determine the pmf of X and compute the probability that X
is equal to an odd number.

1.6.2. Let a bowl contain 10 chips of the same size and shape. One and only one
of these chips is red. Continue to draw chips from the bowl, one at a time and at
random and without replacement, until the red chip is drawn.

(a) Find the pmf of X , the number of trials needed to draw the red chip.

(b) Compute P (X ≤ 4).

1.6.3. Cast a die a number of independent times until a six appears on the up side
of the die.

(a) Find the pmf p(x) of X , the number of casts needed to obtain that first six.
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(b) Show that
∑∞

x=1 p(x) = 1.

(c) Determine P (X = 1, 3, 5, 7, . . .).

(d) Find the cdf F (x) = P (X ≤ x).

1.6.4. Cast a die two independent times and let X equal the absolute value of the
difference of the two resulting values (the numbers on the up sides). Find the pmf
of X . Hint: It is not necessary to find a formula for the pmf.

1.6.5. For the random variable X defined in Example 1.6.2:

(a) Write an R function that returns the pmf. Note that in R, choose(m,k)
computes

(
m
k

)
.

(b) Write an R function that returns the the graph of the cdf.

1.6.6. For the random variable X defined in Example 1.6.1, graph the cdf of X .

1.6.7. Let X have a pmf p(x) = 1
3 , x = 1, 2, 3, zero elsewhere. Find the pmf of

Y = 2X + 1.

1.6.8. Let X have the pmf p(x) = (1
2 )x, x = 1, 2, 3, . . ., zero elsewhere. Find the

pmf of Y = X3.

1.6.9. Let X have the pmf p(x) = 1/3, x = −1, 0, 1. Find the pmf of Y = X2.

1.6.10. Let X have the pmf

p(x) =

(
1

2

)|x|
, x = −1,−2,−3, . . . .

Find the pmf of Y = X4.

1.6.11. Show that the function given in expression (1.6.6) is a pmf.

1.7 Continuous Random Variables

In the last section, we discussed discrete random variables. Another class of random
variables important in statistical applications is the class of continuous random
variables, which we define next.

Definition 1.7.1 (Continuous Random Variables). We say a random variable is a
continuous random variable if its cumulative distribution function FX(x) is a
continuous function for all x ∈ R.

Recall from Theorem 1.5.3 that P (X = x) = FX(x)− FX(x−), for any random
variable X . Hence, for a continuous random variable X , there are no points of
discrete mass; i.e., if X is continuous, then P (X = x) = 0 for all x ∈ R. Most
continuous random variables are absolutely continuous; that is,

FX(x) =

∫ x

−∞
fX(t) dt, (1.7.1)
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for some function fX(t). The function fX(t) is called a probability density func-
tion (pdf) of X . If fX(x) is also continuous, then the Fundamental Theorem of
Calculus implies that

d

dx
FX(x) = fX(x). (1.7.2)

The support of a continuous random variable X consists of all points x such
that fX(x) > 0. As in the discrete case, we often denote the support of X by S.

If X is a continuous random variable, then probabilities can be obtained by
integration; i.e.,

P (a < X ≤ b) = FX(b)− FX(a) =

∫ b

a

fX(t) dt.

Also, for continuous random variables,

P (a < X ≤ b) = P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X < b).

From the definition (1.7.2), note that pdfs satisfy the two properties

(i) fX(x) ≥ 0 and (ii)
∫∞
−∞ fX(t) dt = 1. (1.7.3)

The second property, of course, follows from FX(∞) = 1. In an advanced course in
probability, it is shown that if a function satisfies the above two properties, then it
is a pdf for a continuous random variable; see, for example, Tucker (1967).

Recall in Example 1.5.2 the simple experiment where a number was chosen
at random from the interval (0, 1). The number chosen, X , is an example of a
continuous random variable. Recall that the cdf of X is FX(x) = x, for 0 < x < 1.
Hence, the pdf of X is given by

fX(x) =

{
1 0 < x < 1
0 elsewhere.

(1.7.4)

Any continuous or discrete random variable X whose pdf or pmf is constant on
the support of X is said to have a uniform distribution; see Chapter 3 for a more
formal definition.

Example 1.7.1 (Point Chosen at Random Within the Unit Circle). Suppose we
select a point at random in the interior of a circle of radius 1. Let X be the
distance of the selected point from the origin. The sample space for the experiment
is C = {(w, y) : w2 + y2 < 1}. Because the point is chosen at random, it seems
that subsets of C which have equal area are equilikely. Hence, the probability of the
selected point lying in a set A ⊂ C is proportional to the area of A; i.e.,

P (A) =
area of A

π
.

For 0 < x < 1, the event {X ≤ x} is equivalent to the point lying in a circle of
radius x. By this probability rule, P (X ≤ x) = πx2/π = x2; hence, the cdf of X is

FX(x) =

⎧⎨⎩ 0 x < 0
x2 0 ≤ x < 1
1 1 ≤ x.

(1.7.5)
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Taking the derivative of FX(x), we obtain the pdf of X :

fX(x) =

{
2x 0 ≤ x < 1
0 elsewhere.

(1.7.6)

For illustration, the probability that the selected point falls in the ring with radii
1/4 and 1/2 is given by

P

(
1

4
< X ≤ 1

2

)
=

∫ 1
2

1
4

2w dw = w2

∣∣∣∣∣
1
2

1
4

=
3

16
.

Example 1.7.2. Let the random variable be the time in seconds between incoming
telephone calls at a busy switchboard. Suppose that a reasonable probability model
for X is given by the pdf

fX(x) =

{
1
4e−x/4 0 < x < ∞
0 elsewhere.

Note that fX satisfies the two properties of a pdf, namely, (i) f(x) ≥ 0 and (ii)∫ ∞

0

1

4
e−x/4 dx = −e−x/4

∣∣∣∣∞
0

= 1.

For illustration, the probability that the time between successive phone calls exceeds
4 seconds is given by

P (X > 4) =

∫ ∞

4

1

4
e−x/4 dx = e−1 = 0.3679.

The pdf and the probability of interest are depicted in Figure 1.7.1. From the figure,
the pdf has a long right tail and no left tail. We say that this distribution is skewed
right or positively skewed. This is an example of a gamma distribution which is
discussed in detail in Chapter 3.

1.7.1 Quantiles

Quantiles (percentiles) are easily interpretable characteristics of a distribution.

Definition 1.7.2 (Quantile). Let 0 < p < 1. The quantile of order p of the
distribution of a random variable X is a value ξp such that P (X < ξp) ≤ p and
P (X ≤ ξp) ≥ p. It is also known as the (100p)th percentile of X.

Examples include the median which is the quantile ξ1/2. The median is also
called the second quartile. It is a point in the domain of X that divides the mass
of the pdf into its lower and upper halves. The first and third quartiles divide each
of these halves into quarters. They are, respectively ξ1/4 and ξ3/4. We label these
quartiles as q1, q2 and q3, respectively. The difference iq = q3 − q1 is called the
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Figure 1.7.1: In Example 1.7.2, the area under the pdf to the right of 4 is P (X >
4).

interquartile range of X . The median is often used as a measure of center of the
distribution of X , while the interquartile range is used as a measure of spread or
dispersion of the distribution of X .

Quantiles need not be unique even for continuous random variables with pdfs.
For example, any point in the interval (2, 3) serves as a median for the following
pdf:

f(x) =

⎧⎨⎩ 3(1− x)(x − 2) 1 < x < 2
3(3− x)(x − 4) 3 < x < 4
0 elsewhere.

(1.7.7)

If, however, a quantile, say ξp, is in the support of an absolutely continuous random
variable X with cdf FX(x) then ξp is the unique solution to the equation:

ξp = F−1
X (p), (1.7.8)

where F−1
X (u) is the inverse function of FX(x). The next example serves as an

illustration.

Example 1.7.3. Let X be a continuous random variable with pdf

f(x) =
ex

(1 + 5ex)1.2
, −∞ < x < ∞. (1.7.9)

This pdf is a member of the log F -family of ditributions which is often used in the
modeling of the log of lifetime data. Note that X has the support space (−∞,∞).
The cdf of X is

F (x) = 1− (1 + 5e−x)−.2, −∞ < x < ∞,
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which is confirmed immediately by showing that F ′(x) = f(x). For the inverse of
the cdf, set u = F (x) and solve for u. A few steps of algebra lead to

F−1(u) = log
{
.2

[
(1− u)−5 − 1

]}
, 0 < u < 1.

Thus, ξp = F−1
X (p) = log

{
.2

[
(1− p)−5 − 1

]}
. The following three R functions can

be used to compute the pdf, cdf, and inverse cdf of F , respectively. These can be
downloaded at the site listed in the Preface.

dlogF <- function(x){exp(x)/(1+5*exp(x))^(1.2)}

plogF <- function(x){1- (1+5*exp(x))^(-.2)}

qlogF <- function(x){log(.2*((1-x)^(-5) - 1))}

Once the R function qlogF is sourced, it can be used to compute quantiles. The
following is an R script which results in the computation of the three quartiles of
X :

qlogF(.25) ; qlogF(.50); qlogF(.75)

-0.4419242; 1.824549; 5.321057

Figure 1.7.2 displays a plot of this pdf and its quartiles. Notice that this is another
example of a skewed-right distribution; i.e., the right-tail is much longer than left-
tail. In terms of the log-lifetime of mechanical parts having this distribution, it
follows that 50% of the parts survive beyond 1.83 log-units and 25% of the parts
live longer than 5.32 log-units. With the long-right tail, some parts attain a long
life.

1.7.2 Transformations

Let X be a continuous random variable with a known pdf fX . As in the discrete
case, we are often interested in the distribution of a random variable Y which is
some transformation of X , say, Y = g(X). Often we can obtain the pdf of Y by
first obtaining its cdf. We illustrate this with two examples.

Example 1.7.4. Let X be the random variable in Example 1.7.1. Recall that X
was the distance from the origin to the random point selected in the unit circle.
Suppose instead that we are interested in the square of the distance; that is, let
Y = X2. The support of Y is the same as that of X , namely, SY = (0, 1). What is
the cdf of Y ? By expression (1.7.5), the cdf of X is

FX(x) =

⎧⎨⎩
0 x < 0
x2 0 ≤ x < 1
1 1 ≤ x.

(1.7.10)

Let y be in the support of Y ; i.e., 0 < y < 1. Then, using expression (1.7.10) and
the fact that the support of X contains only positive numbers, the cdf of Y is

FY (y) = P (Y ≤ y) = P (X2 ≤ y) = P (X ≤ √y) = FX(
√

y) =
√

y
2

= y.
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Figure 1.7.2: A graph of the pdf (1.7.9) showing the three quartiles, q1, q2, and
q3, of the distribution. The probability mass in each of the four sections is 1/4.

It follows that the pdf of Y is

fY (y) =

{
1 0 < y < 1
0 elsewhere.

Example 1.7.5. Let fX(x) = 1
2 , −1 < x < 1, zero elsewhere, be the pdf of a

random variable X . Note that X has a uniform distribution with the interval of
support (−1, 1). Define the random variable Y by Y = X2. We wish to find the
pdf of Y . If y ≥ 0, the probability P (Y ≤ y) is equivalent to

P (X2 ≤ y) = P (−√y ≤ X ≤ √y).

Accordingly, the cdf of Y , FY (y) = P (Y ≤ y), is given by

FY (y) =

⎧⎪⎨⎪⎩
0 y < 0∫ √

y

−√
y

1
2 dx =

√
y 0 ≤ y < 1

1 1 ≤ y.

Hence, the pdf of Y is given by

fY (y) =

{ 1
2
√

y 0 < y < 1

0 elsewhere.

These examples illustrate the cumulative distribution function technique.
The transformation in Example 1.7.4 is one-to-one, and in such cases we can obtain
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a simple formula for the pdf of Y in terms of the pdf of X , which we record in the
next theorem.

Theorem 1.7.1. Let X be a continuous random variable with pdf fX(x) and support
SX . Let Y = g(X), where g(x) is a one-to-one differentiable function, on the sup-
port of X, SX . Denote the inverse of g by x = g−1(y) and let dx/dy = d[g−1(y)]/dy.
Then the pdf of Y is given by

fY (y) = fX(g−1(y))

∣∣∣∣dx

dy

∣∣∣∣ , for y ∈ SY , (1.7.11)

where the support of Y is the set SY = {y = g(x) : x ∈ SX}.

Proof: Since g(x) is one-to-one and continuous, it is either strictly monotonically
increasing or decreasing. Assume that it is strictly monotonically increasing, for
now. The cdf of Y is given by

FY (y) = P [Y ≤ y] = P [g(X) ≤ y] = P [X ≤ g−1(y)] = FX(g−1(y)). (1.7.12)

Hence, the pdf of Y is

fY (y) =
d

dy
FY (y) = fX(g−1(y))

dx

dy
, (1.7.13)

where dx/dy is the derivative of the function x = g−1(y). In this case, because g is
increasing, dx/dy > 0. Hence, we can write dx/dy = |dx/dy|.

Suppose g(x) is strictly monotonically decreasing. Then (1.7.12) becomes FY (y) =
1− FX(g−1(y)). Hence, the pdf of Y is fY (y) = fX(g−1(y))(−dx/dy). But since g
is decreasing, dx/dy < 0 and, hence, −dx/dy = |dx/dy|. Thus Equation (1.7.11) is
true in both cases.5 .

Henceforth, we refer to dx/dy = (d/dy)g−1(y) as the Jacobian (denoted by J)
of the transformation. In most mathematical areas, J = dx/dy is referred to as the
Jacobian of the inverse transformation x = g−1(y), but in this book it is called the
Jacobian of the transformation, simply for convenience.

We summarize Theorem 1.7.1 in a simple algorithm which we illustrate in the
next example. Assuming that the transformation Y = g(X) is one-to-one, the
following steps lead to the pdf of Y :

1. Find the support of Y .

2. Solve for the inverse of the transfomation; i.e., solve for x in terms of y in
y = g(x), thereby obtaining x = g−1(y).

3. Obtain dx
dy .

4. The pdf of Y is fY (y) = fX(g−1(y))
∣∣∣ dx

dy

∣∣∣.
5The proof of Theorem 1.7.1 can also be obtained by using the change-of-variable technique as

discussed in Chapter 4 of Mathematical Comments.
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Example 1.7.6. Let X have the pdf

f(x) =

{
4x3 0 < x < 1
0 elsewhere.

Consider the random variable Y = − log X . Here are the steps of the above algo-
rithm:

1. The support of Y = − logX is (0,∞).

2. If y = − logx then x = e−y.

3. dx
dy = −e−y.

4. Thus the pdf of Y is:

fY (y) = fX

(
e−y

) ∣∣−e−y
∣∣ = 4(e−y)3e−y = 4e−4y.

1.7.3 Mixtures of Discrete and Continuous Type Distribu-

tions

We close this section by two examples of distributions that are not of the discrete
or the continuous type.

Example 1.7.7. Let a distribution function be given by

F (x) =

⎧⎨⎩
0 x < 0
x+1

2 0 ≤ x < 1
1 1 ≤ x.

Then, for instance,

P

(
−3 < X ≤ 1

2

)
= F

(
1

2

)
− F (−3) =

3

4
− 0 =

3

4

and

P (X = 0) = F (0)− F (0−) =
1

2
− 0 =

1

2
.

The graph of F (x) is shown in Figure 1.7.3. We see that F (x) is not always
continuous, nor is it a step function. Accordingly, the corresponding distribution is
neither of the continuous type nor of the discrete type. It may be described as a
mixture of those types.

Distributions that are mixtures of the continuous and discrete type do, in fact,
occur frequently in practice. For illustration, in life testing, suppose we know that
the length of life, say X , exceeds the number b, but the exact value of X is unknown.
This is called censoring. For instance, this can happen when a subject in a cancer
study simply disappears; the investigator knows that the subject has lived a certain
number of months, but the exact length of life is unknown. Or it might happen
when an investigator does not have enough time in an investigation to observe the
moments of deaths of all the animals, say rats, in some study. Censoring can also
occur in the insurance industry; in particular, consider a loss with a limited-pay
policy in which the top amount is exceeded but it is not known by how much.
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Figure 1.7.3: Graph of the cdf of Example 1.7.7.

Example 1.7.8. Reinsurance companies are concerned with large losses because
they might agree, for illustration, to cover losses due to wind damages that are
between $2,000,000 and $10,000,000. Say that X equals the size of a wind loss in
millions of dollars, and suppose it has the cdf

FX(x) =

{
0 −∞ < x < 0

1−
(

10
10+x

)3

0 ≤ x < ∞.

If losses beyond $10,000,000 are reported only as 10, then the cdf of this censored
distribution is

FY (y) =

⎧⎪⎨⎪⎩
0 −∞ < y < 0

1−
(

10
10+y

)3

0 ≤ y < 10,

1 10 ≤ y <∞,

which has a jump of [10/(10 + 10)]3 = 1
8 at y = 10.

EXERCISES

1.7.1. Let a point be selected from the sample space C = {c : 0 < c < 10}. Let
C ⊂ C and let the probability set function be P (C) =

∫
C

1
10 dz. Define the random

variable X to be X(c) = c2. Find the cdf and the pdf of X .

1.7.2. Let the space of the random variable X be C = {x : 0 < x < 10} and
let PX(C1) = 3

8 , where C1 = {x : 1 < x < 5}. Show that PX(C2) ≤ 5
8 , where

C2 = {x : 5 ≤ x < 10}.
1.7.3. Let the subsets C1 = { 1

4 < x < 1
2} and C2 = { 1

2 ≤ x < 1} of the space
C = {x : 0 < x < 1} of the random variable X be such that PX(C1) = 1

8 and
PX(C2) = 1

2 . Find PX(C1 ∪ C2), PX(Cc
1), and PX(Cc

1 ∩ Cc
2).
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1.7.4. Given
∫

C [1/π(1 + x2)] dx, where C ⊂ C = {x : −∞ < x < ∞}. Show that
the integral could serve as a probability set function of a random variable X whose
space is C.

1.7.5. Let the probability set function of the random variable X be

PX(C) =

∫
C

e−x dx, where C = {x : 0 < x < ∞}.

Let Ck = {x : 2 − 1/k < x ≤ 3}, k = 1, 2, 3, . . . . Find the limits limk→∞ Ck and
PX(limk→∞ Ck). Find PX(Ck) and show that limk→∞ PX(Ck) = PX(limk→∞ Ck).

1.7.6. For each of the following pdfs of X , find P (|X | < 1) and P (X2 < 9).

(a) f(x) = x2/18, −3 < x < 3, zero elsewhere.

(b) f(x) = (x + 2)/18, −2 < x < 4, zero elsewhere.

1.7.7. Let f(x) = 1/x2, 1 < x < ∞, zero elsewhere, be the pdf of X . If C1 = {x :
1 < x < 2} and C2 = {x : 4 < x < 5}, find PX(C1 ∪ C2) and PX(C1 ∩ C2).

1.7.8. A mode of the distribution of a random variable X is a value of x that
maximizes the pdf or pmf. If there is only one such x, it is called the mode of the
distribution. Find the mode of each of the following distributions:

(a) p(x) = (1
2 )x, x = 1, 2, 3, . . . , zero elsewhere.

(b) f(x) = 12x2(1− x), 0 < x < 1, zero elsewhere.

(c) f(x) = (1
2 )x2e−x, 0 < x < ∞, zero elsewhere.

1.7.9. The median and quantiles, in general, are discussed in Section 1.7.1. Find
the median of each of the following distributions:

(a) p(x) = 4!
x!(4−x)!(

1
4 )x(3

4 )4−x, x = 0, 1, 2, 3, 4, zero elsewhere.

(b) f(x) = 3x2, 0 < x < 1, zero elsewhere.

(c) f(x) = 1
π(1+x2) , −∞ < x < ∞.

1.7.10. Let 0 < p < 1. Find the 0.20 quantile (20th percentile) of the distribution
that has pdf f(x) = 4x3, 0 < x < 1, zero elsewhere.

1.7.11. For each of the following cdfs F (x), find the pdf f(x) [pmf in part (d)],
the first quartile, and the 0.60 quantile. Also, sketch the graphs of f(x) and F (x).
May use R to obtain the graphs. For Part(a) the code is provided.

(a) F (x) = 1
2 + 1

π tan−1(x) ,−∞ < x < ∞.
x<-seq(-5,5,.01); y<-.5+atan(x)/pi; y2<-1/(pi*(1+x^2))

par(mfrow=c(1,2));plot(y~x);plot(y2~x)
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(b) F (x) = exp {−e−x} ,−∞ < x < ∞.

(c) F (x) = (1 + e−x)−1 ,−∞ < x <∞.

(d) F (x) =
∑x

j=1

(
1
2

)j
.

1.7.12. Find the cdf F (x) associated with each of the following probability density
functions. Sketch the graphs of f(x) and F (x).

(a) f(x) = 3(1− x)2, 0 < x < 1, zero elsewhere.

(b) f(x) = 1/x2, 1 < x < ∞, zero elsewhere.

(c) f(x) = 1
3 , 0 < x < 1 or 2 < x < 4, zero elsewhere.

Also, find the median and the 25th percentile of each of these distributions.

1.7.13. Consider the cdf F (x) = 1− e−x− xe−x, 0 ≤ x < ∞, zero elsewhere. Find
the pdf, the mode, and the median (by numerical methods) of this distribution.

1.7.14. Let X have the pdf f(x) = 2x, 0 < x < 1, zero elsewhere. Compute the
probability that X is at least 3

4 given that X is at least 1
2 .

1.7.15. The random variable X is said to be stochastically larger than the
random variable Y if

P (X > z) ≥ P (Y > z), (1.7.14)

for all real z, with strict inequality holding for at least one z value. Show that this
requires that the cdfs enjoy the following property:

FX(z) ≤ FY (z),

for all real z, with strict inequality holding for at least one z value.

1.7.16. Let X be a continuous random variable with support (−∞,∞). Consider
the random variable Y = X + Δ, where Δ > 0. Using the definition in Exercise
1.7.15, show that Y is stochastically larger than X .

1.7.17. Divide a line segment into two parts by selecting a point at random. Find
the probability that the length of the larger segment is at least three times the
length of the shorter segment. Assume a uniform distribution.

1.7.18. Let X be the number of gallons of ice cream that is requested at a certain
store on a hot summer day. Assume that f(x) = 12x(1000−x)2/1012, 0 < x < 1000,
zero elsewhere, is the pdf of X . How many gallons of ice cream should the store
have on hand each of these days, so that the probability of exhausting its supply
on a particular day is 0.05?

1.7.19. Find the 25th percentile of the distribution having pdf f(x) = |x|/4, where
−2 < x < 2 and zero elsewhere.
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1.7.20. The distribution of the random variable X in Example 1.7.3 is often used
to model the log of the lifetime of a mechanical or electrical part. What about the
lifetime itself? Let Y = exp{X}.

(a) Determine the range of Y .

(b) Use the transformation technique to find the pdf of Y .

(c) Write an R function to compute this pdf and use it to obtain a graph of the
pdf. Discuss the plot.

(d) Determine the 90th percentile of Y .

1.7.21. The distribution of the random variable X in Example 1.7.3 is a member
of the log-F familily. Another member has the cdf

F (x) =

[
1 +

2

3
e−x

]−5/2

, −∞ < x <∞.

(a) Determine the corresponding pdf.

(b) Write an R function that computes this cdf. Plot the function and obtain
approximations of the quartiles and median by inspection of the plot.

(c) Obtain the inverse of the cdf and confirm the percentiles in Part (b).

1.7.22. Let X have the pdf f(x) = x2/9, 0 < x < 3, zero elsewhere. Find the pdf
of Y = X3.

1.7.23. If the pdf of X is f(x) = 2xe−x2

, 0 < x < ∞, zero elsewhere, determine
the pdf of Y = X2.

1.7.24. Let X have the uniform pdf fX(x) = 1
π , for −π

2 < x < π
2 . Find the pdf of

Y = tanX . This is the pdf of a Cauchy distribution.

1.7.25. Let X have the pdf f(x) = 4x3, 0 < x < 1, zero elsewhere. Find the cdf
and the pdf of Y = − ln X4.

1.7.26. Let f(x) = 1
3 , −1 < x < 2, zero elsewhere, be the pdf of X . Find the cdf

and the pdf of Y = X2.
Hint: Consider P (X2 ≤ y) for two cases: 0 ≤ y < 1 and 1 ≤ y < 4.

1.8 Expectation of a Random Variable

In this section we introduce the expectation operator, which we use throughout
the remainder of the text. For the definition, recall from calculus that absolute
convergence of sums or integrals implies their convergence.



1.8. Expectation of a Random Variable 61

Definition 1.8.1 (Expectation). Let X be a random variable. If X is a continuous
random variable with pdf f(x) and∫ ∞

−∞
|x|f(x) dx <∞,

then the expectation of X is

E(X) =

∫ ∞

−∞
xf(x) dx.

If X is a discrete random variable with pmf p(x) and∑
x

|x| p(x) <∞,

then the expectation of X is

E(X) =
∑

x

x p(x).

Sometimes the expectation E(X) is called the mathematical expectation of
X , the expected value of X , or the mean of X . When the mean designation is
used, we often denote the E(X) by μ; i.e, μ = E(X).

Example 1.8.1 (Expectation of a Constant). Consider a constant random variable,
that is, a random variable with all its mass at a constant k. This is a discrete random
variable with pmf p(k) = 1. We have by definition that

E(k) = kp(k) = k. (1.8.1)

Example 1.8.2. Let the random variable X of the discrete type have the pmf given
by the table

x 1 2 3 4

p(x) 4
10

1
10

3
10

2
10

Here p(x) = 0 if x is not equal to one of the first four positive integers. This
illustrates the fact that there is no need to have a formula to describe a pmf. We
have

E(X) = (1)

(
4

10

)
+ (2)

(
1

10

)
+ (3)

(
3

10

)
+ (4)

(
2

10

)
=

23

10
= 2.3.

Example 1.8.3. Let the continuous random variable X have the pdf

f(x) =

{
4x3 0 < x < 1
0 elsewhere.

Then

E(X) =

∫ 1

0

x(4x3) dx =

∫ 1

0

4x4 dx =
4x5

5

∣∣∣∣1
0

=
4

5
.



62 Probability and Distributions

Remark 1.8.1. The terminology of expectation or expected value has its origin
in games of chance. For example, consider a game involving a spinner with the
numbers 1, 2, 3 and 4 on it. Suppose the corresponding probabilities of spinning
these numbers are 0.20, 0.30, 0.35, and 0.15. To begin a game, a player pays $5 to
the “house” to play. The spinner is then spun and the player “wins” the amount in
the second line of the table:

Number spun x 1 2 3 4
”Wins” $2 $3 $4 $12
G = Gain −$3 −$2 −$1 $7
pG(x) 0.20 0.30 0.35 0.15

”Wins” is in quotes, since the player must pay $5 to play. Of course, the random
variable of interest is the gain to the player; i.e., G with the range as given in the
third row of the table. Notice that 20% of the time the player gains −$3; 30% of
the time the player gains −$2; 35% of the time the player gains −$1; and 15% of
the time the player gains $7. In mathematics this sentence is expressed as

(−3)× 0.20 + (−2)× 0.30 + (−1)× 0.35 + 7× 0.15 = −0.50,

which, of course, is E(G). That is, the expected gain to the player in this game is
−$0.50. So the player expects to lose 50 cents per play. We say a game is a fair
game, if the expected gain is 0. So this spinner game is not a fair game.

Let us consider a function of a random variable X . Call this function Y = g(X).
Because Y is a random variable, we could obtain its expectation by first finding
the distribution of Y . However, as the following theorem states, we can use the
distribution of X to determine the expectation of Y .

Theorem 1.8.1. Let X be a random variable and let Y = g(X) for some function
g.

(a) Suppose X is continuous with pdf fX(x). If
∫ ∞
−∞ |g(x)|fX(x) dx <∞, then the

expectation of Y exists and it is given by

E(Y ) =

∫ ∞

−∞
g(x)fX(x) dx. (1.8.2)

(b) Suppose X is discrete with pmf pX(x). Suppose the support of X is denoted
by SX . If

∑
x∈SX

|g(x)|pX(x) < ∞, then the expectation of Y exists and it is
given by

E(Y ) =
∑

x∈SX

g(x)pX(x). (1.8.3)

Proof: We give the proof in the discrete case. The proof for the continuous case
requires some advanced results in analysis; see, also, Exercise 1.8.1.
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Because
∑

x∈SX
|g(x)|pX(x) converges, it follows by a theorem in calculus6 that

any rearrangement of the terms of the series converges to the same limit. Thus we
have, ∑

x∈SX

|g(x)|pX(x) =
∑

y∈SY

∑
{x∈SX :g(x)=y}

|g(x)|pX(x) (1.8.4)

=
∑

y∈SY

|y|
∑

{x∈SX :g(x)=y}
pX(x) (1.8.5)

=
∑

y∈SY

|y|pY (y), (1.8.6)

where SY denotes the support of Y . So E(Y ) exists; i.e.,
∑

x∈SX
g(x)pX(x) con-

verges. Because
∑

x∈SX
g(x)pX(x) converges and also converges absolutely, the

same theorem from calculus can be used to show that the above equations (1.8.4)–
(1.8.6) hold without the absolute values. Hence, E(Y ) =

∑
x∈SX

g(x)pX(x), which
is the desired result.

The following two examples illustrate this theorem.

Example 1.8.4. Let Y be the discrete random variable discussed in Example 1.6.3
and let Z = e−Y . Since (2e)−1 < 1, we have by Theorem 1.8.1 that

E[Z] = E
[
e−Y

]
=

∞∑
y=0

e−y

(
1

2

)y+1

= e

∞∑
y=0

(
1

2
e−1

)y+1

=
e

1− (1/(2e))
=

2e2

2e− 1
.

Example 1.8.5. Let X be a continuous random variable with the pdf f(x) = 2x
which has support on the interval (0, 1). Suppose Y = 1/(1+X). Then by Theorem
1.8.1, we have

E(Y ) =

∫ 1

0

2x

1 + x
dx =

∫ 2

1

2u− 2

u
du = 2(1− log 2),

where we have used the change in variable u = 1 + x in the second integral.

Theorem 1.8.2 shows that the expectation operator E is a linear operator.

Theorem 1.8.2. Let g1(X) and g2(X) be functions of a random variable X. Sup-
pose the expectations of g1(X) and g2(X) exist. Then for any constants k1 and k2,
the expectation of k1g1(X) + k2g2(X) exists and it is given by

E[k1g1(X) + k2g2(X)] = k1E[g1(X)] + k2E[g2(X)]. (1.8.7)

6For example, see Chapter 2 on infinite series in Mathematical Comments, referenced in the
Preface.
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Proof: For the continuous case, existence follows from the hypothesis, the triangle
inequality, and the linearity of the integral; i.e.,∫ ∞

−∞
|k1g1(x) + k2g2(x)|fX(x) dx ≤ |k1|

∫ ∞

−∞
|g1(x)|fX(x) dx

+ |k2|
∫ ∞

−∞
|g2(x)|fX(x) dx < ∞.

The result (1.8.7) follows similarly using the linearity of the integral. The proof for
the discrete case follows likewise using the linearity of sums.

The following examples illustrate these theorems.

Example 1.8.6. Let X have the pdf

f(x) =

{
2(1− x) 0 < x < 1
0 elsewhere.

Then

E(X) =

∫ ∞

−∞
xf(x) dx =

∫ 1

0

(x)2(1 − x) dx =
1

3
,

E(X2) =

∫ ∞

−∞
x2f(x) dx =

∫ 1

0

(x2)2(1− x) dx =
1

6
,

and, of course,

E(6X + 3X2) = 6

(
1

3

)
+ 3

(
1

6

)
=

5

2
.

Example 1.8.7. Let X have the pmf

p(x) =

{
x
6 x = 1, 2, 3
0 elsewhere.

Then

E(6X3 + X) = 6E(X3) + E(X) = 6

3∑
x=1

x3p(x) +

3∑
x=1

xp(x) =
301

3
.

Example 1.8.8. Let us divide, at random, a horizontal line segment of length 5
into two parts. If X is the length of the left-hand part, it is reasonable to assume
that X has the pdf

f(x) =

{
1
5 0 < x < 5
0 elsewhere.

The expected value of the length of X is E(X) = 5
2 and the expected value of the

length 5 − x is E(5 − x) = 5
2 . But the expected value of the product of the two

lengths is equal to

E[X(5−X)] =
∫ 5

0 x(5− x)(1
5 ) dx = 25

6 
= (5
2 )2.

That is, in general, the expected value of a product is not equal to the product of
the expected values.
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1.8.1 R Computation for an Estimation of the Expected Gain

In the following example, we use an R function to estimate the expected gain in a
simple game.

Example 1.8.9. Consider the following game. A player pays p0 to play. He then
rolls a fair 6-sided die with the numbers 1 through 6 on it. If the upface is a 1 or a
2, then the game is over. Otherwise, he flips a fair coin. If the coin toss results in a
tail, he receives $1 and the game is over. If, on the other hand, the coin toss results
in a head, he draws 2 cards without replacement from a standard deck of 52 cards.
If none of the cards is an ace, he receives $2, while he receives $10 or $50 if gets 1
or 2 aces, respectively. In both cases, the game is over. Let G denote the player’s
gain. To determine the expected gain, we need the distribution of G. The support
of G is the set {−p0, 1−p0, 2−p0, 10−p0, 50−p0}. For the associated probabilities
we need the distribution of X , where X is the number of aces in a draw of 2 cards
from a standard deck of 52 cards without replacement. This is another example of
the hypergeometric distribution discussed in Example 1.6.2. For our situation, the
distribution is

P (X = x) =

(
4
x

)(
48

2−x

)(
52
2

) , x = 0, 1, 2.

Using this formula, the probabilities of X , to 4 places, are 0.8507, 0.1448, and 0.0045
for x equal to 0, 1, and 2, respectively. Using these probabilities and independence,
the distribution and expected value of G can be determined; see Exercise 1.8.13.
Suppose, however, a person does not have this expertise. Such a person would
observe the game a number of times and then use the average of the observed gains
as his/her estimate of E(G). We will show in Chapter 2 that this estimate, in
a probability sense, is close to E(G), as the number of times the game is played
increases. To compute this estimation, we use the following R function, simplegame,
which plays the game and returns the gain. This function can be downloaded at the
site given in the Preface. The argument of the function is the amount the player
pays to play. Also, the third line of the function computes the distribution of the
above random variable X . To draw from a discrete distribution, the code makes
use of the R function sample which was discussed previously in Example 1.4.12.

simplegame <- function(amtpaid){

gain <- -amtpaid

x <- 0:2; pace <- (choose(4,x)*choose(48,2-x))/choose(52,2)

x <- sample(1:6,1,prob=rep(1/6,6))

if(x > 2){

y <- sample(0:1,1,prob=rep(1/2,2))

if(y==0){

gain <- gain + 1

} else {

z <- sample(0:2,1,prob=pace)

if(z==0){gain <- gain + 2}

if(z==1){gain <- gain + 10}

if(z==2){gain <- gain + 50}
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}

}

return(gain)

}

The following R script obtains the average gain for a sample of 10,000 games. For
the example, we set the amount the player pays at $5.

amtpaid <- 5; numtimes <- 10000; gains <- c()

for(i in 1:numtimes){gains <- c(gains,simplegame(amtpaid))}

mean(gains)

When we ran this script, we obtained −3.5446 as our estimate of E(G). Exercise
1.8.13 shows that E(G) = −3.54.

EXERCISES

1.8.1. Our proof of Theorem 1.8.1 was for the discrete case. The proof for the con-
tinuous case requires some advanced results in in analysis. If, in addition, though,
the function g(x) is one-to-one, show that the result is true for the continuous case.
Hint: First assume that y = g(x) is strictly increasing. Then use the change-of-
variable technique with Jacobian dx/dy on the integral

∫
x∈SX

g(x)fX(x) dx.

1.8.2. Consider the random variable X in Example 1.8.5. As in the example, let
Y = 1/(1 + X). In the example we found the E(Y ) by using Theorem 1.8.1. Verify
this result by finding the pdf of Y and use it to obtain the E(Y ).

1.8.3. Let X have the pdf f(x) = (x + 2)/18, −2 < x < 4, zero elsewhere. Find
E(X), E[(X + 2)3], and E[6X − 2(X + 2)3].

1.8.4. Suppose that p(x) = 1
5 , x = 1, 2, 3, 4, 5, zero elsewhere, is the pmf of the

discrete-type random variable X . Compute E(X) and E(X2). Use these two results
to find E[(X + 2)2] by writing (X + 2)2 = X2 + 4X + 4.

1.8.5. Let X be a number selected at random from a set of numbers {51, 52, . . . , 100}.
Approximate E(1/X).
Hint: Find reasonable upper and lower bounds by finding integrals bounding E(1/X).

1.8.6. Let the pmf p(x) be positive at x = −1, 0, 1 and zero elsewhere.

(a) If p(0) = 1
4 , find E(X2).

(b) If p(0) = 1
4 and if E(X) = 1

4 , determine p(−1) and p(1).

1.8.7. Let X have the pdf f(x) = 3x2, 0 < x < 1, zero elsewhere. Consider a
random rectangle whose sides are X and (1−X). Determine the expected value of
the area of the rectangle.
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1.8.8. A bowl contains 10 chips, of which 8 are marked $2 each and 2 are marked
$5 each. Let a person choose, at random and without replacement, three chips from
this bowl. If the person is to receive the sum of the resulting amounts, find his
expectation.

1.8.9. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the pdf of X .

(a) Compute E(1/X).

(b) Find the cdf and the pdf of Y = 1/X .

(c) Compute E(Y ) and compare this result with the answer obtained in part (a).

1.8.10. Two distinct integers are chosen at random and without replacement from
the first six positive integers. Compute the expected value of the absolute value of
the difference of these two numbers.

1.8.11. Let X have a Cauchy distribution which has the pdf

f(x) =
1

π

1

x2 + 1
, −∞ < x <∞. (1.8.8)

Then X is symmetrically distributed about 0 (why?). Why isn’t E(X) = 0?

1.8.12. Let X have the pdf f(x) = 3x2, 0 < x < 1, zero elsewhere.

(a) Compute E(X3).

(b) Show that Y = X3 has a uniform(0, 1) distribution.

(c) Compute E(Y ) and compare this result with the answer obtained in part (a).

1.8.13. Using the probabilities discussed in Example 1.8.9 and independence, de-
termine the distribution of the random variable G, the gain to a player of the game
when he pays p0 dollars to play. Show that E(G) = −$3.54 if the player pays $5 to
play.

1.8.14. A bowl contains five chips, which cannot be distinguished by a sense of
touch alone. Three of the chips are marked $1 each and the remaining two are
marked $4 each. A player is blindfolded and draws, at random and without replace-
ment, two chips from the bowl. The player is paid an amount equal to the sum of
the values of the two chips that he draws and the game is over. Suppose it costs
p0 dollars to play the game. Let the random variable G be the gain to a player of
the game. Determine the distribution of G and the E(G). Determine p0 so that
the game is fair. The R code sample(c(1,1,1,4,4),2) computes a sample for this
game. Expand this into an R function that simulates the game.
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1.9 Some Special Expectations

Certain expectations, if they exist, have special names and symbols to represent
them. First, let X be a random variable of the discrete type with pmf p(x). Then

E(X) =
∑

x

xp(x).

If the support of X is {a1, a2, a3, . . .}, it follows that

E(X) = a1p(a1) + a2p(a2) + a3p(a3) + · · · .

This sum of products is seen to be a“weighted average”of the values of a1, a2, a3, . . . ,
the “weight” associated with each ai being p(ai). This suggests that we call E(X)
the arithmetic mean of the values of X , or, more simply, the mean value of X (or
the mean value of the distribution).

Definition 1.9.1 (Mean). Let X be a random variable whose expectation exists.
The mean value μ of X is defined to be μ = E(X).

The mean is the first moment (about 0) of a random variable. Another special
expectation involves the second moment. Let X be a discrete random variable with
support {a1, a2, . . .} and with pmf p(x), then

E[(X − μ)2] =
∑

x

(x − μ)2p(x)

= (a1 − μ)2p(a1) + (a2 − μ)2p(a2) + · · · .

This sum of products may be interpreted as a “weighted average” of the squares of
the deviations of the numbers a1, a2, . . . from the mean value μ of those numbers
where the “weight” associated with each (ai−μ)2 is p(ai). It can also be thought of
as the second moment of X about μ. This is an important expectation for all types
of random variables, and we usually refer to it as the variance of X .

Definition 1.9.2 (Variance). Let X be a random variable with finite mean μ and
such that E[(X−μ)2] is finite. Then the variance of X is defined to be E[(X−μ)2].
It is usually denoted by σ2 or by Var(X).

It is worthwhile to observe that Var(X) equals

σ2 = E[(X − μ)2] = E(X2 − 2μX + μ2).

Because E is a linear operator it then follows that

σ2 = E(X2)− 2μE(X) + μ2

= E(X2)− 2μ2 + μ2

= E(X2)− μ2.

This frequently affords an easier way of computing the variance of X .
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It is customary to call σ (the positive square root of the variance) the standard
deviation of X (or the standard deviation of the distribution). The number σ
is sometimes interpreted as a measure of the dispersion of the points of the space
relative to the mean value μ. If the space contains only one point k for which
p(k) > 0, then p(k) = 1, μ = k, and σ = 0.

While the variance is not a linear operator, it does satisfy the following result:

Theorem 1.9.1. Let X be a random ravariable with finite mean μ and variance
σ2. Then for all constants a and b,

Var(aX + b) = a2Var(X). (1.9.1)

Proof. Because E is linear, E(aX + b) = aμ + b. Hence, by definition

Var(aX + b) = E
{
[(aX + b)− (aμ + b)]2

}
= E

{
a2[X − μ]2

}
= a2Var(X).

Based on this theorem, for standard deviations, σaX+b = |a|σX . The following
example illustrates these points.

Example 1.9.1. Suppose the random variable X has a uniform distribution, (1.7.4),
with pdf fX(x) = 1/(2a), −a < x < a, zero elsewhere. Then the mean and variance
of X are:

μ =

∫ a

−a

x
1

2a
dx =

1

2a

x2

2

∣∣∣∣a
−a

= 0,

σ2 =

∫ a

−a

x2 =
1

2a

x3

3

∣∣∣∣a
−a

=
a2

3
.

so that σX = a/
√

3 is the standard deviation of the distribution of X . Consider
the transformation Y = 2X . Because the inverse transformation is x = y/2 and
dx/dy = 1/2, it follows from Theorem 1.7.1 that the pdf of Y is fY (y) = 1/4a,
−2a < y < 2a, zero elsewhere. Based on the above discussion, σY = (2a)/

√
3.

Hence, the standard deviation of Y is twice that of X , reflecting the fact that the
probability for Y is spread out twice as much (relative to the mean zero) as the
probability for X .

Example 1.9.2. Let X have the pdf

f(x) =

{
1
2 (x + 1) −1 < x < 1
0 elsewhere.

Then the mean value of X is

μ =

∫ ∞

−∞
xf(x) dx =

∫ 1

−1

x
x + 1

2
dx =

1

3
,

while the variance of X is

σ2 =

∫ ∞

−∞
x2f(x) dx− μ2 =

∫ 1

−1

x2 x + 1

2
dx −

(
1

3

)2

=
2

9
.
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Example 1.9.3. If X has the pdf

f(x) =

{
1
x2 1 < x <∞
0 elsewhere,

then the mean value of X does not exist, because∫ ∞

1

|x| 1

x2
dx = lim

b→∞

∫ b

1

1

x
dx = lim

b→∞
(log b− log 1) =∞,

which is not finite.

We next define a third special expectation.

Definition 1.9.3 (Moment Generating Function). Let X be a random variable
such that for some h > 0, the expectation of etX exists for −h < t < h. The
moment generating function of X is defined to be the function M(t) = E(etX),
for −h < t < h. We use the abbreviation mgf to denote the moment generating
function of a random variable.

Actually, all that is needed is that the mgf exists in an open neighborhood of 0.
Such an interval, of course, includes an interval of the form (−h, h) for some h > 0.
Further, it is evident that if we set t = 0, we have M(0) = 1. But note that for an
mgf to exist, it must exist in an open interval about 0.

Example 1.9.4. Suppose we have a fair spinner with the numbers 1, 2, and 3 on
it. Let X be the number of spins until the first 3 occurs. Assuming that the spins
are independent, the pmf of X is

p(x) =
1

3

(
2

3

)x−1

, x = 1, 2, 3, . . . .

Then, using the geometric series, the mgf of X is

M(t) = E(etX) =
∞∑

x=1

etx 1

3

(
2

3

)x−1

=
1

3
et

∞∑
x=1

(
et 2

3

)x−1

=
1

3
et

(
1− et 2

3

)−1

,

provided that et(2/3) < 1; i.e., t < log(3/2). This last interval is an open interval
of 0; hence, the mgf of X exists and is given in the final line of the above derivation.

If we are discussing several random variables, it is often useful to subscript M
as MX to denote that this is the mgf of X .

Let X and Y be two random variables with mgfs. If X and Y have the same
distribution, i.e, FX(z) = FY (z) for all z, then certainly MX(t) = MY (t) in a
neighborhood of 0. But one of the most important properties of mgfs is that the
converse of this statement is true too. That is, mgfs uniquely identify distributions.
We state this as a theorem. The proof of this converse, though, is beyond the scope
of this text; see Chung (1974). We verify it for a discrete situation.
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Theorem 1.9.2. Let X and Y be random variables with moment generating func-
tions MX and MY , respectively, existing in open intervals about 0. Then FX(z) =
FY (z) for all z ∈ R if and only if MX(t) = MY (t) for all t ∈ (−h, h) for some
h > 0.

Because of the importance of this theorem, it does seem desirable to try to make
the assertion plausible. This can be done if the random variable is of the discrete
type. For example, let it be given that

M(t) = 1
10et + 2

10e2t + 3
10e3t + 4

10e4t

is, for all real values of t, the mgf of a random variable X of the discrete type. If
we let p(x) be the pmf of X with support {a1, a2, a3, . . .}, then because

M(t) =
∑

x

etxp(x),

we have

1
10et + 2

10e2t + 3
10e3t + 4

10e4t = p(a1)e
a1t + p(a2)e

a2t + · · · .

Because this is an identity for all real values of t, it seems that the right-hand
member should consist of but four terms and that each of the four should be equal,
respectively, to one of those in the left-hand member; hence we may take a1 = 1,
p(a1) = 1

10 ; a2 = 2, p(a2) = 2
10 ; a3 = 3, p(a3) = 3

10 ; a4 = 4, p(a4) = 4
10 . Or, more

simply, the pmf of X is

p(x) =

{
x
10 x = 1, 2, 3, 4
0 elsewhere.

On the other hand, suppose X is a random variable of the continuous type. Let
it be given that

M(t) =
1

1− t
, t < 1,

is the mgf of X . That is, we are given

1

1− t
=

∫ ∞

−∞
etxf(x) dx, t < 1.

It is not at all obvious how f(x) is found. However, it is easy to see that a distri-
bution with pdf

f(x) =

{
e−x 0 < x < ∞
0 elsewhere

has the mgf M(t) = (1−t)−1, t < 1. Thus the random variable X has a distribution
with this pdf in accordance with the assertion of the uniqueness of the mgf.

Since a distribution that has an mgf M(t) is completely determined by M(t),
it would not be surprising if we could obtain some properties of the distribution
directly from M(t). For example, the existence of M(t) for −h < t < h implies that
derivatives of M(t) of all orders exist at t = 0. Also, a theorem in analysis allows
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us to interchange the order of differentiation and integration (or summation in the
discrete case). That is, if X is continuous,

M ′(t) =
dM(t)

dt
=

d

dt

∫ ∞

−∞
etxf(x) dx =

∫ ∞

−∞

d

dt
etxf(x) dx =

∫ ∞

−∞
xetxf(x) dx.

Likewise, if X is a discrete random variable,

M ′(t) =
dM(t)

dt
=

∑
x

xetxp(x).

Upon setting t = 0, we have in either case

M ′(0) = E(X) = μ.

The second derivative of M(t) is

M ′′(t) =

∫ ∞

−∞
x2etxf(x) dx or

∑
x

x2etxp(x),

so that M ′′(0) = E(X2). Accordingly, Var(X) equals

σ2 = E(X2)− μ2 = M ′′(0)− [M ′(0)]2.

For example, if M(t) = (1− t)−1, t < 1, as in the illustration above, then

M ′(t) = (1− t)−2 and M ′′(t) = 2(1− t)−3.

Hence
μ = M ′(0) = 1

and
σ2 = M ′′(0)− μ2 = 2− 1 = 1.

Of course, we could have computed μ and σ2 from the pdf by

μ =

∫ ∞

−∞
xf(x) dx and σ2 =

∫ ∞

−∞
x2f(x) dx− μ2,

respectively. Sometimes one way is easier than the other.
In general, if m is a positive integer and if M (m)(t) means the mth derivative of

M(t), we have, by repeated differentiation with respect to t,

M (m)(0) = E(Xm).

Now

E(Xm) =

∫ ∞

−∞
xmf(x) dx or

∑
x

xmp(x),

and the integrals (or sums) of this sort are, in mechanics, called moments. Since
M(t) generates the values of E(Xm), m = 1, 2, 3, . . . , it is called the moment-
generating function (mgf). In fact, we sometimes call E(Xm) the mth moment of
the distribution, or the mth moment of X .

The next two examples concern random variables whose distributions do not
have mgfs.
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Example 1.9.5. It is known that the series

1

12
+

1

22
+

1

32
+ · · ·

converges to π2/6. Then

p(x) =

{
6

π2x2 x = 1, 2, 3, . . .
0 elsewhere

is the pmf of a discrete type of random variable X . The mgf of this distribution, if
it exists, is given by

M(t) = E(etX) =
∑

x

etxp(x)

=

∞∑
x=1

6etx

π2x2
.

The ratio test of calculus7 may be used to show that this series diverges if t > 0.
Thus there does not exist a positive number h such that M(t) exists for −h < t < h.
Accordingly, the distribution has the pmf p(x) of this example and does not have
an mgf.

Example 1.9.6. Let X be a continuous random variable with pdf

f(x) =
1

π

1

x2 + 1
, −∞ < x <∞. (1.9.2)

This is of course the Cauchy pdf which was introduced in Exercise 1.7.24. Let t > 0
be given. If x > 0, then by the mean value theorem, for some 0 < ξ0 < tx,

etx − 1

tx
= eξ0 ≥ 1.

Hence, etx ≥ 1 + tx ≥ tx. This leads to the second inequality in the following
derivation: ∫ ∞

−∞
etx 1

π

1

x2 + 1
dx ≥

∫ ∞

0

etx 1

π

1

x2 + 1
dx

≥
∫ ∞

0

1

π

tx

x2 + 1
dx =∞.

Because t was arbitrary, the integral does not exist in an open interval of 0. Hence,
the mgf of the Cauchy distribution does not exist.

Example 1.9.7. Let X have the mgf M(t) = et2/2, −∞ < t < ∞. As discussed in
Chapter 3, this is the mgf of a standard normal distribution. We can differentiate
M(t) any number of times to find the moments of X . However, it is instructive to

7For example, see Chapter 2 of Mathematical Comments.



74 Probability and Distributions

consider this alternative method. The function M(t) is represented by the following
Maclaurin’s series:8

et2/2 = 1 +
1

1!

(
t2

2

)
+

1

2!

(
t2

2

)2

+ · · ·+ 1

k!

(
t2

2

)k

+ · · ·

= 1 +
1

2!
t2 +

(3)(1)

4!
t4 + · · ·+ (2k − 1) · · · (3)(1)

(2k)!
t2k + · · · .

In general, though, from calculus the Maclaurin’s series for M(t) is

M(t) = M(0) +
M ′(0)

1!
t +

M ′′(0)

2!
t2 + · · ·+ M (m)(0)

m!
tm + · · ·

= 1 +
E(X)

1!
t +

E(X2)

2!
t2 + · · ·+ E(Xm)

m!
tm + · · · .

Thus the coefficient of (tm/m!) in the Maclaurin’s series representation of M(t) is
E(Xm). So, for our particular M(t), we have

E(X2k) = (2k − 1)(2k − 3) · · · (3)(1) =
(2k)!

2kk!
, k = 1, 2, 3, . . . (1.9.3)

E(X2k−1) = 0, k = 1, 2, 3, . . . . (1.9.4)

We make use of this result in Section 3.4.

Remark 1.9.1. As Examples 1.9.5 and 1.9.6 show, distributions may not have
moment-generating functions. In a more advanced course, we would let i denote
the imaginary unit, t an arbitrary real, and we would define ϕ(t) = E(eitX). This
expectation exists for every distribution and it is called the characteristic func-
tion of the distribution. To see why ϕ(t) exists for all real t, we note, in the
continuous case, that its absolute value

|ϕ(t)| =
∣∣∣∣∫ ∞

−∞
eitxf(x) dx

∣∣∣∣ ≤ ∫ ∞

−∞
|eitxf(x)| dx.

However, |f(x)| = f(x) since f(x) is nonnegative and

|eitx| = | cos tx + i sin tx| =
√

cos2 tx + sin2 tx = 1.

Thus

|ϕ(t)| ≤
∫ ∞

−∞
f(x) dx = 1.

Accordingly, the integral for ϕ(t) exists for all real values of t. In the discrete
case, a summation would replace the integral. In reference to Example 1.9.6, it can
be shown that the characteristic function of the Cauchy distribution is given by
ϕ(t) = exp{−|t|}, −∞ < t < ∞.

8See Chapter 2 of Mathematical Comments.
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Every distribution has a unique characteristic function; and to each charac-
teristic function there corresponds a unique distribution of probability. If X has
a distribution with characteristic function ϕ(t), then, for instance, if E(X) and
E(X2) exist, they are given, respectively, by iE(X) = ϕ′(0) and i2E(X2) = ϕ′′(0).
Readers who are familiar with complex-valued functions may write ϕ(t) = M(it)
and, throughout this book, may prove certain theorems in complete generality.

Those who have studied Laplace and Fourier transforms note a similarity be-
tween these transforms and M(t) and ϕ(t); it is the uniqueness of these transforms
that allows us to assert the uniqueness of each of the moment-generating and char-
acteristic functions.

EXERCISES

1.9.1. Find the mean and variance, if they exist, of each of the following distribu-
tions.

(a) p(x) = 3!
x!(3−x)!(

1
2 )3, x = 0, 1, 2, 3, zero elsewhere.

(b) f(x) = 6x(1− x), 0 < x < 1, zero elsewhere.

(c) f(x) = 2/x3, 1 < x < ∞, zero elsewhere.

1.9.2. Let p(x) = (1
2 )x, x = 1, 2, 3, . . . , zero elsewhere, be the pmf of the random

variable X . Find the mgf, the mean, and the variance of X .

1.9.3. For each of the following distributions, compute P (μ− 2σ < X < μ + 2σ).

(a) f(x) = 6x(1− x), 0 < x < 1, zero elsewhere.

(b) p(x) = (1
2 )x, x = 1, 2, 3, . . . , zero elsewhere.

1.9.4. If the variance of the random variable X exists, show that

E(X2) ≥ [E(X)]2.

1.9.5. Let a random variable X of the continuous type have a pdf f(x) whose
graph is symmetric with respect to x = c. If the mean value of X exists, show that
E(X) = c.
Hint: Show that E(X − c) equals zero by writing E(X − c) as the sum of two
integrals: one from −∞ to c and the other from c to ∞. In the first, let y = c− x;
and, in the second, z = x−c. Finally, use the symmetry condition f(c−y) = f(c+y)
in the first.

1.9.6. Let the random variable X have mean μ, standard deviation σ, and mgf
M(t), −h < t < h. Show that

E

(
X − μ

σ

)
= 0, E

[(
X − μ

σ

)2
]

= 1,

and

E

{
exp

[
t

(
X − μ

σ

)]}
= e−μt/σM

(
t

σ

)
, −hσ < t < hσ.



76 Probability and Distributions

1.9.7. Show that the moment generating function of the random variable X having
the pdf f(x) = 1

3 , −1 < x < 2, zero elsewhere, is

M(t) =

{
e2t−e−t

3t t 
= 0
1 t = 0.

1.9.8. Let X be a random variable such that E[(X− b)2] exists for all real b. Show
that E[(X − b)2] is a minimum when b = E(X).

1.9.9. Let X be a random variable of the continuous type that has pdf f(x). If m
is the unique median of the distribution of X and b is a real constant, show that

E(|X − b|) = E(|X −m|) + 2

∫ b

m

(b− x)f(x) dx,

provided that the expectations exist. For what value of b is E(|X− b|) a minimum?

1.9.10. Let X denote a random variable for which E[(X − a)2] exists. Give an
example of a distribution of a discrete type such that this expectation is zero. Such
a distribution is called a degenerate distribution.

1.9.11. Let X denote a random variable such that K(t) = E(tX) exists for all
real values of t in a certain open interval that includes the point t = 1. Show that
K(m)(1) is equal to the mth factorial moment E[X(X − 1) · · · (X −m + 1)].

1.9.12. Let X be a random variable. If m is a positive integer, the expectation
E[(X − b)m], if it exists, is called the mth moment of the distribution about the
point b. Let the first, second, and third moments of the distribution about the point
7 be 3, 11, and 15, respectively. Determine the mean μ of X , and then find the
first, second, and third moments of the distribution about the point μ.

1.9.13. Let X be a random variable such that R(t) = E(et(X−b)) exists for t such
that −h < t < h. If m is a positive integer, show that R(m)(0) is equal to the mth
moment of the distribution about the point b.

1.9.14. Let X be a random variable with mean μ and variance σ2 such that the
third moment E[(X − μ)3] about the vertical line through μ exists. The value of
the ratio E[(X − μ)3]/σ3 is often used as a measure of skewness. Graph each of
the following probability density functions and show that this measure is negative,
zero, and positive for these respective distributions (which are said to be skewed to
the left, not skewed, and skewed to the right, respectively).

(a) f(x) = (x + 1)/2, −1 < x < 1, zero elsewhere.

(b) f(x) = 1
2 , −1 < x < 1, zero elsewhere.

(c) f(x) = (1− x)/2, −1 < x < 1, zero elsewhere.

1.9.15. Let X be a random variable with mean μ and variance σ2 such that the
fourth moment E[(X − μ)4] exists. The value of the ratio E[(X − μ)4]/σ4 is often
used as a measure of kurtosis. Graph each of the following probability density
functions and show that this measure is smaller for the first distribution.
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(a) f(x) = 1
2 , −1 < x < 1, zero elsewhere.

(b) f(x) = 3(1− x2)/4, −1 < x < 1, zero elsewhere.

1.9.16. Let the random variable X have pmf

p(x) =

⎧⎨⎩ p x = −1, 1
1− 2p x = 0
0 elsewhere,

where 0 < p < 1
2 . Find the measure of kurtosis as a function of p. Determine its

value when p = 1
3 , p = 1

5 , p = 1
10 , and p = 1

100 . Note that the kurtosis increases as
p decreases.

1.9.17. Let ψ(t) = log M(t), where M(t) is the mgf of a distribution. Prove that
ψ′(0) = μ and ψ′′(0) = σ2. The function ψ(t) is called the cumulant generating
function.

1.9.18. Find the mean and the variance of the distribution that has the cdf

F (x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0
x
8 0 ≤ x < 2
x2

16 2 ≤ x < 4
1 4 ≤ x.

1.9.19. Find the moments of the distribution that has mgf M(t) = (1−t)−3, t < 1.
Hint: Find the Maclaurin series for M(t).

1.9.20. We say that X has a Laplace distribution if its pdf is

f(t) =
1

2
e−|t|, −∞ < t <∞. (1.9.5)

(a) Show that the mgf of X is M(t) = (1 − t2)−1 for |t| < 1.

(b) Expand M(t) into a Maclaurin series and use it to find all the moments of X .

1.9.21. Let X be a random variable of the continuous type with pdf f(x), which
is positive provided 0 < x < b < ∞, and is equal to zero elsewhere. Show that

E(X) =

∫ b

0

[1− F (x)] dx,

where F (x) is the cdf of X .

1.9.22. Let X be a random variable of the discrete type with pmf p(x) that is
positive on the nonnegative integers and is equal to zero elsewhere. Show that

E(X) =

∞∑
x=0

[1− F (x)],

where F (x) is the cdf of X .
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1.9.23. Let X have the pmf p(x) = 1/k, x = 1, 2, 3, . . . , k, zero elsewhere. Show
that the mgf is

M(t) =

{
et(1−ekt)
k(1−et) t 
= 0

1 t = 0.

1.9.24. Let X have the cdf F (x) that is a mixture of the continuous and discrete
types, namely

F (x) =

⎧⎨⎩
0 x < 0
x+1

4 0 ≤ x < 1
1 1 ≤ x.

Determine reasonable definitions of μ = E(X) and σ2 = var(X) and compute each.
Hint: Determine the parts of the pmf and the pdf associated with each of the
discrete and continuous parts, and then sum for the discrete part and integrate for
the continuous part.

1.9.25. Consider k continuous-type distributions with the following characteristics:
pdf fi(x), mean μi, and variance σ2

i , i = 1, 2, . . . , k. If ci ≥ 0, i = 1, 2, . . . , k, and
c1+c2+ · · ·+ck = 1, show that the mean and the variance of the distribution having
pdf c1f1(x) + · · · + ckfk(x) are μ =

∑k
i=1 ciμi and σ2 =

∑k
i=1 ci[σ

2
i + (μi − μ)2],

respectively.

1.9.26. Let X be a random variable with a pdf f(x) and mgf M(t). Suppose f is
symmetric about 0; i.e., f(−x) = f(x). Show that M(−t) = M(t).

1.9.27. Let X have the exponential pdf, f(x) = β−1 exp{−x/β}, 0 < x < ∞, zero
elsewhere. Find the mgf, the mean, and the variance of X .

1.10 Important Inequalities

In this section, we discuss some famous inequalities involving expectations. We
make use of these inequalities in the remainder of the text. We begin with a useful
result.

Theorem 1.10.1. Let X be a random variable and let m be a positive integer.
Suppose E[Xm] exists. If k is a positive integer and k ≤ m, then E[Xk] exists.

Proof: We prove it for the continuous case; but the proof is similar for the discrete
case if we replace integrals by sums. Let f(x) be the pdf of X . Then∫ ∞

−∞
|x|kf(x) dx =

∫
|x|≤1

|x|kf(x) dx +

∫
|x|>1

|x|kf(x) dx

≤
∫
|x|≤1

f(x) dx +

∫
|x|>1

|x|mf(x) dx

≤
∫ ∞

−∞
f(x) dx +

∫ ∞

−∞
|x|mf(x) dx

≤ 1 + E[|X |m] < ∞, (1.10.1)
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which is the the desired result.

Theorem 1.10.2 (Markov’s Inequality). Let u(X) be a nonnegative function of the
random variable X. If E[u(X)] exists, then for every positive constant c,

P [u(X) ≥ c] ≤ E[u(X)]

c
.

Proof. The proof is given when the random variable X is of the continuous type;
but the proof can be adapted to the discrete case if we replace integrals by sums.
Let A = {x : u(x) ≥ c} and let f(x) denote the pdf of X . Then

E[u(X)] =

∫ ∞

−∞
u(x)f(x) dx =

∫
A

u(x)f(x) dx +

∫
Ac

u(x)f(x) dx.

Since each of the integrals in the extreme right-hand member of the preceding
equation is nonnegative, the left-hand member is greater than or equal to either of
them. In particular,

E[u(X)] ≥
∫

A

u(x)f(x) dx.

However, if x ∈ A, then u(x) ≥ c; accordingly, the right-hand member of the
preceding inequality is not increased if we replace u(x) by c. Thus

E[u(X)] ≥ c

∫
A

f(x) dx.

Since ∫
A

f(x) dx = P (X ∈ A) = P [u(X) ≥ c],

it follows that

E[u(X)] ≥ cP [u(X) ≥ c],

which is the desired result.

The preceding theorem is a generalization of an inequality that is often called
Chebyshev’s Inequality. This inequality we now establish.

Theorem 1.10.3 (Chebyshev’s Inequality). Let X be a random variable with finite
variance σ2 (by Theorem 1.10.1, this implies that the mean μ = E(X) exists). Then
for every k > 0,

P (|X − μ| ≥ kσ) ≤ 1

k2
, (1.10.2)

or, equivalently,

P (|X − μ| < kσ) ≥ 1− 1

k2
.
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Proof. In Theorem 1.10.2 take u(X) = (X − μ)2 and c = k2σ2. Then we have

P [(X − μ)2 ≥ k2σ2] ≤ E[(X − μ)2]

k2σ2
.

Since the numerator of the right-hand member of the preceding inequality is σ2, the
inequality may be written

P (|X − μ| ≥ kσ) ≤ 1

k2
,

which is the desired result. Naturally, we would take the positive number k to be
greater than 1 to have an inequality of interest.

Hence, the number 1/k2 is an upper bound for the probability P (|X−μ| ≥ kσ).
In the following example this upper bound and the exact value of the probability
are compared in special instances.

Example 1.10.1. Let X have the uniform pdf

f(x) =

{
1

2
√

3
−
√

3 < x <
√

3

0 elsewhere.

Based on Example 1.9.1, for this uniform distribution, we have μ = 0 and σ2 = 1.
If k = 3

2 , we have the exact probability

P (|X − μ| ≥ kσ) = P

(
|X | ≥ 3

2

)
= 1−

∫ 3/2

−3/2

1

2
√

3
dx = 1−

√
3

2
.

By Chebyshev’s inequality, this probability has the upper bound 1/k2 = 4
9 . Since

1−
√

3/2 = 0.134, approximately, the exact probability in this case is considerably
less than the upper bound 4

9 . If we take k = 2, we have the exact probability
P (|X − μ| ≥ 2σ) = P (|X | ≥ 2) = 0. This again is considerably less than the upper
bound 1/k2 = 1

4 provided by Chebyshev’s inequality.

In each of the instances in Example 1.10.1, the probability P (|X−μ| ≥ kσ) and
its upper bound 1/k2 differ considerably. This suggests that this inequality might
be made sharper. However, if we want an inequality that holds for every k > 0
and holds for all random variables having a finite variance, such an improvement is
impossible, as is shown by the following example.

Example 1.10.2. Let the random variable X of the discrete type have probabilities
1
8 , 6

8 , 1
8 at the points x = −1, 0, 1, respectively. Here μ = 0 and σ2 = 1

4 . If k = 2,
then 1/k2 = 1

4 and P (|X − μ| ≥ kσ) = P (|X | ≥ 1) = 1
4 . That is, the probability

P (|X − μ| ≥ kσ) here attains the upper bound 1/k2 = 1
4 . Hence the inequality

cannot be improved without further assumptions about the distribution of X .

A convenient form of Chebyshev’s Inequality is found by taking kσ = ε for ε > 0.
Then Equation (1.10.2) becomes

P (|X − μ| ≥ ε) ≤ σ2

ε2
, for all ε > 0 . (1.10.3)

The second inequality of this section involves convex functions.
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Definition 1.10.1. A function φ defined on an interval (a, b), −∞ ≤ a < b ≤ ∞,
is said to be a convex function if for all x, y in (a, b) and for all 0 < γ < 1,

φ[γx + (1− γ)y] ≤ γφ(x) + (1− γ)φ(y). (1.10.4)

We say φ is strictly convex if the above inequality is strict.

Depending on the existence of first or second derivatives of φ, the following
theorem can be proved.

Theorem 1.10.4. If φ is differentiable on (a, b), then

(a) φ is convex if and only if φ′(x) ≤ φ′(y), for all a < x < y < b,

(b) φ is strictly convex if and only if φ′(x) < φ′(y), for all a < x < y < b.

If φ is twice differentiable on (a, b), then

(a) φ is convex if and only if φ′′(x) ≥ 0, for all a < x < b,

(b) φ is strictly convex if φ′′(x) > 0, for all a < x < b.

Of course, the second part of this theorem follows immediately from the first
part. While the first part appeals to one’s intuition, the proof of it can be found in
most analysis books; see, for instance, Hewitt and Stromberg (1965). A very useful
probability inequality follows from convexity.

Theorem 1.10.5 (Jensen’s Inequality). If φ is convex on an open interval I and
X is a random variable whose support is contained in I and has finite expectation,
then

φ[E(X)] ≤ E[φ(X)]. (1.10.5)

If φ is strictly convex, then the inequality is strict unless X is a constant random
variable.

Proof: For our proof we assume that φ has a second derivative, but in general only
convexity is required. Expand φ(x) into a Taylor series about μ = E[X ] of order 2:

φ(x) = φ(μ) + φ′(μ)(x − μ) +
φ′′(ζ)(x − μ)2

2
,

where ζ is between x and μ.9 Because the last term on the right side of the above
equation is nonnegative, we have

φ(x) ≥ φ(μ) + φ′(μ)(x− μ).

Taking expectations of both sides leads to the result. The inequality is strict if
φ′′(x) > 0, for all x ∈ (a, b), provided X is not a constant.

9See, for example, the discussion on Taylor series in Mathematical Comments referenced in the
Preface.
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Example 1.10.3. Let X be a nondegenerate random variable with mean μ and a
finite second moment. Then μ2 < E(X2). This is obtained by Jensen’s inequality
using the strictly convex function φ(t) = t2.

The last inequality concerns different means of finite sets of positive numbers.

Example 1.10.4 (Harmonic and Geometric Means). Let {a1, . . . , an} be a set of
positive numbers. Create a distribution for a random variable X by placing weight
1/n on each of the numbers a1, . . . , an. Then the mean of X is the arithmetic
mean, (AM), E(X) = n−1

∑n
i=1 ai. Then, since − log x is a convex function, we

have by Jensen’s inequality that

− log

(
1

n

n∑
i=1

ai

)
≤ E(− log X) = − 1

n

n∑
i=1

log ai = − log(a1a2 · · ·an)1/n

or, equivalently,

log

(
1

n

n∑
i=1

ai

)
≥ log(a1a2 · · · an)1/n,

and, hence,

(a1a2 · · ·an)1/n ≤ 1

n

n∑
i=1

ai. (1.10.6)

The quantity on the left side of this inequality is called the geometric mean (GM).
So (1.10.6) is equivalent to saying that GM ≤ AM for any finite set of positive
numbers.

Now in (1.10.6) replace ai by 1/ai (which is also positive). We then obtain

1

n

n∑
i=1

1

ai
≥

(
1

a1

1

a2
· · · 1

an

)1/n

or, equivalently,
1

1
n

∑n
i=1

1
ai

≤ (a1a2 · · · an)1/n. (1.10.7)

The left member of this inequality is called the harmonic mean (HM). Putting
(1.10.6) and (1.10.7) together, we have shown the relationship

HM ≤ GM ≤ AM, (1.10.8)

for any finite set of positive numbers.

EXERCISES

1.10.1. Let X be a random variable with mean μ and let E[(X − μ)2k] exist.
Show, with d > 0, that P (|X − μ| ≥ d) ≤ E[(X − μ)2k]/d2k. This is essentially
Chebyshev’s inequality when k = 1. The fact that this holds for all k = 1, 2, 3, . . . ,
when those (2k)th moments exist, usually provides a much smaller upper bound for
P (|X − μ| ≥ d) than does Chebyshev’s result.
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1.10.2. Let X be a random variable such that P (X ≤ 0) = 0 and let μ = E(X)
exist. Show that P (X ≥ 2μ) ≤ 1

2 .

1.10.3. If X is a random variable such that E(X) = 3 and E(X2) = 13, use
Chebyshev’s inequality to determine a lower bound for the probability P (−2 <
X < 8).

1.10.4. Suppose X has a Laplace distribution with pdf (1.9.20). Show that the
mean and variance of X are 0 and 2, respectively. Using Chebyshev’s inequality
determine the upper bound for P (|X | ≥ 5) and then compare it with the exact
probability.

1.10.5. Let X be a random variable with mgf M(t), −h < t < h. Prove that

P (X ≥ a) ≤ e−atM(t), 0 < t < h,

and that
P (X ≤ a) ≤ e−atM(t), −h < t < 0.

Hint: Let u(x) = etx and c = eta in Theorem 1.10.2. Note: These results imply
that P (X ≥ a) and P (X ≤ a) are less than or equal to their respective least upper
bounds for e−atM(t) when 0 < t < h and when −h < t < 0.

1.10.6. The mgf of X exists for all real values of t and is given by

M(t) =
et − e−t

2t
, t 
= 0, M(0) = 1.

Use the results of the preceding exercise to show that P (X ≥ 1) = 0 and P (X ≤
−1) = 0. Note that here h is infinite.

1.10.7. Let X be a positive random variable; i.e., P (X ≤ 0) = 0. Argue that

(a) E(1/X) ≥ 1/E(X)

(b) E[− log X ] ≥ − log[E(X)]

(c) E[log(1/X)] ≥ log[1/E(X)]

(d) E[X3] ≥ [E(X)]3.
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Chapter 2

Multivariate Distributions

2.1 Distributions of Two Random Variables

We begin the discussion of a pair of random variables with the following example. A
coin is tossed three times and our interest is in the ordered number pair (number of
H’s on first two tosses, number of H’s on all three tosses), where H and T represent,
respectively, heads and tails. Let C = {TTT, TTH, THT, HTT, THH, HTH, HHT,
HHH} denote the sample space. Let X1 denote the number of H’s on the first
two tosses and X2 denote the number of H’s on all three flips. Then our inter-
est can be represented by the pair of random variables (X1, X2). For example,
(X1(HTH), X2(HTH)) represents the outcome (1, 2). Continuing in this way, X1

and X2 are real-valued functions defined on the sample space C, which take us from
the sample space to the space of ordered number pairs.

D = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}.

Thus X1 and X2 are two random variables defined on the space C, and, in this
example, the space of these random variables is the two-dimensional set D, which is
a subset of two-dimensional Euclidean space R2. Hence (X1, X2) is a vector function
from C to D. We now formulate the definition of a random vector.

Definition 2.1.1 (Random Vector). Given a random experiment with a sample
space C, consider two random variables X1 and X2, which assign to each element
c of C one and only one ordered pair of numbers X1(c) = x1, X2(c) = x2. Then
we say that (X1, X2) is a random vector. The space of (X1, X2) is the set of
ordered pairs D = {(x1, x2) : x1 = X1(c), x2 = X2(c), c ∈ C}.

We often denote random vectors using vector notation X = (X1, X2)
′, where

the ′ denotes the transpose of the row vector (X1, X2). Also, we often use (X, Y )
to denote random vectors.

Let D be the space associated with the random vector (X1, X2). Let A be a
subset of D. As in the case of one random variable, we speak of the event A. We
wish to define the probability of the event A, which we denote by PX1,X2 [A]. As

85
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with random variables in Section 1.5 we can uniquely define PX1,X2 in terms of the
cumulative distribution function (cdf), which is given by

FX1,X2(x1, x2) = P [{X1 ≤ x1} ∩ {X2 ≤ x2}], (2.1.1)

for all (x1, x2) ∈ R2. Because X1 and X2 are random variables, each of the events
in the above intersection and the intersection of the events are events in the original
sample space C. Thus the expression is well defined. As with random variables, we
write P [{X1 ≤ x1} ∩ {X2 ≤ x2}] as P [X1 ≤ x1, X2 ≤ x2]. As Exercise 2.1.3 shows,

P [a1 < X1 ≤ b1, a2 < X2 ≤ b2] = FX1,X2(b1, b2)− FX1,X2(a1, b2)

−FX1,X2(b1, a2)+FX1,X2(a1, a2). (2.1.2)

Hence, all induced probabilities of sets of the form (a1, b1]×(a2, b2] can be formulated
in terms of the cdf. We often call this cdf the joint cumulative distribution
function of (X1, X2).

As with random variables, we are mainly concerned with two types of random
vectors, namely discrete and continuous. We first discuss the discrete type.

A random vector (X1, X2) is a discrete random vector if its space D is finite
or countable. Hence, X1 and X2 are both discrete also. The joint probability
mass function (pmf) of (X1, X2) is defined by

pX1,X2(x1, x2) = P [X1 = x1, X2 = x2], (2.1.3)

for all (x1, x2) ∈ D. As with random variables, the pmf uniquely defines the cdf. It
also is characterized by the two properties

(i) 0 ≤ pX1,X2(x1, x2) ≤ 1 and (ii)
∑∑

D
pX1,X2(x1, x2) = 1. (2.1.4)

For an event B ∈ D, we have

P [(X1, X2) ∈ B] =
∑∑

B

pX1,X2(x1, x2).

Example 2.1.1. Consider the example at the beginning of this section where a fair
coin is flipped three times and X1 and X2 are the number of heads on the first two
flips and all 3 flips, respectively. We can conveniently table the pmf of (X1, X2) as

Support of X2

0 1 2 3

0 1
8

1
8 0 0

Support of X1 1 0 2
8

2
8 0

2 0 0 1
8

1
8

For instance, P (X1 ≥ 2, X2 ≥ 2) = p(2, 2) + p(2, 3) = 2/8.
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At times it is convenient to speak of the support of a discrete random vec-
tor (X1, X2). These are all the points (x1, x2) in the space of (X1, X2) such
that p(x1, x2) > 0. In the last example the support consists of the six points
{(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)}.

We say a random vector (X1, X2) with space D is of the continuous type if its
cdf FX1,X2(x1, x2) is continuous. For the most part, the continuous random vectors
in this book have cdfs that can be represented as integrals of nonnegative functions.
That is, FX1,X2(x1, x2) can be expressed as

FX1,X2(x1, x2) =

∫ x1

−∞

∫ x2

−∞
fX1,X2(w1, w2) dw1dw2, (2.1.5)

for all (x1, x2) ∈ R2. We call the integrand the joint probability density func-
tion (pdf) of (X1, X2). Then

∂2FX1,X2(x1, x2)

∂x1 ∂x2
= fX1,X2(x1, x2),

except possibly on events that have probability zero. A pdf is essentially character-
ized by the two properties

(i) fX1,X2(x1, x2) ≥ 0 and (ii)
∫ ∫

D fX1,X2(x1, x2) dx1dx2 = 1. (2.1.6)

For the reader’s benefit, Section 4.2 of the accompanying resource Mathematical
Comments1 offers a short review of double integration. For an event A ∈ D, we
have

P [(X1, X2) ∈ A] =

∫ ∫
A

fX1,X2(x1, x2) dx1dx2.

Note that the P [(X1, X2) ∈ A] is just the volume under the surface z = fX1,X2(x1, x2)
over the set A.

Remark 2.1.1. As with univariate random variables, we often drop the subscript
(X1, X2) from joint cdfs, pdfs, and pmfs, when it is clear from the context. We also
use notation such as f12 instead of fX1,X2 . Besides (X1, X2), we often use (X, Y )
to express random vectors.

We next present two examples of jointly continuous random variables.

Example 2.1.2. Consider a continuous random vector (X, Y ) which is uniformly
distributed over the unit circle in R2. Since the area of the unit circle is π, the joint
pdf is

f(x, y) =

{
1
π −1 < y < 1,−

√
1− y2 < x <

√
1− y2

0 elsewhere.

Probabilities of certain events follow immediately from geometry. For instance, let
A be the interior of the circle with radius 1/2. Then P [(X, Y ) ∈ A] = π(1/2)2/π =
1/4. Next, let B be the ring formed by the concentric circles with the respective
radii of 1/2 and

√
2/2. Then P [(X, Y ) ∈ B] = π[(

√
2/2)2 − (1/2)2]/π = 1/4. The

regions A and B have the same area and hence for this uniform pdf are equilikely.

1Downloadable at the site listed in the Preface.
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In the next example, we use the general fact that double integrals can be ex-
pressed as iterated univariate integrals. Thus double integrations can be carried
out using iterated univariate integrations. This is discussed in some detail with
examples in Section 4.2 of the accompanying resource Mathematical Comments.2

The aid of a simple sketch of the region of integration is valuable in setting up the
upper and lower limits of integration for each of the iterated integrals.

Example 2.1.3. Suppose an electrical component has two batteries. Let X and Y
denote the lifetimes in standard units of the respective batteries. Assume that the
pdf of (X, Y ) is

f(x, y) =

{
4xye−(x2+y2) x > 0, y > 0
0 elsewhere.

The surface z = f(x, y) is sketched in Figure 2.1.1 where the grid squares are
0.1 by 0.1. From the figure, the pdf peaks at about (x, y) = (0.7, 0.7). Solving
the equations ∂f/∂x = 0 and ∂f/∂y = 0 simultaneously shows that actually the
maximum of f(x, y) occurs at (x, y) = (

√
2/2,

√
2/2). The batteries are more likely

to die in regions near the peak. The surface tapers to 0 as x and y get large in any
direction. for instance, the probability that both batteries survive beyond

√
2/2

units is given by

P

(
X >

√
2

2
, Y >

√
2

2

)
=

∫ ∞
√

2/2

∫ ∞
√

2/2

4xye−(x2+y2) dxdy

=

∫ ∞
√

2/2

2xe−x2

[∫ ∞
√

2/2

2ye−y2

dy

]
dx

=

∫ ∞

1/2

e−z

[∫ ∞

1/2

e−wdw

]
dz =

(
e−1/2

)2

≈ 0.3679,

where we made use of the change-in-variables z = x2 and w = y2. In contrast to the
last example, consider the regions A = {(x, y) : |x− (1/2)| < 0.3, |y− (1/2)| < 0.3}
and B = {(x, y) : |x−2| < 0.3, |y−2| < 0.3}. The reader should locate these regions
on Figure 2.1.1. The areas of A and B are the same, but it is clear from the figure
that P [(X, Y ) ∈ A] is much larger than P [(X, Y ) ∈ B]. Exercise 2.1.6 confirms this
by showing that P [(X, Y ) ∈ A] = 0.1879 while P [(X, Y ) ∈ B] = 0.0026.

For a continuous random vector (X1, X2), the support of (X1, X2) contains all
points (x1, x2) for which f(x1, x2) > 0. We denote the support of a random vector
by S. As in the univariate case, S ⊂ D.

As in the last two examples, we extend the definition of a pdf fX1,X2(x1, x2)
over R2 by using zero elsewhere. We do this consistently so that tedious, repetitious
references to the space D can be avoided. Once this is done, we replace∫ ∫

D
fX1,X2(x1, x2) dx1dx2 by

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2.

2Downloadable at the site listed in the Preface.
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x y

z
Figure 2.1.1: A sketch of the the surface of the joint pdf discussed in Example
2.1.3. On the figure, the origin is located at the intersection of the x and z axes
and the grid squares are 0.1 by 0.1, so points are easily located. As discussed in the
text, the peak of the pdf occurs at the point (

√
2/2,

√
2/2).

Likewise we may extend the pmf pX1,X2(x1, x2) over a convenient set by using zero
elsewhere. Hence, we replace∑∑

D
pX1,X2(x1, x2) by

∑
x2

∑
x1

p(x1, x2).

2.1.1 Marginal Distributions

Let (X1, X2) be a random vector. Then both X1 and X2 are random variables.
We can obtain their distributions in terms of the joint distribution of (X1, X2) as
follows. Recall that the event which defined the cdf of X1 at x1 is {X1 ≤ x1}.
However,

{X1 ≤ x1} = {X1 ≤ x1} ∩ {−∞ < X2 <∞} = {X1 ≤ x1,−∞ < X2 <∞}.

Taking probabilities, we have

FX1(x1) = P [X1 ≤ x1,−∞ < X2 <∞], (2.1.7)
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Table 2.1.1: Joint and Marginal Distributions for the discrete random vector
(X1, X2) of Example 2.1.1.

Support of X2

0 1 2 3 pX1(x1)

0 1
8

1
8 0 0 2

8

Support of X1 1 0 2
8

2
8 0 4

8

2 0 0 1
8

1
8

2
8

pX2(x2)
1
8

3
8

3
8

1
8

for all x1 ∈ R. By Theorem 1.3.6 we can write this equation as FX1 (x1) =
limx2↑∞ F (x1, x2). Thus we have a relationship between the cdfs, which we can
extend to either the pmf or pdf depending on whether (X1, X2) is discrete or con-
tinuous.

First consider the discrete case. Let DX1 be the support of X1. For x1 ∈ DX1 ,
Equation (2.1.7) is equivalent to

FX1(x1) =
∑∑

w1≤x1,−∞<x2<∞
pX1,X2(w1, x2) =

∑
w1≤x1

{ ∑
x2<∞

pX1,X2(w1, x2)

}
.

By the uniqueness of cdfs, the quantity in braces must be the pmf of X1 evaluated
at w1; that is,

pX1(x1) =
∑

x2<∞
pX1,X2(x1, x2), (2.1.8)

for all x1 ∈ DX1 . Hence, to find the probability that X1 is x1, keep x1 fixed and
sum pX1,X2 over all of x2. In terms of a tabled joint pmf with rows comprised of
X1 support values and columns comprised of X2 support values, this says that the
distribution of X1 can be obtained by the marginal sums of the rows. Likewise, the
pmf of X2 can be obtained by marginal sums of the columns.

Consider the joint discrete distribution of the random vector (X1, X2) as pre-
sented in Example 2.1.1. In Table 2.1.1, we have added these marginal sums. The
final row of this table is the pmf of X2, while the final column is the pmf of X1.
In general, because these distributions are recorded in the margins of the table, we
often refer to them as marginal pmfs.

Example 2.1.4. Consider a random experiment that consists of drawing at random
one chip from a bowl containing 10 chips of the same shape and size. Each chip has
an ordered pair of numbers on it: one with (1, 1), one with (2, 1), two with (3, 1),
one with (1, 2), two with (2, 2), and three with (3, 2). Let the random variables
X1 and X2 be defined as the respective first and second values of the ordered pair.
Thus the joint pmf p(x1, x2) of X1 and X2 can be given by the following table, with
p(x1, x2) equal to zero elsewhere.
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x2

x1 1 2 p1(x1)

1 1
10

1
10

2
10

2 1
10

2
10

3
10

3 2
10

3
10

5
10

p2(x2)
4
10

6
10

The joint probabilities have been summed in each row and each column and these
sums recorded in the margins to give the marginal probability mass functions of X1

and X2, respectively. Note that it is not necessary to have a formula for p(x1, x2)
to do this.

We next consider the continuous case. Let DX1 be the support of X1. For
x1 ∈ DX1 , Equation (2.1.7) is equivalent to

FX1(x1) =

∫ x1

−∞

∫ ∞

−∞
fX1,X2(w1, x2) dx2dw1 =

∫ x1

−∞

{∫ ∞

−∞
fX1,X2(w1, x2) dx2

}
dw1.

By the uniqueness of cdfs, the quantity in braces must be the pdf of X1, evaluated
at w1; that is,

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2 (2.1.9)

for all x1 ∈ DX1 . Hence, in the continuous case the marginal pdf of X1 is found by
integrating out x2. Similarly, the marginal pdf of X2 is found by integrating out
x1.

Example 2.1.5 (Example 2.1.2, continued). Consider the vector of continuous
random variables (X, Y ) discussed in Example 2.1.2. The space of the random
vector is the unit circle with center at (0, 0) as shown in Figure 2.1.2. To find the
marginal distribution of X , fix x between −1 and 1 and then integrate out y from
−
√

1− x2 to
√

1− x2 as the arrow shows on Figure 2.1.2. Hence, the marginal pdf
of X is

fX(x) =

∫ √
1−x2

−√
1−x2

1

π
dy =

2

π

√
1− x2, −1 < x < 1.

Although (X, Y ) has a joint uniform distribution, the distribution of X is unimodal
with peak at 0. This is not surprising. Since the joint distribution is uniform, from
Figure 2.1.2 X is more likely to be near 0 than at either extreme −1 or 1. Because
the joint pdf is symmetric in x and y, the marginal pdf of Y is the same as that of
X .

Example 2.1.6. Let X1 and X2 have the joint pdf

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere.
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Region of Integration for Example A.3.1.

Figure 2.1.2: Region of integration for Example 2.1.5. It depicts the integration
with respect to y at a fixed but arbitrary x.

Notice the space of the random vector is the interior of the square with vertices
(0, 0), (1, 0), (1, 1) and (0, 1). The marginal pdf of X1 is

f1(x1) =

∫ 1

0

(x1 + x2) dx2 = x1 + 1
2 , 0 < x1 < 1,

zero elsewhere, and the marginal pdf of X2 is

f2(x2) =

∫ 1

0

(x1 + x2) dx1 = 1
2 + x2, 0 < x2 < 1,

zero elsewhere. A probability like P (X1 ≤ 1
2 ) can be computed from either f1(x1)

or f(x1, x2) because∫ 1/2

0

∫ 1

0

f(x1, x2) dx2dx1 =

∫ 1/2

0

f1(x1) dx1 = 3
8 .

Suppose, though, we want to find the probability P (X1 + X2 ≤ 1). Notice that
the region of integration is the interior of the triangle with vertices (0, 0), (1, 0) and
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(0, 1). The reader should sketch this region on the space of (X1, X2). Fixing x1 and
integrating with respect to x2, we have

P (X1 + X2 ≤ 1) =

∫ 1

0

[∫ 1−x1

0

(x1 + x2) dx2

]
dx1

=

∫ 1

0

[
x1(1− x1) +

(1− x1)
2

2

]
dx1

=

∫ 1

0

(
1

2
− 1

2
x2

1

)
dx1 =

1

3
.

This latter probability is the volume under the surface f(x1, x2) = x1 + x2 above
the set {(x1, x2) : 0 < x1, x1 + x2 ≤ 1}.

Example 2.1.7 (Example 2.1.3, Continued). Recall that the random variables X
and Y of Example 2.1.3 were the lifetimes of two batteries installed in an electrical
component. The joint pdf of (X, Y ) is sketched in Figure 2.1.1. Its space is the
positive quadrant of R2 so there are no constraints involving both x and y. Using
the change-in-variable w = y2, the marginal pdf of X is

fX(x) =

∫ ∞

0

4xye−(x2+y2) dy = 2xe−x2

∫ ∞

0

e−w dw = 2xe−x2

,

for x > 0. By the symmetry of x and y in the model, the pdf of Y is the same as
that of X . To determine the median lifetime, θ, of these batteries, we need to solve

1

2
=

∫ θ

0

2xe−x2

dx = 1− e−θ2

,

where again we have made use of the change-in-variables z = x2. Solving this
equation, we obtain θ =

√
log 2 ≈ 0.8326. So 50% of the batteries have lifetimes

exceeding 0.83 units.

2.1.2 Expectation

The concept of expectation extends in a straightforward manner. Let (X1, X2) be a
random vector and let Y = g(X1, X2) for some real-valued function; i.e., g : R2 → R.
Then Y is a random variable and we could determine its expectation by obtaining
the distribution of Y . But Theorem 1.8.1 is true for random vectors also. Note the
proof we gave for this theorem involved the discrete case, and Exercise 2.1.12 shows
its extension to the random vector case.

Suppose (X1, X2) is of the continuous type. Then E(Y ) exists if∫ ∞

−∞

∫ ∞

−∞
|g(x1, x2)|fX1,X2(x1, x2) dx1dx2 < ∞.

Then

E(Y ) =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)fX1,X2(x1, x2) dx1dx2. (2.1.10)
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Likewise if (X1, X2) is discrete, then E(Y ) exists if∑
x1

∑
x2

|g(x1, x2)|pX1,X2(x1, x2) < ∞.

Then

E(Y ) =
∑
x1

∑
x2

g(x1, x2)pX1,X2(x1, x2). (2.1.11)

We can now show that E is a linear operator.

Theorem 2.1.1. Let (X1, X2) be a random vector. Let Y1 = g1(X1, X2) and Y2 =
g2(X1, X2) be random variables whose expectations exist. Then for all real numbers
k1 and k2,

E(k1Y1 + k2Y2) = k1E(Y1) + k2E(Y2). (2.1.12)

Proof: We prove it for the continuous case. The existence of the expected value of
k1Y1 + k2Y2 follows directly from the triangle inequality and linearity of integrals;
i.e., ∫ ∞

−∞

∫ ∞

−∞
|k1g1(x1, x2) + k2g1(x1, x2)|fX1,X2(x1, x2) dx1dx2

≤ |k1|
∫ ∞

−∞

∫ ∞

−∞
|g1(x1, x2)|fX1,X2(x1, x2) dx1dx2

+ |k2|
∫ ∞

−∞

∫ ∞

−∞
|g2(x1, x2)|fX1,X2(x1, x2) dx1dx2 <∞.

By once again using linearity of the integral, we have

E(k1Y1 + k2Y2) =

∫ ∞

−∞

∫ ∞

−∞
[k1g1(x1, x2) + k2g2(x1, x2)]fX1,X2(x1, x2) dx1dx2

= k1

∫ ∞

−∞

∫ ∞

−∞
g1(x1, x2)fX1,X2(x1, x2) dx1dx2

+ k2

∫ ∞

−∞

∫ ∞

−∞
g2(x1, x2)fX1,X2(x1, x2) dx1dx2

= k1E(Y1) + k2E(Y2),

i.e., the desired result.

We also note that the expected value of any function g(X2) of X2 can be found
in two ways:

E(g(X2)) =

∫ ∞

−∞

∫ ∞

−∞
g(x2)f(x1, x2) dx1dx2 =

∫ ∞

−∞
g(x2)fX2(x2) dx2,

the latter single integral being obtained from the double integral by integrating on
x1 first. The following example illustrates these ideas.
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Example 2.1.8. Let X1 and X2 have the pdf

f(x1, x2) =

{
8x1x2 0 < x1 < x2 < 1
0 elsewhere.

Figure 2.1.3 shows the space for (X1, X2). Then

E(X1X
2
2 ) =

∫ ∞

−∞

∫ ∞

−∞
x1x

2
2f(x1, x2) dx1dx2.

To compute the integration, as shown by the arrow on Figure 2.1.3, we fix x2 and
then integrate x1 from 0 to x2. We then integrate out x2 from 0 to 1. Hence,∫ ∞

−∞

∫ ∞

−∞
x1x

2
2f(x1, x2) =

∫ 1

0

[∫ x2

0

8x2
1x

3
2 dx1

]
dx2 =

∫ 1

0

8
3x6

2 dx2 = 8
21 .

In addition,

E(X2) =

∫ 1

0

[∫ x2

0

x2(8x1x2) dx1

]
dx2 = 4

5 .

Since X2 has the pdf f2(x2) = 4x3
2, 0 < x2 < 1, zero elsewhere, the latter expecta-

tion can also be found by

E(X2) =

∫ 1

0

x2(4x3
2) dx2 = 4

5 .

Using Theorem 2.1.1,

E(7X1X
2
2 + 5X2) = 7E(X1X

2
2 ) + 5E(X2)

= (7)( 8
21 ) + (5)(4

5 ) = 20
3 .

Example 2.1.9. Continuing with Example 2.1.8, suppose the random variable Y
is defined by Y = X1/X2. We determine E(Y ) in two ways. The first way is by
definition; i.e., find the distribution of Y and then determine its expectation. The
cdf of Y , for 0 < y ≤ 1, is

FY (y) = P (Y ≤ y) = P (X1 ≤ yX2) =

∫ 1

0

[∫ yx2

0

8x1x2 dx1

]
dx2

=

∫ 1

0

4y2x3
2 dx2 = y2.

Hence, the pdf of Y is

fY (y) = F ′
Y (y) =

{
2y 0 < y < 1
0 elsewhere,

which leads to

E(Y ) =

∫ 1

0

y(2y) dy =
2

3
.
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Figure 2.1.3: Region of integration for Example 2.1.8. The arrow depicts the
integration with respect to x1 at a fixed but arbitrary x2.

For the second way, we make use of expression (2.1.10) and find E(Y ) directly by

E(Y ) = E

(
X1

X2

)
=

∫ 1

0

{∫ x2

0

(
x1

x2

)
8x1x2 dx1

}
dx2

=

∫ 1

0

8

3
x3

2 dx2 =
2

3
.

We next define the moment generating function of a random vector.

Definition 2.1.2 (Moment Generating Function of a Random Vector). Let X =
(X1, X2)

′ be a random vector. If E(et1X1+t2X2) exists for |t1| < h1 and |t2| <
h2, where h1 and h2 are positive, it is denoted by MX1,X2(t1, t2) and is called the
moment generating function (mgf) of X.

As in the one-variable case, if it exists, the mgf of a random vector uniquely
determines the distribution of the random vector.

Let t = (t1, t2)
′. Then we can write the mgf of X as

MX1,X2(t) = E
[
et

′
X

]
, (2.1.13)

so it is quite similar to the mgf of a random variable. Also, the mgfs of X1 and X2

are immediately seen to be MX1,X2(t1, 0) and MX1,X2(0, t2), respectively. If there
is no confusion, we often drop the subscripts on M .
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Example 2.1.10. Let the continuous-type random variables X and Y have the
joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

The reader should sketch the space of (X, Y ). The mgf of this joint distribution is

M(t1, t2) =

∫ ∞

0

[∫ ∞

x

exp(t1x + t2y − y) dy

]
dx

=
1

(1− t1 − t2)(1− t2)
,

provided that t1 + t2 < 1 and t2 < 1. Furthermore, the moment-generating func-
tions of the marginal distributions of X and Y are, respectively,

M(t1, 0) =
1

1− t1
, t1 < 1

M(0, t2) =
1

(1− t2)2
, t2 < 1.

These moment-generating functions are, of course, respectively, those of the
marginal probability density functions,

f1(x) =

∫ ∞

x

e−y dy = e−x, 0 < x <∞,

zero elsewhere, and

f2(y) = e−y

∫ y

0

dx = ye−y, 0 < y < ∞,

zero elsewhere.

We also need to define the expected value of the random vector itself, but this
is not a new concept because it is defined in terms of componentwise expectation:

Definition 2.1.3 (Expected Value of a Random Vector). Let X = (X1, X2)
′ be a

random vector. Then the expected value of X exists if the expectations of X1 and
X2 exist. If it exists, then the expected value is given by

E[X] =

[
E(X1)
E(X2)

]
. (2.1.14)

EXERCISES

2.1.1. Let f(x1, x2) = 4x1x2, 0 < x1 < 1, 0 < x2 < 1, zero elsewhere, be the pdf
of X1 and X2. Find P (0 < X1 < 1

2 , 1
4 < X2 < 1), P (X1 = X2), P (X1 < X2), and

P (X1 ≤ X2).
Hint: Recall that P (X1 = X2) would be the volume under the surface f(x1, x2) =
4x1x2 and above the line segment 0 < x1 = x2 < 1 in the x1x2-plane.
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2.1.2. Let A1 = {(x, y) : x ≤ 2, y ≤ 4}, A2 = {(x, y) : x ≤ 2, y ≤ 1}, A3 =
{(x, y) : x ≤ 0, y ≤ 4}, and A4 = {(x, y) : x ≤ 0 y ≤ 1} be subsets of the
space A of two random variables X and Y , which is the entire two-dimensional
plane. If P (A1) = 7

8 , P (A2) = 4
8 , P (A3) = 3

8 , and P (A4) = 2
8 , find P (A5), where

A5 = {(x, y) : 0 < x ≤ 2, 1 < y ≤ 4}.

2.1.3. Let F (x, y) be the distribution function of X and Y . For all real constants
a < b, c < d, show that P (a < X ≤ b, c < Y ≤ d) = F (b, d)− F (b, c)− F (a, d) +
F (a, c).

2.1.4. Show that the function F (x, y) that is equal to 1 provided that x + 2y ≥ 1,
and that is equal to zero provided that x+2y < 1, cannot be a distribution function
of two random variables.
Hint: Find four numbers a < b, c < d, so that

F (b, d)− F (a, d)− F (b, c) + F (a, c)

is less than zero.

2.1.5. Given that the nonnegative function g(x) has the property that∫ ∞

0

g(x) dx = 1,

show that

f(x1, x2) =
2g(

√
x2

1 + x2
2)

π
√

x2
1 + x2

2

, 0 < x1 < ∞, 0 < x2 <∞,

zero elsewhere, satisfies the conditions for a pdf of two continuous-type random
variables X1 and X2.
Hint: Use polar coordinates.

2.1.6. Consider Example 2.1.3.

(a) Show that P (a < X < b, c < Y < d) = (exp{−a2} − exp{−b2})(exp{−c2} −
exp{−d2}).

(b) Using Part (a) and the notation in Example 2.1.3, show that P [(X, Y ) ∈ A] =
0.1879 while P [(X, Y ) ∈ B] = 0.0026.

(c) Show that the following R program computes P (a < X < b, c < Y < d).
Then use it to compute the probabilities in Part (b).

plifetime <- function(a,b,c,d)

{(exp(-a^2) - exp(-b^2))*(exp(-c^2) - exp(-d^2))}

2.1.7. Let f(x, y) = e−x−y, 0 < x < ∞, 0 < y < ∞, zero elsewhere, be the pdf of
X and Y . Then if Z = X + Y , compute P (Z ≤ 0), P (Z ≤ 6), and, more generally,
P (Z ≤ z), for 0 < z < ∞. What is the pdf of Z?
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2.1.8. Let X and Y have the pdf f(x, y) = 1, 0 < x < 1, 0 < y < 1, zero elsewhere.
Find the cdf and pdf of the product Z = XY .

2.1.9. Let 13 cards be taken, at random and without replacement, from an ordinary
deck of playing cards. If X is the number of spades in these 13 cards, find the pmf of
X . If, in addition, Y is the number of hearts in these 13 cards, find the probability
P (X = 2, Y = 5). What is the joint pmf of X and Y ?

2.1.10. Let the random variables X1 and X2 have the joint pmf described as follows:

(x1, x2) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

p(x1, x2)
2
12

3
12

2
12

2
12

2
12

1
12

and p(x1, x2) is equal to zero elsewhere.

(a) Write these probabilities in a rectangular array as in Example 2.1.4, recording
each marginal pdf in the “margins.”

(b) What is P (X1 + X2 = 1)?

2.1.11. Let X1 and X2 have the joint pdf f(x1, x2) = 15x2
1x2, 0 < x1 < x2 < 1,

zero elsewhere. Find the marginal pdfs and compute P (X1 + X2 ≤ 1).
Hint: Graph the space X1 and X2 and carefully choose the limits of integration
in determining each marginal pdf.

2.1.12. Let X1, X2 be two random variables with the joint pmf p(x1, x2), (x1, x2) ∈
S, where S is the support of X1, X2. Let Y = g(X1, X2) be a function such that∑∑

(x1,x2)∈S
|g(x1, x2)|p(x1, x2) < ∞.

By following the proof of Theorem 1.8.1, show that

E(Y ) =
∑∑

(x1,x2)∈S
g(x1, x2)p(x1, x2).

2.1.13. Let X1, X2 be two random variables with the joint pmf p(x1, x2) = (x1 +
x2)/12, for x1 = 1, 2, x2 = 1, 2, zero elsewhere. Compute E(X1), E(X2

1 ), E(X2),
E(X2

2 ), and E(X1X2). Is E(X1X2) = E(X1)E(X2)? Find E(2X1−6X2
2 +7X1X2).

2.1.14. Let X1, X2 be two random variables with joint pdf f(x1, x2) = 4x1x2,
0 < x1 < 1, 0 < x2 < 1, zero elsewhere. Compute E(X1), E(X2

1 ), E(X2), E(X2
2 ),

and E(X1X2). Is E(X1X2) = E(X1)E(X2)? Find E(3X2 − 2X2
1 + 6X1X2).

2.1.15. Let X1, X2 be two random variables with joint pmf p(x1, x2) = (1/2)x1+x2 ,
for 1 ≤ xi < ∞, i = 1, 2, where x1 and x2 are integers, zero elsewhere. Determine
the joint mgf of X1, X2. Show that M(t1, t2) = M(t1, 0)M(0, t2).

2.1.16. Let X1, X2 be two random variables with joint pdf f(x1, x2) = x1 exp{−x2},
for 0 < x1 < x2 < ∞, zero elsewhere. Determine the joint mgf of X1, X2. Does
M(t1, t2) = M(t1, 0)M(0, t2)?

2.1.17. Let X and Y have the joint pdf f(x, y) = 6(1− x− y), x + y < 1, 0 < x,
0 < y, zero elsewhere. Compute P (2X + 3Y < 1) and E(XY + 2X2).
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2.2 Transformations: Bivariate Random Variables

Let (X1, X2) be a random vector. Suppose we know the joint distribution of
(X1, X2) and we seek the distribution of a transformation of (X1, X2), say, Y =
g(X1, X2). We may be able to obtain the cdf of Y . Another way is to use a trans-
formation as we did for univariate random variables in Sections 1.6 and 1.7. In this
section, we extend this theory to random vectors. It is best to discuss the discrete
and continuous cases separately. We begin with the discrete case.

There are no essential difficulties involved in a problem like the following. Let
pX1,X2(x1, x2) be the joint pmf of two discrete-type random variables X1 and X2

with S the (two-dimensional) set of points at which pX1,X2(x1, x2) > 0; i.e., S is the
support of (X1, X2). Let y1 = u1(x1, x2) and y2 = u2(x1, x2) define a one-to-one
transformation that maps S onto T . The joint pmf of the two new random variables
Y1 = u1(X1, X2) and Y2 = u2(X1, X2) is given by

pY1,Y2(y1, y2) =

{
pX1,X2 [w1(y1, y2), w2(y1, y2)] (y1, y2) ∈ T
0 elsewhere,

where x1 = w1(y1, y2), x2 = w2(y1, y2) is the single-valued inverse of y1 = u1(x1, x2),
y2 = u2(x1, x2). From this joint pmf pY1,Y2(y1, y2) we may obtain the marginal pmf
of Y1 by summing on y2 or the marginal pmf of Y2 by summing on y1.

In using this change of variable technique, it should be emphasized that we need
two “new” variables to replace the two “old” variables. An example helps explain
this technique.

Example 2.2.1. In a large metropolitan area during flu season, suppose that two
strains of flu, A and B, are occurring. For a given week, let X1 and X2 be the
respective number of reported cases of strains A and B with the joint pmf

pX1,X2(x1, x2) =
μx1

1 μx2
2 e−μ1e−μ2

x1!x2!
, x1 = 0, 1, 2, 3, . . . , x2 = 0, 1, 2, 3, . . . ,

and is zero elsewhere, where the parameters μ1 and μ2 are positive real numbers.
Thus the space S is the set of points (x1, x2), where each of x1 and x2 is a non-
negative integer. Further, repeatedly using the Maclaurin series for the exponential
function,3 we have

E(X1) = e−μ1

∞∑
x1=0

x1
μx1

1

x1!
e−μ2

∞∑
x2=0

μx2
2

x2!

= e−μ1

∞∑
x1=1

x1μ1
μx1−1

1

(x1 − 1)!
· 1 = μ1.

Thus μ1 is the mean number of cases of Strain A flu reported during a week.
Likewise, μ2 is the mean number of cases of Strain B flu reported during a week.

3See for example the discussion on Taylor series in Mathematical Comments as referenced in
the Preface.
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A random variable of interest is Y1 = X1 + X2; i.e., the total number of reported
cases of A and B flu during a week. By Theorem 2.1.1, we know E(Y1) = μ1 + μ2;
however, we wish to determine the distribution of Y1. If we use the change of
variable technique, we need to define a second random variable Y2. Because Y2 is
of no interest to us, let us choose it in such a way that we have a simple one-to-one
transformation. For this example, we take Y2 = X2. Then y1 = x1 +x2 and y2 = x2

represent a one-to-one transformation that maps S onto

T = {(y1, y2) : y2 = 0, 1, . . . , y1 and y1 = 0, 1, 2, . . .}.
Note that if (y1, y2) ∈ T , then 0 ≤ y2 ≤ y1. The inverse functions are given by
x1 = y1 − y2 and x2 = y2. Thus the joint pmf of Y1 and Y2 is

pY1,Y2(y1, y2) =
μy1−y2

1 μy2

2 e−μ1−μ2

(y1 − y2)!y2!
, (y1, y2) ∈ T ,

and is zero elsewhere. Consequently, the marginal pmf of Y1 is given by

pY1(y1) =

y1∑
y2=0

pY1,Y2(y1, y2)

=
e−μ1−μ2

y1!

y1∑
y2=0

y1!

(y1 − y2)!y2!
μy1−y2

1 μy2

2

=
(μ1 + μ2)

y1e−μ1−μ2

y1!
, y1 = 0, 1, 2, . . . ,

and is zero elsewhere, where the third equality follows from the binomial expansion.

For the continuous case we begin with an example that illustrates the cdf tech-
nique.

Example 2.2.2. Consider an experiment in which a person chooses at random
a point (X1, X2) from the unit square S = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1}.
Suppose that our interest is not in X1 or in X2 but in Z = X1+X2. Once a suitable
probability model has been adopted, we shall see how to find the pdf of Z. To be
specific, let the nature of the random experiment be such that it is reasonable to
assume that the distribution of probability over the unit square is uniform. Then
the pdf of X1 and X2 may be written

fX1,X2(x1, x2) =

{
1 0 < x1 < 1, 0 < x2 < 1
0 elsewhere,

(2.2.1)

and this describes the probability model. Now let the cdf of Z be denoted by
FZ(z) = P (X1 + X2 ≤ z). Then

FZ(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 z < 0∫ z

0

∫ z−x1

0
dx2dx1 = z2

2 0 ≤ z < 1

1−
∫ 1

z−1

∫ 1

z−x1
dx2dx1 = 1− (2−z)2

2 1 ≤ z < 2

1 2 ≤ z.
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Since F ′
Z(z) exists for all values of z, the pmf of Z may then be written

fZ(z) =

⎧⎨⎩ z 0 < z < 1
2− z 1 ≤ z < 2
0 elsewhere.

(2.2.2)

In the last example, we used the cdf technique to find the distribution of the
transformed random vector. Recall in Chapter 1, Theorem 1.7.1 gave a transfor-
mation technique to directly determine the pdf of the transformed random variable
for one-to-one transformations. As discussed in Section 4.1 of the accompanying re-
source Mathematical Comments,4 this is based on the change-in-variable technique
for univariate integration. Further Section 4.2 of this resource shows that a simi-
lar change-in-variable technique exists for multiple integration. We now discuss in
general the transformation technique for the continuous case based on this theory.

Let (X1, X2) have a jointly continuous distribution with pdf fX1,X2(x1, x2) and
support set S. Consider the transformed random vector (Y1, Y2) = T (X1, X2) where
T is a one-to-one continuous transformation. Let T = T (S) denote the support of
(Y1, Y2). The transformation is depicted in Figure 2.2.1. Rewrite the transforma-
tion in terms of its components as (Y1, Y2) = T (X1, X2) = (u1(X1, X2), u2(X1, X2)),
where the functions y1 = u1(x1, x2) and y2 = u2(x1, x2) define T . Since the trans-
formation is one-to-one, the inverse transformation T−1 exists. We write it as
x1 = w1(y1, y2), x2 = w2(y1, y2). Finally, we need the Jacobian of the transfor-
mation which is the determinant of order 2 given by

J =

∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣ .
Note that J plays the role of dx/dy in the univariate case. We assume that these
first-order partial derivatives are continuous and that the Jacobian J is not identi-
cally equal to zero in T .

Let B be any region5 in T and let A = T−1(B) as shown in Figure 2.2.1.
Because the transformation T is one-to-one, P [(X1, X2) ∈ A] = P [T (X1, X2) ∈
T (A)] = P [(Y1, Y2) ∈ B]. Then based on the change-in-variable technique, cited
above, we have

P [(X1, X2) ∈ A] =

∫∫
A

fX1,X2(x1, x2) dx1dy2

=

∫∫
T (A)

fX1,X2 [T
−1(y1, y2)]|J | dy1dy2

=

∫∫
B

fX1,X2 [w1(y1, y2), w2(y1, y2)]|J | dy1dy2.

4See the reference for Mathematical Comments in the Preface.
5Technically an event in the support of (Y1, Y2).
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Since B is arbitrary, the last integrand must be the joint pdf of (Y1, Y2). That is
the pdf of (Y1, Y2) is

fY1,Y2(y1, y2) =

{
fX1,X2 [w1(y1, y2), w2(y1, y2)]|J | (y1, y2) ∈ T
0 elsewhere.

(2.2.3)

Several examples of this result are given next.

x2

x1

y2

y1

S

T

A

B

Figure 2.2.1: A general sketch of the supports of (X1, X2), (S), and (Y1, Y2), (T ).

Example 2.2.3. Reconsider Example 2.2.2, where (X1, X2) have the uniform dis-
tribution over the unit square with the pdf given in expression (2.2.1). The support
of (X1, X2) is the set S = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1} as depicted in Figure
2.2.2.

Suppose Y1 = X1 + X2 and Y2 = X1 −X2. The transformation is given by

y1 = u1(x1, x2) = x1 + x2

y2 = u2(x1, x2) = x1 − x2.

This transformation is one-to-one. We first determine the set T in the y1y2-plane
that is the mapping of S under this transformation. Now

x1 = w1(y1, y2) = 1
2 (y1 + y2)

x2 = w2(y1, y2) = 1
2 (y1 − y2).

To determine the set S in the y1y2-plane onto which T is mapped under the transfor-
mation, note that the boundaries of S are transformed as follows into the boundaries
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x2

x1 = 0 x1 = 1

x2 = 1

x2 = 0(0, 0)
x1

S

Figure 2.2.2: The support of (X1, X2) of Example 2.2.3.

of T :

x1 = 0 into 0 = 1
2 (y1 + y2)

x1 = 1 into 1 = 1
2 (y1 + y2)

x2 = 0 into 0 = 1
2 (y1 − y2)

x2 = 1 into 1 = 1
2 (y1 − y2).

Accordingly, T is shown in Figure 2.2.3. Next, the Jacobian is given by

J =

∣∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2
∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣∣ = −1

2
.

Although we suggest transforming the boundaries of S, others might want to
use the inequalities

0 < x1 < 1 and 0 < x2 < 1

directly. These four inequalities become

0 < 1
2 (y1 + y2) < 1 and 0 < 1

2 (y1 − y2) < 1.

It is easy to see that these are equivalent to

−y1 < y2, y2 < 2− y1, y2 < y1 y1 − 2 < y2;

and they define the set T .
Hence, the joint pdf of (Y1, Y2) is given by

fY1,Y2(y1, y2) =

{
fX1,X2 [

1
2 (y1 + y2),

1
2 (y1 − y2)]|J | = 1

2 (y1, y2) ∈ T
0 elsewhere.
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y2

y1(0, 0)

y2 = y1 y2 = 2 – y1

y2 = –y1 y2 =  y1 – 2

T

Figure 2.2.3: The support of (Y1, Y2) of Example 2.2.3.

The marginal pdf of Y1 is given by

fY1(y1) =

∫ ∞

−∞
fY1,Y2(y1, y2) dy2.

If we refer to Figure 2.2.3, we can see that

fY1(y1) =

⎧⎪⎨⎪⎩
∫ y1

−y1

1
2 dy2 = y1 0 < y1 ≤ 1∫ 2−y1

y1−2
1
2 dy2 = 2− y1 1 < y1 < 2

0 elsewhere,

which agrees with expression (2.2.2) of Example 2.2.2. In a similar manner, the
marginal pdf fY2(y2) is given by

fY2(y2) =

⎧⎪⎨⎪⎩
∫ y2+2

−y2

1
2 dy1 = y2 + 1 −1 < y2 ≤ 0∫ 2−y2

y2

1
2 dy1 = 1− y2 0 < y2 < 1

0 elsewhere.

Example 2.2.4. Let Y1 = 1
2 (X1 −X2), where X1 and X2 have the joint pdf

fX1,X2(x1, x2) =

{
1
4 exp

(
−x1+x2

2

)
0 < x1 < ∞, 0 < x2 <∞

0 elsewhere.

Let Y2 = X2 so that y1 = 1
2 (x1− x2), y2 = x2 or, equivalently, x1 = 2y1 + y2, x2 =

y2, define a one-to-one transformation from S = {(x1, x2) : 0 < x1 < ∞, 0 < x2 <
∞} onto T = {(y1, y2) : −2y1 < y2 and 0 < y2 < ∞, −∞ < y1 < ∞}. The
Jacobian of the transformation is

J =

∣∣∣∣ 2 1
0 1

∣∣∣∣ = 2;
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hence the joint pdf of Y1 and Y2 is

fY1,Y2(y1, y2) =

{ |2|
4 e−y1−y2 (y1, y2) ∈ T

0 elsewhere.

Thus the pdf of Y1 is given by

fY1(y1) =

⎧⎨⎩
∫ ∞
−2y1

1
2e−y1−y2 dy2 = 1

2 ey1 −∞ < y1 < 0∫ ∞
0

1
2 e−y1−y2 dy2 = 1

2 e−y1 0 ≤ y1 <∞,

or
fY1(y1) = 1

2 e−|y1|, −∞ < y1 <∞. (2.2.4)

Recall from expression (1.9.20) of Chapter 1 that Y1 has the Laplace distribution.
This pdf is also frequently called the double exponential pdf.

Example 2.2.5. Let X1 and X2 have the joint pdf

fX1,X2(x1, x2) =

{
10x1x

2
2 0 < x1 < x2 < 1

0 elsewhere.

Suppose Y1 = X1/X2 and Y2 = X2. Hence, the inverse transformation is x1 = y1y2

and x2 = y2, which has the Jacobian

J =

∣∣∣∣ y2 y1

0 1

∣∣∣∣ = y2.

The inequalities defining the support S of (X1, X2) become

0 < y1y2, y1y2 < y2, and y2 < 1.

These inequalities are equivalent to

0 < y1 < 1 and 0 < y2 < 1,

which defines the support set T of (Y1, Y2). Hence, the joint pdf of (Y1, Y2) is

fY1,Y2(y1, y2) = 10y1y2y
2
2 |y2| = 10y1y

4
2 , (y1, y2) ∈ T .

The marginal pdfs are

fY1(y1) =

∫ 1

0

10y1y
4
2 dy2 = 2y1, 0 < y1 < 1,

zero elsewhere, and

fY2(y2) =

∫ 1

0

10y1y
4
2 dy1 = 5y4

2, 0 < y1 < 1,

zero elsewhere.



2.2. Transformations: Bivariate Random Variables 107

In addition to the change-of-variable and cdf techniques for finding distributions
of functions of random variables, there is another method, called the moment
generating function (mgf) technique, which works well for linear functions of
random variables. In Subsection 2.1.2, we pointed out that if Y = g(X1, X2), then
E(Y ), if it exists, could be found by

E(Y ) =

∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)fX1,X2(x1, x2) dx1dx2

in the continuous case, with summations replacing integrals in the discrete case.
Certainly, that function g(X1, X2) could be exp{tu(X1, X2)}, so that in reality
we would be finding the mgf of the function Z = u(X1, X2). If we could then
recognize this mgf as belonging to a certain distribution, then Z would have that
distribution. We give two illustrations that demonstrate the power of this technique
by reconsidering Examples 2.2.1 and 2.2.4.

Example 2.2.6 (Continuation of Example 2.2.1). Here X1 and X2 have the joint
pmf

pX1,X2(x1, x2) =

{
μ

x1
1 μ

x2
2 e−μ1e−μ2

x1!x2!
x1 = 0, 1, 2, 3, . . . , x2 = 0, 1, 2, 3, . . .

0 elsewhere,

where μ1 and μ2 are fixed positive real numbers. Let Y = X1 + X2 and consider

E(etY ) =

∞∑
x1=0

∞∑
x2=0

et(x1+x2)pX1,X2(x1, x2)

=

∞∑
x1=0

etx1
μx1e−μ1

x1!

∞∑
x2=0

etx2
μx2e−μ2

x2!

=

[
e−μ1

∞∑
x1=0

(etμ1)
x1

x1!

][
e−μ2

∞∑
x2=0

(etμ2)
x2

x2!

]
=

[
eμ1(e

t−1)
] [

eμ2(et−1)
]

= e(μ1+μ2)(et−1).

Notice that the factors in the brackets in the next-to-last equality are the mgfs of
X1 and X2, respectively. Hence, the mgf of Y is the same as that of X1 except μ1

has been replaced by μ1 + μ2. Therefore, by the uniqueness of mgfs, the pmf of Y
must be

pY (y) = e−(μ1+μ2) (μ1 + μ2)
y

y!
, y = 0, 1, 2, . . . ,

which is the same pmf that was obtained in Example 2.2.1.

Example 2.2.7 (Continuation of Example 2.2.4). Here X1 and X2 have the joint
pdf

fX1,X2(x1, x2) =

{
1
4 exp

(
−x1+x2

2

)
0 < x1 < ∞, 0 < x2 <∞

0 elsewhere.
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So the mgf of Y = (1/2)(X1 −X2) is given by

E(etY ) =

∫ ∞

0

∫ ∞

0

et(x1−x2)/2 1

4
e−(x1+x2)/2 dx1dx2

=

[∫ ∞

0

1

2
e−x1(1−t)/2 dx1

] [∫ ∞

0

1

2
e−x2(1+t)/2 dx2

]
=

[
1

1− t

] [
1

1 + t

]
=

1

1− t2

provided that 1 − t > 0 and 1 + t > 0; i.e., −1 < t < 1. However, the mgf of a
Laplace distribution with pdf (1.9.20) is∫ ∞

−∞
etx e−|x|

2
dx =

∫ 0

−∞

e(1+t)x

2
dx +

∫ ∞

0

e(t−1)x

2
dx

=
1

2(1 + t)
+

1

2(1− t)
=

1

1− t2
,

provided −1 < t < 1. Thus, by the uniqueness of mgfs, Y has a Laplace distribution
with pdf (1.9.20).

EXERCISES

2.2.1. If p(x1, x2) = (2
3 )x1+x2(1

3 )2−x1−x2 , (x1, x2) = (0, 0), (0, 1), (1, 0), (1, 1), zero
elsewhere, is the joint pmf of X1 and X2, find the joint pmf of Y1 = X1 −X2 and
Y2 = X1 + X2.

2.2.2. Let X1 and X2 have the joint pmf p(x1, x2) = x1x2/36, x1 = 1, 2, 3 and
x2 = 1, 2, 3, zero elsewhere. Find first the joint pmf of Y1 = X1X2 and Y2 = X2,
and then find the marginal pmf of Y1.

2.2.3. Let X1 and X2 have the joint pdf h(x1, x2) = 2e−x1−x2 , 0 < x1 < x2 < ∞,
zero elsewhere. Find the joint pdf of Y1 = 2X1 and Y2 = X2 −X1.

2.2.4. Let X1 and X2 have the joint pdf h(x1, x2) = 8x1x2, 0 < x1 < x2 < 1, zero
elsewhere. Find the joint pdf of Y1 = X1/X2 and Y2 = X2.
Hint: Use the inequalities 0 < y1y2 < y2 < 1 in considering the mapping from S
onto T .

2.2.5. Let X1 and X2 be continuous random variables with the joint probability
density function fX1,X2(x1, x2), −∞ < xi < ∞, i = 1, 2. Let Y1 = X1 + X2 and
Y2 = X2.

(a) Find the joint pdf fY1,Y2 .

(b) Show that

fY1(y1) =

∫ ∞

−∞
fX1,X2(y1 − y2, y2) dy2, (2.2.5)

which is sometimes called the convolution formula.
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2.2.6. Suppose X1 and X2 have the joint pdf fX1,X2(x1, x2) = e−(x1+x2), 0 < xi <
∞, i = 1, 2, zero elsewhere.

(a) Use formula (2.2.5) to find the pdf of Y1 = X1 + X2.

(b) Find the mgf of Y1.

2.2.7. Use the formula (2.2.5) to find the pdf of Y1 = X1 + X2, where X1 and X2

have the joint pdf fX1,X2(x1, x2) = 2e−(x1+x2), 0 < x1 < x2 < ∞, zero elsewhere.

2.2.8. Suppose X1 and X2 have the joint pdf

f(x1, x2) =

{
e−x1e−x2 x1 > 0, x2 > 0
0 elsewhere.

For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2.

(a) Show that the pdf of W is

fW (w) =

{
1

w1−w2
(e−w/w1 − e−w/w2) w > 0

0 elsewhere.

(b) Verify that fW (w) > 0 for w > 0.

(c) Note that the pdf fW (w) has an indeterminate form when w1 = w2. Rewrite
fW (w) using h defined as w1−w2 = h. Then use l’Hôpital’s rule to show that
when w1 = w2, the pdf is given by fW (w) = (w/w2

1) exp{−w/w1} for w > 0
and zero elsewhere.

2.3 Conditional Distributions and Expectations

In Section 2.1 we introduced the joint probability distribution of a pair of random
variables. We also showed how to recover the individual (marginal) distributions
for the random variables from the joint distribution. In this section, we discuss
conditional distributions, i.e., the distribution of one of the random variables when
the other has assumed a specific value. We discuss this first for the discrete case,
which follows easily from the concept of conditional probability presented in Section
1.4.

Let X1 and X2 denote random variables of the discrete type, which have the joint
pmf pX1,X2(x1, x2) that is positive on the support set S and is zero elsewhere. Let
pX1(x1) and pX2(x2) denote, respectively, the marginal probability mass functions
of X1 and X2. Let x1 be a point in the support of X1; hence, pX1(x1) > 0. Using
the definition of conditional probability, we have

P (X2 = x2|X1 = x1) =
P (X1 = x1, X2 = x2)

P (X1 = x1)
=

pX1,X2(x1, x2)

pX1(x1)

for all x2 in the support SX2 of X2. Define this function as

pX2|X1
(x2|x1) =

pX1,X2(x1, x2)

pX1(x1)
, x2 ∈ SX2 . (2.3.1)
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For any fixed x1 with pX1(x1) > 0, this function pX2|X1
(x2|x1) satisfies the con-

ditions of being a pmf of the discrete type because pX2|X1
(x2|x1) is nonnegative

and ∑
x2

pX2|X1
(x2|x1) =

∑
x2

pX1,X2(x1, x2)

pX1(x1)

=
1

pX1(x1)

∑
x2

pX1,X2(x1, x2) =
pX1(x1)

pX1(x1)
= 1.

We call pX2|X1
(x2|x1) the conditional pmf of the discrete type of random variable

X2, given that the discrete type of random variable X1 = x1. In a similar manner,
provided x2 ∈ SX2 , we define the symbol pX1|X2

(x1|x2) by the relation

pX1|X2
(x1|x2) =

pX1,X2(x1, x2)

pX2(x2)
, x1 ∈ SX1 ,

and we call pX1|X2
(x1|x2) the conditional pmf of the discrete type of random variable

X1, given that the discrete type of random variable X2 = x2. We often abbreviate
pX1|X2

(x1|x2) by p1|2(x1|x2) and pX2|X1
(x2|x1) by p2|1(x2|x1). Similarly, p1(x1)

and p2(x2) are used to denote the respective marginal pmfs.
Now let X1 and X2 denote random variables of the continuous type and have the

joint pdf fX1,X2(x1, x2) and the marginal probability density functions fX1(x1) and
fX2(x2), respectively. We use the results of the preceding paragraph to motivate
a definition of a conditional pdf of a continuous type of random variable. When
fX1(x1) > 0, we define the symbol fX2|X1

(x2|x1) by the relation

fX2|X1
(x2|x1) =

fX1,X2(x1, x2)

fX1(x1)
. (2.3.2)

In this relation, x1 is to be thought of as having a fixed (but any fixed) value for
which fX1(x1) > 0. It is evident that fX2|X1

(x2|x1) is nonnegative and that∫ ∞

−∞
fX2|X1

(x2|x1) dx2 =

∫ ∞

−∞

fX1,X2(x1, x2)

fX1(x1)
dx2

=
1

fX1(x1)

∫ ∞

−∞
fX1,X2(x1, x2) dx2

=
1

fX1(x1)
fX1(x1) = 1.

That is, fX2|X1
(x2|x1) has the properties of a pdf of one continuous type of random

variable. It is called the conditional pdf of the continuous type of random variable
X2, given that the continuous type of random variable X1 has the value x1. When
fX2(x2) > 0, the conditional pdf of the continuous random variable X1, given that
the continuous type of random variable X2 has the value x2, is defined by

fX1|X2
(x1|x2) =

fX1,X2(x1, x2)

fX2(x2)
, fX2(x2) > 0.
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We often abbreviate these conditional pdfs by f1|2(x1|x2) and f2|1(x2|x1), respec-
tively. Similarly, f1(x1) and f2(x2) are used to denote the respective marginal pdfs.

Since each of f2|1(x2|x1) and f1|2(x1|x2) is a pdf of one random variable, each
has all the properties of such a pdf. Thus we can compute probabilities and math-
ematical expectations. If the random variables are of the continuous type, the
probability

P (a < X2 < b|X1 = x1) =

∫ b

a

f2|1(x2|x1) dx2

is called “the conditional probability that a < X2 < b, given that X1 = x1.” If there
is no ambiguity, this may be written in the form P (a < X2 < b|x1). Similarly, the
conditional probability that c < X1 < d, given X2 = x2, is

P (c < X1 < d|X2 = x2) =

∫ d

c

f1|2(x1|x2) dx1.

If u(X2) is a function of X2, the conditional expectation of u(X2), given that
X1 = x1, if it exists, is given by

E[u(X2)|x1] =

∫ ∞

−∞
u(x2)f2|1(x2|x1) dx2.

Note that E[u(X2)|x1] is a function of x1. If they do exist, then E(X2|x1) is the
mean and E{[X2−E(X2|x1)]

2|x1} is the conditional variance of the conditional
distribution of X2, given X1 = x1, which can be written more simply as Var(X2|x1).
It is convenient to refer to these as the “conditional mean” and the “conditional
variance” of X2, given X1 = x1. Of course, we have

Var(X2|x1) = E(X2
2 |x1)− [E(X2|x1)]

2

from an earlier result. In a like manner, the conditional expectation of u(X1), given
X2 = x2, if it exists, is given by

E[u(X1)|x2] =

∫ ∞

−∞
u(x1)f1|2(x1|x2) dx1.

With random variables of the discrete type, these conditional probabilities and
conditional expectations are computed by using summation instead of integration.
An illustrative example follows.

Example 2.3.1. Let X1 and X2 have the joint pdf

f(x1, x2) =

{
2 0 < x1 < x2 < 1
0 elsewhere.

Then the marginal probability density functions are, respectively,

f1(x1) =

{ ∫ 1

x1
2 dx2 = 2(1− x1) 0 < x1 < 1

0 elsewhere,
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and

f2(x2) =

{ ∫ x2

0
2 dx1 = 2x2 0 < x2 < 1

0 elsewhere.

The conditional pdf of X1, given X2 = x2, 0 < x2 < 1, is

f1|2(x1|x2) =

{
2

2x2
= 1

x2
0 < x1 < x2 < 1

0 elsewhere.

Here the conditional mean and the conditional variance of X1, given X2 = x2, are
respectively,

E(X1|x2) =

∫ ∞

−∞
x1f1|2(x1|x2) dx1

=

∫ x2

0

x1

(
1

x2

)
dx1

=
x2

2
, 0 < x2 < 1,

and

Var(X1|x2) =

∫ x2

0

(
x1 −

x2

2

)2
(

1

x2

)
dx1

=
x2

2

12
, 0 < x2 < 1.

Finally, we compare the values of

P (0 < X1 < 1
2 |X2 = 3

4 ) and P (0 < X1 < 1
2 ).

We have

P (0 < X1 < 1
2 |X2 = 3

4 ) =

∫ 1/2

0

f1|2(x1|34 ) dx1 =

∫ 1/2

0

(4
3 ) dx1 = 2

3 ,

but
P (0 < X1 < 1

2 ) =
∫ 1/2

0 f1(x1) dx1 =
∫ 1/2

0 2(1− x1) dx1 = 3
4 .

Since E(X2|x1) is a function of x1, then E(X2|X1) is a random variable with its
own distribution, mean, and variance. Let us consider the following illustration of
this.

Example 2.3.2. Let X1 and X2 have the joint pdf

f(x1, x2) =

{
6x2 0 < x2 < x1 < 1
0 elsewhere.

Then the marginal pdf of X1 is

f1(x1) =

∫ x1

0

6x2 dx2 = 3x2
1, 0 < x1 < 1,
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zero elsewhere. The conditional pdf of X2, given X1 = x1, is

f2|1(x2|x1) =
6x2

3x2
1

=
2x2

x2
1

, 0 < x2 < x1,

zero elsewhere, where 0 < x1 < 1. The conditional mean of X2, given X1 = x1, is

E(X2|x1) =

∫ x1

0

x2

(
2x2

x2
1

)
dx2 =

2

3
x1, 0 < x1 < 1.

Now E(X2|X1) = 2X1/3 is a random variable, say Y . The cdf of Y = 2X1/3 is

G(y) = P (Y ≤ y) = P

(
X1 ≤

3y

2

)
, 0 ≤ y <

2

3
.

From the pdf f1(x1), we have

G(y) =

∫ 3y/2

0

3x2
1 dx1 =

27y3

8
, 0 ≤ y <

2

3
.

Of course, G(y) = 0 if y < 0, and G(y) = 1 if 2
3 < y. The pdf, mean, and variance

of Y = 2X1/3 are

g(y) =
81y2

8
, 0 ≤ y <

2

3
,

zero elsewhere,

E(Y ) =

∫ 2/3

0

y

(
81y2

8

)
dy =

1

2
,

and

Var(Y ) =

∫ 2/3

0

y2

(
81y2

8

)
dy − 1

4
=

1

60
.

Since the marginal pdf of X2 is

f2(x2) =

∫ 1

x2

6x2 dx1 = 6x2(1− x2), 0 < x2 < 1,

zero elsewhere, it is easy to show that E(X2) = 1
2 and Var(X2) = 1

20 . That is, here

E(Y ) = E[E(X2|X1)] = E(X2)

and
Var(Y ) = Var[E(X2|X1)] ≤ Var(X2).

Example 2.3.2 is excellent, as it provides us with the opportunity to apply many
of these new definitions as well as review the cdf technique for finding the distri-
bution of a function of a random variable, namely Y = 2X1/3. Moreover, the two
observations at the end of this example are no accident because they are true in
general.
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Theorem 2.3.1. Let (X1, X2) be a random vector such that the variance of X2 is
finite. Then,

(a) E[E(X2|X1)] = E(X2).

(b) Var[E(X2|X1)] ≤ Var(X2).

Proof: The proof is for the continuous case. To obtain it for the discrete case,
exchange summations for integrals. We first prove (a). Note that

E(X2) =

∫ ∞

−∞

∫ ∞

−∞
x2f(x1, x2) dx2dx1

=

∫ ∞

−∞

[∫ ∞

−∞
x2

f(x1, x2)

f1(x1)
dx2

]
f1(x1) dx1

=

∫ ∞

−∞
E(X2|x1)f1(x1) dx1

= E[E(X2|X1)],

which is the first result.
Next we show (b). Consider with μ2 = E(X2),

Var(X2) = E[(X2 − μ2)
2]

= E{[X2 − E(X2|X1) + E(X2|X1)− μ2]
2}

= E{[X2 − E(X2|X1)]
2}+ E{[E(X2|X1)− μ2]

2}
+ 2E{[X2 − E(X2|X1)][E(X2|X1)− μ2]}.

We show that the last term of the right-hand member of the immediately preceding
equation is zero. It is equal to

2

∫ ∞

−∞

∫ ∞

−∞
[x2 − E(X2|x1)][E(X2|x1)− μ2]f(x1, x2) dx2dx1

= 2

∫ ∞

−∞
[E(X2|x1)− μ2]

{∫ ∞

−∞
[x2 − E(X2|x1)]

f(x1, x2)

f1(x1)
dx2

}
f1(x1) dx1.

But E(X2|x1) is the conditional mean of X2, given X1 = x1. Since the expression
in the inner braces is equal to

E(X2|x1)− E(X2|x1) = 0,

the double integral is equal to zero. Accordingly, we have

Var(X2) = E{[X2 − E(X2|X1)]
2}+ E{[E(X2|X1)− μ2]

2}.

The first term in the right-hand member of this equation is nonnegative because it
is the expected value of a nonnegative function, namely [X2 − E(X2|X1)]

2. Since
E[E(X2|X1)] = μ2, the second term is Var[E(X2|X1)]. Hence we have

Var(X2) ≥ Var[E(X2|X1)],
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which completes the proof.

Intuitively, this result could have this useful interpretation. Both the random
variables X2 and E(X2|X1) have the same mean μ2. If we did not know μ2, we
could use either of the two random variables to guess at the unknown μ2. Since,
however, Var(X2) ≥ Var[E(X2|X1)], we would put more reliance in E(X2|X1) as a
guess. That is, if we observe the pair (X1, X2) to be (x1, x2), we could prefer to use
E(X2|x1) to x2 as a guess at the unknown μ2. When studying the use of sufficient
statistics in estimation in Chapter 7, we make use of this famous result, attributed
to C. R. Rao and David Blackwell.

We finish this section with an example illustrating Theorem 2.3.1.

Example 2.3.3. Let X1 and X2 be discrete random variables. Suppose the condi-
tional pmf of X1 given X2 and the marginal distribution of X2 are given by

p(x1|x2) =

(
x2

x1

)(
1

2

)x2

, x1 = 0, 1, . . . , x2

p(x2) =
2

3

(
1

3

)x2−1

, x2 = 1, 2, 3 . . . .

Let us determine the mgf of X1. For fixed x2, by the binomial theorem,

E
(
etX1 |x2

)
=

x2∑
x1=0

(
x2

x1

)
etx1

(
1

2

)x2−x1
(

1

2

)x1

=

(
1

2
+

1

2
et

)x2

.

Hence, by the geometric series and Theorem 2.3.1,

E
(
etX1

)
= E

[
E

(
etX1 |X2

)]
=

∞∑
x2=1

(
1

2
+

1

2
et

)x2 2

3

(
1

3

)x2−1

=
2

3

(
1

2
+

1

2
et

) ∞∑
x2=1

(
1

6
+

1

6
et

)x2−1

=
2

3

(
1

2
+

1

2
et

)
1

1− [(1/6) + (1/6)et]
,

provided (1/6) + (1/6)et < 1 or t < log 5 (which includes t = 0).

EXERCISES

2.3.1. Let X1 and X2 have the joint pdf f(x1, x2) = x1 + x2, 0 < x1 < 1, 0 <
x2 < 1, zero elsewhere. Find the conditional mean and variance of X2, given
X1 = x1, 0 < x1 < 1.
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2.3.2. Let f1|2(x1|x2) = c1x1/x2
2, 0 < x1 < x2, 0 < x2 < 1, zero elsewhere, and

f2(x2) = c2x
4
2, 0 < x2 < 1, zero elsewhere, denote, respectively, the conditional pdf

of X1, given X2 = x2, and the marginal pdf of X2. Determine:

(a) The constants c1 and c2.

(b) The joint pdf of X1 and X2.

(c) P (1
4 < X1 < 1

2 |X2 = 5
8 ).

(d) P (1
4 < X1 < 1

2 ).

2.3.3. Let f(x1, x2) = 21x2
1x

3
2, 0 < x1 < x2 < 1, zero elsewhere, be the joint pdf

of X1 and X2.

(a) Find the conditional mean and variance of X1, given X2 = x2, 0 < x2 < 1.

(b) Find the distribution of Y = E(X1|X2).

(c) Determine E(Y ) and Var(Y ) and compare these to E(X1) and Var(X1), re-
spectively.

2.3.4. Suppose X1 and X2 are random variables of the discrete type that have
the joint pmf p(x1, x2) = (x1 + 2x2)/18, (x1, x2) = (1, 1), (1, 2), (2, 1), (2, 2), zero
elsewhere. Determine the conditional mean and variance of X2, given X1 = x1, for
x1 = 1 or 2. Also, compute E(3X1 − 2X2).

2.3.5. Let X1 and X2 be two random variables such that the conditional distribu-
tions and means exist. Show that:

(a) E(X1 + X2 |X2) = E(X1 |X2) + X2,

(b) E(u(X2) |X2) = u(X2).

2.3.6. Let the joint pdf of X and Y be given by

f(x, y) =

{ 2
(1+x+y)3 0 < x <∞, 0 < y < ∞
0 elsewhere.

(a) Compute the marginal pdf of X and the conditional pdf of Y , given X = x.

(b) For a fixed X = x, compute E(1 + x + Y |x) and use the result to compute
E(Y |x).

2.3.7. Suppose X1 and X2 are discrete random variables which have the joint pmf
p(x1, x2) = (3x1 + x2)/24, (x1, x2) = (1, 1), (1, 2), (2, 1), (2, 2), zero elsewhere. Find
the conditional mean E(X2|x1), when x1 = 1.

2.3.8. Let X and Y have the joint pdf f(x, y) = 2 exp{−(x + y)}, 0 < x < y < ∞,
zero elsewhere. Find the conditional mean E(Y |x) of Y , given X = x.
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2.3.9. Five cards are drawn at random and without replacement from an ordinary
deck of cards. Let X1 and X2 denote, respectively, the number of spades and the
number of hearts that appear in the five cards.

(a) Determine the joint pmf of X1 and X2.

(b) Find the two marginal pmfs.

(c) What is the conditional pmf of X2, given X1 = x1?

2.3.10. Let X1 and X2 have the joint pmf p(x1, x2) described as follows:

(x1, x2) (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

p(x1, x2)
1
18

3
18

4
18

3
18

6
18

1
18

and p(x1, x2) is equal to zero elsewhere. Find the two marginal probability mass
functions and the two conditional means.
Hint: Write the probabilities in a rectangular array.

2.3.11. Let us choose at random a point from the interval (0, 1) and let the random
variable X1 be equal to the number that corresponds to that point. Then choose
a point at random from the interval (0, x1), where x1 is the experimental value of
X1; and let the random variable X2 be equal to the number that corresponds to
this point.

(a) Make assumptions about the marginal pdf f1(x1) and the conditional pdf
f2|1(x2|x1).

(b) Compute P (X1 + X2 ≥ 1).

(c) Find the conditional mean E(X1|x2).

2.3.12. Let f(x) and F (x) denote, respectively, the pdf and the cdf of the random
variable X . The conditional pdf of X , given X > x0, x0 a fixed number, is defined
by f(x|X > x0) = f(x)/[1−F (x0)], x0 < x, zero elsewhere. This kind of conditional
pdf finds application in a problem of time until death, given survival until time x0.

(a) Show that f(x|X > x0) is a pdf.

(b) Let f(x) = e−x, 0 < x < ∞, and zero elsewhere. Compute P (X > 2|X > 1).

2.4 Independent Random Variables

Let X1 and X2 denote the random variables of the continuous type that have the
joint pdf f(x1, x2) and marginal probability density functions f1(x1) and f2(x2),
respectively. In accordance with the definition of the conditional pdf f2|1(x2|x1),
we may write the joint pdf f(x1, x2) as

f(x1, x2) = f2|1(x2|x1)f1(x1).
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Suppose that we have an instance where f2|1(x2|x1) does not depend upon x1. Then
the marginal pdf of X2 is, for random variables of the continuous type,

f2(x2) =

∫ ∞

−∞
f2|1(x2|x1)f1(x1) dx1

= f2|1(x2|x1)

∫ ∞

−∞
f1(x1) dx1

= f2|1(x2|x1).

Accordingly,

f2(x2) = f2|1(x2|x1) and f(x1, x2) = f1(x1)f2(x2),

when f2|1(x2|x1) does not depend upon x1. That is, if the conditional distribution
of X2, given X1 = x1, is independent of any assumption about x1, then f(x1, x2) =
f1(x1)f2(x2).

The same discussion applies to the discrete case too, which we summarize in
parentheses in the following definition.

Definition 2.4.1 (Independence). Let the random variables X1 and X2 have the
joint pdf f(x1, x2) [joint pmf p(x1, x2)] and the marginal pdfs [pmfs] f1(x1) [p1(x1)]
and f2(x2) [p2(x2)], respectively. The random variables X1 and X2 are said to be
independent if, and only if, f(x1, x2) ≡ f1(x1)f2(x2) [p(x1, x2) ≡ p1(x1)p2(x2)].
Random variables that are not independent are said to be dependent.

Remark 2.4.1. Two comments should be made about the preceding definition.
First, the product of two positive functions f1(x1)f2(x2) means a function that is
positive on the product space. That is, if f1(x1) and f2(x2) are positive on, and
only on, the respective spaces S1 and S2, then the product of f1(x1) and f2(x2)
is positive on, and only on, the product space S = {(x1, x2) : x1 ∈ S1, x2 ∈ S2}.
For instance, if S1 = {x1 : 0 < x1 < 1} and S2 = {x2 : 0 < x2 < 3}, then
S = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 3}. The second remark pertains to the
identity. The identity in Definition 2.4.1 should be interpreted as follows. There
may be certain points (x1, x2) ∈ S at which f(x1, x2) 
= f1(x1)f2(x2). However, if A
is the set of points (x1, x2) at which the equality does not hold, then P (A) = 0. In
subsequent theorems and the subsequent generalizations, a product of nonnegative
functions and an identity should be interpreted in an analogous manner.

Example 2.4.1. Suppose an urn contains 10 blue, 8 red, and 7 yellow balls that
are the same except for color. Suppose 4 balls are drawn without replacement. Let
X and Y be the number of red and blue balls drawn, respectively. The joint pmf
of (X, Y ) is

p(x, y) =

(
10
x

)(
8
y

)(
7

4−x−y

)(
25
4

) , 0 ≤ x, y ≤ 4; x + y ≤ 4.
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Since X + Y ≤ 4, it would seem that X and Y are dependent. To see that this is
true by definition, we first find the marginal pmf’s which are:

pX(x) =

(
10
x

)(
15

4−x

)(
25
4

) , 0 ≤ x ≤ 4;

pY (y) =

(
8
y

)(
17

4−y

)(
25
4

) , 0 ≤ y ≤ 4.

To show dependence, we need to find only one point in the support of (X1, X2) where
the joint pmf does not factor into the product of the marginal pmf’s. Suppose we
select the point x = 1 and y = 1. Then, using R for calculation, we compute (to 4
places):

p(1, 1) = 10 · 8 ·
(

7

2

)
/

(
25

4

)
= 0.1328

pX(1) = 10

(
15

3

)
/

(
25

4

)
= 0.3597

pY (1) = 8

(
17

3

)
/

(
25

4

)
= 0.4300.

Since 0.1328 
= 0.1547 = 0.3597 · 0.4300, X and Y are dependent random variables.

Example 2.4.2. Let the joint pdf of X1 and X2 be

f(x1, x2) =

{
x1 + x2 0 < x1 < 1, 0 < x2 < 1
0 elsewhere.

We show that X1 and X2 are dependent. Here the marginal probability density
functions are

f1(x1) =

{ ∫∞
−∞ f(x1, x2) dx2 =

∫ 1

0 (x1 + x2) dx2 = x1 + 1
2 0 < x1 < 1

0 elsewhere,

and

f2(x2) =

{ ∫∞
−∞ f(x1, x2) dx1 =

∫ 1

0 (x1 + x2) dx1 = 1
2 + x2 0 < x2 < 1

0 elsewhere.

Since f(x1, x2) 
≡ f1(x1)f2(x2), the random variables X1 and X2 are dependent.

The following theorem makes it possible to assert that the random variables X1

and X2 of Example 2.4.2 are dependent, without computing the marginal probability
density functions.

Theorem 2.4.1. Let the random variables X1 and X2 have supports S1 and S2,
respectively, and have the joint pdf f(x1, x2). Then X1 and X2 are independent if
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and only if f(x1, x2) can be written as a product of a nonnegative function of x1

and a nonnegative function of x2. That is,

f(x1, x2) ≡ g(x1)h(x2),

where g(x1) > 0, x1 ∈ S1, zero elsewhere, and h(x2) > 0, x2 ∈ S2, zero elsewhere.

Proof. If X1 and X2 are independent, then f(x1, x2) ≡ f1(x1)f2(x2), where f1(x1)
and f2(x2) are the marginal probability density functions of X1 and X2, respectively.
Thus the condition f(x1, x2) ≡ g(x1)h(x2) is fulfilled.

Conversely, if f(x1, x2) ≡ g(x1)h(x2), then, for random variables of the contin-
uous type, we have

f1(x1) =

∫ ∞

−∞
g(x1)h(x2) dx2 = g(x1)

∫ ∞

−∞
h(x2) dx2 = c1g(x1)

and

f2(x2) =

∫ ∞

−∞
g(x1)h(x2) dx1 = h(x2)

∫ ∞

−∞
g(x1) dx1 = c2h(x2),

where c1 and c2 are constants, not functions of x1 or x2. Moreover, c1c2 = 1 because

1 =

∫ ∞

−∞

∫ ∞

−∞
g(x1)h(x2) dx1dx2 =

[∫ ∞

−∞
g(x1) dx1

] [∫ ∞

−∞
h(x2) dx2

]
= c2c1.

These results imply that

f(x1, x2) ≡ g(x1)h(x2) ≡ c1g(x1)c2h(x2) ≡ f1(x1)f2(x2).

Accordingly, X1 and X2 are independent.

This theorem is true for the discrete case also. Simply replace the joint pdf by
the joint pmf. For instance, the discrete random variables X and Y of Example
2.4.1 are immediately seen to be dependent because the support of (X, Y ) is not a
product space.

Next, consider the joint distribution of the continuous random vector (X, Y )
given in Example 2.1.3. The joint pdf is

f(x, y) = 4xe−x2

ye−y2

, x > 0, y > 0.

which is a product of a nonnegative function of x and a nonnegative function of y.
Further, the joint support is a product space. Hence, X and Y are independent
random variables.

Example 2.4.3. Let the pdf of the random variable X1 and X2 be f(x1, x2) =
8x1x2, 0 < x1 < x2 < 1, zero elsewhere. The formula 8x1x2 might suggest to some
that X1 and X2 are independent. However, if we consider the space S = {(x1, x2) :
0 < x1 < x2 < 1}, we see that it is not a product space. This should make it clear
that, in general, X1 and X2 must be dependent if the space of positive probability
density of X1 and X2 is bounded by a curve that is neither a horizontal nor a
vertical line.
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Instead of working with pdfs (or pmfs) we could have presented independence
in terms of cumulative distribution functions. The following theorem shows the
equivalence.

Theorem 2.4.2. Let (X1, X2) have the joint cdf F (x1, x2) and let X1 and X2 have
the marginal cdfs F1(x1) and F2(x2), respectively. Then X1 and X2 are independent
if and only if

F (x1, x2) = F1(x1)F2(x2) for all (x1, x2) ∈ R2 . (2.4.1)

Proof: We give the proof for the continuous case. Suppose expression (2.4.1) holds.
Then the mixed second partial is

∂2

∂x1∂x2
F (x1, x2) = f1(x1)f2(x2).

Hence, X1 and X2 are independent. Conversely, suppose X1 and X2 are indepen-
dent. Then by the definition of the joint cdf,

F (x1, x2) =

∫ x1

−∞

∫ x2

−∞
f1(w1)f2(w2) dw2dw1

=

∫ x1

−∞
f1(w1) dw1 ·

∫ x2

−∞
f2(w2) dw2 = F1(x1)F2(x2).

Hence, condition (2.4.1) is true.

We now give a theorem that frequently simplifies the calculations of probabilities
of events that involves independent variables.

Theorem 2.4.3. The random variables X1 and X2 are independent random vari-
ables if and only if the following condition holds,

P (a < X1 ≤ b, c < X2 ≤ d) = P (a < X1 ≤ b)P (c < X2 ≤ d) (2.4.2)

for every a < b and c < d, where a, b, c, and d are constants.

Proof: If X1 and X2 are independent, then an application of the last theorem and
expression (2.1.2) shows that

P (a < X1 ≤ b, c < X2 ≤ d) = F (b, d)− F (a, d)− F (b, c) + F (a, c)

= F1(b)F2(d)− F1(a)F2(d)− F1(b)F2(c)

+F1(a)F2(c)

= [F1(b)− F1(a)][F2(d)− F2(c)],

which is the right side of expression (2.4.2). Conversely, condition (2.4.2) implies
that the joint cdf of (X1, X2) factors into a product of the marginal cdfs, which in
turn by Theorem 2.4.2 implies that X1 and X2 are independent.
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Example 2.4.4 (Example 2.4.2, Continued). Independence is necessary for condi-
tion (2.4.2). For example, consider the dependent variables X1 and X2 of Example
2.4.2. For these random variables, we have

P (0 < X1 < 1
2 , 0 < X2 < 1

2 ) =
∫ 1/2

0

∫ 1/2

0 (x1 + x2) dx1dx2 = 1
8 ,

whereas
P (0 < X1 < 1

2 ) =
∫ 1/2

0
(x1 + 1

2 ) dx1 = 3
8

and
P (0 < X2 < 1

2 ) =
∫ 1/2

0 (1
2 + x1) dx2 = 3

8 .

Hence, condition (2.4.2) does not hold.

Not merely are calculations of some probabilities usually simpler when we have
independent random variables, but many expectations, including certain moment
generating functions, have comparably simpler computations. The following result
proves so useful that we state it in the form of a theorem.

Theorem 2.4.4. Suppose X1 and X2 are independent and that E(u(X1)) and
E(v(X2)) exist. Then

E[u(X1)v(X2)] = E[u(X1)]E[v(X2)].

Proof. We give the proof in the continuous case. The independence of X1 and X2

implies that the joint pdf of X1 and X2 is f1(x1)f2(x2). Thus we have, by definition
of expectation,

E[u(X1)v(X2)] =

∫ ∞

−∞

∫ ∞

−∞
u(x1)v(x2)f1(x1)f2(x2) dx1dx2

=

[∫ ∞

−∞
u(x1)f1(x1) dx1

] [∫ ∞

−∞
v(x2)f2(x2) dx2

]
= E[u(X1)]E[v(X2)].

Hence, the result is true.

Upon taking the functions u(·) and v(·) to be the identity functions in Theorem
2.4.4, we have that for independent random variables X1 and X2,

E(X1X2) = E(X1)E(X2). (2.4.3)

We next prove a very useful theorem about independent random variables. The
proof of the theorem relies heavily upon our assertion that an mgf, when it exists,
is unique and that it uniquely determines the distribution of probability.

Theorem 2.4.5. Suppose the joint mgf, M(t1, t2), exists for the random variables
X1 and X2. Then X1 and X2 are independent if and only if

M(t1, t2) = M(t1, 0)M(0, t2);

that is, the joint mgf is identically equal to the product of the marginal mgfs.
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Proof. If X1 and X2 are independent, then

M(t1, t2) = E(et1X1+t2X2)

= E(et1X1et2X2)

= E(et1X1)E(et2X2)

= M(t1, 0)M(0, t2).

Thus the independence of X1 and X2 implies that the mgf of the joint distribution
factors into the product of the moment-generating functions of the two marginal
distributions.

Suppose next that the mgf of the joint distribution of X1 and X2 is given by
M(t1, t2) = M(t1, 0)M(0, t2). Now X1 has the unique mgf, which, in the continuous
case, is given by

M(t1, 0) =

∫ ∞

−∞
et1x1f1(x1) dx1.

Similarly, the unique mgf of X2, in the continuous case, is given by

M(0, t2) =

∫ ∞

−∞
et2x2f2(x2) dx2.

Thus we have

M(t1, 0)M(0, t2) =

[∫ ∞

−∞
et1x1f1(x1) dx1

] [∫ ∞

−∞
et2x2f2(x2) dx2

]
=

∫ ∞

−∞

∫ ∞

−∞
et1x1+t2x2f1(x1)f2(x2) dx1dx2.

We are given that M(t1, t2) = M(t1, 0)M(0, t2); so

M(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
et1x1+t2x2f1(x1)f2(x2) dx1dx2.

But M(t1, t2) is the mgf of X1 and X2. Thus

M(t1, t2) =

∫ ∞

−∞

∫ ∞

−∞
et1x1+t2x2f(x1, x2) dx1dx2.

The uniqueness of the mgf implies that the two distributions of probability that are
described by f1(x1)f2(x2) and f(x1, x2) are the same. Thus

f(x1, x2) ≡ f1(x1)f2(x2).

That is, if M(t1, t2) = M(t1, 0)M(0, t2), then X1 and X2 are independent. This
completes the proof when the random variables are of the continuous type. With
random variables of the discrete type, the proof is made by using summation instead
of integration.
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Example 2.4.5 (Example 2.1.10, Continued). Let (X, Y ) be a pair of random
variables with the joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere.

In Example 2.1.10, we showed that the mgf of (X, Y ) is

M(t1, t2) =

∫ ∞

0

∫ ∞

x

exp(t1x + t2y − y) dydx

=
1

(1 − t1 − t2)(1− t2)
,

provided that t1 + t2 < 1 and t2 < 1. Because M(t1, t2) 
= M(t1, 0)M(t1, 0), the
random variables are dependent.

Example 2.4.6 (Exercise 2.1.15, Continued). For the random variable X1 and X2

defined in Exercise 2.1.15, we showed that the joint mgf is

M(t1, t2) =

[
exp{t1}

2− exp{t1}

] [
exp{t2}

2− exp{t2}

]
, ti < log 2 , i = 1, 2.

We showed further that M(t1, t2) = M(t1, 0)M(0, t2). Hence, X1 and X2 are inde-
pendent random variables.

EXERCISES

2.4.1. Show that the random variables X1 and X2 with joint pdf

f(x1, x2) =

{
12x1x2(1− x2) 0 < x1 < 1, 0 < x2 < 1
0 elsewhere

are independent.

2.4.2. If the random variables X1 and X2 have the joint pdf f(x1, x2) = 2e−x1−x2 , 0 <
x1 < x2, 0 < x2 < ∞, zero elsewhere, show that X1 and X2 are dependent.

2.4.3. Let p(x1, x2) = 1
16 , x1 = 1, 2, 3, 4, and x2 = 1, 2, 3, 4, zero elsewhere, be the

joint pmf of X1 and X2. Show that X1 and X2 are independent.

2.4.4. Find P (0 < X1 < 1
3 , 0 < X2 < 1

3 ) if the random variables X1 and X2 have
the joint pdf f(x1, x2) = 4x1(1− x2), 0 < x1 < 1, 0 < x2 < 1, zero elsewhere.

2.4.5. Find the probability of the union of the events a < X1 < b, −∞ < X2 < ∞,
and −∞ < X1 < ∞, c < X2 < d if X1 and X2 are two independent variables with
P (a < X1 < b) = 2

3 and P (c < X2 < d) = 5
8 .
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2.4.6. If f(x1, x2) = e−x1−x2 , 0 < x1 < ∞, 0 < x2 < ∞, zero elsewhere, is the
joint pdf of the random variables X1 and X2, show that X1 and X2 are independent
and that M(t1, t2) = (1− t1)

−1(1− t2)
−1, t2 < 1, t1 < 1. Also show that

E(et(X1+X2)) = (1− t)−2, t < 1.

Accordingly, find the mean and the variance of Y = X1 + X2.

2.4.7. Let the random variables X1 and X2 have the joint pdf f(x1, x2) = 1/π, for
(x1 − 1)2 + (x2 + 2)2 < 1, zero elsewhere. Find f1(x1) and f2(x2). Are X1 and X2

independent?

2.4.8. Let X and Y have the joint pdf f(x, y) = 3x, 0 < y < x < 1, zero elsewhere.
Are X and Y independent? If not, find E(X |y).

2.4.9. Suppose that a man leaves for work between 8:00 a.m. and 8:30 a.m. and
takes between 40 and 50 minutes to get to the office. Let X denote the time of
departure and let Y denote the time of travel. If we assume that these random
variables are independent and uniformly distributed, find the probability that he
arrives at the office before 9:00 a.m.

2.4.10. Let X and Y be random variables with the space consisting of the four
points (0, 0), (1, 1), (1, 0), (1,−1). Assign positive probabilities to these four points
so that the correlation coefficient is equal to zero. Are X and Y independent?

2.4.11. Two line segments, each of length two units, are placed along the x-axis.
The midpoint of the first is between x = 0 and x = 14 and that of the second is
between x = 6 and x = 20. Assuming independence and uniform distributions for
these midpoints, find the probability that the line segments overlap.

2.4.12. Cast a fair die and let X = 0 if 1, 2, or 3 spots appear, let X = 1 if 4 or 5
spots appear, and let X = 2 if 6 spots appear. Do this two independent times,
obtaining X1 and X2. Calculate P (|X1 −X2| = 1).

2.4.13. For X1 and X2 in Example 2.4.6, show that the mgf of Y = X1 + X2 is
e2t/(2− et)2, t < log 2, and then compute the mean and variance of Y .

2.5 The Correlation Coefficient

Let (X, Y ) denote a random vector. In the last section, we discussed the concept
of independence between X and Y . What if, though, X and Y are dependent
and, if so, how are they related? There are many measures of dependence. In
this section, we introduce a parameter ρ of the joint distribution of (X, Y ) which
measures linearity between X and Y . In this section, we assume the existence of
all expectations under discussion.

Definition 2.5.1. Let (X, Y ) have a joint distribution. Denote the means of X
and Y respectively by μ1 and μ2 and their respective variances by σ2

1 and σ2
2 . The

covariance of (X, Y ) is denoted by cov(X, Y ) and is defined by the expectation

cov(X, Y ) = E[(X − μ1)(Y − μ2)]. (2.5.1)
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It follows by the linearity of expectation, Theorem 2.1.1, that the covariance of
X and Y can also be expressed as

cov(X, Y ) = E(XY − μ2X − μ1Y + μ1μ2)

= E(XY )− μ2E(X)− μ1E(Y ) + μ1μ2

= E(XY )− μ1μ2, (2.5.2)

which is often easier to compute than using the definition, (2.5.1).
The measure that we seek is a standardized (unitless) version of the covariance.

Definition 2.5.2. If each of σ1 and σ2 is positive, then the correlation coefficient
between X and Y is defined by

ρ =
E[(X − μ1)(Y − μ2)]

σ1σ2
=

cov(X, Y )

σ1σ2
. (2.5.3)

It should be noted that the expected value of the product of two random variables
is equal to the product of their expectations plus their covariance; that is, E(XY ) =
μ1μ2 + cov(X, Y ) = μ1μ2 + ρσ1σ2.

As illustrations, we present two examples. The first is for a discrete model while
the second concerns a continuous model.

Example 2.5.1. Reconsider the random vector (X1, X2) of Example 2.1.1 where a
fair coin is flipped three times and X1 is the number of heads on the first two flips
while X2 is the number of heads on all three flips. Recall that Table 2.1.1 contains
the marginal distributions of X1 and X2. By symmetry of these pmfs, we have
E(X1) = 1 and E(X2) = 3/2. To compute the correlation coefficient of (X1, X2),
we next sketch the computation of the required moments:

E(X2
1 ) =

1

2
+ 22 · 1

4
=

3

2
⇒ σ2

1 =
3

2
− 12 =

1

2
;

E(X2
2 ) =

3

8
+ 4 · 3

8
+ 9 · 1

8
= 3 ⇒ σ2

2 = 3−
(

3

2

)2

12 =
1

2
;

E(X1X2) =
2

8
+ 1 · 2 · 2

8
+ 2 · 2 · 1

8
+ 2 · 3 · 1

8
= 2 ⇒ cov(X1, X2) = 2− 1 · 3

2
=

1

2

From which it follows that ρ = (1/2)/(
√

(1/2)
√

3/4) = 0.816.

Example 2.5.2. Let the random variables X and Y have the joint pdf

f(x, y) =

{
x + y 0 < x < 1, 0 < y < 1
0 elsewhere.

We next compute the correlation coefficient ρ of X and Y . Now

μ1 = E(X) =

∫ 1

0

∫ 1

0

x(x + y) dxdy =
7

12
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and

σ2
1 = E(X2)− μ2

1 =

∫ 1

0

∫ 1

0

x2(x + y) dxdy −
(

7

12

)2

=
11

144
.

Similarly,

μ2 = E(Y ) =
7

12
and σ2

2 = E(Y 2)− μ2
2 =

11

144
.

The covariance of X and Y is

E(XY )− μ1μ2 =

∫ 1

0

∫ 1

0

xy(x + y) dxdy −
(

7

12

)2

= − 1

144
.

Accordingly, the correlation coefficient of X and Y is

ρ =
− 1

144√
( 11
144 )( 11

144 )
= − 1

11
.

We next establish that, in general, |ρ| ≤ 1.

Theorem 2.5.1. For all jointly distributed random variables (X, Y ) whose corre-
lation coefficient ρ exists, −1 ≤ ρ ≤ 1.

Proof: Consider the polynomial in v given by

h(v) = E
{
[(X − μ1) + v(Y − μ2)]

2
}

.

Then h(v) ≥ 0, for all v. Hence, the discriminant of h(v) is less than or equal to 0.
To obtain the discriminant, we expand h(v) as

h(v) = σ2
1 + 2vρσ1σ2 + v2σ2

2 .

Hence, the discriminant of h(v) is 4ρ2σ2
1σ2

2 − 4σ2
2σ

2
1 . Since this is less than or equal

to 0, we have
4ρ2σ2

1σ2
2 ≤ 4σ2

2σ
2
1 or ρ2 ≤ 1,

which is the result sought.

Theorem 2.5.2. If X and Y are independent random variables then cov(X, Y ) = 0
and, hence, ρ = 0.

Proof: Because X and Y are independent, it follows from expression (2.4.3) that
E(XY ) = E(X)E(Y ). Hence, by (2.5.2) the covariance of X and Y is 0; i.e., ρ = 0.

As the following example shows, the converse of this theorem is not true:

Example 2.5.3. Let X and Y be jointly discrete random variables whose distri-
bution has mass 1/4 at each of the four points (−1, 0), (0,−1), (1, 0) and (0, 1). It
follows that both X and Y have the same marginal distribution with range {−1, 0, 1}
and respective probabilities 1/4, 1/2, and 1/4. Hence, μ1 = μ2 = 0 and a quick cal-
culation shows that E(XY ) = 0. Thus, ρ = 0. However, P (X = 0, Y = 0) = 0
while P (X = 0)P (Y = 0) = (1/2)(1/2) = 1/4. Thus, X and Y are dependent but
the correlation coefficient of X and Y is 0.
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Although the converse of Theorem 2.5.2 is not true, the contrapositive is; i.e.,
if ρ 
= 0 then X and Y are dependent. For instance, in Example 2.5.1, since
ρ = 0.816, we know that the random variables X1 and X2 discussed in this example
are dependent. As discussed in Section 10.8, this contrapositive is often used in
Statistics.

Exercise 2.5.7 points out that in the proof of Theorem 2.5.1, the discriminant
of the polynomial h(v) is 0 if and only if ρ = ±1. In that case X and Y are linear
functions of one another with probability one; although, as shown, the relationship is
degenerate. This suggests the following interesting question: When ρ does not have
one of its extreme values, is there a line in the xy-plane such that the probability
for X and Y tends to be concentrated in a band about this line? Under certain
restrictive conditions this is, in fact, the case, and under those conditions we can
look upon ρ as a measure of the intensity of the concentration of the probability for
X and Y about that line.

We summarize these thoughts in the next theorem. For notation, let f(x, y)
denote the joint pdf of two random variables X and Y and let f1(x) denote the
marginal pdf of X . Recall from Section 2.3 that the conditional pdf of Y , given
X = x, is

f2|1(y|x) =
f(x, y)

f1(x)

at points where f1(x) > 0, and the conditional mean of Y , given X = x, is given by

E(Y |x) =

∫ ∞

−∞
yf2|1(y|x) dy =

∫ ∞

−∞
yf(x, y) dy

f1(x)
,

when dealing with random variables of the continuous type. This conditional mean
of Y , given X = x, is, of course, a function of x, say u(x). In a like vein, the
conditional mean of X , given Y = y, is a function of y, say v(y).

In case u(x) is a linear function of x, say u(x) = a + bx, we say the conditional
mean of Y is linear in x; or that Y has a linear conditional mean. When u(x) =
a + bx, the constants a and b have simple values which we show in the following
theorem.

Theorem 2.5.3. Suppose (X, Y ) have a joint distribution with the variances of X
and Y finite and positive. Denote the means and variances of X and Y by μ1, μ2

and σ2
1 , σ2

2, respectively, and let ρ be the correlation coefficient between X and Y . If
E(Y |X) is linear in X then

E(Y |X) = μ2 + ρ
σ2

σ1
(X − μ1) (2.5.4)

and

E(Var(Y |X)) = σ2
2(1 − ρ2). (2.5.5)

Proof: The proof is given in the continuous case. The discrete case follows similarly
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by changing integrals to sums. Let E(Y |x) = a + bx. From

E(Y |x) =

∫ ∞

−∞
yf(x, y) dy

f1(x)
= a + bx,

we have ∫ ∞

−∞
yf(x, y) dy = (a + bx)f1(x). (2.5.6)

If both members of Equation (2.5.6) are integrated on x, it is seen that

E(Y ) = a + bE(X)

or
μ2 = a + bμ1, (2.5.7)

where μ1 = E(X) and μ2 = E(Y ). If both members of Equation (2.5.6) are first
multiplied by x and then integrated on x, we have

E(XY ) = aE(X) + bE(X2),

or
ρσ1σ2 + μ1μ2 = aμ1 + b(σ2

1 + μ2
1), (2.5.8)

where ρσ1σ2 is the covariance of X and Y . The simultaneous solution of equations
(2.5.7) and (2.5.8) yields

a = μ2 − ρ
σ2

σ1
μ1 and b = ρ

σ2

σ1
.

These values give the first result (2.5.4).
Next, the conditional variance of Y is given by

Var(Y |x) =

∫ ∞

−∞

[
y − μ2 − ρ

σ2

σ1
(x − μ1)

]2

f2|1(y|x) dy

=

∫ ∞

−∞

[
(y − μ2)− ρ

σ2

σ1
(x− μ1)

]2

f(x, y) dy

f1(x)
. (2.5.9)

This variance is nonnegative and is at most a function of x alone. If it is multiplied
by f1(x) and integrated on x, the result obtained is nonnegative. This result is∫ ∞

−∞

∫ ∞

−∞

[
(y − μ2)− ρ

σ2

σ1
(x− μ1)

]2

f(x, y) dydx

=

∫ ∞

−∞

∫ ∞

−∞

[
(y − μ2)

2 − 2ρ
σ2

σ1
(y − μ2)(x − μ1) + ρ2 σ2

2

σ2
1

(x− μ1)
2

]
f(x, y) dydx

= E[(Y − μ2)
2]− 2ρ

σ2

σ1
E[(X − μ1)(Y − μ2)] + ρ2 σ2

2

σ2
1

E[(X − μ1)
2]

= σ2
2 − 2ρ

σ2

σ1
ρσ1σ2 + ρ2 σ2

2

σ2
1

σ2
1

= σ2
2 − 2ρ2σ2

2 + ρ2σ2
2 = σ2

2(1− ρ2),



130 Multivariate Distributions

which is the desired result.

Note that if the variance, Equation (2.5.9), is denoted by k(x), then E[k(X)] =
σ2

2(1 − ρ2) ≥ 0. Accordingly, ρ2 ≤ 1, or −1 ≤ ρ ≤ 1. This verifies Theorem 2.5.1
for the special case of linear conditional means.

As a corollary to Theorem 2.5.3, suppose that the variance, Equation (2.5.9), is
positive but not a function of x; that is, the variance is a constant k > 0. Now if k
is multiplied by f1(x) and integrated on x, the result is k, so that k = σ2

2(1 − ρ2).
Thus, in this case, the variance of each conditional distribution of Y , given X = x, is
σ2

2(1−ρ2). If ρ = 0, the variance of each conditional distribution of Y , given X = x,
is σ2

2 , the variance of the marginal distribution of Y . On the other hand, if ρ2 is near
1, the variance of each conditional distribution of Y , given X = x, is relatively small,
and there is a high concentration of the probability for this conditional distribution
near the mean E(Y |x) = μ2 + ρ(σ2/σ1)(x − μ1). Similar comments can be made
about E(X |y) if it is linear. In particular, E(X |y) = μ1 + ρ(σ1/σ2)(y − μ2) and
E[Var(X |Y )] = σ2

1(1 − ρ2).

Example 2.5.4. Let the random variables X and Y have the linear conditional
means E(Y |x) = 4x + 3 and E(X |y) = 1

16y − 3. In accordance with the general
formulas for the linear conditional means, we see that E(Y |x) = μ2 if x = μ1 and
E(X |y) = μ1 if y = μ2. Accordingly, in this special case, we have μ2 = 4μ1 + 3
and μ1 = 1

16μ2 − 3 so that μ1 = − 15
4 and μ2 = −12. The general formulas for the

linear conditional means also show that the product of the coefficients of x and y,
respectively, is equal to ρ2 and that the quotient of these coefficients is equal to
σ2

2/σ2
1 . Here ρ2 = 4( 1

16 ) = 1
4 with ρ = 1

2 (not − 1
2 ), and σ2

2/σ2
1 = 64. Thus, from the

two linear conditional means, we are able to find the values of μ1, μ2, ρ, and σ2/σ1,
but not the values of σ1 and σ2.

y

x
(0, 0)–h

–a

a
E(Y|x) = bx

h

Figure 2.5.1: Illustration for Example 2.5.5.



2.5. The Correlation Coefficient 131

Example 2.5.5. To illustrate how the correlation coefficient measures the intensity
of the concentration of the probability for X and Y about a line, let these random
variables have a distribution that is uniform over the area depicted in Figure 2.5.1.
That is, the joint pdf of X and Y is

f(x, y) =

{
1

4ah −a + bx < y < a + bx, −h < x < h
0 elsewhere.

We assume here that b ≥ 0, but the argument can be modified for b ≤ 0. It is easy
to show that the pdf of X is uniform, namely

f1(x) =

{ ∫ a+bx

−a+bx
1

4ah dy = 1
2h −h < x < h

0 elsewhere.

The conditional mean and variance are

E(Y |x) = bx and var(Y |x) =
a2

3
.

From the general expressions for those characteristics we know that

b = ρ
σ2

σ1
and

a2

3
= σ2

2(1− ρ2).

Additionally, we know that σ2
1 = h2/3. If we solve these three equations, we obtain

an expression for the correlation coefficient, namely

ρ =
bh√

a2 + b2h2
.

Referring to Figure 2.5.1, we note

1. As a gets small (large), the straight-line effect is more (less) intense and ρ is
closer to 1 (0).

2. As h gets large (small), the straight-line effect is more (less) intense and ρ is
closer to 1 (0).

3. As b gets large (small), the straight-line effect is more (less) intense and ρ is
closer to 1 (0).

Recall that in Section 2.1 we introduced the mgf for the random vector (X, Y ).
As for random variables, the joint mgf also gives explicit formulas for certain mo-
ments. In the case of random variables of the continuous type,

∂k+mM(t1, t2)

∂tk1∂tm2
=

∫ ∞

−∞

∫ ∞

−∞
xkymet1x+t2yf(x, y) dxdy,

so that

∂k+mM(t1, t2)

∂tk1∂tm2

∣∣∣∣
t1=t2=0

=

∫ ∞

−∞

∫ ∞

−∞
xkymf(x, y) dxdy = E(XkY m).
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For instance, in a simplified notation that appears to be clear,

μ1 = E(X) =
∂M(0, 0)

∂t1

μ2 = E(Y ) =
∂M(0, 0)

∂t2

σ2
1 = E(X2)− μ2

1 =
∂2M(0, 0)

∂t21
− μ2

1

σ2
2 = E(Y 2)− μ2

2 =
∂2M(0, 0)

∂t22
− μ2

2

E[(X − μ1)(Y − μ2)] =
∂2M(0, 0)

∂t1∂t2
− μ1μ2, (2.5.10)

and from these we can compute the correlation coefficient ρ.
It is fairly obvious that the results of equations (2.5.10) hold if X and Y are

random variables of the discrete type. Thus the correlation coefficients may be com-
puted by using the mgf of the joint distribution if that function is readily available.
An illustrative example follows.

Example 2.5.6 (Example 2.1.10, Continued). In Example 2.1.10, we considered
the joint density

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere,

and showed that the mgf was

M(t1, t2) =
1

(1 − t1 − t2)(1− t2)
,

for t1 + t2 < 1 and t2 < 1. For this distribution, equations (2.5.10) become

μ1 = 1, μ2 = 2

σ2
1 = 1, σ2

2 = 2 (2.5.11)

E[(X − μ1)(Y − μ2)] = 1.

Verification of (2.5.11) is left as an exercise; see Exercise 2.5.5. If, momentarily, we
accept these results, the correlation coefficient of X and Y is ρ = 1/

√
2.

EXERCISES

2.5.1. Let the random variables X and Y have the joint pmf

(a) p(x, y) = 1
3 , (x, y) = (0, 0), (1, 1), (2, 2), zero elsewhere.

(b) p(x, y) = 1
3 , (x, y) = (0, 2), (1, 1), (2, 0), zero elsewhere.

(c) p(x, y) = 1
3 , (x, y) = (0, 0), (1, 1), (2, 0), zero elsewhere.
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In each case compute the correlation coefficient of X and Y .

2.5.2. Let X and Y have the joint pmf described as follows:

(x, y) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)

p(x, y) 2
15

4
15

3
15

1
15

1
15

4
15

and p(x, y) is equal to zero elsewhere.

(a) Find the means μ1 and μ2, the variances σ2
1 and σ2

2 , and the correlation
coefficient ρ.

(b) Compute E(Y |X = 1), E(Y |X = 2), and the line μ2 + ρ(σ2/σ1)(x− μ1). Do
the points [k, E(Y |X = k)], k = 1, 2, lie on this line?

2.5.3. Let f(x, y) = 2, 0 < x < y, 0 < y < 1, zero elsewhere, be the joint pdf of
X and Y . Show that the conditional means are, respectively, (1 + x)/2, 0 < x < 1,
and y/2, 0 < y < 1. Show that the correlation coefficient of X and Y is ρ = 1

2 .

2.5.4. Show that the variance of the conditional distribution of Y , given X = x, in
Exercise 2.5.3, is (1 − x)2/12, 0 < x < 1, and that the variance of the conditional
distribution of X , given Y = y, is y2/12, 0 < y < 1.

2.5.5. Verify the results of equations (2.5.11) of this section.

2.5.6. Let X and Y have the joint pdf f(x, y) = 1, −x < y < x, 0 < x < 1,
zero elsewhere. Show that, on the set of positive probability density, the graph of
E(Y |x) is a straight line, whereas that of E(X |y) is not a straight line.

2.5.7. In the proof of Theorem 2.5.1, consider the case when the discriminant of
the polynomial h(v) is 0. Show that this is equivalent to ρ = ±1. Consider the case
when ρ = 1. Find the unique root of h(v) and then use the fact that h(v) is 0 at
this root to show that Y is a linear function of X with probability 1.

2.5.8. Let ψ(t1, t2) = log M(t1, t2), where M(t1, t2) is the mgf of X and Y . Show
that

∂ψ(0, 0)

∂ti
,

∂2ψ(0, 0)

∂t2i
, i = 1, 2,

and
∂2ψ(0, 0)

∂t1∂t2

yield the means, the variances, and the covariance of the two random variables.
Use this result to find the means, the variances, and the covariance of X and Y of
Example 2.5.6.

2.5.9. Let X and Y have the joint pmf p(x, y) = 1
7 , (0, 0), (1, 0), (0, 1), (1, 1), (2, 1),

(1, 2), (2, 2), zero elsewhere. Find the correlation coefficient ρ.

2.5.10. Let X1 and X2 have the joint pmf described by the following table:
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(x1, x2) (0, 0) (0, 1) (0, 2) (1, 1) (1, 2) (2, 2)

p(x1, x2)
1
12

2
12

1
12

3
12

4
12

1
12

Find p1(x1), p2(x2), μ1, μ2, σ
2
1 , σ

2
2 , and ρ.

2.5.11. Let σ2
1 = σ2

2 = σ2 be the common variance of X1 and X2 and let ρ be the
correlation coefficient of X1 and X2. Show for k > 0 that

P [|(X1 − μ1) + (X2 − μ2)| ≥ kσ] ≤ 2(1 + ρ)

k2
.

2.6 Extension to Several Random Variables

The notions about two random variables can be extended immediately to n random
variables. We make the following definition of the space of n random variables.

Definition 2.6.1. Consider a random experiment with the sample space C. Let
the random variable Xi assign to each element c ∈ C one and only one real num-
ber Xi(c) = xi, i = 1, 2, . . . , n. We say that (X1, . . . , Xn) is an n-dimensional
random vector. The space of this random vector is the set of ordered n-tuples
D = {(x1, x2, . . . , xn) : x1 = X1(c), . . . , xn = Xn(c), c ∈ C}. Furthermore, let A be
a subset of the space D. Then P [(X1, . . . , Xn) ∈ A] = P (C), where C = {c : c ∈
C and (X1(c), X2(c), . . . , Xn(c)) ∈ A}.

In this section, we often use vector notation. We denote (X1, . . . , Xn)′ by the
n-dimensional column vector X and the observed values (x1, . . . , xn)′ of the random
variables by x. The joint cdf is defined to be

FX(x) = P [X1 ≤ x1, . . . , Xn ≤ xn]. (2.6.1)

We say that the n random variables X1, X2, . . . , Xn are of the discrete type or
of the continuous type and have a distribution of that type according to whether
the joint cdf can be expressed as

FX(x) =
∑

· · ·
w1≤x1,...,wn≤xn

∑
p(w1, . . . , wn),

or as

FX(x) =

∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
f(w1, . . . , wn) dwn · · · dw1.

For the continuous case,

∂n

∂x1 · · · ∂xn
FX(x) = f(x), (2.6.2)

except possibly on points that have probability zero.
In accordance with the convention of extending the definition of a joint pdf,

it is seen that a continuous function f essentially satisfies the conditions of being
a pdf if (a) f is defined and is nonnegative for all real values of its argument(s)
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and (b) its integral over all real values of its argument(s) is 1. Likewise, a point
function p essentially satisfies the conditions of being a joint pmf if (a) p is defined
and is nonnegative for all real values of its argument(s) and (b) its sum over all real
values of its argument(s) is 1. As in previous sections, it is sometimes convenient
to speak of the support set of a random vector. For the discrete case, this would be
all points in D that have positive mass, while for the continuous case these would
be all points in D that can be embedded in an open set of positive probability. We
use S to denote support sets.

Example 2.6.1. Let

f(x, y, z) =

{
e−(x+y+z) 0 < x, y, z <∞
0 elsewhere

be the pdf of the random variables X , Y , and Z. Then the distribution function of
X , Y , and Z is given by

F (x, y, z) = P (X ≤ x, Y ≤ y, Z ≤ z)

=

∫ z

0

∫ y

0

∫ x

0

e−u−v−w dudvdw

= (1 − e−x)(1 − e−y)(1 − e−z), 0 ≤ x, y, z < ∞,

and is equal to zero elsewhere. The relationship (2.6.2) can easily be verified.

Let (X1, X2, . . . , Xn) be a random vector and let Y = u(X1, X2, . . . , Xn) for
some function u. As in the bivariate case, the expected value of the random variable
exists if the n-fold integral∫ ∞

−∞
· · ·

∫ ∞

−∞
|u(x1, x2, . . . , xn)|f(x1, x2, . . . , xn) dx1dx2 · · ·dxn

exists when the random variables are of the continuous type, or if the n-fold sum∑
xn

· · ·
∑
x1

|u(x1, x2, . . . , xn)|p(x1, x2, . . . , xn)

exists when the random variables are of the discrete type. If the expected value of
Y exists, then its expectation is given by

E(Y ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x1, x2, . . . , xn)f(x1, x2, . . . , xn) dx1dx2 · · · dxn (2.6.3)

for the continuous case, and by

E(Y ) =
∑
xn

· · ·
∑
x1

u(x1, x2, . . . , xn)p(x1, x2, . . . , xn) (2.6.4)

for the discrete case. The properties of expectation discussed in Section 2.1 hold
for the n-dimensional case also. In particular, E is a linear operator. That is, if
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Yj = uj(X1, . . . , Xn) for j = 1, . . . , m and each E(Yi) exists, then

E

⎡⎣ m∑
j=1

kjYj

⎤⎦ =

m∑
j=1

kjE [Yj ] , (2.6.5)

where k1, . . . , km are constants.
We next discuss the notions of marginal and conditional probability density

functions from the point of view of n random variables. All of the preceding defini-
tions can be directly generalized to the case of n variables in the following manner.
Let the random variables X1, X2, . . . , Xn be of the continuous type with the joint
pdf f(x1, x2, . . . , xn). By an argument similar to the two-variable case, we have for
every b,

FX1(b) = P (X1 ≤ b) =

∫ b

−∞
f1(x1) dx1,

where f1(x1) is defined by the (n− 1)-fold integral

f1(x1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, x2, . . . , xn) dx2 · · · dxn.

Therefore, f1(x1) is the pdf of the random variable X1 and f1(x1) is called the
marginal pdf of X1. The marginal probability density functions f2(x2), . . . , fn(xn)
of X2, . . . , Xn, respectively, are similar (n− 1)-fold integrals.

Up to this point, each marginal pdf has been a pdf of one random variable.
It is convenient to extend this terminology to joint probability density functions,
which we do now. Let f(x1, x2, . . . , xn) be the joint pdf of the n random variables
X1, X2, . . . , Xn, just as before. Now, however, take any group of k < n of these
random variables and find the joint pdf of them. This joint pdf is called the marginal
pdf of this particular group of k variables. To fix the ideas, take n = 6, k = 3, and
let us select the group X2, X4, X5. Then the marginal pdf of X2, X4, X5 is the joint
pdf of this particular group of three variables, namely,∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, x3, x4, x5, x6) dx1dx3dx6,

if the random variables are of the continuous type.
Next we extend the definition of a conditional pdf. Suppose f1(x1) > 0. Then

we define the symbol f2,...,n|1(x2, . . . , xn|x1) by the relation

f2,...,n|1(x2, . . . , xn|x1) =
f(x1, x2, . . . , xn)

f1(x1)
,

and f2,...,n|1(x2, . . . , xn|x1) is called the joint conditional pdf of X2, . . . , Xn,
given X1 = x1. The joint conditional pdf of any n − 1 random variables, say
X1, . . . , Xi−1, Xi+1, . . . , Xn, given Xi = xi, is defined as the joint pdf of X1, . . . , Xn

divided by the marginal pdf fi(xi), provided that fi(xi) > 0. More generally, the
joint conditional pdf of n−k of the random variables, for given values of the remain-
ing k variables, is defined as the joint pdf of the n variables divided by the marginal
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pdf of the particular group of k variables, provided that the latter pdf is positive.
We remark that there are many other conditional probability density functions; for
instance, see Exercise 2.3.12.

Because a conditional pdf is the pdf of a certain number of random variables,
the expectation of a function of these random variables has been defined. To em-
phasize the fact that a conditional pdf is under consideration, such expectations
are called conditional expectations. For instance, the conditional expectation of
u(X2, . . . , Xn), given X1 = x1, is, for random variables of the continuous type,
given by

E[u(X2, . . . , Xn)|x1] =

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x2, . . . , xn)f2,...,n|1(x2, . . . , xn|x1) dx2 · · · dxn

provided f1(x1) > 0 and the integral converges (absolutely). A useful random
variable is given by h(X1) = E[u(X2, . . . , Xn)|X1)].

The above discussion of marginal and conditional distributions generalizes to
random variables of the discrete type by using pmfs and summations instead of
integrals.

Let the random variables X1, X2, . . . , Xn have the joint pdf f(x1, x2, . . . , xn) and
the marginal probability density functions f1(x1), f2(x2), . . . , fn(xn), respectively.
The definition of the independence of X1 and X2 is generalized to the mutual
independence of X1, X2, . . . , Xn as follows: The random variables X1, X2, . . . , Xn

are said to be mutually independent if and only if

f(x1, x2, . . . , xn) ≡ f1(x1)f2(x2) · · · fn(xn),

for the continuous case. In the discrete case, X1, X2, . . . , Xn are said to be mutually
independent if and only if

p(x1, x2, . . . , xn) ≡ p1(x1)p2(x2) · · · pn(xn).

Suppose X1, X2, . . . , Xn are mutually independent. Then

P (a1 < X1 < b1, a2 < X2 < b2, . . . , an < Xn < bn)

= P (a1 < X1 < b1)P (a2 < X2 < b2) · · ·P (an < Xn < bn)

=

n∏
i=1

P (ai < Xi < bi),

where the symbol
∏n

i=1 ϕ(i) is defined to be

n∏
i=1

ϕ(i) = ϕ(1)ϕ(2) · · ·ϕ(n).

The theorem that

E[u(X1)v(X2)] = E[u(X1)]E[v(X2)]
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for independent random variables X1 and X2 becomes, for mutually independent
random variables X1, X2, . . . , Xn,

E[u1(X1)u2(X2) · · ·un(Xn)] = E[u1(X1)]E[u2(X2)] · · ·E[un(Xn)],

or

E

[
n∏

i=1

ui(Xi)

]
=

n∏
i=1

E[ui(Xi)].

The moment-generating function (mgf) of the joint distribution of n random
variables X1, X2, . . . , Xn is defined as follows. Suppose that

E[exp(t1X1 + t2X2 + · · ·+ tnXn)]

exists for −hi < ti < hi, i = 1, 2, . . . , n, where each hi is positive. This expectation
is denoted by M(t1, t2, . . . , tn) and it is called the mgf of the joint distribution of
X1, . . . , Xn (or simply the mgf of X1, . . . , Xn). As in the cases of one and two
variables, this mgf is unique and uniquely determines the joint distribution of the
n variables (and hence all marginal distributions). For example, the mgf of the
marginal distributions of Xi is M(0, . . . , 0, ti, 0, . . . , 0), i = 1, 2, . . . , n; that of the
marginal distribution of Xi and Xj is M(0, . . . , 0, ti, 0, . . . , 0, tj, 0, . . . , 0); and so on.
Theorem 2.4.5 of this chapter can be generalized, and the factorization

M(t1, t2, . . . , tn) =

n∏
i=1

M(0, . . . , 0, ti, 0, . . . , 0) (2.6.6)

is a necessary and sufficient condition for the mutual independence of X1, X2, . . . , Xn.
Note that we can write the joint mgf in vector notation as

M(t) = E[exp(t′X)], for t ∈ B ⊂ Rn,

where B = {t : −hi < ti < hi, i = 1, . . . , n}.
The following is a theorem that proves useful in the sequel. It gives the mgf of

a linear combination of independent random variables.

Theorem 2.6.1. Suppose X1, X2, . . . , Xn are n mutually independent random vari-
ables. Suppose, for all i = 1, 2, . . . , n, Xi has mgf Mi(t), for −hi < t < hi, where
hi > 0. Let T =

∑n
i=1 kiXi, where k1, k2, . . . , kn are constants. Then T has the

mgf given by

MT (t) =
n∏

i=1

Mi(kit), −min
i
{hi} < t < min

i
{hi}. (2.6.7)

Proof. Assume t is in the interval (−mini{hi}, mini{hi}). Then, by independence,

MT (t) = E
[
e

Pn
i=1 tkiXi

]
= E

[
n∏

i=1

e(tki)Xi

]

=

n∏
i=1

E
[
etkiXi

]
=

n∏
i=1

Mi(kit),

which completes the proof.
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Example 2.6.2. Let X1, X2, and X3 be three mutually independent random vari-
ables and let each have the pdf

f(x) =

{
2x 0 < x < 1
0 elsewhere.

(2.6.8)

The joint pdf of X1, X2, X3 is f(x1)f(x2)f(x3) = 8x1x2x3, 0 < xi < 1, i = 1, 2, 3,
zero elsewhere. Then, for illustration, the expected value of 5X1X

3
2 + 3X2X

4
3 is∫ 1

0

∫ 1

0

∫ 1

0

(5x1x
3
2 + 3x2x

4
3)8x1x2x3 dx1dx2dx3 = 2.

Let Y be the maximum of X1, X2, and X3. Then, for instance, we have

P (Y ≤ 1
2 ) = P (X1 ≤ 1

2 , X2 ≤ 1
2 , X3 ≤ 1

2 )

=

∫ 1/2

0

∫ 1/2

0

∫ 1/2

0

8x1x2x3 dx1dx2dx3

= (1
2 )6 = 1

64 .

In a similar manner, we find that the cdf of Y is

G(y) = P (Y ≤ y) =

⎧⎨⎩
0 y < 0
y6 0 ≤ y < 1
1 1 ≤ y.

Accordingly, the pdf of Y is

g(y) =

{
6y5 0 < y < 1
0 elsewhere.

Remark 2.6.1. If X1, X2, and X3 are mutually independent, they are pairwise
independent (that is, Xi and Xj, i 
= j, where i, j = 1, 2, 3, are independent).
However, the following example, attributed to S. Bernstein, shows that pairwise
independence does not necessarily imply mutual independence. Let X1, X2, and X3

have the joint pmf

p(x1, x2, x3) =

{
1
4 (x1, x2, x3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)}
0 elsewhere.

The joint pmf of Xi and Xj , i 
= j, is

pij(xi, xj) =

{
1
4 (xi, xj) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}
0 elsewhere,

whereas the marginal pmf of Xi is

pi(xi) =

{
1
2 xi = 0, 1
0 elsewhere.
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Obviously, if i 
= j, we have

pij(xi, xj) ≡ pi(xi)pj(xj),

and thus Xi and Xj are independent. However,

p(x1, x2, x3) 
≡ p1(x1)p2(x2)p3(x3).

Thus X1, X2, and X3 are not mutually independent.
Unless there is a possible misunderstanding between mutual and pairwise inde-

pendence, we usually drop the modifier mutual. Accordingly, using this practice in
Example 2.6.2, we say that X1, X2, X3 are independent random variables, meaning
that they are mutually independent. Occasionally, for emphasis, we use mutually
independent so that the reader is reminded that this is different from pairwise in-
dependence.

In addition, if several random variables are mutually independent and have
the same distribution, we say that they are independent and identically dis-
tributed, which we abbreviate as iid. So the random variables in Example 2.6.2
are iid with the common pdf given in expression (2.6.8).

The following is a useful corollary to Theorem 2.6.1 for iid random variables. Its
proof is asked for in Exercise 2.6.7.

Corollary 2.6.1. Suppose X1, X2, . . . , Xn are iid random variables with the com-
mon mgf M(t), for −h < t < h, where h > 0. Let T =

∑n
i=1 Xi. Then T has the

mgf given by
MT (t) = [M(t)]n , −h < t < h. (2.6.9)

2.6.1 ∗Multivariate Variance-Covariance Matrix

This section makes explicit use of matrix algebra and it is considered as an optional
section.

In Section 2.5 we discussed the covariance between two random variables. In
this section we want to extend this discussion to the n-variate case. Let X =
(X1, . . . , Xn)′ be an n-dimensional random vector. Recall that we defined E(X) =
(E(X1), . . . , E(Xn))′, that is, the expectation of a random vector is just the vector
of the expectations of its components. Now suppose W is an m × n matrix of
random variables, say, W = [Wij ] for the random variables Wij , 1 ≤ i ≤ m and
1 ≤ j ≤ n. Note that we can always string out the matrix into an mn× 1 random
vector. Hence, we define the expectation of a random matrix

E[W] = [E(Wij)]. (2.6.10)

As the following theorem shows, the linearity of the expectation operator easily
follows from this definition:

Theorem 2.6.2. Let W1 and W2 be m× n matrices of random variables, let A1

and A2 be k ×m matrices of constants, and let B be an n× l matrix of constants.
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Then

E[A1W1 + A2W2] = A1E[W1] + A2E[W2] (2.6.11)

E[A1W1B] = A1E[W1]B. (2.6.12)

Proof: Because of the linearity of the operator E on random variables, we have for
the (i, j)th components of expression (2.6.11) that

E

[
m∑

s=1

a1isW1sj +

m∑
s=1

a2isW2sj

]
=

m∑
s=1

a1isE[W1sj ] +

m∑
s=1

a2isE[W2sj ].

Hence by (2.6.10), expression (2.6.11) is true. The derivation of expression (2.6.12)
follows in the same manner.

Let X = (X1, . . . , Xn)′ be an n-dimensional random vector, such that σ2
i =

Var(Xi) < ∞. The mean of X is μ = E[X] and we define its variance-covariance
matrix as

Cov(X) = E[(X− μ)(X − μ)′] = [σij ], (2.6.13)

where σii denotes σ2
i . As Exercise 2.6.8 shows, the ith diagonal entry of Cov(X) is

σ2
i = Var(Xi) and the (i, j)th off diagonal entry is Cov(Xi, Xj).

Example 2.6.3 (Example 2.5.6, Continued). In Example 2.5.6, we considered
the joint pdf

f(x, y) =

{
e−y 0 < x < y <∞
0 elsewhere,

and showed that the first two moments are

μ1 = 1, μ2 = 2

σ2
1 = 1, σ2

2 = 2 (2.6.14)

E[(X − μ1)(Y − μ2)] = 1.

Let Z = (X, Y )′. Then using the present notation, we have

E[Z] =

[
1
2

]
and Cov(Z) =

[
1 1
1 2

]
.

Two properties of Cov(Xi, Xj) needed later are summarized in the following
theorem:

Theorem 2.6.3. Let X = (X1, . . . , Xn)′ be an n-dimensional random vector, such
that σ2

i = σii = Var(Xi) < ∞. Let A be an m× n matrix of constants. Then

Cov(X) = E[XX′]− μμ′ (2.6.15)

Cov(AX) = ACov(X)A′. (2.6.16)
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Proof: Use Theorem 2.6.2 to derive (2.6.15); i.e.,

Cov(X) = E[(X− μ)(X − μ)′]

= E[XX′ − μX′ −Xμ′ + μμ′]

= E[XX′]− μE[X′]− E[X]μ′ + μμ′,

which is the desired result. The proof of (2.6.16) is left as an exercise.

All variance-covariance matrices are positive semi-definite matrices; that is,
a′Cov(X)a ≥ 0, for all vectors a ∈ Rn. To see this let X be a random vector and
let a be any n × 1 vector of constants. Then Y = a′X is a random variable and,
hence, has nonnegative variance; i.e.,

0 ≤ Var(Y ) = Var(a′X) = a′Cov(X)a; (2.6.17)

hence, Cov(X) is positive semi-definite.

EXERCISES

2.6.1. Let X, Y, Z have joint pdf f(x, y, z) = 2(x + y + z)/3, 0 < x < 1, 0 < y <
1, 0 < z < 1, zero elsewhere.

(a) Find the marginal probability density functions of X, Y, and Z.

(b) Compute P (0 < X < 1
2 , 0 < Y < 1

2 , 0 < Z < 1
2 ) and P (0 < X < 1

2 ) = P (0 <
Y < 1

2 ) = P (0 < Z < 1
2 ).

(c) Are X, Y , and Z independent?

(d) Calculate E(X2Y Z + 3XY 4Z2).

(e) Determine the cdf of X, Y, and Z.

(f) Find the conditional distribution of X and Y , given Z = z, and evaluate
E(X + Y |z).

(g) Determine the conditional distribution of X , given Y = y and Z = z, and
compute E(X |y, z).

2.6.2. Let f(x1, x2, x3) = exp[−(x1 + x2 + x3)], 0 < x1 < ∞, 0 < x2 < ∞, 0 <
x3 <∞, zero elsewhere, be the joint pdf of X1, X2, X3.

(a) Compute P (X1 < X2 < X3) and P (X1 = X2 < X3).

(b) Determine the joint mgf of X1, X2, and X3. Are these random variables
independent?

2.6.3. Let X1, X2, X3, and X4 be four independent random variables, each with
pdf f(x) = 3(1− x)2, 0 < x < 1, zero elsewhere. If Y is the minimum of these four
variables, find the cdf and the pdf of Y .
Hint: P (Y > y) = P (Xi > y , i = 1, . . . , 4).
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2.6.4. A fair die is cast at random three independent times. Let the random variable
Xi be equal to the number of spots that appear on the ith trial, i = 1, 2, 3. Let the
random variable Y be equal to max(Xi). Find the cdf and the pmf of Y .
Hint: P (Y ≤ y) = P (Xi ≤ y, i = 1, 2, 3).

2.6.5. Let M(t1, t2, t3) be the mgf of the random variables X1, X2, and X3 of
Bernstein’s example, described in the remark following Example 2.6.2. Show that

M(t1, t2, 0) = M(t1, 0, 0)M(0, t2, 0), M(t1, 0, t3) = M(t1, 0, 0)M(0, 0, t3),

and
M(0, t2, t3) = M(0, t2, 0)M(0, 0, t3)

are true, but that

M(t1, t2, t3) 
= M(t1, 0, 0)M(0, t2, 0)M(0, 0, t3).

Thus X1, X2, X3 are pairwise independent but not mutually independent.

2.6.6. Let X1, X2, and X3 be three random variables with means, variances, and
correlation coefficients, denoted by μ1, μ2, μ3; σ

2
1 , σ

2
2 , σ2

3 ; and ρ12, ρ13, ρ23, respec-
tively. For constants b2 and b3, suppose E(X1−μ1|x2, x3) = b2(x2−μ2)+b3(x3−μ3).
Determine b2 and b3 in terms of the variances and the correlation coefficients.

2.6.7. Prove Corollary 2.6.1.

2.6.8. Let X = (X1, . . . , Xn)′ be an n-dimensional random vector, with the variance-
covariance matrix given in display (2.6.13). Show that the ith diagonal entry of
Cov(X) is σ2

i = Var(Xi) and that the (i, j)th off diagonal entry is Cov(Xi, Xj).

2.6.9. Let X1, X2, X3 be iid with common pdf f(x) = exp(−x), 0 < x < ∞, zero
elsewhere. Evaluate:

(a) P (X1 < X2|X1 < 2X2).

(b) P (X1 < X2 < X3|X3 < 1).

2.7 Transformations for Several Random Variables

In Section 2.2 it was seen that the determination of the joint pdf of two functions of
two random variables of the continuous type was essentially a corollary to a theorem
in analysis having to do with the change of variables in a twofold integral. This
theorem has a natural extension to n-fold integrals. This extension is as follows.
Consider an integral of the form∫

· · ·
∫

A

f(x1, x2, . . . , xn) dx1 dx2 · · · dxn

taken over a subset A of an n-dimensional space S. Let

y1 = u1(x1, x2, . . . , xn), y2 = u2(x1, x2, . . . , xn), . . . , yn = un(x1, x2, . . . , xn),
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together with the inverse functions

x1 = w1(y1, y2, . . . , yn), x2 = w2(y1, y2, . . . , yn), . . . , xn = wn(y1, y2, . . . , yn)

define a one-to-one transformation that maps S onto T in the y1, y2, . . . , yn space
and, hence, maps the subset A of S onto a subset B of T . Let the first partial
derivatives of the inverse functions be continuous and let the n by n determinant
(called the Jacobian)

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1

∂y2
· · · ∂x1

∂yn

∂x2

∂y1

∂x2

∂y2
· · · ∂x2

∂yn

...
...

...

∂xn

∂y1

∂xn

∂y2
· · · ∂xn

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣
not be identically zero in T . Then∫

· · ·
∫

A

f(x1, x2, . . . , xn) dx1dx2 · · ·dxn

=

∫
· · ·

∫
B

f [w1(y1, . . . , yn), w2(y1, . . . , yn), . . . , wn(y1, . . . , yn)]|J | dy1dy2 · · · dyn.

Whenever the conditions of this theorem are satisfied, we can determine the joint pdf
of n functions of n random variables. Appropriate changes of notation in Section
2.2 (to indicate n-space as opposed to 2-space) are all that are needed to show
that the joint pdf of the random variables Y1 = u1(X1, X2, . . . , Xn), . . . , Yn =
un(X1, X2, . . . , Xn), where the joint pdf of X1, . . . , Xn is f(x1, . . . , xn), is given by

g(y1, y2, . . . , yn) = f [w1(y1, . . . , yn), . . . , wn(y1, . . . , yn)]|J |,

where (y1, y2, . . . , yn) ∈ T , and is zero elsewhere.

Example 2.7.1. Let X1, X2, X3 have the joint pdf

f(x1, x2, x3) =

{
48x1x2x3 0 < x1 < x2 < x3 < 1
0 elsewhere.

(2.7.1)

If Y1 = X1/X2, Y2 = X2/X3, and Y3 = X3, then the inverse transformation is given
by

x1 = y1y2y3, x2 = y2y3, and x3 = y3.

The Jacobian is given by

J =

∣∣∣∣∣∣
y2y3 y1y3 y1y2

0 y3 y2

0 0 1

∣∣∣∣∣∣ = y2y
2
3 .

Moreover, inequalities defining the support are equivalent to

0 < y1y2y3, y1y2y3 < y2y3, y2y3 < y3, and y3 < 1,
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which reduces to the support T of Y1, Y2, Y3 of

T = {(y1, y2, y3) : 0 < yi < 1, i = 1, 2, 3}.

Hence the joint pdf of Y1, Y2, Y3 is

g(y1, y2, y3) = 48(y1y2y3)(y2y3)y3|y2y
2
3 |

=

{
48y1y

3
2y

5
3 0 < yi < 1, i = 1, 2, 3

0 elsewhere.
(2.7.2)

The marginal pdfs are

g1(y1) = 2y1, 0 < y1 < 1, zero elsewhere

g2(y2) = 4y3
2, 0 < y2 < 1, zero elsewhere

g3(y3) = 6y5
3, 0 < y3 < 1, zero elsewhere.

Because g(y1, y2, y3) = g1(y1)g2(y2)g3(y3), the random variables Y1, Y2, Y3 are mu-
tually independent.

Example 2.7.2. Let X1, X2, X3 be iid with common pdf

f(x) =

{
e−x 0 < x < ∞
0 elsewhere.

Consequently, the joint pdf of X1, X2, X3 is

fX1,X2,X3(x1, x2, x3) =

{
e−

P3
i=1 xi 0 < xi < ∞, i = 1, 2, 3

0 elsewhere.

Consider the random variables Y1, Y2, Y3 defined by

Y1 = X1

X1+X2+X3
, Y2 = X2

X1+X2+X3
, and Y3 = X1 + X2 + X3.

Hence, the inverse transformation is given by

x1 = y1y3, x2 = y2y3, and x3 = y3 − y1y3 − y2y3,

with the Jacobian

J =

∣∣∣∣∣∣
y3 0 y1

0 y3 y2

−y3 −y3 1− y1 − y2

∣∣∣∣∣∣ = y2
3 .

The support of X1, X2, X3 maps onto

0 < y1y3 < ∞, 0 < y2y3 <∞, and 0 < y3(1− y1 − y2) < ∞,

which is equivalent to the support T given by

T = {(y1, y2, y3) : 0 < y1, 0 < y2, 0 < 1− y1 − y2, 0 < y3 < ∞}.
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Hence the joint pdf of Y1, Y2, Y3 is

g(y1, y2, y3) = y2
3e

−y3 , (y1, y2, y3) ∈ T .

The marginal pdf of Y1 is

g1(y1) =

∫ 1−y1

0

∫ ∞

0

y2
3e

−y3 dy3 dy2 = 2(1− y1), 0 < y1 < 1,

zero elsewhere. Likewise the marginal pdf of Y2 is

g2(y2) = 2(1− y2), 0 < y2 < 1,

zero elsewhere, while the pdf of Y3 is

g3(y3) =

∫ 1

0

∫ 1−y1

0

y2
3e

−y3 dy2 dy1 =
1

2
y2
3e

−y3, 0 < y3 <∞,

zero elsewhere. Because g(y1, y2, y3) 
= g1(y1)g2(y2)g3(y3), Y1, Y2, Y3 are dependent
random variables.

Note, however, that the joint pdf of Y1 and Y3 is

g13(y1, y3) =

∫ 1−y1

0

y2
3e

−y3 dy2 = (1− y1)y
2
3e

−y3 , 0 < y1 < 1, 0 < y3 <∞,

zero elsewhere. Hence Y1 and Y3 are independent. In a similar manner, Y2 and Y3

are also independent. Because the joint pdf of Y1 and Y2 is

g12(y1, y2) =

∫ ∞

0

y2
3e

−y3 dy3 = 2, 0 < y1, 0 < y2, y1 + y2 < 1,

zero elsewhere, Y1 and Y2 are seen to be dependent.

We now consider some other problems that are encountered when transforming
variables. Let X have the Cauchy pdf

f(x) =
1

π(1 + x2)
, −∞ < x < ∞,

and let Y = X2. We seek the pdf g(y) of Y . Consider the transformation y = x2.
This transformation maps the space of X, namely S = {x : −∞ < x < ∞}, onto
T = {y : 0 ≤ y < ∞}. However, the transformation is not one-to-one. To each
y ∈ T , with the exception of y = 0, there correspond two points x ∈ S. For
example, if y = 4, we may have either x = 2 or x = −2. In such an instance, we
represent S as the union of two disjoint sets A1 and A2 such that y = x2 defines
a one-to-one transformation that maps each of A1 and A2 onto T . If we take A1

to be {x : −∞ < x < 0} and A2 to be {x : 0 ≤ x < ∞}, we see that A1 is
mapped onto {y : 0 < y < ∞}, whereas A2 is mapped onto {y : 0 ≤ y < ∞},
and these sets are not the same. Our difficulty is caused by the fact that x = 0
is an element of S. Why, then, do we not return to the Cauchy pdf and take
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f(0) = 0? Then our new S is S = {−∞ < x < ∞ but x 
= 0}. We then take
A1 = {x : −∞ < x < 0} and A2 = {x : 0 < x < ∞}. Thus y = x2, with the
inverse x = −√y, maps A1 onto T = {y : 0 < y < ∞} and the transformation is
one-to-one. Moreover, the transformation y = x2, with inverse x =

√
y, maps A2

onto T = {y : 0 < y < ∞} and the transformation is one-to-one. Consider the
probability P (Y ∈ B), where B ⊂ T . Let A3 = {x : x = −√y, y ∈ B} ⊂ A1 and
let A4 = {x : x =

√
y, y ∈ B} ⊂ A2. Then Y ∈ B when and only when X ∈ A3 or

X ∈ A4. Thus we have

P (Y ∈ B) = P (X ∈ A3) + P (X ∈ A4)

=

∫
A3

f(x) dx +

∫
A4

f(x) dx.

In the first of these integrals, let x = −√y. Thus the Jacobian, say J1, is −1/2
√

y;
furthermore, the set A3 is mapped onto B. In the second integral let x =

√
y. Thus

the Jacobian, say J2, is 1/2
√

y; furthermore, the set A4 is also mapped onto B.
Finally,

P (Y ∈ B) =

∫
B

f(−√y)

∣∣∣∣− 1

2
√

y

∣∣∣∣ dy +

∫
B

f(
√

y)
1

2
√

y
dy

=

∫
B

[f(−√y) + f(
√

y)]
1

2
√

y
dy.

Hence the pdf of Y is given by

g(y) =
1

2
√

y
[f(−√y) + f(

√
y)], y ∈ T .

With f(x) the Cauchy pdf we have

g(y) =

{ 1
π(1+y)

√
y 0 < y < ∞

0 elsewhere.

In the preceding discussion of a random variable of the continuous type, we had
two inverse functions, x = −√y and x =

√
y. That is why we sought to partition

S (or a modification of S) into two disjoint subsets such that the transformation
y = x2 maps each onto the same T . Had there been three inverse functions, we
would have sought to partition S (or a modified form of S) into three disjoint
subsets, and so on. It is hoped that this detailed discussion makes the following
paragraph easier to read.

Let f(x1, x2, . . . , xn) be the joint pdf of X1, X2, . . . , Xn, which are random vari-
ables of the continuous type. Let S denote the n-dimensional space where this joint
pdf f(x1, x2, . . . , xn) > 0, and consider the transformation y1 = u1(x1, x2, . . . , xn),
. . . , yn = un(x1, x2, . . . , xn), which maps S onto T in the y1, y2, . . . , yn space. To
each point of S there corresponds, of course, only one point in T ; but to a point
in T there may correspond more than one point in S. That is, the transformation
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may not be one-to-one. Suppose, however, that we can represent S as the union of
a finite number, say k, of mutually disjoint sets A1, A2, . . . , Ak so that

y1 = u1(x1, x2, . . . , xn), . . . , yn = un(x1, x2, . . . , xn)

define a one-to-one transformation of each Ai onto T . Thus to each point in T
there corresponds exactly one point in each of A1, A2, . . . , Ak. For i = 1, . . . , k, let

x1 = w1i(y1, y2, . . . , yn), x2 = w2i(y1, y2, . . . , yn), . . . , xn = wni(y1, y2, . . . , yn),

denote the k groups of n inverse functions, one group for each of these k transfor-
mations. Let the first partial derivatives be continuous and let each

Ji =

∣∣∣∣∣∣∣∣∣∣

∂w1i

∂y1

∂w1i

∂y2
· · · ∂w1i

∂yn
∂w2i

∂y1

∂w2i

∂y2
· · · ∂w2i

∂yn

...
...

...
∂wni

∂y1

∂wni

∂y2
· · · ∂wni

∂yn

∣∣∣∣∣∣∣∣∣∣
, i = 1, 2, . . . , k,

be not identically equal to zero in T . Considering the probability of the union
of k mutually exclusive events and by applying the change-of-variable technique
to the probability of each of these events, it can be seen that the joint pdf of
Y1 = u1(X1, X2, . . . , Xn), Y2 = u2(X1, X2, . . . , Xn), . . . , Yn = un(X1, X2, . . . , Xn),
is given by

g(y1, y2, . . . , yn) =

k∑
i=1

f [w1i(y1, . . . , yn), . . . , wni(y1, . . . , yn)]|Ji|,

provided that (y1, y2, . . . , yn) ∈ T , and equals zero elsewhere. The pdf of any Yi,
say Y1, is then

g1(y1) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(y1, y2, . . . , yn) dy2 · · ·dyn.

Example 2.7.3. Let X1 and X2 have the joint pdf defined over the unit circle
given by

f(x1, x2) =

{
1
π 0 < x2

1 + x2
2 < 1

0 elsewhere.

Let Y1 = X2
1 + X2

2 and Y2 = X2
1/(X2

1 + X2
2 ). Thus y1y2 = x2

1 and x2
2 = y1(1 − y2).

The support S maps onto T = {(y1, y2) : 0 < yi < 1, i = 1, 2}. For each ordered
pair (y1, y2) ∈ T , there are four points in S, given by

(x1, x2) such that x1 =
√

y1y2 and x2 =
√

y1(1− y2)

(x1, x2) such that x1 =
√

y1y2 and x2 = −
√

y1(1 − y2)

(x1, x2) such that x1 = −√y1y2 and x2 =
√

y1(1 − y2)

and (x1, x2) such that x1 = −√y1y2 and x2 = −
√

y1(1− y2).
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The value of the first Jacobian is

J1 =

∣∣∣∣∣∣
1
2

√
y2/y1

1
2

√
y1/y2

1
2

√
(1 − y2)/y1 − 1

2

√
y1/(1− y2)

∣∣∣∣∣∣
=

1

4

{
−
√

1− y2

y2
−

√
y2

1− y2

}
= −1

4

1√
y2(1 − y2)

.

It is easy to see that the absolute value of each of the four Jacobians equals
1/4

√
y2(1− y2). Hence, the joint pdf of Y1 and Y2 is the sum of four terms and can

be written as

g(y1, y2) = 4
1

π

1

4
√

y2(1− y2)
=

1

π
√

y2(1− y2)
, (y1, y2) ∈ T .

Thus Y1 and Y2 are independent random variables by Theorem 2.4.1.

Of course, as in the bivariate case, we can use the mgf technique by noting that
if Y = g(X1, X2, . . . , Xn) is a function of the random variables, then the mgf of Y
is given by

E
(
etY

)
=

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
etg(x1,x2,...,xn)f(x1, x2, . . . , xn) dx1dx2 · · · dxn,

in the continuous case, where f(x1, x2, . . . , xn) is the joint pdf. In the discrete case,
summations replace the integrals. This procedure is particularly useful in cases in
which we are dealing with linear functions of independent random variables.

Example 2.7.4 (Extension of Example 2.2.6). Let X1, X2, X3 be independent ran-
dom variables with joint pmf

p(x1, x2, x3) =

{
μ

x1
1 μ

x2
2 μ

x3
3 e−μ1−μ2−μ3

x1!x2!x3!
xi = 0, 1, 2, . . . , i = 1, 2, 3

0 elsewhere.

If Y = X1 + X2 + X3, the mgf of Y is

E
(
etY

)
= E

(
et(X1+X2+X3)

)
= E

(
etX1etX2etX3

)
= E

(
etX1

)
E

(
etX2

)
E

(
etX3

)
,

because of the independence of X1, X2, X3. In Example 2.2.6, we found that

E
(
etXi

)
= exp{μi(e

t − 1)}, i = 1, 2, 3.

Hence,

E
(
etY

)
= exp{(μ1 + μ2 + μ3)(e

t − 1)}.
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This, however, is the mgf of the pmf

pY (y) =

{
(μ1+μ2+μ3)ye−(μ1+μ2+μ3)

y! y = 0, 1, 2 . . .

0 elsewhere,

so Y = X1 + X2 + X3 has this distribution.

Example 2.7.5. Let X1, X2, X3, X4 be independent random variables with com-
mon pdf

f(x) =

{
e−x x > 0
0 elsewhere.

If Y = X1 + X2 + X3 + X4, then similar to the argument in the last example, the
independence of X1, X2, X3, X4 implies that

E
(
etY

)
= E

(
etX1

)
E

(
etX2

)
E

(
etX3

)
E

(
etX4

)
.

In Section 1.9, we saw that

E
(
etXi

)
= (1− t)−1, t < 1, i = 1, 2, 3, 4.

Hence,
E

(
etY

)
= (1− t)−4.

In Section 3.3, we find that this is the mgf of a distribution with pdf

fY (y) =

{
1
3!y

3e−y 0 < y < ∞
0 elsewhere.

Accordingly, Y has this distribution.

EXERCISES

2.7.1. Let X1, X2, X3 be iid, each with the distribution having pdf f(x) = e−x, 0 <
x <∞, zero elsewhere. Show that

Y1 =
X1

X1 + X2
, Y2 =

X1 + X2

X1 + X2 + X3
, Y3 = X1 + X2 + X3

are mutually independent.

2.7.2. If f(x) = 1
2 , −1 < x < 1, zero elsewhere, is the pdf of the random variable

X , find the pdf of Y = X2.

2.7.3. If X has the pdf of f(x) = 1
4 , −1 < x < 3, zero elsewhere, find the pdf of

Y = X2.
Hint: Here T = {y : 0 ≤ y < 9} and the event Y ∈ B is the union of two mutually
exclusive events if B = {y : 0 < y < 1}.

2.7.4. Let X1, X2, X3 be iid with common pdf f(x) = e−x, x > 0, 0 elsewhere.
Find the joint pdf of Y1 = X1, Y2 = X1 + X2, and Y3 = X1 + X2 + X3.
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2.7.5. Let X1, X2, X3 be iid with common pdf f(x) = e−x, x > 0, 0 elsewhere.
Find the joint pdf of Y1 = X1/X2, Y2 = X3/(X1 + X2), and Y3 = X1 + X2. Are
Y1, Y2, Y3 mutually independent?

2.7.6. Let X1, X2 have the joint pdf f(x1, x2) = 1/π, 0 < x2
1 + x2

2 < 1. Let
Y1 = X2

1 + X2
2 and Y2 = X2. Find the joint pdf of Y1 and Y2.

2.7.7. Let X1, X2, X3, X4 have the joint pdf f(x1, x2, x3, x4) = 24, 0 < x1 < x2 <
x3 < x4 < 1, 0 elsewhere. Find the joint pdf of Y1 = X1/X2, Y2 = X2/X3,Y3 =
X3/X4,Y4 = X4 and show that they are mutually independent.

2.7.8. Let X1, X2, X3 be iid with common mgf M(t) = ((3/4) + (1/4)et)2, for all
t ∈ R.

(a) Determine the probabilities, P (X1 = k), k = 0, 1, 2.

(b) Find the mgf of Y = X1 + X2 + X3 and then determine the probabilities,
P (Y = k), k = 0, 1, 2, . . . , 6.

2.8 Linear Combinations of Random Variables

In this section, we summarize some results on linear combinations of random vari-
ables that follow from Section 2.6. These results will prove to be quite useful in
Chapter 3 as well as in succeeding chapters.

Let (X1, . . . , Xn)′ denote a random vector. In this section, we consider linear
combinations of these variables, writing them , generally, as

T =

n∑
i=1

aiXi, (2.8.1)

for specified constants a1, . . . , an. We obtain expressions for the mean and variance
of T .

The mean of T follows immediately from linearity of expectation. For reference,
we state it formally as a theorem.

Theorem 2.8.1. Suppose T is given by expression (2.8.1). Suppose E(Xi) − μi,
for i = 1, . . . , n. Then

E(T ) =
n∑

i=1

aiμi. (2.8.2)

In order to obtain the variance of T , we first state a general result on covariances.

Theorem 2.8.2. Suppose T is the linear combination (2.8.1) and that W is another
linear combination given by W =

∑m
i=1 biYi, for random variables Y1, . . . , Ym and

specified constants b1, . . . , bm. Let T =
∑n

i=1 aiXi and let W =
∑m

i=1 biYi. If
E[X2

i ] <∞ , and E[Y 2
j ] < ∞ for i = 1, . . . , n and j = 1, . . . , m, then

Cov(T, W ) =

n∑
i=1

m∑
j=1

aibjCov(Xi, Yj). (2.8.3)



152 Multivariate Distributions

Proof: Using the definition of the covariance and Theorem 2.8.1, we have the first
equality below, while the second equality follows from the linearity of E:

Cov(T, W ) = E

⎡⎣ n∑
i=1

m∑
j=1

(aiXi − aiE(Xi))(bjYj − bjE(Yj))

⎤⎦
=

n∑
i=1

m∑
j=1

aibjE[(Xi − E(Xi))(Yj − E(Yj))],

which is the desired result.

To obtain the variance of T , simply replace W by T in expression (2.8.3). We
state the result as a corollary:

Corollary 2.8.1. Let T =
∑n

i=1 aiXi. Provided E[X2
i ] < ∞ , for i = 1, . . . , n,

Var(T ) = Cov(T, T ) =
n∑

i=1

a2
i Var(Xi) + 2

∑
i<j

aiajCov(Xi, Xj). (2.8.4)

Note that if X1, . . . , Xn are independent random variables, then by Theorem
2.5.2 all the pairwise covariances are 0; i.e., Cov(Xi, Xj) = 0 for all i 
= j. This
leads to a simplification of (2.8.4), which we record in the following corollary.

Corollary 2.8.2. If X1, . . . , Xn are independent random variables and Var(Xi) =
σ2

i , for i = 1, . . . , n, then

Var(T ) =
n∑

i=1

a2
i σ

2
i . (2.8.5)

Note that we need only Xi and Xj to be uncorrelated for all i 
= j to obtain this
result.

Next, in addition to independence, we assume that the random variables have
the same distribution. We call such a collection of random variables a random
sample which we now state in a formal definition.

Definition 2.8.1. If the random variables X1, X2, . . . , Xn are independent and
identically distributed, i.e. each Xi has the same distribution, then we say that
these random variables constitute a random sample of size n from that common
distribution. We abbreviate independent and identically distributed by iid.

In the next two examples, we find some properties of two functions of a random
sample, namely the sample mean and variance.

Example 2.8.1 (Sample Mean). Let X1, . . . , Xn be independent and identically
distributed random variables with common mean μ and variance σ2. The sample
mean is defined by X = n−1

∑n
i=1 Xi. This is a linear combination of the sample

observations with ai ≡ n−1; hence, by Theorem 2.8.1 and Corollary 2.8.2, we have

E(X) = μ and Var(X) = σ2

n . (2.8.6)

Because E(X) = μ , we often say that X is unbiased for μ.
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Example 2.8.2 (Sample Variance). Define the sample variance by

S2 = (n− 1)−1
n∑

i=1

(Xi −X)2 = (n− 1)−1

(
n∑

i=1

X2
i − nX

2

)
, (2.8.7)

where the second equality follows after some algebra; see Exercise 2.8.1.
In the average that defines the sample variance S2, the division is by n − 1

instead of n. One reason for this is that it makes S2 unbiased for σ2, as next
shown. Using the above theorems, the results of the last example, and the facts

that E(X2) = σ2 + μ2 and E(X
2
) = (σ2/n) + μ2, we have the following:

E(S2) = (n− 1)−1

(
n∑

i=1

E(X2
i )− nE(X

2
)

)
= (n− 1)−1

{
nσ2 + nμ2 − n[(σ2/n) + μ2]

}
= σ2. (2.8.8)

Hence, S2 is unbiased for σ2.

EXERCISES

2.8.1. Derive the second equality in expression (2.8.7).

2.8.2. Let X1, X2, X3, X4 be four iid random variables having the same pdf f(x) =
2x, 0 < x < 1, zero elsewhere. Find the mean and variance of the sum Y of these
four random variables.

2.8.3. Let X1 and X2 be two independent random variables so that the variances
of X1 and X2 are σ2

1 = k and σ2
2 = 2, respectively. Given that the variance of

Y = 3X2 −X1 is 25, find k.

2.8.4. If the independent variables X1 and X2 have means μ1, μ2 and variances
σ2

1 , σ2
2 , respectively, show that the mean and variance of the product Y = X1X2

are μ1μ2 and σ2
1σ2

2 + μ2
1σ

2
2 + μ2

2σ
2
1 , respectively.

2.8.5. Find the mean and variance of the sum Y =
∑5

i=1 Xi, where X1, . . . , X5 are
iid, having pdf f(x) = 6x(1− x), 0 < x < 1, zero elsewhere.

2.8.6. Determine the mean and variance of the sample mean X = 5−1
∑5

i=1 Xi,
where X1, . . . , X5 is a random sample from a distribution having pdf f(x) = 4x3, 0 <
x < 1, zero elsewhere.

2.8.7. Let X and Y be random variables with μ1 = 1, μ2 = 4, σ2
1 = 4, σ2

2 =
6, ρ = 1

2 . Find the mean and variance of the random variable Z = 3X − 2Y .

2.8.8. Let X and Y be independent random variables with means μ1, μ2 and
variances σ2

1 , σ2
2 . Determine the correlation coefficient of X and Z = X − Y in

terms of μ1, μ2, σ
2
1 , σ2

2 .
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2.8.9. Let μ and σ2 denote the mean and variance of the random variable X . Let
Y = c + bX , where b and c are real constants. Show that the mean and variance of
Y are, respectively, c + bμ and b2σ2.

2.8.10. Determine the correlation coefficient of the random variables X and Y if
var(X) = 4, var(Y ) = 2, and var(X + 2Y ) = 15.

2.8.11. Let X and Y be random variables with means μ1, μ2; variances σ2
1 , σ2

2 ; and
correlation coefficient ρ. Show that the correlation coefficient of W = aX+b, a > 0,
and Z = cY + d, c > 0, is ρ.

2.8.12. A person rolls a die, tosses a coin, and draws a card from an ordinary
deck. He receives $3 for each point up on the die, $10 for a head and $0 for a
tail, and $1 for each spot on the card (jack = 11, queen = 12, king = 13). If we
assume that the three random variables involved are independent and uniformly
distributed, compute the mean and variance of the amount to be received.

2.8.13. Let X1 and X2 be independent random variables with nonzero variances.
Find the correlation coefficient of Y = X1X2 and X1 in terms of the means and
variances of X1 and X2.

2.8.14. Let X1 and X2 have a joint distribution with parameters μ1, μ2, σ2
1 , σ2

2 ,
and ρ. Find the correlation coefficient of the linear functions of Y = a1X1 + a2X2

and Z = b1X1 + b2X2 in terms of the real constants a1, a2, b1, b2, and the
parameters of the distribution.

2.8.15. Let X1, X2, and X3 be random variables with equal variances but with
correlation coefficients ρ12 = 0.3, ρ13 = 0.5, and ρ23 = 0.2. Find the correlation
coefficient of the linear functions Y = X1 + X2 and Z = X2 + X3.

2.8.16. Find the variance of the sum of 10 random variables if each has variance 5
and if each pair has correlation coefficient 0.5.

2.8.17. Let X and Y have the parameters μ1, μ2, σ2
1 , σ2

2 , and ρ. Show that the
correlation coefficient of X and [Y − ρ(σ2/σ1)X ] is zero.

2.8.18. Let S2 be the sample variance of a random sample from a distribution with
variance σ2 > 0. Since E(S2) = σ2, why isn’t E(S) = σ?
Hint: Use Jensen’s inequality to show that E(S) < σ.



Chapter 3

Some Special Distributions

3.1 The Binomial and Related Distributions

In Chapter 1 we introduced the uniform distribution and the hypergeometric dis-
tribution. In this chapter we discuss some other important distributions of random
variables frequently used in statistics. We begin with the binomial and related
distributions.

A Bernoulli experiment is a random experiment, the outcome of which can
be classified in but one of two mutually exclusive and exhaustive ways, for instance,
success or failure (e.g., female or male, life or death, nondefective or defective).
A sequence of Bernoulli trials occurs when a Bernoulli experiment is performed
several independent times so that the probability of success, say p, remains the same
from trial to trial. That is, in such a sequence, we let p denote the probability of
success on each trial.

Let X be a random variable associated with a Bernoulli trial by defining it as
follows:

X(success) = 1 and X(failure) = 0.

That is, the two outcomes, success and failure, are denoted by one and zero, respec-
tively. The pmf of X can be written as

p(x) = px(1 − p)1−x, x = 0, 1, (3.1.1)

and we say that X has a Bernoulli distribution. The expected value of X is

μ = E(X) = (0)(1− p) + (1)(p) = p,

and the variance of X is

σ2 = var(X) = p2(1− p) + (1 − p)2p = p(1− p).

It follows that the standard deviation of X is σ =
√

p(1 − p).
In a sequence of n independent Bernoulli trials, where the probability of success

remains constant, let Xi denote the Bernoulli random variable associated with the

155
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ith trial. An observed sequence of n Bernoulli trials is then an n-tuple of zeros and
ones. In such a sequence of Bernoulli trials, we are often interested in the total
number of successes and not in the order of their occurrence. If we let the random
variable X equal the number of observed successes in n Bernoulli trials, the possible
values of X are 0, 1, 2, . . . , n. If x successes occur, where x = 0, 1, 2, . . . , n, then n−x
failures occur. The number of ways of selecting the x positions for the x successes
in the n trials is (

n

x

)
=

n!

x!(n− x)!
.

Since the trials are independent and the probabilities of success and failure on
each trial are, respectively, p and 1 − p, the probability of each of these ways is
px(1− p)n−x. Thus the pmf of X , say p(x), is the sum of the probabilities of these(
n
x

)
mutually exclusive events; that is,

p(x) =

{ (
n
x

)
px(1− p)n−x x = 0, 1, 2, . . . , n

0 elsewhere.
(3.1.2)

It is clear that p(x) ≥ 0. To verify that p(x) sums to 1 over its range, recall the
binomial series, expression (1.3.7) of Chapter 1, which is:

(a + b)n =

n∑
x=0

(
n

x

)
bxan−x,

for n a positive integer. Thus,∑
x

p(x) =
n∑

x=0

(
n

x

)
px(1− p)n−x

= [(1 − p) + p]n = 1.

Therefore, p(x) satisfies the conditions of being a pmf of a random variable X of
the discrete type. A random variable X that has a pmf of the form of p(x) is said
to have a binomial distribution, and any such p(x) is called a binomial pmf. A
binomial distribution is denoted by the symbol b(n, p). The constants n and p are
called the parameters of the binomial distribution.

Example 3.1.1 (Computation of Binomial Probabilities). Suppose we roll a fair
six-sided die 3 times. What is the probability of getting exactly 2 sixes? For our
notation, let X be the number of sixes obtained in the 3 rolls. Then X has a
binomial distribution with n = 3 and p = 1/6. Hence,

P (X = 2) = p(2) =

(
3

2

)(
1

6

)2 (
5

6

)1

= 0.06944.

We can do this calculation with a hand calculator. Suppose, though, we want to
determine the probability of at least 16 sixes in 60 rolls. Let Y be the number of
sixes in 60 rolls. Then our desired probability is given by the series

P (Y ≥ 16) =

60∑
j=16

(
60

j

)(
1

6

)j (
5

6

)60−j

,
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which is not a simple calculation. Most statistical packages provide procedures to
calculate binomial probabilities. In R, if Y is b(n, p) then the cdf of Y is computed
as P (Y ≤ y) =pbinom(y,n,p). Hence, for our example, using R we compute the
P (Y ≥ 16) as

P (Y ≥ 16) = 1− P (Y ≤ 15) = 1− pbinom(15, 60, 1/6) = 0.0338.

The R function dbinom computes the pmf of a binomial distribution. For instance,
to compute the probability that Y = 11, we use the R code: dbinom(11,60,1/6),
which computes to 0.1246.

The mgf of a binomial distribution is easily obtained as follows:

M(t) =
∑

x

etxp(x) =

n∑
x=0

etx

(
n

x

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)
(pet)x(1− p)n−x

= [(1− p) + pet]n

for all real values of t. The mean μ and the variance σ2 of X may be computed
from M(t). Since

M ′(t) = n[(1− p) + pet]n−1(pet)

and

M ′′(t) = n[(1− p) + pet]n−1(pet) + n(n− 1)[(1− p) + pet]n−2(pet)2,

if follows that

μ = M ′(0) = np

and

σ2 = M ′′(0)− μ2 = np + n(n− 1)p2 − (np)2 = np(1− p).

Suppose Y has the b(60, 1/6) distribution as discussed in Example 3.1.1. Then
E(Y ) = 60(1/6) = 10 and Var(Y ) = 60(1/6)(5/6) = 8.33

Example 3.1.2. If the mgf of a random variable X is

M(t) = (2
3 + 1

3et)5,

then X has a binomial distribution with n = 5 and p = 1
3 ; that is, the pmf of X is

p(x) =

{ (
5
x

) (
1
3

)x (
2
3

)5−x
x = 0, 1, 2, . . . , 5

0 elsewhere.

Here μ = np = 5
3 and σ2 = np(1− p) = 10

9 .
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Example 3.1.3. If Y is b(n, 1
3 ), then P (Y ≥ 1) = 1 − P (Y = 0) = 1 − (2

3 )n.
Suppose that we wish to find the smallest value of n that yields P (Y ≥ 1) > 0.80.
We have 1 − (2

3 )n > 0.80 and 0.20 > (2
3 )n. Either by inspection or by use of

logarithms, we see that n = 4 is the solution. That is, the probability of at least
one success throughout n = 4 independent repetitions of a random experiment with
probability of success p = 1

3 is greater than 0.80.

Example 3.1.4. Let the random variable Y be equal to the number of successes
throughout n independent repetitions of a random experiment with probability p
of success. That is, Y is b(n, p). The ratio Y/n is called the relative frequency of
success. Recall expression (1.10.3), the second version of Chebyshev’s inequality
(Theorem 1.10.3). Applying this result, we have for all ε > 0 that

P

(∣∣∣∣Yn − p

∣∣∣∣ ≥ ε

)
≤ Var(Y/n)

ε2
=

p(1− p)

nε2

[Exercise 3.1.3 asks for the determination of Var(Y/n)]. Now, for every fixed ε > 0,
the right-hand member of the preceding inequality is close to zero for sufficiently
large n. That is,

lim
n→∞

P

(∣∣∣∣Yn − p

∣∣∣∣ ≥ ε

)
= 0

and

lim
n→∞P

(∣∣∣∣Yn − p

∣∣∣∣ < ε

)
= 1.

Since this is true for every fixed ε > 0, we see, in a certain sense, that the relative
frequency of success is for large values of n, close to the probability of p of success.
This result is one form of the Weak Law of Large Numbers. It was alluded to
in the initial discussion of probability in Chapter 1 and is considered again, along
with related concepts, in Chapter 5.

Example 3.1.5. Let the independent random variables X1, X2, X3 have the same
cdf F (x). Let Y be the middle value of X1, X2, X3. To determine the cdf of Y , say
FY (y) = P (Y ≤ y), we note that Y ≤ y if and only if at least two of the random
variables X1, X2, X3 are less than or equal to y. Let us say that the ith “trial”
is a success if Xi ≤ y, i = 1, 2, 3; here each “trial” has the probability of success
F (y). In this terminology, FY (y) = P (Y ≤ y) is then the probability of at least two
successes in three independent trials. Thus

FY (y) =

(
3

2

)
[F (y)]2[1− F (y)] + [F (y)]3.

If F (x) is a continuous cdf so that the pdf of X is F ′(x) = f(x), then the pdf of Y
is

fY (y) = F ′
Y (y) = 6[F (y)][1− F (y)]f(y).

Suppose we have several independent binomial distributions with the same prob-
ability of success. Then it makes sense that the sum of these random variables is
binomial, as shown in the following theorem.



3.1. The Binomial and Related Distributions 159

Theorem 3.1.1. Let X1, X2, . . . , Xm be independent random variables such that
Xi has binomial b(ni, p) distribution, for i = 1, 2, . . . , m. Let Y =

∑m
i=1 Xi. Then

Y has a binomial b(
∑m

i=1 ni, p) distribution.

Proof: The mgf of Xi is MXi(t) = (1− p + pet)ni . By independence it follows from
Theorem 2.6.1 that

MY (t) =

m∏
i=1

(1 − p + pet)ni = (1− p + pet)
Pm

i=1 ni .

Hence, Y has a binomial b(
∑m

i=1 ni, p) distribution.

For the remainder of this section, we discuss some important distributions that
are related to the binomial distribution.

3.1.1 Negative Binomial and Geometric Distributions

Consider a sequence of independent Bernoulli trials with constant probability p of
success. Let the random variable Y denote the total number of failures in this
sequence before the rth success, that is, Y + r is equal to the number of trials
necessary to produce exactly r successes with the last trial as a success. Here r
is a fixed positive integer. To determine the pmf of Y , let y be an element of
{y : y = 0, 1, 2, . . .}. Then, since the trials are independent, P (Y = y) is equal
to the product of the probability of obtaining exactly r − 1 successes in the first
y + r− 1 trials times the probability p of a success on the (y + r)th trial. Thus the
pmf of Y is

pY (y) =

{ (
y+r−1

r−1

)
pr(1 − p)y y = 0, 1, 2, . . .

0 elsewhere.
(3.1.3)

A distribution with a pmf of the form pY (y) is called a negative binomial dis-
tribution and any such pY (y) is called a negative binomial pmf. The distribution
derives its name from the fact that pY (y) is a general term in the expansion of
pr[1− (1 − p)]−r. It is left as an exercise to show that the mgf of this distribution
is M(t) = pr[1− (1− p)et]−r, for t < − log(1− p). The R call to compute P (y ≤ y)
is pnbinom(y,r,p).

Example 3.1.6. Suppose the probability that a person has blood type B is 0.12.
In order to conduct a study concerning people with blood type B, patients are
sampled independently of one another until 10 are obtained who have blood type
B. Determine the probability that at most 30 patients have to have their blood type
determined. Let Y have a negative binomial distribution with p = 0.12 and r = 10.
Then, the desired probability is

P (Y ≤ 20) =
20∑

j=0

(
j + 9

9

)
0.12100.88j.

Its computation in R is pnbinom(20,10,0.12) = 0.0019.
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If r = 1, then Y has the pmf

pY (y) = p(1− p)y, y = 0, 1, 2, . . . , (3.1.4)

zero elsewhere, and the mgf M(t) = p[1− (1 − p)et]−1. In this special case, r = 1,
we say that Y has a geometric distribution. In terms of Bernoulli trials, Y is
the number of failures until the first success. The geometric distribution was first
discussed in Example 1.6.3 of Chapter 1. For the last example, the probability
that exactly 11 patients have to have their blood type determined before the first
patient with type B blood is found is given by .88110.12. This is computed in R by
dgeom(11,0.12) = 0.0294.

3.1.2 Multinomial Distribution

The binomial distribution is generalized to the multinomial distribution as follows.
Let a random experiment be repeated n independent times. On each repetition,
there is one and only one outcome from one of k categories. Call the categories
C1, C2, . . . , Ck. For example, the upface of a roll of a six-sided die. Then the
categories are Ci = {i}, i = 1, 2, . . . , 6. For i = 1, . . . , k, let pi be the probability that
the outcome is an element of Ci and assume that pi remains constant throughout
the n independent repetitions. Define the random variable Xi to be equal to the
number of outcomes that are elements of Ci, i = 1, 2, . . . , k − 1. Because Xk =
n − X1 − · · · − Xk−1, Xk is determined by the other Xi’s. Hence, for the joint
distribution of interest we need only consider X1, X2, . . . , Xk−1.

The joint pmf of (X1, X2, . . . , Xk−1) is

P (X1 = x,X2 = x2, . . . , Xk−1 = xk−1) =
n!

x1! · · ·xk−1!xk!
px1
1 · · · pxk−1

k−1 pxk

k , (3.1.5)

for all x1, x2, . . . , xk−1 that are nonnegative integers and such that x1 + x2 + · · ·+
xk−1 ≤ n, where xk = n − x1 − · · · − xk−1 and pk = 1 −∑k−1

j=1 pj. We next show
that expression (3.1.5) is correct. The number of distinguishable arrangements of
x1 C1s, x2 C2s, . . . , xk Cks is(

n

x1

)(
n− x1

x2

)
· · ·

(
n− x1 − · · · − xk−2

xk−1

)
=

n!

x1!x2! · · ·xk!

and the probability of each of these distinguishable arrangements is

px1
1 px2

2 · · · pxk

k .

Hence the product of these two latter expressions gives the correct probability, which
is in agreement with expression (3.1.5).

We say that (X1, X2, . . . , Xk−1) has a multinomial distribution with param-
eters n and p1, . . . , pk−1. The joint mgf of (X1, X2, . . . , Xk−1) is M(t1, . . . , tk−1) =

E(exp{
∑k−1

i=1 tiXi}), i.e.,

M(t1, . . . , tk−1) =
∑

· · ·
∑ n!

x1! · · ·xk−1!xk!
(p1e

t1)x1 · · · (pk−1e
tk−1)xk−1pxk

k ,
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where the multiple sum is taken over all nonnegative integers and such that x1 +
x2 + · · · + xk−1 ≤ n. Let m =

∑k−1
i=1 pie

ti + pk−1. Recall that xk = n −∑k−1
i=1 xi.

Then since m > 0, we have

M(t1, . . . , tk−1) = mn
∑

· · ·
∑ n!

x1! · · ·xk−1!xk!

×
(

p1e
t1

m

)x1

· · ·
(

pk−1e
tk−1

m

)xk−1 (pk

m

)xk

= mn × 1 =

(
k−1∑
i=1

pie
ti + pk−1

)n

, (3.1.6)

where we have used the property that sum of a pmf over its support is 1.
We can use the joint mgf to determine marginal distributions. The mgf of Xi is

M(0, . . . , 0, ti, 0, . . . , 0) = (pie
ti + (1− pi))

n;

hence, Xi is binomial with parameters n and pi. The mgf of (Xi, Xj), i < j, is

M(0, . . . , 0, ti, 0, . . . , 0, tj, 0, . . . , 0) = (pie
ti + pje

tj + (1− pi − pj))
n;

so that (Xi, Xj) has a multinomial distribution with parameters n, pi, and pj . At
times, we say that (X1, X2) has a trinomial distribution.

Another distribution of interest is the conditional distribution of Xi given Xj .
For convenience, we select i = 2 and j = 1. We know that (X1, X2) is multinomial
with parameters n and p1 and p2 and that X1 is binomial with parameters n and
p1. Thus, the conditional pmf is,

pX2|X1
(x2 |x1) =

pX1,X2(x1, x2)

pX1(x1)

=
x1!(n− x1)!

n!px1
1 [1− p1]n−x1

n!px1
1 px2

2 [1− (p1 + p2)]
n−(x1+x2)

x1!x2![n− (x1 + x2)]!

=

(
n− x1

x2

)
px2
2

(1− p1)x2

[(1 − p1)− p2]
n−x1−x2

(1− p1)n−x1−x2

=

(
n− x1

x2

)(
p2

1− p1

)x2
(

1− p2

1− p1

)n−x1−x2

,

for 0 ≤ x2 ≤ n− x1. Note that p2 < 1 − p1. Thus, the conditional distribution of
X2 given X1 = x1 is binomial with parameters n− x1 and p2/(1− p1).

Based on the conditional distribution of X2 given X1, we have E(X2 |X1) =
(n − X1)p2/(1 − p1). Let ρ12 be the correlation coefficient between X1 and X2.
Since the conditional mean is linear with slope −p2/(1 − p1), σ2 =

√
np2(1 − p2),

and σ1 =
√

np1(1− p1), it follows from expression (2.5.4) that

ρ12 = − p2

1− p1

σ1

σ2
= −

√
p1p2

(1− p1)(1− p2)
.

Because the support of X1 and X2 has the constraint x1 + x2 ≤ n, the negative
correlation is not surprising.
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3.1.3 Hypergeometric Distribution

In Chapter 1, for a particular problem, we introduced the hypergeometric distribu-
tion; see expression (1.6.4). We now formally define it. Suppose we have a lot of N
items of which D are defective. Let X denote the number of defective items in a
sample of size n. If the sampling is done with replacement and the items are cho-
sen at random, then X has a binomial distribution with parameters n and D/N .
In this case the mean and variance of X are n(D/N) and n(D/N)[(N − D)/N ],
respectively. Suppose, however, that the sampling is without replacement, which is
often the case in practice. The pmf of X follows by noting in this case that each of
the

(
N
n

)
samples are equilikely and that there are

(
N−D
n−x

)(
D
x

)
samples that have x

defective items. Hence, the pmf of X is

p(x) =

(
N−D
n−x

)(
D
x

)(
N
n

) , x = 0, 1, . . . , n, (3.1.7)

where, as usual, a binomial coefficient is taken to be 0 when the top value is less
than the bottom value. We say that X has a hypergeometric distribution with
parameters (N, D, n).

The mean of X is

E(X) =
n∑

x=0

xp(x) =
n∑

x=1

x

(
N−D
n−x

)
[D(D − 1)!]/[x(x − 1)!(D − x)!]

[N(N − 1)!]/[(N − n)!n(n− 1)!]

= n
D

N

n∑
x=1

(
(N − 1)− (D − 1)

(n− 1)− (x− 1)

)(
D − 1

x− 1

)(
N − 1

n− 1

)−1

= n
D

N
.

In the next-to-last step, we used the fact that the probabilities of a hypergeometric
(N−1, D−1, n−1) distribution summed over its entire range is 1. So the means for
both types of sampling (with and without replacement) are the same. The variances,
though, differ. As Exercise 3.1.31 shows, the variance of a hypergeometric (N, D, n)
is

Var(X) = n
D

N

N −D

N

N − n

N − 1
. (3.1.8)

The last term is often thought of as the correction term when sampling without
replacement. Note that it is close to 1 if N is much larger than n.

The pmf (3.1.7) can be computed in R with the code dhyper(x, D, N-D, n).
Suppose we draw 2 cards from a well shuffled standard deck of 52 cards and record
the number of aces. The next R segment shows the probabilities over the range
{0, 1, 2} for sampling with and without replacement, respectively:

rng <- 0:2; dbinom(rng,2,1/13); dhyper(rng,4,48,2)

[1] 0.85207101 0.14201183 0.00591716

[1] 0.850678733 0.144796380 0.004524887

Notice how close the probabilities are.
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EXERCISES

3.1.1. If the mgf of a random variable X is (1
3 + 2

3et)5, find P (X = 2 or 3). Verify
using the R function dbinom.

3.1.2. The mgf of a random variable X is (2
3 + 1

3et)9.

(a) Show that

P (μ− 2σ < X < μ + 2σ) =

5∑
x=1

(
9

x

)(
1

3

)x (
2

3

)9−x

.

(b) Use R to compute the probability in Part (a).

3.1.3. If X is b(n, p), show that

E

(
X

n

)
= p and E

[(
X

n
− p

)2
]

=
p(1− p)

n
.

3.1.4. Let the independent random variables X1, X2, . . . , X40 be iid with the com-
mon pdf f(x) = 3x2, 0 < x < 1, zero elsewhere. Find the probability that at least
35 of the Xi’s exceed 1

2 .

3.1.5. Over the years, the percentage of candidates passing an entrance exam to a
prestigious law school is 20%. At one of the testing centers, a group of 50 candidates
take the exam and 20 pass. Is this odd? Answer on the basis that X ≥ 20 where
X is the number that pass in a group of 50 when the probability of a pass is 0.2.

3.1.6. Let Y be the number of successes throughout n independent repetitions of
a random experiment with probability of success p = 1

4 . Determine the smallest
value of n so that P (1 ≤ Y ) ≥ 0.70.

3.1.7. Let the independent random variables X1 and X2 have binomial distribu-
tion with parameters n1 = 3, p = 2

3 and n2 = 4, p = 1
2 , respectively. Compute

P (X1 = X2).
Hint: List the four mutually exclusive ways that X1 = X2 and compute the prob-
ability of each.

3.1.8. For this exercise, the reader must have access to a statistical package that
obtains the binomial distribution. Hints are given for R code, but other packages
can be used too.

(a) Obtain the plot of the pmf for the b(15, 0.2) distribution. Using R, the follow-
ing commands return the plot:

x<-0:15; plot(dbinom(x,15,.2)~x)

(b) Repeat part (a) for the binomial distributions with n = 15 and with p =
0.10, 0.20, . . . , 0.90. Comment on the shapes of the pmf’s as p increases. Use
the following R segment:
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x<-0:15; par(mfrow=c(3,3)); p <- 1:9/10

for(j in p){plot(dbinom(x,15,j)~x); title(paste("p=",j))}

(c) Let Y = X
n , where X has a b(n, 0.05) distribution. Obtain the plots of the

pmfs of Y for n = 10, 20, 50, 200. Comment on the plots (what do the plots
seem to be converging to as n gets large?).

3.1.9. If x = r is the unique mode of a distribution that is b(n, p), show that

(n + 1)p− 1 < r < (n + 1)p.

This substantiates the comments made in Part (b) of Exercise 3.1.8.
Hint: Determine the values of x for which p(x + 1)/p(x) > 1.

3.1.10. Suppose X is b(n, p). Then by definition the pmf is symmetric if and only
if p(x) = p(n− x), for x = 0, . . . , n. Show that the pmf is symmetric if and only if
p = 1/2.

3.1.11. Toss two nickels and three dimes at random. Make appropriate assumptions
and compute the probability that there are more heads showing on the nickels than
on the dimes.

3.1.12. Let X1, X2, . . . , Xk−1 have a multinomial distribution.

(a) Find the mgf of X2, X3, . . . , Xk−1.

(b) What is the pmf of X2, X3, . . . , Xk−1?

(c) Determine the conditional pmf of X1 given that X2 = x2, . . . , Xk−1 = xk−1.

(d) What is the conditional expectation E(X1|x2, . . . , xk−1)?

3.1.13. Let X be b(2, p) and let Y be b(4, p). If P (X ≥ 1) = 5
9 , find P (Y ≥ 1).

3.1.14. Let X have a binomial distribution with parameters n and p = 1
3 . Deter-

mine the smallest integer n can be such that P (X ≥ 1) ≥ 0.85.

3.1.15. Let X have the pmf p(x) = ( 1
3 )(2

3 )x, x = 0, 1, 2, 3, . . ., zero elsewhere. Find
the conditional pmf of X given that X ≥ 3.

3.1.16. One of the numbers 1, 2, . . . , 6 is to be chosen by casting an unbiased die.
Let this random experiment be repeated five independent times. Let the random
variable X1 be the number of terminations in the set {x : x = 1, 2, 3} and let
the random variable X2 be the number of terminations in the set {x : x = 4, 5}.
Compute P (X1 = 2, X2 = 1).

3.1.17. Show that the moment generating function of the negative binomial dis-
tribution is M(t) = pr[1 − (1 − p)et]−r. Find the mean and the variance of this
distribution.
Hint: In the summation representing M(t), make use of the negative binomial
series.1

1See, for example, Mathematical Comments referenced in the Preface.
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3.1.18. One way of estimating the number of fish in a lake is the following capture-
recapture sampling scheme. Suppose there are N fish in the lake where N is
unknown. A specified number of fish T are captured, tagged, and released back to
the lake. Then at a specified time and for a specified positive integer r, fish are
captured until the rth tagged fish is caught. The random variable of interest is Y
the number of nontagged fish caught.

(a) What is the distribution of Y ? Identify all parameters.

(b) What is E(Y ) and the Var(Y )?

(c) The method of moment estimate of N is to set Y equal to the expression for
E(Y ) and solve this equation for N . Call the solution N̂ . Determine N̂ .

(d) Determine the mean and variance of N̂ .

3.1.19. Consider a multinomial trial with outcomes 1, 2, . . . , k and respective prob-
abilities p1, p2, . . . , pk. Let ps denote the R vector for (p1, p2, . . . , pk). Then a single
random trial of this multinomial is computed with the command multitrial(ps),
where the required R functions are:2

psum <- function(v){

p<-0; psum <- c()

for(j in 1:length(v)){p<-p+v[j]; psum <- c(psum,p)}

return(psum)}

multitrial <- function(p){

pr <- c(0,psum(p))

r <- runif(1); ic <- 0; j <- 1

while(ic==0){if((r > pr[j]) && (r <= pr[j+1]))

{multitrial <-j; ic<-1}; j<- j+1}

return(multitrial)}

(a) Compute 10 random trials if ps=c(.3,.2,.2,.2,.1).

(b) Compute 10,000 random trials for ps as in (a). Check to see how close the
estimates of pi are with pi.

3.1.20. Using the experiment in part (a) of Exercise 3.1.19, consider a game when
a person pays $5 to play. If the trial results in a 1 or 2, she receives nothing; if a
3, she receives $1; if a 4, she receives $2; and if a 5, she receives $20. Let G be her
gain.

(a) Determine E(G).

(b) Write R code that simulates the gain. Then simulate it 10,000 times, collecting
the gains. Compute the average of these 10,000 gains and compare it with
E(G).

2Downloadable at the site listed in the Preface
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3.1.21. Let X1 and X2 have a trinomial distribution. Differentiate the moment-
generating function to show that their covariance is −np1p2.

3.1.22. If a fair coin is tossed at random five independent times, find the conditional
probability of five heads given that there are at least four heads.

3.1.23. Let an unbiased die be cast at random seven independent times. Compute
the conditional probability that each side appears at least once given that side 1
appears exactly twice.

3.1.24. Compute the measures of skewness and kurtosis of the binomial distribution
b(n, p).

3.1.25. Let

p(x1, x2) =

(
x1

x2

)(
1

2

)x1 (x1

15

)
,

x2 = 0, 1, . . . , x1

x1 = 1, 2, 3, 4, 5,

zero elsewhere, be the joint pmf of X1 and X2. Determine

(a) E(X2).

(b) u(x1) = E(X2|x1).

(c) E[u(X1)].

Compare the answers of parts (a) and (c).

Hint: Note that E(X2) =
∑5

x1=1

∑x1

x2=0 x2p(x1, x2).

3.1.26. Three fair dice are cast. In 10 independent casts, let X be the number of
times all three faces are alike and let Y be the number of times only two faces are
alike. Find the joint pmf of X and Y and compute E(6XY ).

3.1.27. Let X have a geometric distribution. Show that

P (X ≥ k + j |X ≥ k) = P (X ≥ j), (3.1.9)

where k and j are nonnegative integers. Note that we sometimes say in this situation
that X is memoryless.

3.1.28. Let X equal the number of independent tosses of a fair coin that are required
to observe heads on consecutive tosses. Let un equal the nth Fibonacci number,
where u1 = u2 = 1 and un = un−1 + un−2, n = 3, 4, 5, . . . .

(a) Show that the pmf of X is

p(x) =
ux−1

2x
, x = 2, 3, 4, . . . .

(b) Use the fact that

un =
1√
5

[(
1 +

√
5

2

)n

−
(

1−
√

5

2

)n]
to show that

∑∞
x=2 p(x) = 1.
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3.1.29. Let the independent random variables X1 and X2 have binomial distri-
butions with parameters n1, p1 = 1

2 and n2, p2 = 1
2 , respectively. Show that

Y = X1−X2 +n2 has a binomial distribution with parameters n = n1 +n2, p = 1
2 .

3.1.30. Consider a shipment of 1000 items into a factory. Suppose the factory
can tolerate about 5% defective items. Let X be the number of defective items
in a sample without replacement of size n = 10. Suppose the factory returns the
shipment if X ≥ 2.

(a) Obtain the probability that the factory returns a shipment of items that has
5% defective items.

(b) Suppose the shipment has 10% defective items. Obtain the probability that
the factory returns such a shipment.

(c) Obtain approximations to the probabilities in parts (a) and (b) using appro-
priate binomial distributions.

Note: If you do not have access to a computer package with a hypergeometric com-
mand, obtain the answer to (c) only. This is what would have been done in practice
20 years ago. If you have access to R, then the command dhyper(x,D,N-D,n)

returns the probability in expression (3.1.7).

3.1.31. Show that the variance of a hypergeometric (N, D, n) distribution is given
by expression (3.1.8).
Hint: First obtain E[X(X − 1)] by proceeding in the same way as the derivation of
the mean given in Section 3.1.3.

3.2 The Poisson Distribution

Recall that the following series expansion3 holds for all real numbers z:

1 + z +
z2

2!
+

z3

3!
+ · · · =

∞∑
x=0

zx

x!
= ez.

Consider the function p(x) defined by

p(x) =

{
λxe−λ

x! x = 0, 1, 2, . . .
0 elsewhere,

(3.2.1)

where λ > 0. Since λ > 0, then p(x) ≥ 0 and

∞∑
x=0

p(x) =

∞∑
x=0

λxe−λ

x!
= e−λ

∞∑
x=0

λx

x!
= e−λeλ = 1;

3See, for example, the discussion on Taylor series in Mathematical Comments referenced in the
Preface.
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that is, p(x) satisfies the conditions of being a pmf of a discrete type of random
variable. A random variable that has a pmf of the form p(x) is said to have a
Poisson distribution with parameter λ, and any such p(x) is called a Poisson
pmf with parameter λ.

As the following remark shows, Poisson distributions occur in many areas of
applications.

Remark 3.2.1. Consider a process that counts the number of certain events occur-
ring over an interval of time; for example, the number of tornados that touch down
in Michigan per year, the number of cars entering a parking lot between 8:00 and
12:00 on a weekday, the number of car accidents at a busy intersection per week,
the number of typographical errors per page of a manuscript, and the number of
blemishes on a manufactured car door. As in the third and fourth examples, the
occurrences need not be over time. It is convenient, though, to use the time rep-
resentation in the following derivation. Let Xt denote the number of occurrences
of such a process over the interval (0, t]. The range of Xt is the set of nonnegative
integers {0, 1, 2, . . .}. For a nonnegative integer k and a real number t > 0, denote
the pmf of Xt by P (Xt = k) = g(k, t). Under the following three axioms, we next
show that Xt has a Poisson distribution.

1. g(1, h) = λh + o(h), for a constant λ > 0.

2.
∑∞

t=2 g(t, h) = o(h).

3. The number of occurrences in nonoverlapping intervals are independent of one
another.

Here the o(h) notation means that o(h)/h → 0 as h → 0. For instance, h2 = o(h)
and o(h) + o(h) = o(h). Note that the first two axioms imply that in a small
interval of time h, either one or no events occur and that the probability of one
event occurring is proportional to h.

By the method of induction, we now show that the distribution of Xt is Poisson
with parameter λt. First, we obtain g(k, t) for k = 0. Note that the boundary
condition g(0, 0) = 1 is reasonable. No events occur in time (0, t + h] if and only if
no events occur in (0, t] and no events occur in (t, t + h]. By Axioms (1) and (2),
the probability that no events occur in the interval (0, h] is 1− λh + o(h). Further,
the intervals (0, t] and (t, t + h] do not overlap. Hence, by Axiom (3) we have

g(0, t + h) = g(0, t)[1− λh + o(h)]. (3.2.2)

That is,

g(0, t + h)− g(0, t)

h
= −λg(0, t) +

g(0, t)o(h)

h
→ −λg(0, t), as h → 0.

Thus, g(0, t) satisfies the differential equation

dt g(0, t)

g(0, t)
= −λ



3.2. The Poisson Distribution 169

Integrating both side with respect to t, we have for some constant c that

log g(0, t) = −λt + c or g(0, t) = e−λtec.

Finally, using the boundary condition g(0, 0) = 1, we have ec = 1. Hence,

g(0, t) = e−λt. (3.2.3)

So the result holds for k = 0.
For the remainder of the proof, assume that, for k a nonnegative integer, g(k, t) =

e−λt(λt)k/k!. By induction, the proof follows if we can show that the result holds
for g(k + 1, t). Another reasonable boundary condition is g(k + 1, 0) = 0. Consider
g(k + 1, t + h). In order to have k + 1 occurrences in (0, t + h] either there are k + 1
occurrences in (0, t] and no occurrences in (t, t + h] or there are k occurrences in
(0, t] and one occurrence in (t, t + h]. Because these events are disjoint we have by
the independence of Axiom 3 that

g(k + 1, t + h) = g(k + 1, t)[1− λh + o(h)] + g(k, t)[λh + o(h)],

that is,

g(k + 1, t + h)− g(k + 1, t)

h
= −λg(k + 1, t) + g(k, t)λ + [g(k + 1, t) + g(k, t)]

o(h)

h
.

Letting h → 0 and using the value of g(k, t), we obtain the differential equation

d

dt
g(k + 1, t) = −λg(k + 1, t) + λe−λt[(λt)k/k!].

This is a linear differential equation of first order. Appealing to a theorem in
differential equations, its solution is

e
R

λ dtg(k + 1, t) =

∫
e

R
λ dtλe−λt[(λt)k/k!] dt + c.

Using the boundary condition g(k + 1, 0) = 0 and carrying out the integration, we
obtain

g(k + 1, t) = e−λt[(λt)k+1/(k + 1)!]

Therefore, Xt has a Poisson distribution with parameter λt.

Let X have a Poisson distribution with parameter λ. The mgf of X is given by

M(t) =

∞∑
x=0

etxp(x) =

∞∑
x=0

etx λxe−λ

x!

= e−λ
∞∑

x=0

(λet)x

x!

= e−λeλet

= eλ(et−1)
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for all real values of t. Since

M ′(t) = eλ(et−1)(λet)

and
M ′′(t) = eλ(et−1)λetλet + eλ(et−1)λet

then
μ = M ′(0) = λ

and
σ2 = M ′′(0)− μ2 = λ2 + λ− λ2 = λ.

That is, a Poisson distribution has μ = σ2 = λ > 0.
If X has a Poisson distribution with parameter λ, then P (X = k) is computed

by the R command dpois(k,lambda) and the cumulative probability P (X ≤ k) is
calculated by ppois(k,lambda).

Example 3.2.1. Let X be the number of automobile accidents at a busy inter-
section per week. Suppose that X has a Poisson distribution with λ = 2. Then
the expected number of accidents per week is 2 and the standard deviation of the
number of accidents is

√
2. The probability of at least one accident in a week is

P (X ≥ 1) = 1− P (X = 0) = 1− e−2 = 1− dpois(0,2) = 0.8647

and the probability that there are between 3 and 8 (inclusive) accidents is

P (3 ≤ X ≤ 8) = P (X ≤ 8)− P (X ≤ 2) = ppois(8,2)− ppois(2,2) = 0.3231.

Suppose we want to determine the probability that there are exactly 16 accidents
in a 4 week period. By Remark 3.2.1, the number of accidents over a 4 week period
has a Poisson distribution with parameter 2× 4 = 8. So the desired probability is
dpois(16,8) = 0.0045. The following R code computes a spiked plot of the pmf
of X over {0, 1, . . . , 7}, a subset of the range of X .

rng=0:7; y=dpois(rng,2); plot(y~rng,type="h",ylab="pmf",xlab="Rng");

points(y~rng,pch=16,cex=2)

Example 3.2.2. Let the probability of exactly one blemish in 1 foot of wire be
about 1

1000 and let the probability of two or more blemishes in that length be, for
all practical purposes, zero. Let the random variable X be the number of blemishes
in 3000 feet of wire. If we assume the independence of the number of blemishes in
nonoverlapping intervals, then by Remark 3.2.1 the postulates of the Poisson process
are approximated, with λ = 1

1000 and t = 3000. Thus X has an approximate Poisson
distribution with mean 3000( 1

1000 ) = 3. For example, the probability that there are
five or more blemishes in 3000 feet of wire is

P (X ≥ 5) =
∞∑

k=5

3ke−3

k!
= 1− ppois(4,3) = 0.1847.
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The Poisson distribution satisfies the following important additive property.

Theorem 3.2.1. Suppose X1, . . . , Xn are independent random variables and sup-
pose Xi has a Poisson distribution with parameter λi. Then Y =

∑n
i=1 Xi has a

Poisson distribution with parameter
∑n

i=1 λi.

Proof: We obtain the result by determining the mgf of Y , which by Theorem 2.6.1
is given by

MY (t) = E
(
etY

)
=

n∏
i=1

eλi(e
t−1) = e

Pn
i=1 λi(e

t−1).

By the uniqueness of mgfs, we conclude that Y has a Poisson distribution with
parameter

∑n
i=1 λi.

Example 3.2.3 (Example 3.2.2, Continued). Suppose, as in Example 3.2.2, that
a bail of wire consists of 3000 feet. Based on the information in the example, we
expect three blemishes in a bail of wire, and the probability of five or more blemishes
is 0.1847. Suppose in a sampling plan, three bails of wire are selected at random and
we compute the mean number of blemishes in the wire. Now suppose we want to
determine the probability that the mean of the three observations has five or more
blemishes. Let Xi be the number of blemishes in the ith bail of wire for i = 1, 2, 3.
Then Xi has a Poisson distribution with parameter 3. The mean of X1, X2, and X3

is X = 3−1
∑3

i=1 Xi, which can also be expressed as Y/3, where Y =
∑3

i=1 Xi. By
the last theorem, because the bails are independent of one another, Y has a Poisson
distribution with parameter

∑3
i=1 3 = 9. Hence, the desired probability is

P (X ≥ 5) = P (Y ≥ 15) = 1− ppois(14,9) = 0.0415.

Hence, while it is not too odd that a bail has five or more blemishes (probability
is 0.1847), it is unusual (probability is 0.0415) that three independent bails of wire
average five or more blemishes.

EXERCISES

3.2.1. If the random variable X has a Poisson distribution such that P (X = 1) =
P (X = 2), find P (X = 4).

3.2.2. The mgf of a random variable X is e4(et−1). Show that P (μ − 2σ < X <
μ + 2σ) = 0.931.

3.2.3. In a lengthy manuscript, it is discovered that only 13.5 percent of the pages
contain no typing errors. If we assume that the number of errors per page is a
random variable with a Poisson distribution, find the percentage of pages that have
exactly one error.

3.2.4. Let the pmf p(x) be positive on and only on the nonnegative integers. Given
that p(x) = (4/x)p(x− 1), x = 1, 2, 3, . . . , find the formula for p(x).
Hint: Note that p(1) = 4p(0), p(2) = (42/2!)p(0), and so on. That is, find each
p(x) in terms of p(0) and then determine p(0) from

1 = p(0) + p(1) + p(2) + · · · .
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3.2.5. Let X have a Poisson distribution with μ = 100. Use Chebyshev’s inequality
to determine a lower bound for P (75 < X < 125). Next, calculate the probability
using R. Is the approximation by Chebyshev’s inequality accurate?

3.2.6. The following R code segment computes a page of plots for Poisson pmfs
with means 2, 4, 6, ..., 18. Run this code and comment on the the shapes and modes
of the distributions.

par(mfrow=c(3,3)); x= 0:35; lam=seq(2,18,2);

for(y in lam){plot(dpois(x,y)~x); title(paste("Mean is ",y))}

3.2.7. By Exercise 3.2.6 it seems that the Poisson pmf peaks at its mean λ. Show
that this is the case by solving the inequalities [p(x + 1)/p(x)] > 1 and [p(x +
1)/p(x)] < 1, where p(x) is the pmf of a Poisson distribution with parameter λ.

3.2.8. Using the computer, obtain an overlay plot of the pmfs of the following two
distributions:

(a) Poisson distribution with λ = 2.

(b) Binomial distribution with n = 100 and p = 0.02.

Why would these distributions be approximately the same? Discuss.

3.2.9. Continuing with Exercise 3.2.8, make a page of four overlay plots for the
following 4 Poisson and binomial combinations: λ = 2, p = 0.02; λ = 10, p = 0.10;
λ = 30, p = 0.30; λ = 50, p = 0.50. Use n = 100 in each situation. Plot the subset of
the binomial range that is between np±

√
np(1− p). For each situation, comment

on the goodness of the Poisson approximation to the binomial.

3.2.10. The approximation discussed in Exercise 3.2.8 can be made precise in the
following way. Suppose Xn is binomial with the parameters n and p = λ/n, for a
given λ > 0. Let Y be Poisson with mean λ. Show that P (Xn = k) → P (Y = k),
as n →∞, for an arbitrary but fixed value of k.

Hint: First show that:

P (Xn = k) =
λk

k!

[
n(n− 1) · · · (n− k + 1)

nk

(
1− λ

n

)−k
](

1− λ

n

)n

.

3.2.11. Let the number of chocolate chips in a certain type of cookie have a Poisson
distribution. We want the probability that a cookie of this type contains at least
two chocolate chips to be greater than 0.99. Find the smallest value of the mean
that the distribution can take.

3.2.12. Compute the measures of skewness and kurtosis of the Poisson distribution
with mean μ.

3.2.13. On the average, a grocer sells three of a certain article per week. How
many of these should he have in stock so that the chance of his running out within
a week is less than 0.01? Assume a Poisson distribution.
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3.2.14. Let X have a Poisson distribution. If P (X = 1) = P (X = 3), find the
mode of the distribution.

3.2.15. Let X have a Poisson distribution with mean 1. Compute, if it exists, the
expected value E(X !).

3.2.16. Let X and Y have the joint pmf p(x, y) = e−2/[x!(y−x)!], y = 0, 1, 2, . . . ,
x = 0, 1, . . . , y, zero elsewhere.

(a) Find the mgf M(t1, t2) of this joint distribution.

(b) Compute the means, the variances, and the correlation coefficient of X and
Y .

(c) Determine the conditional mean E(X |y).
Hint: Note that

y∑
x=0

[exp(t1x)]y!/[x!(y − x)!] = [1 + exp(t1)]
y.

Why?

3.2.17. Let X1 and X2 be two independent random variables. Suppose that X1 and
Y = X1 + X2 have Poisson distributions with means μ1 and μ > μ1, respectively.
Find the distribution of X2.

3.3 The Γ, χ2, and β Distributions

In this section we introduce the continuous gamma Γ-distribution and several as-
sociated distributions. The support for the Γ-distribution is the set of positive real
numbers. This distribution and its associated distributions are rich in applications
in all areas of science and business. These applications include their use in modeling
lifetimes, failure times, service times, and waiting times.

The definition of the Γ-distribution requires the Γ function from calculus. It is
proved in calculus that the integral∫ ∞

0

yα−1e−y dy

exists for α > 0 and that the value of the integral is a positive number. The integral
is called the gamma function of α, and we write

Γ(α) =

∫ ∞

0

yα−1e−y dy.

If α = 1, clearly

Γ(1) =

∫ ∞

0

e−y dy = 1.
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If α > 1, an integration by parts shows that

Γ(α) = (α− 1)

∫ ∞

0

yα−2e−y dy = (α− 1)Γ(α− 1). (3.3.1)

Accordingly, if α is a positive integer greater than 1,

Γ(α) = (α− 1)(α− 2) · · · (3)(2)(1)Γ(1) = (α − 1)!.

Since Γ(1) = 1, this suggests we take 0! = 1, as we have done. The Γ function is
sometimes called the factorial function.

We say that the continuous random variable X has a Γ-distribution with pa-
rameters α > 0 and β > 0, if its pdf is

f(x) =

{
1

Γ(α)βα xα−1e−x/β 0 < x <∞
0 elsewhere.

(3.3.2)

In which case, we often write that X has Γ(α, β) distribution.
To verify that f(x) is a pdf, note first that f(x) > 0, for all x > 0. To show

that it integrates to 1 over its support, we use the change-of-variable z = x/β,
dz = (1/β)dx in the following derivation:∫ ∞

0

1

Γ(α)βα
xα−1e−x/β dx =

1

Γ(α)βα

∫ ∞

0

(βz)α−1e−zβ dz

=
1

Γ(α)βα
βαΓ(α) = 1;

hence, f(x) is a pdf. This change-of-variable used is worth remembering. We use a
similar change-of-variable in the following derivation of X ’s mgf:

M(t) =

∫ ∞

0

etx 1

Γ(α)βα
xα−1e−x/β dx

=

∫ ∞

0

1

Γ(α)βα
xα−1e−x(1−βt)/β dx.

Next, use the change-of-variable y = x(1 − βt)/β, t < 1/β, or x = βy/(1− βt), to
obtain

M(t) =

∫ ∞

0

β/(1− βt)

Γ(α)βα

(
βy

1− βt

)α−1

e−y dy.

That is,

M(t) =

(
1

1− βt

)α ∫ ∞

0

1

Γ(α)
yα−1e−y dy

=
1

(1 − βt)α
, t <

1

β
.

Now
M ′(t) = (−α)(1 − βt)−α−1(−β)
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and
M ′′(t) = (−α)(−α− 1)(1− βt)−α−2(−β)2.

Hence, for a gamma distribution, we have

μ = M ′(0) = αβ

and
σ2 = M ′′(0)− μ2 = α(α + 1)β2 − α2β2 = αβ2.

Suppose X has a Γ(α, β) distribution. To calculate probabilities for this distri-
bution in R, let a = α and b = β. Then the command pgamma(x,shape=a,scale=b)

returns P (X ≤ x), while the value of the pdf of X at x is returned by the command
dgamma(x,shape=a,scale=b).

Example 3.3.1. Let X be the lifetime in hours of a certain battery used under
extremely cold conditions. Suppose X has a Γ(5, 4) distribution. Then the mean life-
time of the battery is 20 hours with standard deviation

√
5× 16 = 8.94 hours. The

probability that battery lasts at least 50 hours is 1-pgamma(50,shape=5,scale=4)
= 0.0053. The median lifetime of the battery is qgamma(.5,shape=5,scale=4)

= 18.68 hours. The probability that the lifetime is within one standard deviation
of its mean lifetime is

pgamma(20+8.94,shape=5,scale=4)-pgamma(20-8.94,shape=5,scale=4)=.700.

Finally, this line of R code presents a plot of the pdf:

x=seq(.1,50,.1); plot(dgamma(x,shape=5,scale=4)~x).

On this plot, the reader should locate the above probabilities and the mean and
median lifetimes of the battery.

The main reason for the appeal of the Γ-distribution in applications is the variety
of shapes of the distribution for different values of α and β. This is apparent in
Figure 3.3.1 which depicts six Γ-pdfs.4

Suppose X denotes the failure time of a device with pdf f(x) and cdf F (x). In
practice, the pdf of X is often unknown. If a large sample of failure times of these
devices is at hand then estimates of the pdf can be obtained as discussed in Chapter
4. Another function that helps in identifying the pdf of X is the hazard function
of X . Let x be in the support of X . Suppose the device has not failed at time x,
i.e., X > x. What is the probability that the device fails in the next instance? We
answer this question in terms of the rate of failure at x, which is:

r(x) = lim
Δ→0

P (x ≤ X < x + Δ |X ≥ x)

Δ
=

1

1− F (x)
lim
Δ→0

P (x ≤ X < x + Δ)

Δ

=
f(x)

1− F (x)
. (3.3.3)

The rate of failure at time x, r(x), is defined as the hazard function of X at x.

4The R function for these plots is newfigc3s3.1.R, at the site listed in the Preface.



176 Some Special Distributions

0 5 10 15

0.
00

0.
15

0.
30

x

f(x
)

α = .25

α = .5
α = 1

β = 4

0 5 10 15 20 25 30 35

0.
00

0.
06

0.
12

x

f(x
)

α = 4

β = 2
β = 3

β = 4

Figure 3.3.1: Several gamma densities

Note that the hazard function r(x) satisfies −(d/dx) log[1− F (x)]; that is,

1− F (x) = e−
R

r(x)dx+c, (3.3.4)

for a constant c. When the support of X is (0,∞), F (0) = 0 serves as a boundary
condition to solve for c. In practice, often the scientist can describe the hazard rate
and, hence, F (x) can be determined from expression (3.3.4). For example, suppose
the hazard rate of X is constant; i.e, r(x) = 1/β for some β > 0. Then

1− F (x) = e−
R

(1/β) dx+c = e−x/βec.

Since F (0) = 0, ec = 1. So the pdf of X is

f(x) =

{
1
β e−x/β x > 0

0 elsewhere.
(3.3.5)

Of course, this is a Γ(1, β) distribution, but it is also called the exponential dis-
tribution with parameter 1/β. An important property of this distribution is given
in Exercise 3.3.25.

Using R, hazard functions can be quickly plotted. Here is the code for an
overlay plot of the hazard functions of the exponential distribution with β = 8 and
the Γ(4, 2)-distribution.

x=seq(.1,15,.1); t=dgamma(x,shape=4,scale=2)

b=(1-pgamma(x,shape=4,scale=2));y1=t/b;plot(y1~x);abline(h=1/8)

Note that the hazard function of this Γ-distribution is an increasing function of
x; i.e., the rate of failure increases as time progresses. Other examples of hazard
functions are given in Exercise 3.3.26.
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One of the most important properties of the gamma distribution is its additive
property.

Theorem 3.3.1. Let X1, . . . , Xn be independent random variables. Suppose, for
i = 1, . . . , n, that Xi has a Γ(αi, β) distribution. Let Y =

∑n
i=1 Xi. Then Y has a

Γ(
∑n

i=1 αi, β) distribution.

Proof: Using the assumed independence and the mgf of a gamma distribution, we
have by Theorem 2.6.1 that for t < 1/β,

MY (t) =

n∏
i=1

(1 − βt)−αi = (1 − βt)−
Pn

i=1 αi ,

which is the mgf of a Γ(
∑n

i=1 αi, β) distribution.
Γ-distributions naturally occur in the Poisson process, also.

Remark 3.3.1 (Poisson Processes). For t > 0, let Xt denote the number of events
of interest that occur in the interval (0, t]. Assume Xt satisfies the three assumptions
of a Poisson process. Let k be a fixed positive integer and define the continuous
random variable Wk to be the waiting time until the kth event occurs. Then the
range of Wk is (0,∞). Note that for w > 0, Wk > w if and only if Xw ≤ k − 1.
Hence,

P (Wk > w) = P (Xw ≤ k − 1) =
k−1∑
x=0

P (Xw = x) =
k−1∑
x=0

(λw)xe−λw

x!
.

In Exercise 3.3.5, the reader is asked to prove that∫ ∞

λw

zk−1e−z

(k − 1)!
dz =

k−1∑
x=0

(λw)xe−λw

x!
.

Accepting this result, we have, for w > 0, that the cdf of Wk satisfies

FWk
(w) = 1−

∫ ∞

λw

zk−1e−z

Γ(k)
dz =

∫ λw

0

zk−1e−z

Γ(k)
dz,

and for w ≤ 0, FWk
(w) = 0. If we change the variable of integration in the integral

that defines FWk
(w) by writing z = λy, then

FWk
(w) =

∫ w

0

λkyk−1e−λy

Γ(k)
dy, w > 0,

and FWk
(w) = 0 for w ≤ 0. Accordingly, the pdf of Wk is

fWk
(w) = F ′

W (w) =

{
λkwk−1e−λw

Γ(k) 0 < w < ∞
0 elsewhere.
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That is, the waiting time until the kth event, Wk, has the gamma distribution with
α = k and β = 1/λ. Let T1 be the waiting time until the first event occurs, i.e.,
k = 1. Then the pdf of T1 is

fT1(w) =

{
λe−λw 0 < w <∞
0 elsewhere.

(3.3.6)

Hence, T1 has the Γ(1, 1/λ)-distribution. The mean of T1 = 1/λ, while the mean
of X1 is λ. Thus, we expect λ events to occur in a unit of time and we expect the
first event to occur at time 1/λ.

Continuing in this way, for i ≥ 1, let Ti denote the interarrival time of the ith
event; i.e., Ti is the time between the occurrence of event (i − 1) and event i. As
shown T1 has the Γ(1, 1/λ). Note that Axioms (1) and (2) of the Poisson process
only depend on λ and the length of the interval; in particular, they do not depend
on the endpoints of the interval. Further, occurrences in nonoverlapping intervals
are independent of one another. Hence, using the same reasoning as above, Tj,
j ≥ 2, also has the Γ(1, 1/λ)-distribution. Furthermore, T1, T2, T3, . . . are inde-
pendent. Note the waiting time until the kth event satisfies Wk = T1 + · · · + Tk.
Thus by Theorem 3.3.1, Wk has a Γ(k, 1/λ) distribution, confirming the derivation
above. Although this discussion has been intuitive, it can be made rigorous; see,
for example, Parzen (1962).

3.3.1 The χ2-Distribution

Let us now consider a special case of the gamma distribution in which α = r/2,
where r is a positive integer, and β = 2. A random variable X of the continuous
type that has the pdf

f(x) =

{ 1
Γ(r/2)2r/2 xr/2−1e−x/2 0 < x <∞
0 elsewhere,

(3.3.7)

and the mgf
M(t) = (1− 2t)−r/2, t < 1

2 ,

is said to have a chi-square distribution (χ2-distribution), and any f(x) of this
form is called a chi-square pdf. The mean and the variance of a chi-square dis-
tribution are μ = αβ = (r/2)2 = r and σ2 = αβ2 = (r/2)22 = 2r, respectively. We
call the parameter r the number of degrees of freedom of the chi-square distribution
(or of the chi-square pdf). Because the chi-square distribution has an important role
in statistics and occurs so frequently, we write, for brevity, that X is χ2(r) to mean
that the random variable X has a chi-square distribution with r degrees of freedom.
The R function pchisq(x,r) returns P (X ≤ x) and the command dchisq(x,r)

returns the value of the pdf of X at x when X has a chi-squared distribution with
r degrees of freedom.

Example 3.3.2. Suppose X has a χ2-distribution with 10 degrees of freedom. Then
the mean of X is 10 and its standard deviation is

√
20 = 4.47. Using R, its median

and quartiles are qchisq(c(.25,.5,.75),10)= (6.74, 9.34, 12.55). The following
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command plots the density function over the interval (0, 24):
x=seq(0,24,.1);plot(dchisq(x,10)~x).

Compute this line of code and locate the mean, quartiles, and median of X on the
plot.

Example 3.3.3. The quantiles of the χ2-distribution are frequently used in statis-
tics. Before the advent of modern computation, tables of these quantiles were com-
piled. Table I in Appendix D offers a typical χ2-table of the quantiles for the proba-
bilities 0.01, 0.025, 0.05, 0.1, 0.9, 0.95, 0.975, 0.99 and degrees of freedom 1, 2, . . . , 30.
As discussed, the R function qchisq easily computes these quantiles. Actually, the
following two lines of R code performs the computation of Table I.

rs=1:30; ps=c(.01,.025,.05,.1,.9,.95,.975,.99);

for(r in rs){print(c(r,round(qchisq(ps,r),digits=3)))}

Note that the code rounds the critical values to 3 places.

The following result is used several times in the sequel; hence, we record it as a
theorem.

Theorem 3.3.2. Let X have a χ2(r) distribution. If k > −r/2, then E(Xk) exists
and it is given by

E(Xk) =
2kΓ

(
r
2 + k

)
Γ
(

r
2

) , if k > −r/2. (3.3.8)

Proof: Note that

E(Xk) =

∫ ∞

0

1

Γ
(

r
2

)
2r/2

x(r/2)+k−1e−x/2 dx.

Make the change of variable u = x/2 in the above integral. This results in

E(Xk) =

∫ ∞

0

1

Γ
(

r
2

)
2(r/2)−1

2(r/2)+k−1u(r/2)+k−1e−u du.

This simplifies to the desired result provided that k > −(r/2).

Notice that if k is a nonnegative integer, then k > −(r/2) is always true. Hence,
all moments of a χ2 distribution exist and the kth moment is given by (3.3.8).

Example 3.3.4. Let X have a gamma distribution with α = r/2, where r is a
positive integer, and β > 0. Define the random variable Y = 2X/β. We seek the
pdf of Y . Now the mgf of Y is

MY (t) = E
(
etY

)
= E

[
e(2t/β)X

]
=

[
1− 2t

β
β

]−r/2

= [1− 2t]
−r/2

,

which is the mgf of a χ2-distribution with r degrees of freedom. That is, Y is χ2(r).
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Because the χ2-distributions are a subfamily of the Γ-distributions, the additiv-
ity property for Γ-distributions given by Theorem 3.3.1 holds for χ2-distributions,
also. Since we often make use of this property, we state it as a corollary for easy
reference.

Corollary 3.3.1. Let X1, . . . , Xn be independent random variables. Suppose, for
i = 1, . . . , n, that Xi has a χ2(ri) distribution. Let Y =

∑n
i=1 Xi. Then Y has a

χ2(
∑n

i=1 ri) distribution.

3.3.2 The β-Distribution

As we have discussed, in terms of modeling, the Γ-distributions offer a wide vari-
ety of shapes for skewed distributions with support (0,∞). In the exercises and
later chapters, we offer other such families of distributions. How about continuous
distributions whose support is a bounded interval in R? For example suppose the
support of X is (a, b) where −∞ < a < b < ∞ and a and b are known. Without loss
of generality, for discussion, we can assume that a = 0 and b = 1, since, if not, we
could consider the random variable Y = (X− a)/(b− a). In this section, we discuss
the β-distribution whose family offers a wide variety of shapes for distributions
with support on bounded intervals.

One way of defining the β-family of distributions is to derive it from a pair
of independent Γ random variables. Let X1 and X2 be two independent random
variables that have Γ distributions and the joint pdf

h(x1, x2) =
1

Γ(α)Γ(β)
xα−1

1 xβ−1
2 e−x1−x2 , 0 < x1 <∞, 0 < x2 < ∞,

zero elsewhere, where α > 0, β > 0. Let Y1 = X1 + X2 and Y2 = X1/(X1 + X2).
We next show that Y1 and Y2 are independent.

The space S is, exclusive of the points on the coordinate axes, the first quadrant
of the x1, x2-plane. Now

y1 = u1(x1, x2) = x1 + x2

y2 = u2(x1, x2) =
x1

x1 + x2

may be written x1 = y1y2, x2 = y1(1− y2), so

J =

∣∣∣∣ y2 y1

1− y2 −y1

∣∣∣∣ = −y1 
≡ 0.

The transformation is one-to-one, and it maps S onto T = {(y1, y2) : 0 < y1 <
∞, 0 < y2 < 1} in the y1y2-plane. The joint pdf of Y1 and Y2 on its support is

g(y1, y2) = (y1)
1

Γ(α)Γ(β)
(y1y2)

α−1[y1(1 − y2)]
β−1e−y1

=

{
yα−1
2 (1−y2)

β−1

Γ(α)Γ(β) yα+β−1
1 e−y1 0 < y1 <∞, 0 < y2 < 1

0 elsewhere.
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In accordance with Theorem 2.4.1 the random variables are independent. The
marginal pdf of Y2 is

g2(y2) =
yα−1
2 (1− y2)

β−1

Γ(α)Γ(β)

∫ ∞

0

yα+β−1
1 e−y1 dy1

=

{
Γ(α+β)
Γ(α)Γ(β)y

α−1
2 (1− y2)

β−1 0 < y2 < 1

0 elsewhere.
(3.3.9)

This pdf is that of the beta distribution with parameters α and β. Since g(y1, y2) ≡
g1(y1)g2(y2), it must be that the pdf of Y1 is

g1(y1) =

{
1

Γ(α+β)y
α+β−1
1 e−y1 0 < y1 < ∞

0 elsewhere,

which is that of a gamma distribution with parameter values of α + β and 1.
It is an easy exercise to show that the mean and the variance of Y2, which has

a beta distribution with parameters α and β, are, respectively,

μ =
α

α + β
, σ2 =

αβ

(α + β + 1)(α + β)2
.

The package R calculates probabilities for the beta distribution. If X has a beta
distribution with parameters α = a and β = b, then the command pbeta(x,a,b)

returns P (X ≤ x) and the command dbeta(x,a,b) returns the value of the pdf of
X at x.

Example 3.3.5 (Shapes of β-Distributions). The following 3 lines of R code5, will
obtain a 4× 4 page of plots of β pdfs for all combinations of integer values of α and
β between 2 and 5. Those distributions on the main diagonal of the page of plots
are symmetric, those below the main diagonal are left-skewed, and those above the
main diagonal are right-skewed.

par(mfrow=c(4,4));r1=2:5; r2=2:5;x=seq(.01,.99,.01)

for(a in r1){for(b in r2){plot(dbeta(x,a,b)~x);

title(paste("alpha = ",a,"beta = ",b))}}

Note that if α = β = 1, then the β-distribution is the uniform distribution with
support (0, 1).

We close this section with another example of a random variable whose distri-
bution is derived from a transformation of gamma random variables.

Example 3.3.6 (Dirichlet Distribution). Let X1, X2, . . . , Xk+1 be independent ran-
dom variables, each having a gamma distribution with β = 1. The joint pdf of these
variables may be written as

h(x1, x2, . . . , xk+1) =

{ ∏k+1
i=1

1
Γ(αi)

xαi−1
i e−xi 0 < xi < ∞

0 elsewhere.

5Download the R function betaplts at the site listed in the Preface.
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Let

Yi =
Xi

X1 + X2 + · · ·+ Xk+1
, i = 1, 2, . . . , k,

and Yk+1 = X1+X2+· · ·+Xk+1 denote k+1 new random variables. The associated
transformation maps A = {(x1, . . . , xk+1) : 0 < xi < ∞, i = 1, . . . , k + 1} onto the
space:

B = {(y1, . . . , yk, yk+1) : 0 < yi, i = 1, . . . , k, y1 + · · ·+ yk < 1, 0 < yk+1 < ∞}.

The single-valued inverse functions are x1 = y1yk+1, . . . , xk = ykyk+1, xk+1 =
yk+1(1− y1 − · · · − yk), so that the Jacobian is

J =

∣∣∣∣∣∣∣∣∣∣∣

yk+1 0 · · · 0 y1

0 yk+1 · · · 0 y2

...
...

...
...

0 0 · · · yk+1 yk

−yk+1 −yk+1 · · · −yk+1 (1− y1 − · · · − yk)

∣∣∣∣∣∣∣∣∣∣∣
= yk

k+1.

Hence the joint pdf of Y1, . . . , Yk, Yk+1 is given by

y
α1+···+αk+1−1
k+1 yα1−1

1 · · · yαk−1
k (1− y1 − · · · − yk)αk+1−1e−yk+1

Γ(α1) · · ·Γ(αk)Γ(αk+1)
,

provided that (y1, . . . , yk, yk+1) ∈ B and is equal to zero elsewhere. By integrating
out yk+1, the joint pdf of Y1, . . . , Yk is seen to be

g(y1, . . . , yk) =
Γ(α1 + · · ·+ αk+1)

Γ(α1) · · ·Γ(αk+1)
yα1−1
1 · · · yαk−1

k (1−y1−· · ·−yk)αk+1−1, (3.3.10)

when 0 < yi, i = 1, . . . , k, y1 + · · · + yk < 1, while the function g is equal to zero
elsewhere. Random variables Y1, . . . , Yk that have a joint pdf of this form are said to
have a Dirichlet pdf. It is seen, in the special case of k = 1, that the Dirichlet pdf
becomes a beta pdf. Moreover, it is also clear from the joint pdf of Y1, . . . , Yk, Yk+1

that Yk+1 has a gamma distribution with parameters α1+ · · ·+αk +αk+1 and β = 1
and that Yk+1 is independent of Y1, Y2, . . . , Yk.

EXERCISES

3.3.1. Suppose (1− 2t)−6, t < 1
2 is the mgf of the random variable X .

(a) Use R to compute P (X < 5.23).

(b) Find the mean μ and variance σ2 of X . Use R to compute P (|X − μ| < 2σ).

3.3.2. If X is χ2(5), determine the constants c and d so that P (c < X < d) = 0.95
and P (X < c) = 0.025.
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3.3.3. Suppose the lifetime in months of an engine, working under hazardous con-
ditions, has a Γ distribution with a mean of 10 months and a variance of 20 months
squared.

(a) Determine the median lifetime of an engine.

(b) Suppose such an engine is termed successful if its lifetime exceeds 15 months.
In a sample of 10 engines, determine the probability of at least 3 successful
engines.

3.3.4. Let X be a random variable such that E(Xm) = (m+1)!2m, m = 1, 2, 3, . . . .
Determine the mgf and the distribution of X .
Hint: Write out the Taylor series6 of the mgf.

3.3.5. Show that∫ ∞

μ

1

Γ(k)
zk−1e−z dz =

k−1∑
x=0

μxe−μ

x!
, k = 1, 2, 3, . . . .

This demonstrates the relationship between the cdfs of the gamma and Poisson
distributions.
Hint: Either integrate by parts k−1 times or obtain the“antiderivative”by showing
that

d

dz

⎡⎣−e−z
k−1∑
j=0

Γ(k)

(k − j − 1)!
zk−j−1

⎤⎦ = zk−1e−z.

3.3.6. Let X1, X2, and X3 be iid random variables, each with pdf f(x) = e−x,
0 < x <∞, zero elsewhere.

(a) Find the distribution of Y = minimum(X1, X2, X3).
Hint: P (Y ≤ y) = 1− P (Y > y) = 1− P (Xi > y, i = 1, 2, 3).

(b) Find the distribution of Y = maximum(X1, X2, X3).

3.3.7. Let X have a gamma distribution with pdf

f(x) =
1

β2
xe−x/β, 0 < x < ∞,

zero elsewhere. If x = 2 is the unique mode of the distribution, find the parameter
β and P (X < 9.49).

3.3.8. Compute the measures of skewness and kurtosis of a gamma distribution
that has parameters α and β.

3.3.9. Let X have a gamma distribution with parameters α and β. Show that
P (X ≥ 2αβ) ≤ (2/e)α.
Hint: Use the result of Exercise 1.10.5.

6See, for example, the discussion on Taylor series in Mathematical Comments referenced in the
Preface.
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3.3.10. Give a reasonable definition of a chi-square distribution with zero degrees
of freedom.
Hint: Work with the mgf of a distribution that is χ2(r) and let r = 0.

3.3.11. Using the computer, obtain plots of the pdfs of chi-squared distributions
with degrees of freedom r = 1, 2, 5, 10, 20. Comment on the plots.

3.3.12. Using the computer, plot the cdf of a Γ(5, 4) distribution and use it to guess
the median. Confirm it with a computer command that returns the median [In R,
use the command qgamma(.5,shape=5,scale=4)].

3.3.13. Using the computer, obtain plots of beta pdfs for α = 1, 5, 10 and β =
1, 2, 5, 10, 20.

3.3.14. In a warehouse of parts for a large mill, the average time between requests
for parts is about 10 minutes.

(a) Find the probability that in an hour there will be at least 10 requests for
parts.

(b) Find the probability that the 10th request in the morning requires at least 2
hours of waiting time.

3.3.15. Let X have a Poisson distribution with parameter m. If m is an experi-
mental value of a random variable having a gamma distribution with α = 2 and
β = 1, compute P (X = 0, 1, 2).
Hint: Find an expression that represents the joint distribution of X and m. Then
integrate out m to find the marginal distribution of X .

3.3.16. Let X have the uniform distribution with pdf f(x) = 1, 0 < x < 1, zero
elsewhere. Find the cdf of Y = −2 log X . What is the pdf of Y ?

3.3.17. Find the uniform distribution of the continuous type on the interval (b, c)
that has the same mean and the same variance as those of a chi-square distribution
with 8 degrees of freedom. That is, find b and c.

3.3.18. Find the mean and variance of the β distribution.
Hint: From the pdf, we know that∫ 1

0

yα−1(1− y)β−1 dy =
Γ(α)Γ(β)

Γ(α + β)

for all α > 0, β > 0.

3.3.19. Determine the constant c in each of the following so that each f(x) is a β
pdf:

(a) f(x) = cx(1− x)3, 0 < x < 1, zero elsewhere.

(b) f(x) = cx4(1 − x)5, 0 < x < 1, zero elsewhere.

(c) f(x) = cx2(1 − x)8, 0 < x < 1, zero elsewhere.
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3.3.20. Determine the constant c so that f(x) = cx(3 − x)4, 0 < x < 3, zero
elsewhere, is a pdf.

3.3.21. Show that the graph of the β pdf is symmetric about the vertical line
through x = 1

2 if α = β.

3.3.22. Show, for k = 1, 2, . . . , n, that∫ 1

p

n!

(k − 1)!(n− k)!
zk−1(1− z)n−k dz =

k−1∑
x=0

(
n

x

)
px(1− p)n−x.

This demonstrates the relationship between the cdfs of the β and binomial distri-
butions.

3.3.23. Let X1 and X2 be independent random variables. Let X1 and Y = X1+X2

have chi-square distributions with r1 and r degrees of freedom, respectively. Here
r1 < r. Show that X2 has a chi-square distribution with r − r1 degrees of freedom.
Hint: Write M(t) = E(et(X1+X2)) and make use of the independence of X1 and
X2.

3.3.24. Let X1, X2 be two independent random variables having gamma distribu-
tions with parameters α1 = 3, β1 = 3 and α2 = 5, β2 = 1, respectively.

(a) Find the mgf of Y = 2X1 + 6X2.

(b) What is the distribution of Y ?

3.3.25. Let X have an exponential distribution.

(a) For x > 0 and y > 0, show that

P (X > x + y |X > x) = P (X > y). (3.3.11)

Hence, the exponential distribution has the memoryless property. Recall
from Exercise 3.1.9 that the discrete geometric distribution has a similar prop-
erty.

(b) Let F (x) be the cdf of a continuous random variable Y . Assume that F (0) = 0
and 0 < F (y) < 1 for y > 0. Suppose property (3.3.11) holds for Y . Show
that FY (y) = 1− e−λy for y > 0.

Hint: Show that g(y) = 1− FY (y) satisfies the equation

g(y + z) = g(y)g(z),

3.3.26. Let X denote time until failure of a device and let r(x) denote the hazard
function of X .

(a) If r(x) = cxb; where c and b are positive constants, show that X has a Weibull
distribution; i.e.,

f(x) =

{
cxb exp

{
− cxb+1

b+1

}
0 < x < ∞

0 elsewhere.
(3.3.12)
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(b) If r(x) = cebx, where c and b are positive constants, show that X has a
Gompertz cdf given by

F (x) =

{
1− exp

{
c
b (1− ebx)

}
0 < x < ∞

0 elsewhere.
(3.3.13)

This is frequently used by actuaries as a distribution of the length of human
life.

(c) If r(x) = bx, linear hazard rate, show that the pdf of X is

f(x) =

{
bxe−bx2/2 0 < x <∞
0 elsewhere.

(3.3.14)

This pdf is called the Rayleigh pdf.

3.3.27. Write an R function that returns the value f(x) for a specified x when
f(x) is the Weibull pdf given in expression (3.3.12). Next write an R function that
returns the associated hazard function r(x). Obtain side-by-side plots of the pdf
and hazard function for the three cases: c = 5 and b = 0.5; c = 5 and b = 1.0; and
c = 5 and b = 1.5.

3.3.28. In Example 3.3.5, a page of plots of β pdfs was discussed. All of these pdfs
are mound shaped. Obtain a page of plots for all combinations of α and β drawn
from the set {.25, .75, 1, 1.25}. Comment on these shapes.

3.3.29. Let Y1, . . . , Yk have a Dirichlet distribution with parameters α1, . . . , αk, αk+1.

(a) Show that Y1 has a beta distribution with parameters α = α1 and β = α2 +
· · ·+ αk+1.

(b) Show that Y1 + · · · + Yr, r ≤ k, has a beta distribution with parameters
α = α1 + · · ·+ αr and β = αr+1 + · · ·+ αk+1.

(c) Show that Y1 + Y2, Y3 + Y4, Y5, . . . , Yk, k ≥ 5, have a Dirichlet distribution
with parameters α1 + α2, α3 + α4, α5, . . . , αk, αk+1.
Hint: Recall the definition of Yi in Example 3.3.6 and use the fact that the
sum of several independent gamma variables with β = 1 is a gamma variable.

3.4 The Normal Distribution

Motivation for the normal distribution is found in the Central Limit Theorem, which
is presented in Section 5.3. This theorem shows that normal distributions provide
an important family of distributions for applications and for statistical inference,
in general. We proceed by first introducing the standard normal distribution and
through it the general normal distribution.

Consider the integral

I =

∫ ∞

−∞

1√
2π

exp

(−z2

2

)
dz. (3.4.1)
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This integral exists because the integrand is a positive continuous function that is
bounded by an integrable function; that is,

0 < exp

(−z2

2

)
< exp(−|z|+ 1), −∞ < z <∞,

and ∫ ∞

−∞
exp(−|z|+ 1) dz = 2e.

To evaluate the integral I, we note that I > 0 and that I2 may be written

I2 =
1

2π

∫ ∞

−∞

∫ ∞

−∞
exp

(
−z2 + w2

2

)
dzdw.

This iterated integral can be evaluated by changing to polar coordinates. If we set
z = r cos θ and w = r sin θ, we have

I2 =
1

2π

∫ 2π

0

∫ ∞

0

e−r2/2r dr dθ

=
1

2π

∫ 2π

0

dθ = 1.

Because the integrand of display (3.4.1) is positive on R and integrates to 1 over
R, it is a pdf of a continuous random variable with support R. We denote this
random variable by Z. In summary, Z has the pdf

f(z) =
1√
2π

exp

(−z2

2

)
, −∞ < z < ∞. (3.4.2)

For t ∈ R, the mgf of Z can be derived by a completion of a square as follows:

E[exp{tZ}] =

∫ ∞

−∞
exp{tz} 1√

2π
exp

{
−1

2
z2

}
dz

= exp

{
1

2
t2
}∫ ∞

−∞

1√
2π

exp

{
−1

2
(z − t)2

}
dz

= exp

{
1

2
t2
}∫ ∞

−∞

1√
2π

exp

{
−1

2
w2

}
dw, (3.4.3)

where for the last integral we made the one-to-one change of variable w = z− t. By
the identity (3.4.2), the integral in expression (3.4.3) has value 1. Thus the mgf of
Z is

MZ(t) = exp

{
1

2
t2
}

, for −∞ < t <∞. (3.4.4)

The first two derivatives of MZ(t) are easily shown to be

M ′
Z(t) = t exp

{
1

2
t2
}

M ′′
Z(t) = exp

{
1

2
t2
}

+ t2 exp

{
1

2
t2
}

.
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Upon evaluating these derivatives at t = 0, the mean and variance of Z are

E(Z) = 0 and Var(Z) = 1. (3.4.5)

Next, define the continuous random variable X by

X = bZ + a,

for b > 0. This is a one-to-one transformation. To derive the pdf of X , note that
the inverse of the transformation and the Jacobian are z = b−1(x−a) and J = b−1,
respectively. Because b > 0, it follows from (3.4.2) that the pdf of X is

fX(x) =
1√
2πb

exp

{
−1

2

(
x− a

b

)2
}

, −∞ < x < ∞.

By (3.4.5), we immediately have E(X) = a and Var(X) = b2. Hence, in the
expression for the pdf of X , we can replace a by μ = E(X) and b2 by σ2 = Var(X).
We make this formal in the following:

Definition 3.4.1 (Normal Distribution). We say a random variable X has a nor-
mal distribution if its pdf is

f(x) =
1√
2πσ

exp

{
−1

2

(
x− μ

σ

)2
}

, for −∞ < x < ∞. (3.4.6)

The parameters μ and σ2 are the mean and variance of X, respectively. We often
write that X has a N(μ, σ2) distribution.

In this notation, the random variable Z with pdf (3.4.2) has a N(0, 1) distribution.
We call Z a standard normal random variable.

For the mgf of X , use the relationship X = σZ + μ and the mgf for Z, (3.4.4),
to obtain

E[exp{tX}] = E[exp{t(σZ + μ)}] = exp{μt}E[exp{tσZ}]

= exp{μt} exp

{
1

2
σ2t2

}
= exp

{
μt +

1

2
σ2t2

}
, (3.4.7)

for −∞ < t < ∞.
We summarize the above discussion, by noting the relationship between Z and

X :

X has a N(μ, σ2) distribution if and only if Z = X−μ
σ has a N(0, 1) distribution.

(3.4.8)
Let X have a N(μ, σ2) distribution. The graph of the pdf of X is seen in

Figure 3.4.1 to have the following characteristics: (1) symmetry about a vertical
axis through x = μ; (2) having its maximum of 1/(σ

√
2π) at x = μ; and (3) having

the x-axis as a horizontal asymptote. It should also be verified that (4) there are
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x

f(x)

2
1

 – 3  + 3 + 2 – 2  –  + 

Figure 3.4.1: The normal density f(x), (3.4.6).

points of inflection at x = μ ± σ; see Exercise 3.4.7. By the symmetry about μ, it
follows that the median of a normal distribution is equal to its mean.

If we want to determine P (X ≤ x), then the following integration is required:

P (X ≤ x) =

∫ x

−∞

1√
2πσ

e−(t−μ)2/(2σ2) dt.

From calculus we know that the integrand does not have an antiderivative; hence,
the integration must be carried out by numerical integration procedures. The R
software uses such a procedure for its function pnorm. If X has a N(μ, σ2) distribu-
tion, then the R call pnorm(x, μ, σ) computes P (X ≤ x), while q = qnorm(p, μ, σ)
gives the pth quantile of X ; i.e., q solves the equation P (X ≤ q) = p. We illustrate
this computation in the next example.

Example 3.4.1. Suppose the height in inches of an adult male is normally dis-
tributed with mean μ = 70 inches and standard deviation σ = 4 inches. As a
graph of the pdf of X use Figure 3.4.1 replacing μ by 70 and σ by 4. Suppose
we want to compute the probability that a man exceeds six feet (72 inches) in
height. Locate 72 on the figure. The desired probability is the area under the curve
over the interval (72,∞) which is computed in R by 1-pnorm(72,70,4) = 0.3085;
hence, 31% of males exceed six feet in height. The 95th percentile in height is
qnorm(0.95,70,4) = 76.6 inches. What percentage of males have heights within
one standard deviation of the mean? Answer: pnorm(74,70,4) - pnorm(66,70,4)

= 0.6827.

Before the age of modern computing tables of probabilities for normal distribu-
tions were formulated. Due to the fact (3.4.8), only tables for the standard normal
distribution are required. Let Z have the standard normal distribution. A graph of
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its pdf is displayed in Figure 3.4.2. Common notation for the cdf of Z is

P (Z ≤ z) = Φ(z) =dfn

∫ z

0

1√
2π

e−t2/2 dt, −∞ < z < ∞. (3.4.9)

Table II of Appendix D displays a table for Φ(z) for specified values of z > 0. To
compute Φ(−z), where z > 0, use the identity

Φ(−z) = 1− Φ(z). (3.4.10)

This identity follows because the pdf of Z is symmetric about 0. It is apparent in
Figure 3.4.2 and the reader is asked to show it in Exercise 3.4.1.

φ(z)

z
zp (0,0)

Φ(zp) = p

Figure 3.4.2: The standard normal density: p = Φ(zp) is the area under the curve
to the left of zp.

As an illustration of the use of Table II, suppose in Example 3.4.1 that we want
to determine the probability that the height of an adult male is between 67 and 71
inches. This is calculated as

P (67 < X < 71) = P (X < 71)− P (X < 67)

= P

(
X − 70

4
<

71− 70

4

)
− P

(
X − 70

4
<

67− 70

4

)
= P (Z < 0.25)− P (Z < −0.75) = Φ(0.25)− 1 + Φ(0.75)

= 0.5987− 1 + 0.7734 = 0.3721 (3.4.11)

= pnorm(71, 70, 4)− pnorm(67, 70, 4) = 0.372079. (3.4.12)

Expression (3.4.11) is the calculation by using Table II, while the last line is the cal-
culation by using the R function pnorm. More examples are offered in the exercises.
As a final note on Table II, it is generated by the R function:
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normtab <- function(){ za <- seq(0.00,3.59,.01);

pz <- t(matrix(round(pnorm(za),digits=4),nrow=10))

colnames(pz) <- seq(0,.09,.01)

rownames(pz) <- seq(0.0,3.5,.1); return(pz)}

The function normtab can be downloaded at the site mentioned in the Preface.

Example 3.4.2 (Empirical Rule). Let X be N(μ, σ2). Then, by Table II or R,

P (μ− 2σ < X < μ + 2σ) = Φ

(
μ + 2σ − μ

σ

)
− Φ

(
μ− 2σ − μ

σ

)
= Φ(2)− Φ(−2)

= 0.977− (1− 0.977) = 0.954.

Similarly, P (μ− σ < X < μ + σ) = 0.6827 and P (μ− 3σ < X < μ + 3σ) = 0.9973.
Sometimes these three intervals and their corresponding probabilities are referred
to as the empirical rule. Note that we can use Chebyshev’s Theorem (Theorem
1.10.3), to obtain lower bounds for these probabilities. While the empirical rule is
much more precise, it also requires the assumption of a normal distribution. On the
other hand, Chebyshev’s theorem requires only the assumption of a finite variance.

Example 3.4.3. Suppose that 10% of the probability for a certain distribution that
is N(μ, σ2) is below 60 and that 5% is above 90. What are the values of μ and σ?
We are given that the random variable X is N(μ, σ2) and that P (X ≤ 60) = 0.10
and P (X ≤ 90) = 0.95. Thus Φ[(60−μ)/σ] = 0.10 and Φ[(90−μ)/σ] = 0.95. From
Table II we have

60− μ

σ
= −1.28,

90− μ

σ
= 1.64.

These conditions require that μ = 73.1 and σ = 10.2 approximately.

Remark 3.4.1. In this chapter we have illustrated three types of parameters
associated with distributions. The mean μ of N(μ, σ2) is called a location param-
eter because changing its value simply changes the location of the middle of the
normal pdf; that is, the graph of the pdf looks exactly the same except for a shift
in location. The standard deviation σ of N(μ, σ2) is called a scale parameter
because changing its value changes the spread of the distribution. That is, a small
value of σ requires the graph of the normal pdf to be tall and narrow, while a large
value of σ requires it to spread out and not be so tall. No matter what the values
of μ and σ, however, the graph of the normal pdf is that familiar “bell shape.” In-
cidentally, the β of the gamma distribution is also a scale parameter. On the other
hand, the α of the gamma distribution is called a shape parameter, as changing
its value modifies the shape of the graph of the pdf, as can be seen by referring to
Figure 3.3.1. The parameters p and μ of the binomial and Poisson distributions,
respectively, are also shape parameters.

Continuing with the first part of Remark 3.4.1, if X is N(μ, σ2) then we say
that X follows the location model which we write as

X = μ + e, (3.4.13)
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where e is a random variable (often called random error) with a N(0, σ2) distribu-
tion. Conversely, it follows immediately that if X satisfies expression (3.4.13) with
e distributed N(0, σ2) then X has a N(μ, σ2) distribution.

We close this part of the section with three important results.

Example 3.4.4 (All the Moments of a Normal Distribution). Recall that in Ex-
ample 1.9.7, we derived all the moments of a standard normal random variable by
using its moment generating function. We can use this to obtain all the moments
of X , where X has a N(μ, σ2) distribution. From expression (3.4.13), we can write
X = σZ +μ, where Z has a N(0, 1) distribution. Hence, for all nonnegative integers
k a simple application of the binomial theorem yields

E(Xk) = E[(σZ + μ)k] =

k∑
j=0

(
k

j

)
σjE(Zj)μk−j . (3.4.14)

Recall from Example 1.9.7 that all the odd moments of Z are 0, while all the even
moments are given by expression (1.9.3). These can be substituted into expression
(3.4.14) to derive the moments of X .

Theorem 3.4.1. If the random variable X is N(μ, σ2), σ2 > 0, then the random
variable V = (X − μ)2/σ2 is χ2(1).

Proof. Because V = W 2, where W = (X − μ)/σ is N(0, 1), the cdf G(v) for V
is, for v ≥ 0,

G(v) = P (W 2 ≤ v) = P (−
√

v ≤ W ≤
√

v).

That is,

G(v) = 2

∫ √
v

0

1√
2π

e−w2/2 dw, 0 ≤ v,

and
G(v) = 0, v < 0.

If we change the variable of integration by writing w =
√

y, then

G(v) =

∫ v

0

1√
2π
√

y
e−y/2 dy, 0 ≤ v.

Hence the pdf g(v) = G′(v) of the continuous-type random variable V is

g(v) =

{
1√

π
√

2
v1/2−1e−v/2 0 < v <∞

0 elsewhere.

Since g(v) is a pdf ∫ ∞

0

g(v) dv = 1;

hence, it must be that Γ(1
2 ) =

√
π and thus V is χ2(1).

One of the most important properties of the normal distribution is its additivity
under independence.
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Theorem 3.4.2. Let X1, . . . , Xn be independent random variables such that, for
i = 1, . . . , n, Xi has a N(μi, σ

2
i ) distribution. Let Y =

∑n
i=1 aiXi, where a1, . . . , an

are constants. Then the distribution of Y is N(
∑n

i=1 aiμi,
∑n

i=1 a2
i σ

2
i ).

Proof: By Theorem 2.6.1, for t ∈ R, the mgf of Y is

MY (t) =

n∏
i=1

exp
{
taiμi + (1/2)t2a2

i σ
2
i

}
= exp

{
t

n∑
i=1

aiμi + (1/2)t2
n∑

i=1

a2
i σ

2
i

}
,

which is the mgf of a N(
∑n

i=1 aiμi,
∑n

i=1 a2
i σ

2
i ) distribution.

A simple corollary to this result gives the distribution of the sample mean X =
n−1

∑n
i=1 Xi when X1, X2, . . .Xn represents a random sample from a N(μ, σ2).

Corollary 3.4.1. Let X1, . . . , Xn be iid random variables with a common N(μ, σ2)
distribution. Let X = n−1

∑n
i=1 Xi. Then X has a N(μ, σ2/n) distribution.

To prove this corollary, simply take ai = (1/n), μi = μ, and σ2
i = σ2, for

i = 1, 2, . . . , n, in Theorem 3.4.2.

3.4.1 ∗Contaminated Normals

We next discuss a random variable whose distribution is a mixture of normals. As
with the normal, we begin with a standardized random variable.

Suppose we are observing a random variable that most of the time follows a
standard normal distribution but occasionally follows a normal distribution with
a larger variance. In applications, we might say that most of the data are “good”
but that there are occasional outliers. To make this precise let Z have a N(0, 1)
distribution; let I1−ε be a discrete random variable defined by

I1−ε =

{
1 with probability 1− ε
0 with probability ε,

and assume that Z and I1−ε are independent. Let W = ZI1−ε + σcZ(1 − I1−ε).
Then W is the random variable of interest.

The independence of Z and I1−ε imply that the cdf of W is

FW (w) = P [W ≤ w] = P [W ≤ w, I1−ε = 1] + P [W ≤ w, I1−ε = 0]

= P [W ≤ w|I1−ε = 1]P [I1−ε = 1]

+ P [W ≤ w|I1−ε = 0]P [I1−ε = 0]

= P [Z ≤ w](1 − ε) + P [Z ≤ w/σc]ε.

= Φ(w)(1 − ε) + Φ(w/σc)ε (3.4.15)

Therefore, we have shown that the distribution of W is a mixture of normals.
Further, because W = ZI1−ε + σcZ(1− I1−ε), we have

E(W ) = 0 and Var(W ) = 1 + ε(σ2
c − 1); (3.4.16)
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see Exercise 3.4.24. Upon differentiating (3.4.15), the pdf of W is

fW (w) = φ(w)(1 − ε) + φ(w/σc)
ε

σc
, (3.4.17)

where φ is the pdf of a standard normal.
Suppose, in general, that the random variable of interest is X = a + bW , where

b > 0. Based on (3.4.16), the mean and variance of X are

E(X) = a and Var(X) = b2(1 + ε(σ2
c − 1)). (3.4.18)

From expression (3.4.15), the cdf of X is

FX(x) = Φ

(
x− a

b

)
(1− ε) + Φ

(
x− a

bσc

)
ε, (3.4.19)

which is a mixture of normal cdfs.
Based on expression (3.4.19) it is easy to obtain probabilities for contami-

nated normal distributions using R. For example, suppose, as above, W has cdf
(3.4.15). Then P (W ≤ w) is obtained by the R command (1-eps)*pnorm(w) +

eps*pnorm(w/sigc), where eps and sigc denote ε and σc, respectively. Similarly,
the pdf of W at w is returned by (1-eps)*dnorm(w) + eps*dnorm(w/sigc)/sigc.
The functions pcn and dcn7 compute the cdf and pdf of the contaminated normal,
respectively. In Section 3.7, we explore mixture distributions in general.

EXERCISES

3.4.1. If

Φ(z) =

∫ z

−∞

1√
2π

e−w2/2 dw,

show that Φ(−z) = 1− Φ(z).

3.4.2. If X is N(75, 100), find P (X < 60) and P (70 < X < 100) by using either
Table II or the R command pnorm.

3.4.3. If X is N(μ, σ2), find b so that P [−b < (X − μ)/σ < b] = 0.90, by using
either Table II of Appendix D or the R command qnorm.

3.4.4. Let X be N(μ, σ2) so that P (X < 89) = 0.90 and P (X < 94) = 0.95. Find
μ and σ2.

3.4.5. Show that the constant c can be selected so that f(x) = c2−x2

, −∞ < x <
∞, satisfies the conditions of a normal pdf.
Hint: Write 2 = elog 2.

3.4.6. If X is N(μ, σ2), show that E(|X − μ|) = σ
√

2/π.

3.4.7. Show that the graph of a pdf N(μ, σ2) has points of inflection at x = μ− σ
and x = μ + σ.

7Downloadable at the site listed in the Preface.
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3.4.8. Evaluate
∫ 3

2
exp[−2(x− 3)2] dx.

3.4.9. Determine the 90th percentile of the distribution, which is N(65, 25).

3.4.10. If e3t+8t2 is the mgf of the random variable X , find P (−1 < X < 9).

3.4.11. Let the random variable X have the pdf

f(x) =
2√
2π

e−x2/2, 0 < x <∞, zero elsewhere.

(a) Find the mean and the variance of X .

(b) Find the cdf and hazard function of X .

Hint for (a): Compute E(X) directly and E(X2) by comparing the integral with
the integral representing the variance of a random variable that is N(0, 1).

3.4.12. Let X be N(5, 10). Find P [0.04 < (X − 5)2 < 38.4].

3.4.13. If X is N(1, 4), compute the probability P (1 < X2 < 9).

3.4.14. If X is N(75, 25), find the conditional probability that X is greater than
80 given that X is greater than 77. See Exercise 2.3.12.

3.4.15. Let X be a random variable such that E(X2m) = (2m)!/(2mm!), m =
1, 2, 3, . . . and E(X2m−1) = 0, m = 1, 2, 3, . . . . Find the mgf and the pdf of X .

3.4.16. Let the mutually independent random variables X1, X2, and X3 be N(0, 1),
N(2, 4), and N(−1, 1), respectively. Compute the probability that exactly two of
these three variables are less than zero.

3.4.17. Compute the measures of skewness and kurtosis of a distribution which
is N(μ, σ2). See Exercises 1.9.14 and 1.9.15 for the definitions of skewness and
kurtosis, respectively.

3.4.18. Let the random variable X have a distribution that is N(μ, σ2).

(a) Does the random variable Y = X2 also have a normal distribution?

(b) Would the random variable Y = aX + b, a and b nonzero constants have a
normal distribution?
Hint: In each case, first determine P (Y ≤ y).

3.4.19. Let the random variable X be N(μ, σ2). What would this distribution be
if σ2 = 0?
Hint: Look at the mgf of X for σ2 > 0 and investigate its limit as σ2→0.

3.4.20. Let Y have a truncated distribution with pdf g(y) = φ(y)/[Φ(b)−Φ(a)],
for a < y < b, zero elsewhere, where φ(x) and Φ(x) are, respectively, the pdf and
distribution function of a standard normal distribution. Show then that E(Y ) is
equal to [φ(a) − φ(b)]/[Φ(b)− Φ(a)].
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3.4.21. Let f(x) and F (x) be the pdf and the cdf, respectively, of a distribution of
the continuous type such that f ′(x) exists for all x. Let the mean of the truncated
distribution that has pdf g(y) = f(y)/F (b), −∞ < y < b, zero elsewhere, be
equal to −f(b)/F (b) for all real b. Prove that f(x) is a pdf of a standard normal
distribution.

3.4.22. Let X and Y be independent random variables, each with a distribution
that is N(0, 1). Let Z = X + Y . Find the integral that represents the cdf G(z) =
P (X + Y ≤ z) of Z. Determine the pdf of Z.
Hint: We have that G(z) =

∫ ∞
−∞ H(x, z) dx, where

H(x, z) =

∫ z−x

−∞

1

2π
exp[−(x2 + y2)/2] dy.

Find G′(z) by evaluating
∫∞
−∞[∂H(x, z)/∂z] dx.

3.4.23. Suppose X is a random variable with the pdf f(x) which is symmetric
about 0; i.e., f(−x) = f(x). Show that F (−x) = 1− F (x), for all x in the support
of X .

3.4.24. Derive the mean and variance of a contaminated normal random variable.
They are given in expression (3.4.16).

3.4.25. Investigate the probabilities of an “outlier” for a contaminated normal ran-
dom variable and a normal random variable. Specifically, determine the probability
of observing the event {|X | ≥ 2} for the following random variables (use the R
function pcn for the contaminated normals):

(a) X has a standard normal distribution.

(b) X has a contaminated normal distribution with cdf (3.4.15), where ε = 0.15
and σc = 10.

(c) X has a contaminated normal distribution with cdf (3.4.15), where ε = 0.15
and σc = 20.

(d) X has a contaminated normal distribution with cdf (3.4.15), where ε = 0.25
and σc = 20.

3.4.26. Plot the pdfs of the random variables defined in parts (a)–(d) of the last
exercise. Obtain an overlay plot of all four pdfs also. In R the domain values of the
pdfs can easily be obtained by using the seq command. For instance, the command
x<-seq(-6,6,.1) returns a vector of values between −6 and 6 in jumps of 0.1.
Then use the R function dcn for the contaminated normal pdfs.

3.4.27. Consider the family of pdfs indexed by the parameter α, −∞ < α < ∞,
given by

f(x; α) = 2φ(x)Φ(αx), −∞ < x < ∞, (3.4.20)

where φ(x) and Φ(x) are respectively the pdf and cdf of a standard normal distri-
bution.
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(a) Clearly f(x; α) > 0 fo all x. Show that the pdf integrates to 1 over (−∞,∞).
Hint: Start with ∫ ∞

−∞
f(x; α) dx = 2

∫ ∞

−∞
φ(x)

∫ αx

−∞
φ(t) dt.

Next sketch the region of integration and then combine the integrands and
use the polar coordinate transformation we used after expression (3.4.1).

(b) Note that f(x; α) is the N(0, 1) pdf for α = 0. The pdfs are left skewed for
α < 0 and right skewed for α > 0. Using R, verify this by plotting the pdfs
for α = −3,−2,−1, 1, 2, 3. Here’s the code for α = −3:
x=seq(-5,5,.01); alp =-3; y=2*dnorm(x)*pnorm(alp*x);plot(y~x)

This family is called the skewed normal family; see Azzalini (1985).

3.4.28. For Z distributed N(0, 1), it can be shown that

E[Φ(hZ + k)] = Φ[k/
√

1 + h2];

see Azzalini (1985). Use this fact to obtain the mgf of the pdf (3.4.20). Next obtain
the mean of this pdf.

3.4.29. Let X1 and X2 be independent with normal distributions N(6, 1) and
N(7, 1), respectively. Find P (X1 > X2).
Hint: Write P (X1 > X2) = P (X1 − X2 > 0) and determine the distribution of
X1 −X2.

3.4.30. Compute P (X1 + 2X2 − 2X3 > 7) if X1, X2, X3 are iid with common
distribution N(1, 4).

3.4.31. A certain job is completed in three steps in series. The means and standard
deviations for the steps are (in minutes)

Step Mean Standard Deviation

1 17 2

2 13 1

3 13 2

Assuming independent steps and normal distributions, compute the probability that
the job takes less than 40 minutes to complete.

3.4.32. Let X be N(0, 1). Use the moment generating function technique to show
that Y = X2 is χ2(1).

Hint: Evaluate the integral that represents E(etX2

) by writing w = x
√

1− 2t,
t < 1

2 .

3.4.33. Suppose X1, X2 are iid with a common standard normal distribution. Find
the joint pdf of Y1 = X2

1 + X2
2 and Y2 = X2 and the marginal pdf of Y1.

Hint: Note that the space of Y1 and Y2 is given by −√y1 < y2 <
√

y1, 0 < y1 < ∞.
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3.5 The Multivariate Normal Distribution

In this section we present the multivariate normal distribution. In the first part
of the section, we introduce the bivariate normal distribution, leaving most of the
proofs to the later section, Section 3.5.2.

3.5.1 Bivariate Normal Distribution

We say that (X, Y ) follows a bivariate normal distribution if its pdf is given by

f(x, y) =
1

2πσ1σ2

√
1− ρ2

e−q/2, −∞ < x < ∞, −∞ < y < ∞, (3.5.1)

where

q =
1

1− ρ2

[(
x− μ1

σ1

)2

− 2ρ

(
x− μ1

σ1

)(
y − μ2

σ2

)
+

(
y − μ2

σ2

)2
]

, (3.5.2)

and −∞ < μi < ∞, σi > 0, for i = 1, 2, and ρ satisfies ρ2 < 1. Clearly, this function
is positive everywhere in R2. As we show in Section 3.5.2, it is a pdf with the mgf
given by:

M(X,Y )(t1, t2) = exp

{
t1μ1 + t2μ2 +

1

2
(t21σ

2
1 + 2t1t2ρσ1σ2 + t22σ

2
2)

}
. (3.5.3)

Thus, the mgf of X is

MX(t1) = M(X,Y )(t1, 0) = exp

{
t1μ1 +

1

2
t21σ

2
1

}
;

hence, X has a N(μ1, σ
2
1) distribution. In the same way, Y has a N(μ2, σ

2
2) distri-

bution. Thus μ1 and μ2 are the respective means of X and Y and σ2
1 and σ2

2 are the
respective variances of X and Y . For the parameter ρ, Exercise 3.5.3 shows that

E(XY ) =
∂2M(X,Y )

∂t1∂t2
(0, 0) = ρσ1σ2 + μ1μ2. (3.5.4)

Hence, cov(X, Y ) = ρσ1σ2 and thus, as the notation suggests, ρ is the correlation
coefficient between X and Y . We know by Theorem 2.5.2 that if X and Y are
independent then ρ = 0. Further, from expression (3.5.3), if ρ = 0 then the joint
mgf of (X, Y ) factors into the product of the marginal mgfs and, hence, X and Y are
independent random variables. Thus if (X, Y ) has a bivariate normal distribution,
then X and Y are independent if and only if they are uncorrelated.

The bivariate normal pdf, (3.5.1), is mound shaped over R2 and peaks at its
mean (μ1, μ2); see Exercise 3.5.4. For a given c > 0, the points of equal probability
(or density) are given by {(x, y) : f(x, y) = c}. It follows with some algebra that
these sets are ellipses. In general for multivariate distributions, we call these sets
contours of the pdfs. Hence, the contours of bivariate normal distributions are
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elliptical. If X and Y are independent then these contours are circular. The in-
terested reader can consult a book on multivariate statistics for discussions on the
geometry of the ellipses. For example, if σ1 = σ2 and ρ > 0, the main axis of the
ellipse goes through the mean at a 45o angle; see Johnson and Wichern (2008) for
discussion.

Figure 3.5.1 displays a three-dimensional plot of the bivariate normal pdf with
(μ1, μ2) = (0, 0), σ1 = σ2 = 1, and ρ = 0.5. For location, the peak is at (μ1, μ2) =
(0, 0). The elliptical contours are apparent. Locate the main axis. For a region A
in the plane, P [(X, Y ) ∈ A] is the volume under the surface over A. In general such
probabilities are calculated by numerical integration methods.

x

y
z

Figure 3.5.1: A sketch of the surface of a bivariate normal distribution with mean
(0, 0), σ1 = σ2 = 1, and ρ = 0.5.

In the next section, we extend the discussion to the general multivariate case;
however, Remark 3.5.1, below, returns to the bivariate case and can be read with
minor knowledge of vector and matrices.

3.5.2 ∗Multivariate Normal Distribution, General Case

In this section we generalize the bivariate normal distribution to the n-dimensional
multivariate normal distribution. As with Section 3.4 on the normal distribution,
the derivation of the distribution is simplified by first discussing the standardized
variable case and then proceeding to the general case. Also, in this section, vector
and matrix notation are used.
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Consider the random vector Z = (Z1, . . . , Zn)′, where Z1, . . . , Zn are iid N(0, 1)
random variables. Then the density of Z is

fZ(z) =

n∏
i=1

1√
2π

exp

{
−1

2
z2

i

}
=

(
1

2π

)n/2

exp

{
−1

2

n∑
i=1

z2
i

}

=

(
1

2π

)n/2

exp

{
−1

2
z′z

}
, (3.5.5)

for z ∈ Rn. Because the Zis have mean 0, have variance 1, and are uncorrelated,
the mean and covariance matrix of Z are

E[Z] = 0 and Cov[Z] = In, (3.5.6)

where In denotes the identity matrix of order n. Recall that the mgf of Zi evaluated
at ti is exp{t2i /2}. Hence, because the Zis are independent, the mgf of Z is

MZ(t) = E [exp{t′Z}] = E

[
n∏

i=1

exp{tiZi}
]

=
n∏

i=1

E [exp{tiZi}]

= exp

{
1

2

n∑
i=1

t2i

}
= exp

{
1

2
t′t

}
, (3.5.7)

for all t ∈ Rn. We say that Z has a multivariate normal distribution with
mean vector 0 and covariance matrix In. We abbreviate this by saying that Z has
an Nn(0, In) distribution.

For the general case, suppose Σ is an n×n, symmetric, and positive semi-definite
matrix. Then from linear algebra, we can always decompose Σ as

Σ = Γ′ΛΓ, (3.5.8)

where Λ is the diagonal matrix Λ = diag(λ1, λ2, . . . , λn), λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0
are the eigenvalues of Σ, and the columns of Γ′, v1,v2, . . . ,vn, are the corresponding
eigenvectors. This decomposition is called the spectral decomposition of Σ. The
matrix Γ is orthogonal, i.e., Γ−1 = Γ′, and, hence, ΓΓ′ = I. As Exercise 3.5.19
shows, we can write the spectral decomposition in another way, as

Σ = Γ′ΛΓ =

n∑
i=1

λiviv
′
i. (3.5.9)

Because the λis are nonnegative, we can define the diagonal matrix Λ1/2 =
diag {

√
λ1, . . . ,

√
λn}. Then the orthogonality of Γ implies

Σ = [Γ′Λ1/2Γ][Γ′Λ1/2Γ].

We define the matrix product in brackets as the square root of the positive semi-
definite matrix Σ and write it as

Σ1/2 = Γ′Λ1/2Γ. (3.5.10)
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Note that Σ1/2 is symmetric and positive semi-definite. Suppose Σ is positive
definite; that is, all of its eigenvalues are strictly positive. Based on this, it is then
easy to show that (

Σ1/2
)−1

= Γ′Λ−1/2Γ; (3.5.11)

see Exercise 3.5.13. We write the left side of this equation as Σ−1/2. These matrices
enjoy many additional properties of the law of exponents for numbers; see, for
example, Arnold (1981). Here, though, all we need are the properties given above.

Suppose Z has a Nn(0, In) distribution. Let Σ be a positive semi-definite,
symmetric matrix and let μ be an n × 1 vector of constants. Define the random
vector X by

X = Σ1/2Z + μ. (3.5.12)

By (3.5.6) and Theorem 2.6.3, we immediately have

E[X] = μ and Cov[X] = Σ1/2Σ1/2 = Σ. (3.5.13)

Further, the mgf of X is given by

MX(t) = E [exp{t′X}] = E
[
exp{t′Σ1/2Z + t′μ}

]
= exp{t′μ}E

[
exp

{(
Σ1/2t

)′
Z

}]
= exp{t′μ} exp

{
(1/2)

(
Σ1/2t

)′
Σ1/2t

}
= exp{t′μ} exp{(1/2)t′Σt}. (3.5.14)

This leads to the following definition:

Definition 3.5.1 (Multivariate Normal). We say an n-dimensional random vector
X has a multivariate normal distribution if its mgf is

MX(t) = exp {t′μ + (1/2)t′Σt} , for all t ∈ Rn. (3.5.15)

where Σ is a symmetric, positive semi-definite matrix and μ ∈ Rn. We abbreviate
this by saying that X has a Nn(μ,Σ) distribution.

Note that our definition is for positive semi-definite matrices Σ. Usually Σ is
positive definite, in which case we can further obtain the density of X. If Σ is
positive definite, then so is Σ1/2 and, as discussed above, its inverse is given by
expression (3.5.11). Thus the transformation between X and Z, (3.5.12), is one-to-
one with the inverse transformation

Z = Σ−1/2(X− μ)

and the Jacobian |Σ−1/2| = |Σ|−1/2. Hence, upon simplification, the pdf of X is
given by

fX(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− μ)′Σ−1(x− μ)

}
, for x ∈ Rn. (3.5.16)
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In Section 3.5.1, we discussed the contours of the bivariate normal distribution.
We now extend that discussion to the general case, adding probabilities to the
contours. Let X have a Nn(μ,Σ) distribution. In the n-dimensional case, the
contours of constant probability for the pdf of X, (3.5.16), are the ellipsoids

(x− μ)′Σ−1(x− μ) = c2,

for c > 0. Define the random variable Y = (X − μ)′Σ−1(X − μ). Then using
expression (3.5.12), we have

Y = Z′Σ1/2Σ−1Σ1/2Z = Z′Z =

n∑
i=1

Z2
i .

Since Z1, . . . , Zn are iid N(0, 1), Y has χ2-distribution with n degrees of freedom.
Denote the cdf of Y by Fχ2

n
. Then we have

P [(X− μ)′Σ−1(X− μ) ≤ c2] = P (Y ≤ c2) = Fχ2
n
(c2). (3.5.17)

These probabilities are often used to label the contour plots; see Exercise 3.5.5. For
reference, we summarize the above proof in the following theorem. Note that this
theorem is a generalization of the univariate result given in Theorem 3.4.1.

Theorem 3.5.1. Suppose X has a Nn(μ,Σ) distribution, where Σ is positive defi-
nite. Then the random variable Y = (X−μ)′Σ−1(X−μ) has a χ2(n) distribution.

The following two theorems are very useful. The first says that a linear trans-
formation of a multivariate normal random vector has a multivariate normal distri-
bution.

Theorem 3.5.2. Suppose X has a Nn(μ,Σ) distribution. Let Y = AX+b, where
A is an m×n matrix and b ∈ Rm. Then Y has a Nm(Aμ+b,AΣA′) distribution.

Proof: From (3.5.15), for t ∈ Rm, the mgf of Y is

MY(t) = E [exp {t′Y}]
= E [exp {t′(AX + b)}]
= exp {t′b}E [exp {(A′t)′X}]
= exp {t′b} exp {(A′t)′μ + (1/2)(A′t)′Σ(A′t)}
= exp {t′(Aμ + b) + (1/2)t′AΣA′t} ,

which is the mgf of an Nm(Aμ + b,AΣA′) distribution.

A simple corollary to this theorem gives marginal distributions of a multivariate
normal random variable. Let X1 be any subvector of X, say of dimension m <
n. Because we can always rearrange means and correlations, there is no loss in
generality in writing X as

X =

[
X1

X2

]
, (3.5.18)
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where X2 is of dimension p = n − m. In the same way, partition the mean and
covariance matrix of X; that is,

μ =

[
μ1

μ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(3.5.19)

with the same dimensions as in expression (3.5.18). Note, for instance, that Σ11

is the covariance matrix of X1 and Σ12 contains all the covariances between the
components of X1 and X2. Now define A to be the matrix

A = [Im

...Omp],

where Omp is an m×p matrix of zeroes. Then X1 = AX. Hence, applying Theorem
3.5.2 to this transformation, along with some matrix algebra, we have the following
corollary:

Corollary 3.5.1. Suppose X has a Nn(μ,Σ) distribution, partitioned as in expres-
sions (3.5.18) and (3.5.19). Then X1 has a Nm(μ1,Σ11) distribution.

This is a useful result because it says that any marginal distribution of X is also
normal and, further, its mean and covariance matrix are those associated with that
partial vector.

Recall in Section 2.5, Theorem 2.5.2, that if two random variables are indepen-
dent then their covariance is 0. In general, the converse is not true. However, as
the following theorem shows, it is true for the multivariate normal distribution.

Theorem 3.5.3. Suppose X has a Nn(μ,Σ) distribution, partitioned as in the
expressions (3.5.18) and (3.5.19). Then X1 and X2 are independent if and only if
Σ12 = O.

Proof: First note that Σ21 = Σ′
12. The joint mgf of X1 and X2 is given by

MX1,X2(t1, t2) = exp

{
t′1μ1 + t′2μ2 +

1

2
(t′1Σ11t1 + t′2Σ22t2 + t′2Σ21t1 + t′1Σ12t2)

}
(3.5.20)

where t′ = (t′1, t
′
2) is partitioned the same as μ. By Corollary 3.5.1, X1 has a

Nm(μ1,Σ11) distribution and X2 has a Np(μ2,Σ22) distribution. Hence, the prod-
uct of their marginal mgfs is

MX1(t1)MX2(t2) = exp

{
t′1μ1 + t′2μ2 +

1

2
(t′1Σ11t1 + t′2Σ22t2)

}
. (3.5.21)

By (2.6.6) of Section 2.6, X1 and X2 are independent if and only if the expressions
(3.5.20) and (3.5.21) are the same. If Σ12 = O′ and, hence, Σ21 = O, then the
expressions are the same and X1 and X2 are independent. If X1 and X2 are
independent, then the covariances between their components are all 0; i.e., Σ12 = O′

and Σ21 = O.

Corollary 3.5.1 showed that the marginal distributions of a multivariate normal
are themselves normal. This is true for conditional distributions, too. As the
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following proof shows, we can combine the results of Theorems 3.5.2 and 3.5.3 to
obtain the following theorem.

Theorem 3.5.4. Suppose X has a Nn(μ,Σ) distribution, which is partitioned as
in expressions (3.5.18) and (3.5.19). Assume that Σ is positive definite. Then the
conditional distribution of X1 |X2 is

Nm(μ1 + Σ12Σ
−1
22 (X2 − μ2),Σ11 −Σ12Σ

−1
22 Σ21). (3.5.22)

Proof: Consider first the joint distribution of the random vector W = X1 −
Σ12Σ

−1
22 X2 and X2. This distribution is obtained from the transformation[

W
X2

]
=

[
Im −Σ12Σ

−1
22

O Ip

] [
X1

X2

]
.

Because this is a linear transformation, it follows from Theorem 3.5.2 that the joint
distribution is multivariate normal, with E[W] = μ1 − Σ12Σ

−1
22 μ2, E[X2] = μ2,

and covariance matrix[
Im −Σ12Σ

−1
22

O Ip

] [
Σ11 Σ12

Σ21 Σ22

] [
Im O′

−Σ−1
22 Σ21 Ip

]
=[

Σ11 −Σ12Σ
−1
22 Σ21 O′

O Σ22

]
.

Hence, by Theorem 3.5.3 the random vectors W and X2 are independent. Thus
the conditional distribution of W |X2 is the same as the marginal distribution of
W; that is,

W |X2 is Nm(μ1 −Σ12Σ
−1
22 μ2,Σ11 −Σ12Σ

−1
22 Σ21).

Further, because of this independence, W + Σ12Σ
−1
22 X2 given X2 is distributed as

Nm(μ1 −Σ12Σ
−1
22 μ2 + Σ12Σ

−1
22 X2,Σ11 −Σ12Σ

−1
22 Σ21), (3.5.23)

which is the desired result.

In the following remark, we return to the bivariate normal using the above
general notation.

Remark 3.5.1 (Continuation of the Bivariate Normal). Suppose (X, Y ) has a
N2(μ,Σ) distribution, where

μ =

[
μ1

μ2

]
and Σ =

[
σ2

1 σ12

σ12 σ2
2

]
. (3.5.24)

Substituting ρσ1σ2 for σ12 in Σ, it is easy to see that the determinant of Σ is
σ2

1σ2
2(1 − ρ2). Recall that ρ2 ≤ 1. For the remainder of this remark, assume that

ρ2 < 1. In this case, Σ is invertible (it is also positive definite). Further, since Σ is
a 2× 2 matrix, its inverse can easily be determined to be

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
. (3.5.25)
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This shows the equivalence of the bivariate normal pdf notation, (3.5.1), and the
general multivariate normal distribution with n = 2 pdf notation, (3.5.16).

To simplify the conditional normal distribution (3.5.22) for the bivariate case,
consider once more the bivariate normal distribution that was given in Section 3.5.1.
For this case, reversing the roles so that Y = X1 and X = X2, expression (3.5.22)
shows that the conditional distribution of Y given X = x is

N

[
μ2 + ρ

σ2

σ1
(x− μ1), σ

2
2(1 − ρ2)

]
. (3.5.26)

Thus, with a bivariate normal distribution, the conditional mean of Y , given that
X = x, is linear in x and is given by

E(Y |x) = μ2 + ρ
σ2

σ1
(x − μ1).

Although the mean of the conditional distribution of Y , given X = x, depends
upon x (unless ρ = 0), the variance σ2

2(1 − ρ2) is the same for all real values of x.
Thus, by way of example, given that X = x, the conditional probability that Y is
within (2.576)σ2

√
1− ρ2 units of the conditional mean is 0.99, whatever the value

of x may be. In this sense, most of the probability for the distribution of X and Y
lies in the band

μ2 + ρ
σ2

σ1
(x− μ1)± 2.576σ2

√
1− ρ2

about the graph of the linear conditional mean. For every fixed positive σ2, the
width of this band depends upon ρ. Because the band is narrow when ρ2 is nearly
1, we see that ρ does measure the intensity of the concentration of the probability
for X and Y about the linear conditional mean. We alluded to this fact in the
remark of Section 2.5.

In a similar manner we can show that the conditional distribution of X , given
Y = y, is the normal distribution

N

[
μ1 + ρ

σ1

σ2
(y − μ2), σ2

1(1− ρ2)

]
.

Example 3.5.1. Let us assume that in a certain population of married couples the
height X1 of the husband and the height X2 of the wife have a bivariate normal
distribution with parameters μ1 = 5.8 feet, μ2 = 5.3 feet, σ1 = σ2 = 0.2 foot, and
ρ = 0.6. The conditional pdf of X2, given X1 = 6.3, is normal, with mean 5.3 +
(0.6)(6.3−5.8) = 5.6 and standard deviation (0.2)

√
(1− 0.36) = 0.16. Accordingly,

given that the height of the husband is 6.3 feet, the probability that his wife has a
height between 5.28 and 5.92 feet is

P (5.28 < X2 < 5.92|X1 = 6.3) = Φ(2)− Φ(−2) = 0.954.

The interval (5.28, 5.92) could be thought of as a 95.4% prediction interval for the
wife’s height, given X1 = 6.3.
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3.5.3 ∗Applications

In this section, we consider several applications of the multivariate normal distri-
bution. These the reader may have already encountered in an applied course in
statistics. The first is principal components, which results in a linear function of a
multivariate normal random vector that has independent components and preserves
the “total” variation in the problem.

Let the random vector X have the multivariate normal distribution Nn(μ,Σ)
where Σ is positive definite. As in (3.5.8), write the spectral decomposition of Σ
as Σ = Γ′ΛΓ. Recall that the columns, v1,v2, . . . ,vn, of Γ′ are the eigenvectors
corresponding to the eigenvalues λ1, λ2, . . . , λn that form the main diagonal of the
matrix Λ. Assume without loss of generality that the eigenvalues are decreasing;
i.e., λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Define the random vector Y = Γ(X − μ). Since
ΓΣΓ′ = Λ, by Theorem 3.5.2 Y has a Nn(0,Λ) distribution. Hence the components
Y1, Y2, . . . , Yn are independent random variables and, for i = 1, 2, . . . , n, Yi has
a N(0, λi) distribution. The random vector Y is called the vector of principal
components.

We say the total variation, (TV), of a random vector is the sum of the variances
of its components. For the random vector X, because Γ is an orthogonal matrix

TV(X) =

n∑
i=1

σ2
i = trΣ = trΓ′ΛΓ = trΛΓΓ′ =

n∑
i=1

λi = TV(Y).

Hence, X and Y have the same total variation.
Next, consider the first component of Y, which is given by Y1 = v′

1(X − μ).
This is a linear combination of the components of X−μ with the property ‖v1‖2 =∑n

j=1 v2
1j = 1, because Γ′ is orthogonal. Consider any other linear combination of

(X−μ), say a′(X−μ) such that ‖a‖2 = 1. Because a ∈ Rn and {v1, . . . ,vn} forms
a basis for Rn, we must have a =

∑n
j=1 ajvj for some set of scalars a1, . . . , an.

Furthermore, because the basis {v1, . . . ,vn} is orthonormal

a′vi =

⎛⎝ n∑
j=1

ajvj

⎞⎠′

vi =

n∑
j=1

ajv
′
jvi = ai.

Using (3.5.9) and the fact that λi > 0, we have the inequality

Var(a′X) = a′Σa

=

n∑
i=1

λi(a
′vi)

2

=

n∑
i=1

λia
2
i ≤ λ1

n∑
i=1

a2
i = λ1 = Var(Y1). (3.5.27)

Hence, Y1 has the maximum variance of any linear combination a′(X − μ), such
that ‖a‖ = 1. For this reason, Y1 is called the first principal component of X.
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What about the other components, Y2, . . . , Yn? As the following theorem shows,
they share a similar property relative to the order of their associated eigenvalue.
For this reason, they are called the second, third, through the nth principal
components, respectively.

Theorem 3.5.5. Consider the situation described above. For j = 2, . . . , n and
i = 1, 2, . . . , j − 1, Var[a′X] ≤ λj = Var(Yj), for all vectors a such that a ⊥ vi and
‖a‖ = 1.

The proof of this theorem is similar to that for the first principal component
and is left as Exercise 3.5.20. A second application concerning linear regression is
offered in Exercise 3.5.22.

EXERCISES

3.5.1. Let X and Y have a bivariate normal distribution with respective parameters
μx = 2.8, μy = 110, σ2

x = 0.16, σ2
y = 100, and ρ = 0.6. Using R, compute:

(a) P (106 < Y < 124).

(b) P (106 < Y < 124|X = 3.2).

3.5.2. Let X and Y have a bivariate normal distribution with parameters μ1 =
3, μ2 = 1, σ2

1 = 16, σ2
2 = 25, and ρ = 3

5 . Using R, determine the following
probabilities:

(a) P (3 < Y < 8).

(b) P (3 < Y < 8|X = 7).

(c) P (−3 < X < 3).

(d) P (−3 < X < 3|Y = −4).

3.5.3. Show that expression (3.5.4) is true.

3.5.4. Let f(x, y) be the bivariate normal pdf in expression (3.5.1).

(a) Show that f(x, y) has an unique maximum at (μ1, μ2).

(b) For a given c > 0, show that the points {(x, y) : f(x, y) = c} of equal proba-
bility form an ellipse.

3.5.5. Let X be N2(μ,Σ). Recall expression (3.5.17) which gives the probability of
an elliptical contour region for X. The R function8 ellipmake plots the elliptical
contour regions. To graph the elliptical 95% contour for a multivariate normal
distribution with μ = (5, 2)′ and Σ with variances 1 and covariance 0.75, use the
code

8Part of this code was obtained from an annonymous author at the site
http://stats.stackexchange.com/questions/9898/

http://stats.stackexchange.com/questions/9898/
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ellipmake(p=.95,b=matrix(c(1,.75,.75,1),nrow=2),mu=c(5,2)).

This R function can be found at the site listed in the Preface.

(a) Run the above code.

(b) Change the code so the probability is 0.50.

(c) Change the code to obtain an overlay plot of the 0.50 and 0.95 regions.

(d) Using a loop, obtain the overlay plot for a vector of probabilities.

3.5.6. Let U and V be independent random variables, each having a standard
normal distribution. Show that the mgf E(et(UV )) of the random variable UV is
(1− t2)−1/2, −1 < t < 1.
Hint: Compare E(etUV ) with the integral of a bivariate normal pdf that has means
equal to zero.

3.5.7. Let X and Y have a bivariate normal distribution with parameters μ1 =
5, μ2 = 10, σ2

1 = 1, σ2
2 = 25, and ρ > 0. If P (4 < Y < 16|X = 5) = 0.954,

determine ρ.

3.5.8. Let X and Y have a bivariate normal distribution with parameters μ1 =
20, μ2 = 40, σ2

1 = 9, σ2
2 = 4, and ρ = 0.6. Find the shortest interval for which 0.90

is the conditional probability that Y is in the interval, given that X = 22.

3.5.9. Say the correlation coefficient between the heights of husbands and wives is
0.70 and the mean male height is 5 feet 10 inches with standard deviation 2 inches,
and the mean female height is 5 feet 4 inches with standard deviation 1 1

2 inches.
Assuming a bivariate normal distribution, what is the best guess of the height of
a woman whose husband’s height is 6 feet? Find a 95% prediction interval for her
height.

3.5.10. Let

f(x, y) = (1/2π) exp

[
−1

2
(x2 + y2)

]{
1 + xy exp

[
−1

2
(x2 + y2 − 2)

]}
,

where −∞ < x < ∞, −∞ < y < ∞. If f(x, y) is a joint pdf, it is not a normal
bivariate pdf. Show that f(x, y) actually is a joint pdf and that each marginal pdf
is normal. Thus the fact that each marginal pdf is normal does not imply that the
joint pdf is bivariate normal.

3.5.11. Let X, Y , and Z have the joint pdf(
1

2π

)3/2

exp

(
−x2 + y2 + z2

2

)[
1 + xyz exp

(
−x2 + y2 + z2

2

)]
,

where −∞ < x < ∞, −∞ < y < ∞, and −∞ < z < ∞. While X, Y , and Z are
obviously dependent, show that X, Y , and Z are pairwise independent and that
each pair has a bivariate normal distribution.
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3.5.12. Let X and Y have a bivariate normal distribution with parameters μ1 =
μ2 = 0, σ2

1 = σ2
2 = 1, and correlation coefficient ρ. Find the distribution of the

random variable Z = aX + bY in which a and b are nonzero constants.

3.5.13. Establish formula (3.5.11) by a direct multiplication.

3.5.14. Let X = (X1, X2, X3) have a multivariate normal distribution with mean
vector 0 and variance-covariance matrix

Σ =

⎡⎣ 1 0 0
0 2 1
0 1 2

⎤⎦ .

Find P (X1 > X2 + X3 + 2).
Hint: Find the vector a so that aX = X1 − X2 − X3 and make use of Theorem
3.5.2.

3.5.15. Suppose X is distributed Nn(μ,Σ). Let X = n−1
∑n

i=1 Xi.

(a) Write X as aX for an appropriate vector a and apply Theorem 3.5.2 to find
the distribution of X.

(b) Determine the distribution of X if all of its component random variables Xi

have the same mean μ.

3.5.16. Suppose X is distributed N2(μ,Σ). Determine the distribution of the
random vector (X1+X2, X1−X2). Show that X1+X2 and X1−X2 are independent
if Var(X1) = Var(X2).

3.5.17. Suppose X is distributed N3(0,Σ), where

Σ =

⎡⎣ 3 2 1
2 2 1
1 1 3

⎤⎦ .

Find P ((X1 − 2X2 + X3)
2 > 15.36).

3.5.18. Let X1, X2, X3 be iid random variables each having a standard normal
distribution. Let the random variables Y1, Y2, Y3 be defined by

X1 = Y1 cosY2 sinY3, X2 = Y1 sin Y2 sin Y3, X3 = Y1 cosY3,

where 0 ≤ Y1 < ∞, 0 ≤ Y2 < 2π, 0 ≤ Y3 ≤ π. Show that Y1, Y2, Y3 are mutually
independent.

3.5.19. Show that expression (3.5.9) is true.

3.5.20. Prove Theorem 3.5.5.

3.5.21. Suppose X has a multivariate normal distribution with mean 0 and covari-
ance matrix

Σ =

⎡⎢⎢⎣
283 215 277 208
215 213 217 153
277 217 336 236
208 153 236 194

⎤⎥⎥⎦ .
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(a) Find the total variation of X.

(b) Find the principal component vector Y.

(c) Show that the first principal component accounts for 90% of the total varia-
tion.

(d) Show that the first principal component Y1 is essentially a rescaled X . Deter-
mine the variance of (1/2)X and compare it to that of Y1.

Note that the R command eigen(amat) obtains the spectral decomposition of the
matrix amat.

3.5.22. Readers may have encountered the multiple regression model in a previous
course in statistics. We can briefly write it as follows. Suppose we have a vector
of n observations Y which has the distribution Nn(Xβ, σ2I), where X is an n× p
matrix of known values, which has full column rank p, and β is a p × 1 vector of
unknown parameters. The least squares estimator of β is

β̂ = (X′X)−1X′Y.

(a) Determine the distribution of β̂.

(b) Let Ŷ = Xβ̂. Determine the distribution of Ŷ.

(c) Let ê = Y − Ŷ. Determine the distribution of ê.

(d) By writing the random vector (Ŷ′, ê′)′ as a linear function of Y, show that

the random vectors Ŷ and ê are independent.

(e) Show that β̂ solves the least squares problem; that is,

‖Y −Xβ̂‖2 = min
b∈Rp

‖Y −Xb‖2.

3.6 t- and F -Distributions

It is the purpose of this section to define two additional distributions that are quite
useful in certain problems of statistical inference. These are called, respectively, the
(Student’s) t-distribution and the F -distribution.

3.6.1 The t-distribution

Let W denote a random variable that is N(0, 1); let V denote a random variable
that is χ2(r); and let W and V be independent. Then the joint pdf of W and V ,
say h(w, v), is the product of the pdf of W and that of V or

h(w, v) =

{
1√
2π

e−w2/2 1
Γ(r/2)2r/2 vr/2−1e−v/2 −∞ < w <∞, 0 < v < ∞

0 elsewhere.
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Define a new random variable T by writing

T =
W√
V/r

. (3.6.1)

The transformation technique is used to obtain the pdf g1(t) of T . The equations

t =
w√
v/r

and u = v

define a transformation that maps S = {(w, v) : −∞ < w < ∞, 0 < v < ∞}
one-to-one and onto T = {(t, u) : −∞ < t < ∞, 0 < u < ∞}. Since w =
t
√

u/
√

r, v = u, the absolute value of the Jacobian of the transformation is |J | =√
u/
√

r. Accordingly, the joint pdf of T and U = V is given by

g(t, u) = h

(
t
√

u√
r

, u

)
|J |

=

{
1√

2πΓ(r/2)2r/2
ur/2−1 exp

[
−u

2

(
1 + t2

r

)] √
u√
r

|t| < ∞ , 0 < u < ∞
0 elsewhere.

The marginal pdf of T is then

g1(t) =

∫ ∞

−∞
g(t, u) du

=

∫ ∞

0

1√
2πrΓ(r/2)2r/2

u(r+1)/2−1 exp

[
−u

2

(
1 +

t2

r

)]
du.

In this integral let z = u[1 + (t2/r)]/2, and it is seen that

g1(t) =

∫ ∞

0

1√
2πrΓ(r/2)2r/2

(
2z

1 + t2/r

)(r+1)/2−1

e−z

(
2

1 + t2/r

)
dz

=
Γ[(r + 1)/2]√

πrΓ(r/2)

1

(1 + t2/r)(r+1)/2
, −∞ < t < ∞ . (3.6.2)

Thus, if W is N(0, 1), V is χ2(r), and W and V are independent, then T = W/
√

V/r
has the pdf g1(t), (3.6.2). The distribution of the random variable T is usually
called a t-distribution. It should be observed that a t-distribution is completely
determined by the parameter r, the number of degrees of freedom of the random
variable that has the chi-square distribution.

The pdf g1(t) satisfies g1(−t) = g1(t); hence, the pdf of T is symmetric about 0.
Thus, the median of T is 0. Upon differentiating g1(t), it follows that the unique
maximum of the pdf occurs at 0 and that the derivative is continuous. So, the pdf is
mound shaped. As the degrees of freedom approach∞, the t-distribution converges
to the N(0, 1) distribution; see Example 5.2.3 of Chapter 5.

The R command pt(t,r) computes the probability P (T ≤ t) when T has a
t-distribution with r degrees of freedom. For instance, the probability that a t-
distributed random variable with 15 degrees of freedom is less than 2.0 is computed
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as pt(2.0,15), while the command qt(.975,15) returns the 97.5th percentile of
this distribution. The R code t=seq(-4,4,.01) followed by plot(dt(t,3)~t)

yields a plot of the t-pdf with 3 degrees of freedom.
Before the age of modern computing, tables of the distribution of T were used.

Because the pdf of T does depend on its degrees of freedom r, the usual t-table
gives selected quantiles versus degrees of freedom. Table III in Appendix D is such
a table. The following three lines of R code, however, produce this table.

ps = c(.9,.925,.950,.975,.99,.995,.999); df = 1:30; tab=c()

for(r in df){tab=rbind(tab,qt(ps,r))}; df=c(df,Inf);nq=qnorm(ps)

tab=rbind(tab,nq);tab=cbind(df,tab)

This code is the body of the R function ttable found at the site listed in the
Preface. Due to the fact that t-distribution converges to the N(0, 1) distribution,
only the degrees of freedom from 1 to 30 are used in such tables. This is, also, the
reason that the last line in the table are the standard normal quantiles.

Remark 3.6.1. The t-distribution was first discovered by W. S. Gosset when he
was working for an Irish brewery. Gosset published under the pseudonym Student.
Thus this distribution is often known as Student’s t-distribution.

Example 3.6.1 (Mean and Variance of the t-Distribution). Let the random variable
T have a t-distribution with r degrees of freedom. Then, as in (3.6.1), we can write
T = W (V/r)−1/2, where W has a N(0, 1) distribution, V has a χ2(r) distribution,
and W and V are independent random variables. Independence of W and V and
expression (3.3.8), provided (r/2)− (k/2) > 0 (i.e., k < r), implies the following:

E(T k) = E

[
W k

(
V

r

)−k/2
]

= E(W k)E

[(
V

r

)−k/2
]

(3.6.3)

= E(W k)
2−k/2Γ

(
r
2 − k

2

)
Γ
(

r
2

)
r−k/2

if k < r. (3.6.4)

Because E(W ) = 0, the mean of T is 0, as long as the degrees of freedom of T exceed
1. For the variance, use k = 2 in expression (3.6.4). In this case the condition r > k
becomes r > 2. Since E(W 2) = 1, by expression (3.6.4), the variance of T is given
by

Var(T ) = E(T 2) =
r

r − 2
. (3.6.5)

Therefore, a t-distribution with r > 2 degrees of freedom has a mean of 0 and a
variance of r/(r − 2).

3.6.2 The F -distribution

Next consider two independent chi-square random variables U and V having r1 and
r2 degrees of freedom, respectively. The joint pdf h(u, v) of U and V is then

h(u, v) =

{
1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2 ur1/2−1vr2/2−1e−(u+v)/2 0 < u, v < ∞
0 elsewhere.
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We define the new random variable

W =
U/r1

V/r2

and we propose finding the pdf g1(w) of W . The equations

w =
u/r1

v/r2
, z = v,

define a one-to-one transformation that maps the set S = {(u, v) : 0 < u < ∞, 0 <
v < ∞} onto the set T = {(w, z) : 0 < w < ∞, 0 < z < ∞}. Since u =
(r1/r2)zw, v = z, the absolute value of the Jacobian of the transformation is
|J | = (r1/r2)z. The joint pdf g(w, z) of the random variables W and Z = V is then

g(w, z) =
1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2

(
r1zw

r2

) r1−2

2

z
r2−2

2 exp

[
−z

2

(
r1w

r2
+ 1

)]
r1z

r2
,

provided that (w, z) ∈ T , and zero elsewhere. The marginal pdf g1(w) of W is then

g1(w) =

∫ ∞

−∞
g(w, z) dz

=

∫ ∞

0

(r1/r2)
r1/2(w)r1/2−1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2
z(r1+r2)/2−1 exp

[
−z

2

(
r1w

r2
+ 1

)]
dz.

If we change the variable of integration by writing

y =
z

2

(
r1w

r2
+ 1

)
,

it can be seen that

g1(w) =

∫ ∞

0

(r1/r2)
r1/2(w)r1/2−1

Γ(r1/2)Γ(r2/2)2(r1+r2)/2

(
2y

r1w/r2 + 1

)(r1+r2)/2−1

e−y

×
(

2

r1w/r2 + 1

)
dy

=

{
Γ[(r1+r2)/2](r1/r2)

r1/2

Γ(r1/2)Γ(r2/2)
wr1/2−1

(1+r1w/r2)(r1+r2)/2 0 < w < ∞
0 elsewhere.

(3.6.6)

Accordingly, if U and V are independent chi-square variables with r1 and r2

degrees of freedom, respectively, then W = (U/r1)/(V/r2) has the pdf g1(w), (3.6.6).
The distribution of this random variable is usually called an F -distribution; and
we often call the ratio, which we have denoted by W, F . That is,

F =
U/r1

V/r2
. (3.6.7)

It should be observed that an F -distribution is completely determined by the two
parameters r1 and r2.
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In terms of R computation, the command pf(2.50,3,8) computes to the value
0.8665 which is the probability P (F ≤ 2.50) when F has the F -distribution with 3
and 8 degrees of freedom. The 95th percentile of F is qf(.95,3,8) = 4.066 and
the code x=seq(.01,5,.01);plot(df(x,3,8)~x) draws a plot of the pdf of this
F random variable. Note that the pdf is right-skewed. Before the age of modern
computation, tables of the quantiles of F -distributions for selected probabilities
and degrees of freedom were used. Table IV in Appendix D displays the 95th and
99th quantiles for selected degrees of freedom. Besides its use in statistics, the
F -distribution is used to model lifetime data; see Exercise 3.6.13.

Example 3.6.2 (Moments of F -Distributions). Let F have an F -distribution with
r1 and r2 degrees of freedom. Then, as in expression (3.6.7), we can write F =
(r2/r1)(U/V ), where U and V are independent χ2 random variables with r1 and r2

degrees of freedom, respectively. Hence, for the kth moment of F , by independence
we have

E
(
F k

)
=

(
r2

r1

)k

E
(
Uk

)
E

(
V −k

)
,

provided, of course, that both expectations on the right side exist. By Theorem
3.3.2, because k > −(r1/2) is always true, the first expectation always exists. The
second expectation, however, exists if r2 > 2k; i.e., the denominator degrees of
freedom must exceed twice k. Assuming this is true, it follows from (3.3.8) that the
mean of F is given by

E(F ) =
r2

r1
r1

2−1Γ
(

r2

2 − 1
)

Γ
(

r2

2

) =
r2

r2 − 2
. (3.6.8)

If r2 is large, then E(F ) is about 1. In Exercise 3.6.7, a general expression for
E(F k) is derived.

3.6.3 Student’s Theorem

Our final note in this section concerns an important result for the later chapters on
inference for normal random variables. It is a corollary to the t-distribution derived
above and is often referred to as Student’s Theorem.

Theorem 3.6.1. Let X1, . . . , Xn be iid random variables each having a normal
distribution with mean μ and variance σ2. Define the random variables

X = 1
n

∑n
i=1 Xi and S2 = 1

n−1

∑n
i=1(Xi −X)2.

Then

(a) X has a N
(
μ, σ2

n

)
distribution.

(b) X and S2 are independent.

(c) (n− 1)S2/σ2 has a χ2(n− 1) distribution.
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(d) The random variable

T =
X − μ

S/
√

n
(3.6.9)

has a Student t-distribution with n− 1 degrees of freedom.

Proof: Note that we have proved part (a) in Corollary 3.4.1. Let X = (X1, . . . , Xn)′.
Because X1, . . . , Xn are iid N(μ, σ2) random variables, X has a multivariate normal
distribution N(μ1, σ2I), where 1 denotes a vector whose components are all 1. Let
v′ = (1/n, . . . , 1/n) = (1/n)1′. Note that X = v′X. Define the random vector Y
by Y = (X1 −X, . . . , Xn −X)′. Consider the following transformation:

W =

[
X
Y

]
=

[
v′

I− 1v′

]
X. (3.6.10)

Because W is a linear transformation of multivariate normal random vector, by
Theorem 3.5.2 it has a multivariate normal distribution with mean

E [W] =

[
v′

I− 1v′

]
μ1 =

[
μ
0n

]
, (3.6.11)

where 0n denotes a vector whose components are all 0, and covariance matrix

Σ =

[
v′

I− 1v′

]
σ2I

[
v′

I− 1v′

]′
= σ2

[
1
n 0′

n

0n I− 1v′

]
. (3.6.12)

Because X is the first component of W, we can also obtain part (a) by Theo-
rem 3.5.1. Next, because the covariances are 0, X is independent of Y. But
S2 = (n− 1)−1Y′Y. Hence, X is independent of S2, also. Thus part (b) is true.

Consider the random variable

V =

n∑
i=1

(
Xi − μ

σ

)2

.

Each term in this sum is the square of a N(0, 1) random variable and, hence, has
a χ2(1) distribution (Theorem 3.4.1). Because the summands are independent, it
follows from Corollary 3.3.1 that V is a χ2(n) random variable. Note the following
identity:

V =
n∑

i=1

(
(Xi −X) + (X − μ)

σ

)2

=
n∑

i=1

(
Xi −X

σ

)2

+

(
X − μ

σ/
√

n

)2

=
(n− 1)S2

σ2
+

(
X − μ

σ/
√

n

)2

. (3.6.13)
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By part (b), the two terms on the right side of the last equation are independent.
Further, the second term is the square of a standard normal random variable and,
hence, has a χ2(1) distribution. Taking mgfs of both sides, we have

(1− 2t)−n/2 = E
[
exp{t(n− 1)S2/σ2}

]
(1− 2t)−1/2. (3.6.14)

Solving for the mgf of (n − 1)S2/σ2 on the right side we obtain part (c). Finally,
part (d) follows immediately from parts (a)–(c) upon writing T , (3.6.9), as

T =
(X − μ)/(σ/

√
n)√

(n− 1)S2/(σ2(n− 1))
.

EXERCISES

3.6.1. Let T have a t-distribution with 10 degrees of freedom. Find P (|T | > 2.228)
from either Table III or by using R.

3.6.2. Let T have a t-distribution with 14 degrees of freedom. Determine b so that
P (−b < T < b) = 0.90. Use either Table III or by using R.

3.6.3. Let T have a t-distribution with r > 4 degrees of freedom. Use expression
(3.6.4) to determine the kurtosis of T . See Exercise 1.9.15 for the definition of
kurtosis.

3.6.4. Using R, plot the pdfs of the random variables defined in parts (a)–(e) below.
Obtain an overlay plot of all five pdfs, also.

(a) X has a standard normal distribution. Use this code:
x=seq(-6,6,.01); plot(dnorm(x)~x).

(b) X has a t-distribution with 1 degree of freedom. Use the code:
lines(dt(x,1)~x,lty=2).

(c) X has a t-distribution with 3 degrees of freedom.

(d) X has a t-distribution with 10 degrees of freedom.

(e) X has a t-distribution with 30 degrees of freedom.

3.6.5. Using R, investigate the probabilities of an “outlier” for a t-random variable
and a normal random variable. Specifically, determine the probability of observing
the event {|X | ≥ 2} for the following random variables:

(a) X has a standard normal distribution.

(b) X has a t-distribution with 1 degree of freedom.

(c) X has a t-distribution with 3 degrees of freedom.

(d) X has a t-distribution with 10 degrees of freedom.
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(e) X has a t-distribution with 30 degrees of freedom.

3.6.6. In expression (3.4.13), the normal location model was presented. Often real
data, though, have more outliers than the normal distribution allows. Based on
Exercise 3.6.5, outliers are more probable for t-distributions with small degrees of
freedom. Consider a location model of the form

X = μ + e,

where e has a t-distribution with 3 degrees of freedom. Determine the standard
deviation σ of X and then find P (|X − μ| ≥ σ).

3.6.7. Let F have an F -distribution with parameters r1 and r2. Assuming that
r2 > 2k, continue with Example 3.6.2 and derive the E(F k).

3.6.8. Let F have an F -distribution with parameters r1 and r2. Using the results
of the last exercise, determine the kurtosis of F , assuming that r2 > 8.

3.6.9. Let F have an F -distribution with parameters r1 and r2. Argue that 1/F
has an F -distribution with parameters r2 and r1.

3.6.10. Suppose F has an F -distribution with parameters r1 = 5 and r2 = 10.
Using only 95th percentiles of F -distributions, find a and b so that P (F ≤ a) = 0.05
and P (F ≤ b) = 0.95, and, accordingly, P (a < F < b) = 0.90.
Hint: Write P (F ≤ a) = P (1/F ≥ 1/a) = 1 − P (1/F ≤ 1/a), and use the result
of Exercise 3.6.9 and R.

3.6.11. Let T = W/
√

V/r, where the independent variables W and V are, re-
spectively, normal with mean zero and variance 1 and chi-square with r degrees of
freedom. Show that T 2 has an F -distribution with parameters r1 = 1 and r2 = r.
Hint: What is the distribution of the numerator of T 2?

3.6.12. Show that the t-distribution with r = 1 degree of freedom and the Cauchy
distribution are the same.

3.6.13. Let F have an F -distribution with 2r and 2s degrees of freedom. Since
the support of F is (0,∞), the F -distribution is often used to model time until
failure (lifetime). In this case, Y = log F is used to model the log of lifetime. The
log F family is a rich family of distributions consisting of left- and right-skewed
distributions as well as symmetric distributions; see, for example, Chapter 4 of
Hettmansperger and McKean (2011). In this exercise, consider the subfamily where
Y = log F and F has 2 and 2s degrees of freedom.

(a) Obtain the pdf and cdf of Y .

(b) Using R, obtain a page of plots of these distributions for s = .4, .6, 1.0, 2.0, 4.0, 8.
Comment on the shape of each pdf.

(c) For s = 1, this distribution is called the logistic distribution. Show that the
pdf is symmetric about 0.
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3.6.14. Show that

Y =
1

1 + (r1/r2)W
,

where W has an F -distribution with parameters r1 and r2, has a beta distribution.

3.6.15. Let X1, X2 be iid with common distribution having the pdf f(x) =
e−x, 0 < x < ∞, zero elsewhere. Show that Z = X1/X2 has an F -distribution.

3.6.16. Let X1, X2, and X3 be three independent chi-square variables with r1, r2,
and r3 degrees of freedom, respectively.

(a) Show that Y1 = X1/X2 and Y2 = X1 + X2 are independent and that Y2 is
χ2(r1 + r2).

(b) Deduce that
X1/r1

X2/r2
and

X3/r3

(X1 + X2)/(r1 + r2)

are independent F -variables.

3.7 ∗Mixture Distributions

Recall the discussion on the contaminated normal distribution given in Section
3.4.1. This was an example of a mixture of normal distributions. In this section, we
extend this to mixtures of distributions in general. Generally, we use continuous-
type notation for the discussion, but discrete pmfs can be handled the same way.

Suppose that we have k distributions with respective pdfs f1(x), f2(x), . . . , fk(x),
with supports S1,S2, . . . ,Sk, means μ1, μ2, . . . , μk, and variances σ2

1 , σ2
2 , . . . , σ

2
k,

with positive mixing probabilities p1, p2, . . . , pk, where p1 + p2 + · · · + pk = 1. Let
S = ∪k

i=1Si and consider the function

f(x) = p1f1(x) + p2f2(x) + · · ·+ pkfk(x) =

k∑
i=1

pifi(x), x ∈ S. (3.7.1)

Note that f(x) is nonnegative and it is easy to see that it integrates to one over
(−∞,∞); hence, f(x) is a pdf for some continuous-type random variable X . Inte-
grating term-by-term, it follows that the cdf of X is:

F (x) =

k∑
i=1

piFi(x), x ∈ S, (3.7.2)

where Fi(x) is the cdf corresponding to the pdf fi(x). The mean of X is given by

E(X) =

k∑
i=1

pi

∫ ∞

−∞
xfi(x) dx =

k∑
i=1

piμi = μ, (3.7.3)
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a weighted average of μ1, μ2, . . . , μk, and the variance equals

var(X) =

k∑
i=1

pi

∫ ∞

−∞
(x− μ)2fi(x) dx

=

k∑
i=1

pi

∫ ∞

−∞
[(x− μi) + (μi − μ)]2fi(x) dx

=

k∑
i=1

pi

∫ ∞

−∞
(x− μi)

2fi(x) dx +

k∑
i=1

pi(μi − μ)2
∫ ∞

−∞
fi(x) dx,

because the cross-product terms integrate to zero. That is,

var(X) =

k∑
i=1

piσ
2
i +

k∑
i=1

pi(μi − μ)2. (3.7.4)

Note that the variance is not simply the weighted average of the k variances, but it
also includes a positive term involving the weighted variance of the means.

Remark 3.7.1. It is extremely important to note these characteristics are as-
sociated with a mixture of k distributions and have nothing to do with a linear
combination, say

∑
aiXi, of k random variables.

For the next example, we need the following distribution. We say that X has a
loggamma pdf with parameters α > 0 and β > 0 if it has pdf

f1(x) =

{
1

Γ(α)βα x−(1+β)/β(log x)α−1 x > 1

0 elsewhere.
(3.7.5)

The derivation of this pdf is given in Exercise 3.7.1, where its mean and variance
are also derived. We denote this distribution of X by log Γ(α, β).

Example 3.7.1. Actuaries have found that a mixture of the loggamma and gamma
distributions is an important model for claim distributions. Suppose, then, that X1

is log Γ(α1, β1), X2 is Γ(α2, β2), and the mixing probabilities are p and (1 − p).
Then the pdf of the mixture distribution is

f(x) =

⎧⎪⎨⎪⎩
1−p

β
α2
2 Γ(α2)

xα2−1e−x/β2 0 < x ≤ 1
p

β
α1
1 Γ(α1)

(log x)α1−1x−(β1+1)/β1 + 1−p
β

α2
2 Γ(α2)

xα2−1e−x/β2 1 < x

0 elsewhere.
(3.7.6)

Provided β1 < 2−1, the mean and the variance of this mixture distribution are

μ = p(1− β1)
−α1 + (1− p)α2β2 (3.7.7)

σ2 = p[(1− 2β1)
−α1 − (1− β1)

−2α1 ]

+ (1− p)α2β
2
2 + p(1− p)[(1− β1)

−α1 − α2β2]
2; (3.7.8)

see Exercise 3.7.3.
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The mixture of distributions is sometimes called compounding. Moreover, it
does not need to be restricted to a finite number of distributions. As demonstrated
in the following example, a continuous weighting function, which is of course a pdf,
can replace p1, p2, . . . , pk; i.e., integration replaces summation.

Example 3.7.2. Let Xθ be a Poisson random variable with parameter θ. We want
to mix an infinite number of Poisson distributions, each with a different value of θ.
We let the weighting function be a pdf of θ, namely, a gamma with parameters α
and β. For x = 0, 1, 2, . . . , the pmf of the compound distribution is

p(x) =

∫ ∞

0

[
1

βαΓ(α)
θα−1e−θ/β

] [
θxe−θ

x!

]
dθ

=
1

Γ(α)βαx!

∫ ∞

0

θα+x−1e−θ(1+β)/β dθ

=
Γ(α + x)βx

Γ(α)x!(1 + β)α+x
,

where the third line follows from the change of variable t = θ(1 + β)/β to solve the
integral of the second line.

An interesting case of this compound occurs when α = r, a positive integer, and
β = (1− p)/p, where 0 < p < 1. In this case the pmf becomes

p(x) =
(r + x− 1)!

(r − 1)!

pr(1− p)x

x!
, x = 0, 1, 2, . . . .

That is, this compound distribution is the same as that of the number of excess
trials needed to obtain r successes in a sequence of independent trials, each with
probability p of success; this is one form of the negative binomial distribution.
The negative binomial distribution has been used successfully as a model for the
number of accidents (see Weber, 1971).

In compounding, we can think of the original distribution of X as being a con-
ditional distribution given θ, whose pdf is denoted by f(x|θ). Then the weighting
function is treated as a pdf for θ, say g(θ). Accordingly, the joint pdf is f(x|θ)g(θ),
and the compound pdf can be thought of as the marginal (unconditional) pdf of X ,

h(x) =

∫
θ

g(θ)f(x|θ) dθ,

where a summation replaces integration in case θ has a discrete distribution. For
illustration, suppose we know that the mean of the normal distribution is zero but
the variance σ2 equals 1/θ > 0, where θ has been selected from some random model.
For convenience, say this latter is a gamma distribution with parameters α and β.
Thus, given that θ, X is conditionally N(0, 1/θ) so that the joint distribution of X
and θ is

f(x|θ)g(θ) =

[ √
θ√
2π

exp

(−θx2

2

)][
1

βαΓ(α)
θα−1 exp(−θ/β)

]
,



3.7. ∗Mixture Distributions 221

for −∞ < x < ∞, 0 < θ < ∞. Therefore, the marginal (unconditional) pdf h(x)
of X is found by integrating out θ; that is,

h(x) =

∫ ∞

0

θα+1/2−1

βα
√

2πΓ(α)
exp

[
−θ

(
x2

2
+

1

β

)]
dθ.

By comparing this integrand with a gamma pdf with parameters α+ 1
2 and [(1/β)+

(x2/2)]−1, we see that the integral equals

h(x) =
Γ(α + 1

2 )

βα
√

2πΓ(α)

(
2β

2 + βx2

)α+1/2

, −∞ < x < ∞.

It is interesting to note that if α = r/2 and β = 2/r, where r is a positive integer,
then X has an unconditional distribution, which is Student’s t, with r degrees of
freedom. That is, we have developed a generalization of Student’s distribution
through this type of mixing or compounding. We note that the resulting distribution
(a generalization of Student’s t) has much thicker tails than those of the conditional
normal with which we started.

The next two examples offer two additional illustrations of this type of com-
pounding.

Example 3.7.3. Suppose that we have a binomial distribution, but we are not
certain about the probability p of success on a given trial. Suppose p has been
selected first by some random process that has a beta pdf with parameters α and
β. Thus X , the number of successes on n independent trials, has a conditional
binomial distribution so that the joint pdf of X and p is

p(x|p)g(p) =
n!

x!(n− x)!
px(1 − p)n−x Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1,

for x = 0, 1, . . . , n, 0 < p < 1. Therefore, the unconditional pmf of X is given by
the integral

h(x) =

∫ 1

0

n!Γ(α + β)

x!(n− x)!Γ(α)Γ(β)
px+α−1(1 − p)n−x+β−1 dp

=
n!Γ(α + β)Γ(x + α)Γ(n− x + β)

x!(n− x)!Γ(α)Γ(β)Γ(n + α + β)
, x = 0, 1, 2, . . . , n.

Now suppose α and β are positive integers; since Γ(k) = (k−1)!, this unconditional
(marginal or compound) pdf can be written

h(x) =
n!(α + β − 1)!(x + α− 1)!(n− x + β − 1)!

x!(n− x)!(α − 1)!(β − 1)!(n + α + β − 1)!
, x = 0, 1, 2, . . . , n.

Because the conditional mean E(X |p) = np, the unconditional mean is nα/(α + β)
since E(p) equals the mean α/(α + β) of the beta distribution.
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Example 3.7.4. In this example, we develop by compounding a heavy-tailed
skewed distribution. Assume X has a conditional gamma pdf with parameters
k and θ−1. The weighting function for θ is a gamma pdf with parameters α and β.
Thus the unconditional (marginal or compounded) pdf of X is

h(x) =

∫ ∞

0

[
θα−1e−θ/β

βαΓ(α)

] [
θkxk−1e−θx

Γ(k)

]
dθ

=

∫ ∞

0

xk−1θα+k−1

βαΓ(α)Γ(k)
e−θ(1+βx)/β dθ.

Comparing this integrand to the gamma pdf with parameters α+k and β/(1+βx),
we see that

h(x) =
Γ(α + k)βkxk−1

Γ(α)Γ(k)(1 + βx)α+k
, 0 < x <∞,

which is the pdf of the generalized Pareto distribution (and a generalization of
the F distribution). Of course, when k = 1 (so that X has a conditional exponential
distribution), the pdf is

h(x) = αβ(1 + βx)−(α+1), 0 < x < ∞,

which is the Pareto pdf. Both of these compound pdfs have thicker tails than the
original (conditional) gamma distribution.

While the cdf of the generalized Pareto distribution cannot be expressed in a
simple closed form, that of the Pareto distribution is

H(x) =

∫ x

0

αβ(1 + βt)−(α+1) dt = 1− (1 + βx)−α, 0 ≤ x <∞.

From this, we can create another useful long-tailed distribution by letting X = Y τ ,
0 < τ . Thus Y has the cdf

G(y) = P (Y ≤ y) = P [X1/τ ≤ y] = P [X ≤ yτ ].

Hence, this probability is equal to

G(y) = H(yτ ) = 1− (1 + βyτ )−α, 0 < y < ∞,

with corresponding pdf

G′(y) = g(y) =
αβτyτ−1

(1 + βyτ )α+1
, 0 < y <∞.

We call the associated distribution the transformed Pareto distribution or the
Burr distribution (Burr, 1942), and it has proved to be a useful one in modeling
thicker-tailed distributions.
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EXERCISES

3.7.1. Suppose Y has a Γ(α, β) distribution. Let X = eY . Show that the pdf of
X is given by expression (3.7.5). Determine the cdf of X in terms of the cdf of a
Γ-distribution. Derive the mean and variance of X .

3.7.2. Write R functions for the pdf and cdf of the random variable in Exercise
3.7.1.

3.7.3. In Example 3.7.1, derive the pdf of the mixture distribution given in expres-
sion (3.7.6), then obtain its mean and variance as given in expressions (3.7.7) and
(3.7.8).

3.7.4. Using the R function for the pdf in Exercise 3.7.2 and dgamma, write an R
function for the mixture pdf (3.7.6). For α = β = 2, obtain a page of plots of this
density for p = 0.05, 0.10, 0.15 and 0.20.

3.7.5. Consider the mixture distribution (9/10)N(0, 1)+ (1/10)N(0, 9). Show that
its kurtosis is 8.34.

3.7.6. Let X have the conditional geometric pmf θ(1− θ)x−1, x = 1, 2, . . ., where θ
is a value of a random variable having a beta pdf with parameters α and β. Show
that the marginal (unconditional) pmf of X is

Γ(α + β)Γ(α + 1)Γ(β + x− 1)

Γ(α)Γ(β)Γ(α + β + x)
, x = 1, 2, . . . .

If α = 1, we obtain
β

(β + x)(β + x− 1)
, x = 1, 2, . . . ,

which is one form of Zipf’s law.

3.7.7. Repeat Exercise 3.7.6, letting X have a conditional negative binomial dis-
tribution instead of the geometric one.

3.7.8. Let X have a generalized Pareto distribution with parameters k, α, and β.
Show, by change of variables, that Y = βX/(1 + βX) has a beta distribution.

3.7.9. Show that the failure rate (hazard function) of the Pareto distribution is

h(x)

1−H(x)
=

α

β−1 + x
.

Find the failure rate (hazard function) of the Burr distribution with cdf

G(y) = 1−
(

1

1 + βyτ

)α

, 0 ≤ y <∞.

In each of these two failure rates, note what happens as the value of the variable
increases.
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3.7.10. For the Burr distribution, show that

E(Xk) =
1

βk/τ
Γ

(
α− k

τ

)
Γ

(
k

τ
+ 1

)/
Γ(α),

provided k < ατ .

3.7.11. Let the number X of accidents have a Poisson distribution with mean λθ.
Suppose λ, the liability to have an accident, has, given θ, a gamma pdf with pa-
rameters α = h and β = h−1; and θ, an accident proneness factor, has a generalized
Pareto pdf with parameters α, λ = h, and k. Show that the unconditional pdf of
X is

Γ(α + k)Γ(α + h)Γ(α + h + k)Γ(h + k)Γ(k + x)

Γ(α)Γ(α + k + h)Γ(h)Γ(k)Γ(α + h + k + x)x!
, x = 0, 1, 2, . . . ,

sometimes called the generalized Waring pmf.

3.7.12. Let X have a conditional Burr distribution with fixed parameters β and τ ,
given parameter α.

(a) If α has the geometric pmf p(1− p)α, α = 0, 1, 2, . . ., show that the uncondi-
tional distribution of X is a Burr distribution.

(b) If α has the exponential pdf β−1e−α/β, α > 0, find the unconditional pdf of
X .

3.7.13. Let X have the conditional Weibull pdf

f(x|θ) = θτxτ−1e−θxτ

, 0 < x <∞,

and let the pdf (weighting function) g(θ) be gamma with parameters α and β. Show
that the compound (marginal) pdf of X is that of Burr.

3.7.14. If X has a Pareto distribution with parameters α and β and if c is a positive
constant, show that Y = cX has a Pareto distribution with parameters α and β/c.



Chapter 4

Some Elementary Statistical

Inferences

4.1 Sampling and Statistics

In Chapter 2, we introduced the concepts of samples and statistics. We continue
with this development in this chapter while introducing the main tools of inference:
confidence intervals and tests of hypotheses.

In a typical statistical problem, we have a random variable X of interest, but its
pdf f(x) or pmf p(x) is not known. Our ignorance about f(x) or p(x) can roughly
be classified in one of two ways:

1. f(x) or p(x) is completely unknown.

2. The form of f(x) or p(x) is known down to a parameter θ, where θ may be a
vector.

For now, we consider the second classification, although some of our discussion
pertains to the first classification also. Some examples are the following:

(a) X has an exponential distribution, Exp(θ), (3.3.6), where θ is unknown.

(b) X has a binomial distribution b(n, p), (3.1.2), where n is known but p is
unknown.

(c) X has a gamma distribution Γ(α, β), (3.3.2), where both α and β are unknown.

(d) X has a normal distribution N(μ, σ2), (3.4.6), where both the mean μ and
the variance σ2 of X are unknown.

We often denote this problem by saying that the random variable X has a density
or mass function of the form f(x; θ) or p(x; θ), where θ ∈ Ω for a specified set Ω. For
example, in (a) above, Ω = {θ | θ > 0}. We call θ a parameter of the distribution.
Because θ is unknown, we want to estimate it.

225
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In this process, our information about the unknown distribution of X or the
unknown parameters of the distribution of X comes from a sample on X . The
sample observations have the same distribution as X , and we denote them as the
random variables X1, X2, . . . , Xn, where n denotes the sample size. When the
sample is actually drawn, we use lower case letters x1, x2, . . . , xn as the values
or realizations of the sample. Often we assume that the sample observations
X1, X2, . . . , Xn are also mutually independent, in which case we call the sample a
random sample, which we now formally define:

Definition 4.1.1. If the random variables X1, X2, . . . , Xn are independent and
identically distributed (iid), then these random variables constitute a random sam-
ple of size n from the common distribution.

Often, functions of the sample are used to summarize the information in a sam-
ple. These are called statistics, which we define as:

Definition 4.1.2. Let X1, X2, . . . , Xn denote a sample on a random variable X. Let
T = T (X1, X2, . . . , Xn) be a function of the sample. Then T is called a statistic.

Once the sample is drawn, then t is called the realization of T , where t =
T (x1, x2, . . . , xn) and x1, x2, . . . , xn is the realization of the sample.

4.1.1 Point Estimators

Using the above terminology, the problem we discuss in this chapter is phrased as:
Let X1, X2, . . . , Xn denote a random sample on a random variable X with a density
or mass function of the form f(x; θ) or p(x; θ), where θ ∈ Ω for a specified set Ω. In
this situation, it makes sense to consider a statistic T , which is an estimator of θ.
More formally, T is called a point estimator of θ. While we call T an estimator
of θ, we call its realization t an estimate of θ.

There are several properties of point estimators that we discuss in this book.
We begin with a simple one, unbiasedness.

Definition 4.1.3 (Unbiasedness). Let X1, X2, . . . , Xn denote a sample on a random
variable X with pdf f(x; θ), θ ∈ Ω. Let T = T (X1, X2, . . . , Xn) be a statistic. We
say that T is an unbiased estimator of θ if E(T ) = θ.

In Chapters 6 and 7, we discuss several theories of estimation in general. The
purpose of this chapter, though, is an introduction to inference, so we briefly discuss
the maximum likelihood estimator (mle) and then use it to obtain point esti-
mators for some of the examples cited above. We expand on this theory in Chapter
6. Our discussion is for the continuous case. For the discrete case, simply replace
the pdf with the pmf.

In our problem, the information in the sample and the parameter θ are involved
in the joint distribution of the random sample; i.e.,

∏n
i=1 f(xi; θ). We want to view

this as a function of θ, so we write it as

L(θ) = L(θ; x1, x2, . . . , xn) =

n∏
i=1

f(xi; θ). (4.1.1)
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This is called the likelihood function of the random sample. As an estimate of
θ, a measure of the center of L(θ) seems appropriate. An often-used estimate is
the value of θ that provides a maximum of L(θ). If it is unique, this is called the

maximum likelihood estimator (mle), and we denote it as θ̂; i.e.,

θ̂ = ArgmaxL(θ). (4.1.2)

In practice, it is often much easier to work with the log of the likelihood, that
is, the function l(θ) = log L(θ). Because the log is a strictly increasing function,
the value that maximizes l(θ) is the same as the value that maximizes L(θ). Fur-
thermore, for most of the models discussed in this book, the pdf (or pmf) is a

differentiable function of θ, and frequently θ̂ solves the equation

∂l(θ)

∂θ
= 0. (4.1.3)

If θ is a vector of parameters, this results in a system of equations to be solved
simultaneously; see Example 4.1.3. These equations are often referred to as the mle
estimating equations, (EE).

As we show in Chapter 6, under general conditions, mles have some good prop-
erties. One property that we need at the moment concerns the situation where,
besides the parameter θ, we are also interested in the parameter η = g(θ) for a
specified function g. Then, as Theorem 6.1.2 of Chapter 6 shows, the mle of η is
η̂ = g(θ̂), where θ̂ is the mle of θ. We now proceed with some examples, including
data realizations.

Example 4.1.1 (Exponential Distribution). Suppose the common pdf of the ran-
dom sample X1, X2, . . . , Xn is the Γ(1, θ) density f(x) = θ−1 exp{−x/θ} with sup-
port 0 < x < ∞; see expression (3.3.2). This gamma distribution is often called the
exponential distribution. The log of the likelihood function is given by

l(θ) = log

n∏
i=1

1

θ
e−xi/θ = −n log θ − θ−1

n∑
i=1

xi.

The first partial of the log-likelihood with respect to θ is

∂l(θ)

∂θ
= −nθ−1 + θ−2

n∑
i=1

xi.

Setting this partial to 0 and solving for θ, we obtain the solution x. There is only one
critical value and, furthermore, the second partial of the log-likelihood evaluated
at x is strictly negative, verifying that it provides a maximum. Hence, for this
example, the statistic θ̂ = X is the mle of θ. Because E(X) = θ, we have that

E(X) = θ and, hence, θ̂ is an unbiased estimator of θ.
Rasmussen (1992), page 92, presents a data set where the variable of interest

X is the number of operating hours until the first failure of air-conditioning units
for Boeing 720 airplanes. A random sample of size n = 13 was obtained and its
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realized values are:
359 413 25 130 90 50 50 487 102 194 55 74 97

For instance, 359 hours is the realization of the random variable X1. The data
range from 25 to 487 hours. Assuming an exponential model, the point estimate of
θ discussed above is the arithmetic average of this data. Assuming that the data
set is stored in the R vector ophrs, this average is computed in R by

mean(ophrs); 163.5385

Hence our point estimate of θ, the mean of X , is 163.54 hours. How close is 163.54
hours to the true θ? We provide an answer to this question in the next section.

Example 4.1.2 (Binomial Distribution). Let X be one or zero if, respectively, the
outcome of a Bernoulli experiment is success or failure. Let θ, 0 < θ < 1, denote
the probability of success. Then by (3.1.1), the pmf of X is

p(x; θ) = θx(1 − θ)1−x, x = 0 or 1.

If X1, X2, . . . , Xn is a random sample on X , then the likelihood function is

L(θ) =

n∏
i=1

p(xi; θ) = θ
Pn

i=1 xi(1− θ)n−Pn
i=1 xi , xi = 0 or 1.

Taking logs, we have

l(θ) =
n∑

i=1

xi log θ +

(
n−

n∑
i=1

xi

)
log(1− θ), xi = 0 or 1.

The partial derivative of l(θ) is

∂l(θ)

∂θ
=

∑n
i=1 xi

θ
− n−∑n

i=1 xi

1− θ
.

Setting this to 0 and solving for θ, we obtain θ̂ = n−1
∑n

i=1 Xi = X ; i.e., the mle

is the proportion of successes in the n trials. Because E(X) = θ, θ̂ is an unbiased
estimator of θ.

Devore (2012) discusses a study involving ceramic hip replacements which for
some patients can be squeaky; see, also, page 30 of Kloke and McKean (2014).
In this study, 28 out of 143 hip replacements squeaked. In terms of the above
discussion, we have a realization of a sample of size n = 143 from a binomial
distribution where success is a hip replacement that squeaks and failure is one that
does not squeak. Let θ denote the probability of success. Then our estimate of θ
based on this sample is θ̂ = 28/143 = 0.1958. This is straightforward to calculate
but, for later use, the R code prop.test(28,143) calculates this proportion.

Example 4.1.3 (Normal Distribution). Let X have a N(μ, σ2) distribution with
the pdf given in expression (3.4.6). In this case, θ is the vector θ = (μ, σ). If
X1, X2, . . . , Xn is a random sample on X , then the log of the likelihood function
simplifies to

l(μ, σ) = −n

2
log 2π − n log σ − 1

2

n∑
i=1

(
xi − μ

σ

)2

. (4.1.4)
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The two partial derivatives simplify to

∂l(μ, σ)

∂μ
= −

n∑
i=1

(
xi − μ

σ

)(
− 1

σ

)
(4.1.5)

∂l(μ, σ)

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(xi − μ)2. (4.1.6)

Setting these to 0 and solving simultaneously, we see that the mles are

μ̂ = X (4.1.7)

σ̂2 = n−1
n∑

i=1

(Xi −X)2. (4.1.8)

Notice that we have used the property that the mle of σ̂2 is the mle of σ squared. As
we have shown in Chapter 2, (2.8.6), the estimator X is an unbiased estimator for
μ. Further, from Example 2.8.7 of Section 2.8 we know that the following statistic

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (4.1.9)

is an unbiased estimator of σ2. Thus for the mle of σ2, E(σ̂2) = [n/(n − 1)]σ2.
Hence, the mle is a biased estimator of σ2. Note, though, that the bias of σ̂2 is
E(σ̂2 − σ2) = −σ2/n, which converges to 0 as n → ∞. In practice, however, S2 is
the preferred estimator of σ2.

Rasmussen (1991), page 65, discusses a study to measure the concentration of
sulfur dioxide in a damaged Bavarian forest. The following data set is the realization
of a random sample of size n = 24 measurements (micro grams per cubic meter) of
this sulfur dioxide concentration:

33.4 38.6 41.7 43.9 44.4 45.3 46.1 47.6 50.0 52.4 52.7 53.9

54.3 55.1 56.4 56.5 60.7 61.8 62.2 63.4 65.5 66.6 70.0 71.5.
These data are also in the R data file sulfurdio.rda at the site listed in the Preface.
Assuming these data are in the R vector sulfurdioxide, the following R segment
obtains the estimates of the true mean and variance (both s2 and σ̂2 are computed):

mean(sulfurdioxide);var(sulfurdioxide);(23/24)*var(sulfurdioxide)

53.91667 101.4797 97.25139.
Hence, we estimate the true mean concentration of sulfur dioxide in this damaged
Bavarian forest to be 53.92 micro grams per cubic meter. The realization of the
statistic S2 is s2 = 101.48, while the biased estimate of σ2 is 97.25. Rasmussen notes
that the average concentration of sulfur dioxide in undamaged areas of Bavaria is
20 micro grams per cubic meter. This value appears to be quite distant from the
sample values. This will be discussed statistically in later sections.

In all three of these examples, standard differential calculus methods led us to
the solution. For the next example, the support of the random variable involves θ
and, hence, it is not surprising that for this case differential calculus is not useful.
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Example 4.1.4 (Uniform Distribution). Let X1, . . . , Xn be iid with the uniform
(0, θ) density; i.e., f(x) = 1/θ for 0 < x < θ, 0 elsewhere. Because θ is in the
support, differentiation is not helpful here. The likelihood function can be written
as

L(θ) = θ−nI(max{xi}, θ),

where I(a, b) is 1 or 0 if a ≤ b or a > b, respectively. The function L(θ) is a
decreasing function of θ for all θ ≥ max{xi} and is 0 otherwise [sketch the graph
of L(θ)]. So the maximum occurs at the smallest value that θ can assume; i.e., the

mle is θ̂ = max{Xi}.

4.1.2 Histogram Estimates of pmfs and pdfs

Let X1, . . . , Xn be a random sample on a random variable X with cdf F (x). In this
section, we briefly discuss a histogram of the sample, which is an estimate of the pmf,
p(x), or the pdf, f(x), of X depending on whether X is discrete or continuous. Other
than X being a discrete or continuous random variable, we make no assumptions
on the form of the distribution of X . In particular, we do not assume a parametric
form of the distribution as we did for the above discussion on maximum likelihood
estimates; hence, the histogram that we present is often called a nonparametric
estimator. See Chapter 10 for a general discussion of nonparametric inference. We
discuss the discrete situation first.

The Distribution of X Is Discrete

Assume that X is a discrete random variable with pmf p(x). Let X1, . . . , Xn be
a random sample on X . First, suppose that the space of X is finite, say, D =
{a1, . . . , am}. An intuitive estimate of p(aj) is the relative frequency of aj in the
sample. We express this more formally as follows. For j = 1, 2, . . . , m, define the
statistics

Ij(Xi) =

{
1 Xi = aj

0 Xi 
= aj.

Then our intuitive estimate of p(aj) can be expressed by the sample average

p̂(aj) =
1

n

n∑
i=1

Ij(Xi). (4.1.10)

These estimators {p̂(a1), . . . , p̂(am)} constitute the nonparametric estimate of the
pmf p(x). Note that Ij(Xi) has a Bernoulli distribution with probability of success
p(aj). Because

E[p̂(aj)] =
1

n

n∑
i=1

E[Ij(Xi)] =
1

n

n∑
i=1

p(aj) = p(aj), (4.1.11)

p̂(aj) is an unbiased estimator of p(aj).
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Next, suppose that the space of X is infinite, say, D = {a1, a2, . . .}. In practice,
we select a value, say, am, and make the groupings

{a1}, {a2}, . . . , {am}, ãm+1 = {am+1, am+2, . . .}. (4.1.12)

Let p̂(ãm+1) be the proportion of sample items that are greater than or equal
to am+1. Then the estimates {p̂(a1), . . . , p̂(am), p̂(ãm+1)} form our estimate of
p(x). For the merging of groups, a rule of thumb is to select m so that the fre-
quency of the category am exceeds twice the combined frequencies of the categories
am+1, am+2, . . . .

A histogram is a barplot of p̂(aj) versus aj . There are two cases to consider. For
the first case, suppose the values aj represent qualitative categories, for example,
hair colors of a population of people. In this case, there is no ordinal information
in the ajs. The usual histogram for such data consists of nonabutting bars with
heights p̂(aj) that are plotted in decreasing order of the p̂(a1)s. Such histograms
are usually called bar charts. An example is helpful here.

Example 4.1.5 (Hair Color of Scottish School Children). Kendall and Sturat
(1979) present data on the eye and hair color of Scottish schoolchildren in the
early 1900s. The data are also in the file scotteyehair.rda at the site listed in the
Preface. In this example, we consider hair color. The discrete random variable is
the hair color of a Scottish child with categories fair, red, medium, dark, and black.
The results that Kendall and Sturat present are based on a sample of n = 22,361
Scottish school children. The frequency distribution of this sample and the estimate
of the pmf are

Fair Red Medium Dark Black
Count 5789 1319 9418 5678 157
p̂(aj) 0.259 0.059 0.421 0.254 0.007

The bar chart of this sample is shown in Figure 4.1.1. Assume that the counts
(second row of the table) are in the R vector vec. Then the following R segment
computes this bar chart:

n=sum(vec); vecs = sort(vec,decreasing=T)/n

nms = c("Medium","Fair","Dark","Red","Black")

barplot(vecs,beside=TRUE,names.arg=nms,ylab="",xlab="Haircolor")

For the second case, assume that the values in the space D are ordinal in nature;
i.e., the natural ordering of the ajs is numerically meaningful. In this case, the usual
histogram is an abutting bar chart with heights p̂(aj) that are plotted in the natural
order of the ajs, as in the following example.

Example 4.1.6 (Simulated Poisson Variates). The following 30 data points are
simulated values drawn from a Poisson distribution with mean λ = 2; see Example
4.8.2 for the generation of Poisson variates.

2 1 1 1 1 5 1 1 3 0 2 1 1 3 4
2 1 2 2 6 5 2 3 2 4 1 3 1 3 0
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Medium Fair Dark Red Black

Haircolor
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Bar Chart of Haircolor of Scottish Schoolchildren

Figure 4.1.1: Bar chart of the Scottish hair color data discussed in Example 4.1.5.

The nonparametric estimate of the pmf is

j 0 1 2 3 4 5 ≥ 6
p̂(j) 0.067 0.367 0.233 0.167 0.067 0.067 0.033

The histogram for this data set is given in Figure 4.1.2. Note that counts are used
for the vertical axis. If the R vector x contains the 30 data points, then the following
R code computes this histogram:
brs=seq(-.5,6.5,1);hist(x,breaks=brs,xlab="Number of events",ylab="")

The Distribution of X Is Continuous

For this section, assume that the random sample X1, . . . , Xn is from a continuous
random variable X with continuous pdf f(t). We first sketch an estimate for this
pdf at a specified value of x. Then we use this estimate to develop a histogram
estimate of the pdf. For an arbitrary but fixed point x and a given h > 0, consider
the interval (x − h, x + h). By the mean value theorem for integrals, we have for
some ξ, |x− ξ| < h, that

P (x− h < X < x + h) =

∫ x+h

x−h

f(t) dt = f(ξ)2h ≈ f(x)2h.

The nonparametric estimate of the leftside is the proportion of the sample items
that fall in the interval (x − h, x + h). This suggests the following nonparametric
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Histogram of Poisson Variates

Number of events
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Figure 4.1.2: Histogram of the Poisson variates of Example 4.1.6.

estimate of f(x) at a given x:

f̂(x) =
#{x− h < Xi < x + h}

2hn
. (4.1.13)

To write this more formally, consider the indicator statistic

Ii(x) =

{
1 x− h < Xi < x + h
0 otherwise,

i = 1, . . . , n.

Then a nonparametric estimator of f(x) is

f̂(x) =
1

2hn

n∑
i=1

Ii(x). (4.1.14)

Since the sample items are identically distributed,

E[f̂(x)] =
1

2hn
nf(ξ)2h = f(ξ)→ f(x),

as h → 0. Hence f̂(x) is approximately an unbiased estimator of the density f(x).
In density estimation terminology, the indicator function Ii is called a rectangular
kernel with bandwidth 2h. See Sheather and Jones (1991) and Chapter 6 of
Lehmann (1999) for discussions of density estimation. The R function density

provides a density estimator with several options. For the examples in the text, we
use the default option as in Example 4.1.7.



234 Some Elementary Statistical Inferences

The histogram provides a somewhat crude but often used estimator of the pdf,
so a few remarks on it are pertinent. Let x1, . . . , xn be the realized values of the
random sample on a continuous random variable X with pdf f(x). Our histogram
estimate of f(x) is obtained as follows. While for the discrete case, there are natural
classes for the histogram, for the continuous case these classes must be chosen. One
way of doing this is to select a positive integer m, an h > 0, and a value a such that
a < min xi, so that the m intervals

(a−h, a+h], (a+h, a+3h], (a+3h, a+5h], . . . , (a+(2m−3)h, a+(2m−1)h] (4.1.15)

cover the range of the sample [minxi, maxxi]. These intervals form our classes. Let
Aj = (a + (2j − 3)h, a + (2j − 1)h] for j = 1, . . .m.

Let f̂h(x) denote our histogram estimate. If x ≤ a − h or x > a + (2m − 1)h

then define f̂h(x) = 0. For a− h < x ≤ a + (2m − 1)h, x is in one, and only one,

Aj . For x ∈ Aj , define f̂h(x) to be:

f̂h(x) =
#{xi ∈ Aj}

2hn
. (4.1.16)

Note that f̂h(x) ≥ 0 and that∫ ∞

−∞
f̂h(x) dx =

∫ a+(2m−1)h

a−h

f̂h(x) dx =

m∑
j=1

∫
Aj

#{xi ∈ Aj}
2hn

dx

=
1

2hn

m∑
j=1

#{xi ∈ Aj}[h(2j − 1− 2j + 3)] =
2h

2hn
n = 1;

so, f̂h(x) satisfies the properties of a pdf.
For the discrete case, except when classes are merged, the histogram is unique.

For the continuous case, though, the histogram depends on the classes chosen. The
resulting picture can be quite different if the classes are changed. Unless there is
a compelling reason for the class selection, we recommend using the default classes
selected by the computational algorithm. The histogram algorithms in most statis-
tical packages such as R are current on recent research for selection of classes. The
histogram in the following example is based on default classes.

Example 4.1.7. In Example 4.1.3, we presented a data set involving sulfur dioxide
concentrations in a damaged Bavarian forest. The histogram of this data set is
found in Figure 4.1.3. There are only 24 data points in the sample which are far
too few for density estimation. With this in mind, although the distribution of data
is mound shaped, the center appears to be too flat for normality. We have overlaid
the histogram with the default R density estimate (solid line) which confirms some
caution on normality. Recall that sample mean and standard deviations for this
data are 53.91667 and 10.07371, respectively. So we also plotted the normal pdf
with this mean and standard deviation (dashed line). The R code assumes that the
data are in the R vector sulfurdioxide.
hist(sulfurdioxide,xlab="Sulfurdioxide",ylab=" ",pr=T,ylim=c(0,.04))



4.1. Sampling and Statistics 235

lines(density(sulfurdioxide))

y=dnorm(sulfurdioxide,53.91667,10.07371);lines(y~sulfurdioxide,lty=2)

The normal density plot seems to be a poor fit.

Histogram of sulfurdioxide

Sulfurdioxide

30 40 50 60 70

0.
00

0.
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0.
02

0.
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0.
04

Figure 4.1.3: Histogram of the sulfur dioxide concentrations in a damaged Bavar-
ian forest overlaid with a density estimate (solid line) and a normal pdf (dashed
line) with mean and variance replaced by the sample mean and standard deviations,
respectively. Data are given in Example 4.1.3.

EXERCISES

4.1.1. Twenty motors were put on test under a high-temperature setting. The
lifetimes in hours of the motors under these conditions are given below. Also, the
data are in the file lifetimemotor.rda at the site listed in the Preface. Suppose
we assume that the lifetime of a motor under these conditions, X , has a Γ(1, θ)
distribution.

1 4 5 21 22 28 40 42 51 53
58 67 95 124 124 160 202 260 303 363

(a) Obtain a histogram of the data and overlay it with a density estimate, using
the code hist(x,pr=T); lines(density(x)) where the R vector x contains
the data. Based on this plot, do you think that the Γ(1, θ) model is credible?

(b) Assuming a Γ(1, θ) model, obtain the maximum likelihood estimate θ̂ of θ and

locate it on your histogram. Next overlay the pdf of a Γ(1, θ̂) distribution on
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the histogram. Use the R function dgamma(x,shape=1,scale=θ̂) to evaluate
the pdf.

(c) Obtain the sample median of the data, which is an estimate of the median
lifetime of a motor. What parameter is it estimating (i.e., determine the
median of X)?

(d) Based on the mle, what is another estimate of the median of X?

4.1.2. Here are the weights of 26 professional baseball pitchers; [see page 76 of
Hettmansperger and McKean (2011) for the complete data set]. The data are in R
file bb.rda. Suppose we assume that the weight of a professional baseball pitcher
is normally distributed with mean μ and variance σ2.

160 175 180 185 185 185 190 190 195 195 195 200 200
200 200 205 205 210 210 218 219 220 222 225 225 232

(a) Obtain a histogram of the data. Based on this plot, is a normal probability
model credible?

(b) Obtain the maximum likelihood estimates of μ, σ2, σ, and μ/σ. Locate your
estimate of μ on your plot in part (a). Then overlay the normal pdf with these
estimates on your histogram in Part (a).

(c) Using the binomial model, obtain the maximum likelihood estimate of the
proportion p of professional baseball pitchers who weigh over 215 pounds.

(d) Determine the mle of p assuming that the weight of a professional baseball
player follows the normal probability model N(μ, σ2) with μ and σ unknown.

4.1.3. Suppose the number of customers X that enter a store between the hours
9:00 a.m. and 10:00 a.m. follows a Poisson distribution with parameter θ. Suppose
a random sample of the number of customers that enter the store between 9:00 a.m.
and 10:00 a.m. for 10 days results in the values

9 7 9 15 10 13 11 7 2 12

(a) Determine the maximum likelihood estimate of θ. Show that it is an unbiased
estimator.

(b) Based on these data, obtain the realization of your estimator in part (a).
Explain the meaning of this estimate in terms of the number of customers.

4.1.4. For Example 4.1.3, verify equations (4.1.4)–(4.1.8).

4.1.5. Let X1, X2, . . . , Xn be a random sample from a continuous-type distribution.

(a) Find P (X1 ≤ X2), P (X1 ≤ X2, X1 ≤ X3), . . . , P (X1 ≤ Xi, i = 2, 3, . . . , n).
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(b) Suppose the sampling continues until X1 is no longer the smallest observation
(i.e., Xj < X1 ≤ Xi, i = 2, 3, . . . , j− 1). Let Y equal the number of trials, not
including X1, until X1 is no longer the smallest observation (i.e., Y = j − 1).
Show that the distribution of Y is

P (Y = y) =
1

y(y + 1)
, y = 1, 2, 3, . . . .

(c) Compute the mean and variance of Y if they exist.

4.1.6. Consider the estimator of the pmf in expression (4.1.10). In equation (4.1.11),
we showed that this estimator is unbiased. Find the variance of the estimator and
its mgf.

4.1.7. The data set on Scottish schoolchildren discussed in Example 4.1.5 included
the eye colors of the children also. The frequencies of their eye colors are

Blue Light Medium Dark
2978 6697 7511 5175

Use these frequencies to obtain a bar chart and an estimate of the associated pmf.

4.1.8. Recall that for the parameter η = g(θ), the mle of η is g(θ̂), where θ̂ is the
mle of θ. Assuming that the data in Example 4.1.6 were drawn from a Poisson
distribution with mean λ, obtain the mle of λ and then use it to obtain the mle of
the pmf. Compare the mle of the pmf to the nonparametric estimate. Note: For
the domain value 6, obtain the mle of P (X ≥ 6).

4.1.9. Consider the nonparametric estimator, (4.1.14), of a pdf.

(a) Obtain its mean and determine the bias of the estimator.

(b) Obtain the variance of the estimator.

4.1.10. This data set was downloaded from the site http://lib.stat.cmu.edu/DASL/
at Carnegie-Melon university. The original source is Willerman et al. (1991). The
data consist of a sample of brain information recorded on 40 college students. The
variables include gender, height, weight, three IQ measurements, and Magnetic
Resonance Imaging (MRI) counts, as a determination of brain size. The data are in
the rda file braindata.rda at the sites referenced in the Preface. For this exercise,
consider the MRI counts.

(a) Load the rda file braindata.rda and print the MRI data, using the code:
mri <- braindata[,7]; print(mri).

(b) Obtain a histogram of the data, hist(mri,pr=T). Comment on the shape.

(c) Overlay the default density estimator, lines(density(mri)). Comment on
the shape.

http://lib.stat.cmu.edu/DASL/
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(d) Obtain the sample mean and standard deviation and on the histogram overlay
the normal pdf with these estimates as parameters, using mris=sort(mri)and
lines(dnorm(mris,mean(mris),sd(mris))~mris,lty=2). Comment on the
fit.

(e) Determine the proportions of the data within 1 and 2 standard deviations of
the sample mean and compare these with the empirical rule.

4.1.11. This is a famous data set on the speed of light recorded by the scientist
Simon Newcomb. The data set was obtained at the Carnegie Melon site given in
Exercise 4.1.10 and it can also be found in the rda file speedlight.rda at the sites
referenced in the Preface. Stigler (1977) presents an informative discussion of this
data set.

(a) Load the rda file and type the command print(speed). As Stigler notes, the
data values ×10−3 + 24.8 are Newcomb’s data values; hence, negative items
can occur. Also, in the unit of the data the “true value” is 33.02. Discuss the
data.

(b) Obtain a histogram of the data. Comment on the shape.

(c) On the histogram overlay the default density estimator. Comment on the
shape.

(d) Obtain the sample mean and standard deviation and on the histogram overlay
the normal pdf with these estimates as parameters. Comment on the fit.

(e) Determine the proportions of the data within 1 and 2 standard deviations of
the sample mean and compare these with the empirical rule.

4.2 Confidence Intervals

Let us continue with the statistical problem that we were discussing in Section
4.1. Recall that the random variable of interest X has density f(x; θ), θ ∈ Ω,
where θ is unknown. In that section, we discussed estimating θ by a statistic
θ̂ = θ̂(X1, . . . , Xn), where X1, . . . , Xn is a sample from the distribution of X . When

the sample is drawn, it is unlikely that the value of θ̂ is the true value of the
parameter. In fact, if θ̂ has a continuous distribution, then Pθ(θ̂ = θ) = 0, where the
notation Pθ denotes that the probability is computed when θ is the true parameter.
What is needed is an estimate of the error of the estimation; i.e., by how much did
θ̂ miss θ? In this section, we embody this estimate of error in terms of a confidence
interval, which we now formally define:

Definition 4.2.1 (Confidence Interval). Let X1, X2, . . . , Xn be a sample on a ran-
dom variable X, where X has pdf f(x; θ), θ ∈ Ω. Let 0 < α < 1 be specified. Let
L = L(X1, X2, . . . , Xn) and U = U(X1, X2, . . . , Xn) be two statistics. We say that
the interval (L, U) is a (1− α)100% confidence interval for θ if

1− α = Pθ[θ ∈ (L, U)]. (4.2.1)
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That is, the probability that the interval includes θ is 1 − α, which is called the
confidence coefficient or the confidence level of the interval.

Once the sample is drawn, the realized value of the confidence interval is (l, u),
an interval of real numbers. Either the interval (l, u) traps θ or it does not. One way
of thinking of a confidence interval is in terms of a Bernoulli trial with probability
of success 1−α. If one makes, say, M independent (1−α)100% confidence intervals
over a period of time, then one would expect to have (1−α)M successful confidence
intervals (those that trap θ) over this period of time. Hence one feels (1− α)100%
confident that the true value of θ lies in the interval (l, u).

A measure of efficiency based on a confidence interval is its expected length.
Suppose (L1, U1) and (L2, U2) are two confidence intervals for θ that have the same
confidence coefficient. Then we say that (L1, U1) is more efficient than (L2, U2) if
Eθ(U1 − L1) ≤ Eθ(U2 − L2) for all θ ∈ Ω.

There are several procedures for obtaining confidence intervals. We explore one
of them in this section. It is based on a pivot random variable. The pivot is usually
a function of an estimator of θ and the parameter and, further, the distribution of
the pivot is known. Using this information, an algebraic derivation can often be
used to obtain a confidence interval. The next several examples illustrate the pivot
method. A second way to obtain a confidence interval involves distribution free
techniques, as used in Section 4.4.2 to determine confidence intervals for quantiles.

Example 4.2.1 (Confidence Interval for μ Under Normality). Suppose the random
variables X1, . . . , Xn are a random sample from a N(μ, σ2) distribution. Let X and
S2 denote the sample mean and sample variance, respectively. Recall from the last
section that X is the mle of μ and [(n − 1)/n]S2 is the mle of σ2. By part (d) of
Theorem 3.6.1, the random variable T = (X −μ)/(S/

√
n) has a t-distribution with

n− 1 degrees of freedom. The random variable T is our pivot variable.
For 0 < α < 1, define tα/2,n−1 to be the upper α/2 critical point of a t-

distribution with n − 1 degrees of freedom; i.e., α/2 = P (T > tα/2,n−1). Using
a simple algebraic derivation, we obtain

1− α = P (−tα/2,n−1 < T < tα/2,n−1)

= Pμ

(
−tα/2,n−1 <

X − μ

S/
√

n
< tα/2,n−1

)
= Pμ

(
−tα/2,n−1

S√
n

< X − μ < tα/2,n−1
S√
n

)
= Pμ

(
X − tα/2,n−1

S√
n

< μ < X + tα/2,n−1
S√
n

)
. (4.2.2)

Once the sample is drawn, let x and s denote the realized values of the statistics X
and S, respectively. Then a (1− α)100% confidence interval for μ is given by

(x− tα/2,n−1s/
√

n, x + tα/2,n−1s/
√

n). (4.2.3)

This interval is often referred to as the (1−α)100% t-interval for μ. The estimate
of the standard deviation of X, s/

√
n, is referred to as the standard error of X.
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In Example 4.1.3, we presented a data set on sulfur dioxide concentrations in a
damaged Bavarian forest. Let μ denote the true mean sulfur dioxide concentration.
Recall, based on the data, that our estimate of μ is x = 53.92 with sample standard
deviation s =

√
101.48 = 10.07. Since the sample size is n = 24, for a 99% confidence

interval the t-critical value is t0.005,23 =qt(.995,23) = 2.807. Based on these
values, the confidence interval in expression (4.2.3) can be calculated. Assuming
that the R vector sulfurdioxide contains the sample, the R code to compute this
interval is t.test(sulfurdioxide,conf.level=0.99), which results in the 99%
confidence interval (48.14, 59.69). Many scientists write this interval as 53.92±5.78.
In this way, we can see our estimate of μ and the margin of error.

The distribution of the pivot random variable T = (X − μ)/(s/
√

n) of the last
example depends on the normality of the sampled items; however, this is approx-
imately true even if the sampled items are not drawn from a normal distribution.
The Central Limit Theorem (CLT) shows that the distribution of T is approxi-
mately N(0, 1). In order to use this result now, we state the CLT now, leaving its
proof to Chapter 5; see Theorem 5.3.1.

Theorem 4.2.1 (Central Limit Theorem). Let X1, X2, . . . , Xn denote the observa-
tions of a random sample from a distribution that has mean μ and finite variance
σ2. Then the distribution function of the random variable Wn = (X − μ)/(σ/

√
n)

converges to Φ, the distribution function of the N(0, 1) distribution, as n→∞.

As we further show in Chapter 5, the result stays the same if we replace σ by
the sample standard deviation S; that is, under the assumptions of Theorem 4.2.1,
the distribution of

Zn =
X − μ

S/
√

n
(4.2.4)

is approximately N(0, 1). For the nonnormal case, as the next example shows, with
this result we can obtain an approximate confidence interval for μ.

Example 4.2.2 (Large Sample Confidence Interval for the Mean μ). Suppose
X1, X2, . . . , Xn is a random sample on a random variable X with mean μ and
variance σ2, but, unlike the last example, the distribution of X is not normal. How-
ever, from the above discussion we know that the distribution of Zn, (4.2.4), is
approximately N(0, 1). Hence

1− α ≈ Pμ

(
−zα/2 <

X − μ

S/
√

n
< zα/2

)
.

Using the same algebraic derivation as in the last example, we obtain

1− α ≈ Pμ

(
X − zα/2

S√
n

< μ < X + zα/2
S√
n

)
. (4.2.5)

Again, letting x and s denote the realized values of the statistics X and S, respec-
tively, after the sample is drawn, an approximate (1 − α)100% confidence interval
for μ is given by

(x − zα/2s/
√

n, x + zα/2s/
√

n). (4.2.6)

This is called a large sample confidence interval for μ.
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In practice, we often do not know if the population is normal. Which confidence
interval should we use? Generally, for the same α, the intervals based on tα/2,n−1

are larger than those based on zα/2. Hence the interval (4.2.3) is generally more
conservative than the interval (4.2.6). So in practice, statisticians generally prefer
the interval (4.2.3).

Occasionally in practice, the standard deviation σ is assumed known. In this
case, the confidence interval generally used for μ is (4.2.6) with s replaced by σ.

Example 4.2.3 (Large Sample Confidence Interval for p). Let X be a Bernoulli
random variable with probability of success p, where X is 1 or 0 if the outcome is
success or failure, respectively. Suppose X1, . . . , Xn is a random sample from the
distribution of X . Let p̂ = X be the sample proportion of successes. Note that
p̂ = n−1

∑n
i=1 Xi is a sample average and that Var(p̂) = p(1 − p)/n. It follows

immediately from the CLT that the distribution of Z = (p̂ − p)/
√

p(1− p)/n is
approximately N(0, 1). Referring to Example 5.1.1 of Chapter 5, we replace p(1−p)
with its estimate p̂(1− p̂). Then proceeding as in the last example, an approximate
(1− α)100% confidence interval for p is given by

(p̂− zα/2

√
p̂(1 − p̂)/n, p̂ + zα/2

√
p̂(1− p̂)/n), (4.2.7)

where
√

p̂(1− p̂)/n is called the standard error of p̂.
In Example 4.1.2 we discussed a data set involving hip replacements, some

of which were squeaky. The outcomes of a hip replacement were squeaky and
non-squeaky which we labeled as success or failure, respectively. In the sam-
ple there were 28 successes out of 143 replacements. Using R, the 99% confi-
dence interval for p, the probability of a squeaky hip replacement, is computed by
prop.test(28,143,conf.level=.99), which results in the interval (0.122, 0.298).
So with 99% confidence, we estimate the probability of a squeaky hip replacement
to be between 0.122 and 0.298.

4.2.1 Confidence Intervals for Difference in Means

A practical problem of interest is the comparison of two distributions, that is, com-
paring the distributions of two random variables, say X and Y . In this section, we
compare the means of X and Y . Denote the means of X and Y by μ1 and μ2, respec-
tively. In particular, we obtain confidence intervals for the difference Δ = μ1 − μ2.
Assume that the variances of X and Y are finite and denote them as σ2

1 = Var(X)
and σ2

2 = Var(Y ). Let X1, . . . , Xn1 be a random sample from the distribution of X
and let Y1, . . . , Yn2 be a random sample from the distribution of Y . Assume that
the samples were gathered independently of one another. Let X = n−1

1

∑n1

i=1 Xi

and Y = n−1
2

∑n2

i=1 Yi be the sample means. Let Δ̂ = X − Y . The statistic Δ̂ is

an unbiased estimator of Δ. This difference, Δ̂−Δ, is the numerator of the pivot
random variable. By independence of the samples,

Var(Δ̂) =
σ2

1

n1
+

σ2
2

n2
.
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Let S2
1 = (n1 − 1)−1

∑n1

i=1(Xi − X)2 and S2
2 = (n2 − 1)−1

∑n2

i=1(Yi − Y )2 be the
sample variances. Then estimating the variances by the sample variances, consider
the random variable

Z =
Δ̂−Δ√
S2

1

n1
+

S2
2

n2

. (4.2.8)

By the independence of the samples and Theorem 4.2.1, this pivot variable has
an approximate N(0, 1) distribution. This leads to the approximate (1 − α)100%
confidence interval for Δ = μ1 − μ2 given by⎛⎝(x− y)− zα/2

√
s2
1

n1
+

s2
2

n2
, (x− y) + zα/2

√
s2
1

n1
+

s2
2

n2

⎞⎠ , (4.2.9)

where
√

(s2
1/n1) + (s2

2/n2) is the standard error of X − Y . This is a large sample
(1− α)100% confidence interval for μ1 − μ2.

The above confidence interval is approximate. In this situation we can obtain
exact confidence intervals if we assume that the distributions of X and Y are normal
with the same variance; i.e., σ2

1 = σ2
2 . Thus the distributions can differ only in

location, i.e., a location model. Assume then that X is distributed N(μ1, σ
2)

and Y is distributed N(μ2, σ
2), where σ2 is the common variance of X and Y .

As above, let X1, . . . , Xn1 be a random sample from the distribution of X , let
Y1, . . . , Yn2 be a random sample from the distribution of Y , and assume that the
samples are independent of one another. Let n = n1 + n2 be the total sample size.
Our estimator of Δ is X − Y . Our goal is to show that a pivot random variable,
defined below, has a t-distribution, which is defined in Section 3.6.

Because X is distributed N(μ1, σ
2/n1), Y is distributed N(μ2, σ

2/n2), and X
and Y are independent, we have the result

(X−Y )−(μ1−μ2)

σ
q

1
n1

+ 1
n2

has a N(0, 1) distribution. (4.2.10)

This serves as the numerator of our T -statistic.

Let

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
. (4.2.11)

Note that S2
p is a weighted average of S2

1 and S2
2 . It is easy to see that S2

p is
an unbiased estimator of σ2. It is called the pooled estimator of σ2. Also,
because (n1−1)S2

1/σ2 has a χ2(n1−1) distribution, (n2−1)S2
2/σ2 has a χ2(n2−1)

distribution, and S2
1 and S2

2 are independent, we have that (n − 2)S2
p/σ2 has a

χ2(n − 2) distribution; see Corollary 3.3.1. Finally, because S2
1 is independent of

X and S2
2 is independent of Y , and the random samples are independent of each

other, it follows that S2
p is independent of expression (4.2.10). Therefore, from the
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result of Section 3.6.1 concerning Student’s t-distribution, we have that

T =
[(X − Y )− (μ1 − μ2)]/σ

√
n−1

1 + n−1
2√

(n− 2)S2
p/(n− 2)σ2

=
(X − Y )− (μ1 − μ2)

Sp

√
1

n1
+ 1

n2

(4.2.12)

has a t-distribution with n− 2 degrees of freedom. From this last result, it is easy
to see that the following interval is an exact (1 − α)100% confidence interval for
Δ = μ1 − μ2:(

(x − y)− t(α/2,n−2)sp

√
1

n1
+

1

n2
, (x− y) + t(α/2,n−2)sp

√
1

n1
+

1

n2

)
. (4.2.13)

A consideration of the difficulty encountered when the unknown variances of the
two normal distributions are not equal is assigned to one of the exercises.

Example 4.2.4. To illustrate the pooled t-confidence interval, consider the baseball
data presented in Hettmansperger and McKean (2011). It consists of 6 variables
recorded on 59 professional baseball players of which 33 are hitters and 26 are pitch-
ers. The data can be found in the file bb.rda located at the site listed in Chapter
1. The height in inches of a player is one of these measurements and in this exam-
ple we consider the difference in heights between pitchers and hitters. Denote the
true mean heights of the pitchers and hitters by μp and μh, respectively, and let
Δ = μp − μh. The sample averages of the heights are 75.19 and 72.67 inches for
the pitchers and hitters, respectively. Hence, our point estimate of Δ is 2.53 inches.
Assuming the file bb.rda has been loaded in R, the following R segment computes
the 95% confidence interval for Δ:

hitht=height[hitpitind==1]; pitht=height[hitpitind==0]

t.test(pitht,hitht,var.equal=T)

The confidence interval computes to (1.42, 3.63). Note that all values in the confi-
dence interval are positive, indicating that on the average pitchers are taller than
hitters.

Remark 4.2.1. Suppose X and Y are not normally distributed but that their
distributions differ only in location. As we show in Chapter 5, the above interval,
(4.2.13), is then approximate and not exact.

4.2.2 Confidence Interval for Difference in Proportions

Let X and Y be two independent random variables with Bernoulli distributions
b(1, p1) and b(1, p2), respectively. Let us now turn to the problem of finding a confi-
dence interval for the difference p1− p2. Let X1, . . . , Xn1 be a random sample from
the distribution of X and let Y1, . . . , Yn2 be a random sample from the distribution
of Y . As above, assume that the samples are independent of one another and let
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n = n1 + n2 be the total sample size. Our estimator of p1 − p2 is the difference in
sample proportions, which, of course, is given by X − Y . We use the traditional
notation and write p̂1 and p̂2 instead of X and Y , respectively. Hence, from the
above discussion, an interval such as (4.2.9) serves as an approximate confidence
interval for p1 − p2. Here, σ2

1 = p1(1 − p1) and σ2
2 = p2(1 − p2). In the interval,

we estimate these by p̂1(1− p̂1) and p̂2(1− p̂2), respectively. Thus our approximate
(1− α)100% confidence interval for p1 − p2 is

p̂1 − p̂2 ± zα/2

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
. (4.2.14)

Example 4.2.5. Kloke and McKean (2014), page 33, discuss a data set from the
original clinical study of the Salk polio vaccine in 1954. At random, one group of
children (Treated) received the vaccine while the other group (Control) received a
placebo. Let pc and pT denote the true proportions of polio cases for control and
treated populations, respectively. The tabled results are:

Group No. Children No. Polio Cases Sample Proportion
Treated 200,745 57 0.000284
Control 201,229 199 0.000706

Note that p̂C > p̂T . The following R segment computes the 95% confidence interval
for pc − pT :

prop.test(c(199,57),c(201229,200745))

The confidence interval is (0.00054, 0.00087). All values in this interval are positive,
indicating that the vaccine is effective in reducing the incidence of polio.

EXERCISES

4.2.1. Let the observed value of the mean X and of the sample variance of a random
sample of size 20 from a distribution that is N(μ, σ2) be 81.2 and 26.5, respectively.
Find respectively 90%, 95% and 99% confidence intervals for μ. Note how the
lengths of the confidence intervals increase as the confidence increases.

4.2.2. Consider the data on the lifetimes of motors given in Exercise 4.1.1. Obtain
a large sample 95% confidence interval for the mean lifetime of a motor.

4.2.3. Suppose we assume that X1, X2, . . . , Xn is a random sample from a Γ(1, θ)
distribution.

(a) Show that the random variable (2/θ)
∑n

i=1 Xi has a χ2-distribution with 2n
degrees of freedom.

(b) Using the random variable in part (a) as a pivot random variable, find a
(1− α)100% confidence interval for θ.

(c) Obtain the confidence interval in part (b) for the data of Exercise 4.1.1 and
compare it with the interval you obtained in Exercise 4.2.2.
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4.2.4. In Example 4.2.4, for the baseball data, we found a confidence interval for
the mean difference in heights between the pitchers and hitters. In this exercise,
find the pooled t 95% confidence interval for the mean difference in weights between
the pitchers and hitters.

4.2.5. In the baseball data set discussed in the last exercise, it was found that out
of the 59 baseball players, 15 were left-handed. Is this odd, since the proportion of
left-handed males in America is about 11%? Answer by using (4.2.7) to construct a
95% approximate confidence interval for p, the proportion of left-handed professional
baseball players.

4.2.6. Let X be the mean of a random sample of size n from a distribution that is
N(μ, 9). Find n such that P (X − 1 < μ < X + 1) = 0.90, approximately.

4.2.7. Let a random sample of size 17 from the normal distribution N(μ, σ2) yield
x = 4.7 and s2 = 5.76. Determine a 90% confidence interval for μ.

4.2.8. Let X denote the mean of a random sample of size n from a distribution that
has mean μ and variance σ2 = 10. Find n so that the probability is approximately
0.954 that the random interval (X − 1

2 , X + 1
2 ) includes μ.

4.2.9. Let X1, X2, . . . , X9 be a random sample of size 9 from a distribution that is
N(μ, σ2).

(a) If σ is known, find the length of a 95% confidence interval for μ if this interval
is based on the random variable

√
9(X − μ)/σ.

(b) If σ is unknown, find the expected value of the length of a 95% confidence
interval for μ if this interval is based on the random variable

√
9(X − μ)/S.

Hint: Write E(S) = (σ/
√

n− 1)E[((n− 1)S2/σ2)1/2].

(c) Compare these two answers.

4.2.10. Let X1, X2, . . . , Xn, Xn+1 be a random sample of size n + 1, n > 1, from a
distribution that is N(μ, σ2). Let X =

∑n
1 Xi/n and S2 =

∑n
1 (Xi −X)2/(n− 1).

Find the constant c so that the statistic c(X − Xn+1)/S has a t-distribution. If
n = 8, determine k such that P (X − kS < X9 < X + kS) = 0.80. The observed
interval (x− ks, x + ks) is often called an 80% prediction interval for X9.

4.2.11. Let X1, . . . , Xn be a random sample from a N(0, 1) distribution. Then the
probability that the random interval X± tα/2,n−1(s/

√
n) traps μ = 0 is (1−α). To

verify this empirically, in this exercise, we simulate m such intervals and calculate
the proportion that trap 0, which should be “close” to (1− α).

(a) Set n = 10 and m = 50. Run the R code mat=matrix(rnorm(m*n),ncol=n)

which generates m samples of size n from the N(0, 1) distribution. Each row
of the matrix mat contains a sample. For this matrix of samples, the function
below computes the (1 − α)100% confidence intervals, returning them in a
m× 2 matrix. Run this function on your generated matrix mat. What is the
proportion of successful confidence intervals?
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getcis <- function(mat,cc=.90){

numb <- length(mat[,1]); ci <- c()

for(j in 1:numb)

{ci<-rbind(ci,t.test(mat[j,],conf.level=cc)$conf.int)}

return(ci)}

This function is also at the site discussed in Section 1.1.

(b) Run the following code which plots the intervals. Label the successful inter-
vals. Comment on the variability of the lengths of the confidence intervals.
cis<-getcis(mat); x<-1:m

plot(c(cis[,1],cis[,2])~c(x,x),pch="",xlab="Sample",ylab="CI")

points(cis[,1]~x,pch="L");points(cis[,2]~x,pch="U"); abline(h=0)

4.2.12. In Exercise 4.2.11, the sampling was from the N(0, 1) distribution. Show,
however, that setting μ = 0 and σ = 1 is without loss of generality.
Hint : First, X1, . . . , Xn is a random sample from the N(μ, σ2) if and only if
Z1, . . . , Zn is a random sample from the N(0, 1), where Zi = (Xi − μ)/σ. Then
show the confidence interval based on the Zi’s contains 0 if and only if the confi-
dence interval based on the Xi’s contains μ.

4.2.13. Change the code in the R function getcis so that it also returns the vector,
ind, where ind[i] = 1 if the ith confidence interval is successful and 0 otherwise.
Show that the empirical confidence level is mean(ind).

(a) Run 10,000 simulations for the normal setup in Exercise 4.2.11 and compute
the empirical confidence level.

(b) Run 10,000 simulations when the sampling is from the Cauchy distribution,
(1.8.8), and compute the empirical confidence level. Does it differ from (a)?
Note that the R code rcauchy(k) returns a sample of size k from this Cauchy
distribution.

(c) Note that these empirical confidence levels are proportions from samples that
are independent. Hence, use the 95% confidence interval given in expression
(4.2.14) to statistically investigate whether or not the true confidence levels
differ. Comment.

4.2.14. Let X denote the mean of a random sample of size 25 from a gamma-type
distribution with α = 4 and β > 0. Use the Central Limit Theorem to find an
approximate 0.954 confidence interval for μ, the mean of the gamma distribution.
Hint: Use the random variable (X − 4β)/(4β2/25)1/2 = 5X/2β − 10.

4.2.15. Let x be the observed mean of a random sample of size n from a distribution
having mean μ and known variance σ2. Find n so that x − σ/4 to x + σ/4 is an
approximate 95% confidence interval for μ.

4.2.16. Assume a binomial model for a certain random variable. If we desire a 90%
confidence interval for p that is at most 0.02 in length, find n.

Hint: Note that
√

(y/n)(1− y/n) ≤
√

(1
2 )(1− 1

2 ).
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4.2.17. It is known that a random variable X has a Poisson distribution with
parameter μ. A sample of 200 observations from this distribution has a mean equal
to 3.4. Construct an approximate 90% confidence interval for μ.

4.2.18. Let X1, X2, . . . , Xn be a random sample from N(μ, σ2), where both param-
eters μ and σ2 are unknown. A confidence interval for σ2 can be found as follows.
We know that (n−1)S2/σ2 is a random variable with a χ2(n−1) distribution. Thus
we can find constants a and b so that P ((n − 1)S2/σ2 < b) = 0.975 and P (a <
(n− 1)S2/σ2 < b) = 0.95. In R, b = qchisq(0.975,n-1), while a = qchisq(0.025,n-1).

(a) Show that this second probability statement can be written as

P ((n− 1)S2/b < σ2 < (n− 1)S2/a) = 0.95.

(b) If n = 9 and s2 = 7.93, find a 95% confidence interval for σ2.

(c) If μ is known, how would you modify the preceding procedure for finding a
confidence interval for σ2?

4.2.19. Let X1, X2, . . . , Xn be a random sample from a gamma distribution with
known parameter α = 3 and unknown β > 0. In Exercise 4.2.14, we obtained an
approximate confidence interval for β based on the Central Limit Theorem. In this
exercise obtain an exact confidence interval by first obtaining the distribution of
2
∑n

1 Xi/β.
Hint: Follow the procedure outlined in Exercise 4.2.18.

4.2.20. When 100 tacks were thrown on a table, 60 of them landed point up. Obtain
a 95% confidence interval for the probability that a tack of this type lands point
up. Assume independence.

4.2.21. Let two independent random samples, each of size 10, from two normal
distributions N(μ1, σ

2) and N(μ2, σ
2) yield x = 4.8, s2

1 = 8.64, y = 5.6, s2
2 = 7.88.

Find a 95% confidence interval for μ1 − μ2.

4.2.22. Let two independent random variables, Y1 and Y2, with binomial distribu-
tions that have parameters n1 = n2 = 100, p1, and p2, respectively, be observed
to be equal to y1 = 50 and y2 = 40. Determine an approximate 90% confidence
interval for p1 − p2.

4.2.23. Discuss the problem of finding a confidence interval for the difference μ1−μ2

between the two means of two normal distributions if the variances σ2
1 and σ2

2 are
known but not necessarily equal.

4.2.24. Discuss Exercise 4.2.23 when it is assumed that the variances are unknown
and unequal. This is a very difficult problem, and the discussion should point out
exactly where the difficulty lies. If, however, the variances are unknown but their
ratio σ2

1/σ2
2 is a known constant k, then a statistic that is a T random variable can

again be used. Why?
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4.2.25. To illustrate Exercise 4.2.24, let X1, X2, . . . , X9 and Y1, Y2, . . . , Y12 rep-
resent two independent random samples from the respective normal distributions
N(μ1, σ

2
1) and N(μ2, σ

2
2). It is given that σ2

1 = 3σ2
2 , but σ2

2 is unknown. Define a
random variable that has a t-distribution that can be used to find a 95% confidence
interval for μ1 − μ2.

4.2.26. Let X and Y be the means of two independent random samples, each of size
n, from the respective distributions N(μ1, σ

2) and N(μ2, σ
2), where the common

variance is known. Find n such that

P (X − Y − σ/5 < μ1 − μ2 < X − Y + σ/5) = 0.90.

4.2.27. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be two independent random samples
from the respective normal distributions N(μ1, σ

2
1) and N(μ2, σ

2
2), where the four

parameters are unknown. To construct a confidence interval for the ratio, σ2
1/σ2

2 , of
the variances, form the quotient of the two independent χ2 variables, each divided
by its degrees of freedom, namely,

F =

(m−1)S2
2

σ2
2

/(m− 1)

(n−1)S2
1

σ2
1

/(n− 1)
=

S2
2/σ2

2

S2
1/σ2

1

,

where S2
1 and S2

2 are the respective sample variances.

(a) What kind of distribution does F have?

(b) Critical values a and b can be found so that P (F < b) = 0.975 and P (a <
F < b) = 0.95. In R, b = qf(0.975,m-1,n-1), while a = qf(0.025,m-1,n-1).

(c) Rewrite the second probability statement as

P

[
a
S2

1

S2
2

<
σ2

1

σ2
2

< b
S2

1

S2
2

]
= 0.95.

The observed values, s2
1 and s2

2, can be inserted in these inequalities to provide
a 95% confidence interval for σ2

1/σ2
2 .

We caution the reader on the use of this confidence interval. This interval does
depend on the normality of the distributions. If the distributions of X and Y
are not normal then the true confidence coefficient may be far from the nominal
confidence coefficient; see, for example, page 142 of Hettmansperger and McKean
(2011) for discussion.

4.3 ∗Confidence Intervals for Parameters of Dis-

crete Distributions

In this section, we outline a procedure that can be used to obtain exact confidence
intervals for the parameters of discrete random variables. Let X1, X2, . . . , Xn be a
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random sample on a discrete random variable X with pmf p(x; θ), θ ∈ Ω, where
Ω is an interval of real numbers. Let T = T (X1, X2, . . . , Xn) be an estimator of θ
with cdf FT (t; θ). Assume that FT (t; θ) is a nonincreasing and continuous function
of θ for every t in the support of T . For a given realization of the sample, let t be
the realized value of the statistic T . Let α1 > 0 and α2 > 0 be given such that
α = α1 + α2 < 0.50. Let θ and θ be the solutions of the equations

FT (t−; θ) = 1− α2 and FT (t; θ) = α1, (4.3.1)

where T− is the statistic whose support lags by one value of T ’s support. For
instance, if ti < ti+1 are consecutive support values of T , then T = ti+1 if and only
if T− = ti. Under these conditions, the interval (θ, θ) is a confidence interval for θ
with confidence coefficient of at least 1− α. We sketch a proof of this at the end of
this section.

Before proceeding with discrete examples, we provide an example in the con-
tinuous case where the solution of equations (4.3.1) produces a familiar confidence
interval.

Example 4.3.1. Assume X1, . . . , Xn is a random sample from a N(θ, σ2) distri-
bution, where σ2 is known. Let X be the sample mean and let x be its value for a
given realization of the sample. Recall, from expression (4.2.6), that x±zα/2(σ/

√
n)

is a (1 − α)100% confidence interval for θ. Assuming θ is the true mean, the cdf
of X is FX;θ(t) = Φ[(t − θ)/(σ/

√
n)], where Φ(z) is the cdf of a standard normal

distribution. Note for the continuous case that X− has the same distribution as X.
Then the first equation of (4.3.1) yields

Φ[(x− θ)/(σ/
√

n)] = 1− (α/2);

i.e.,
(x− θ)/(σ/

√
n) = Φ−1[1− (α/2)] = zα/2.

Solving for θ, we obtain the lower bound of the confidence interval x− zα/2(σ/
√

n).
Similarly, the solution of the second equation is the upper bound of the confidence
interval.

For the discrete case, generally iterative algorithms are used to solve equations
(4.3.1). In practice, the function FT (T ; θ) is often strictly decreasing and continuous
in θ, so a simple algorithm often suffices. We illustrate the examples below by using
the simple bisection algorithm, which we now briefly discuss.

Remark 4.3.1 (Bisection Algorithm). Suppose we want to solve the equation
g(x) = d, where g(x) is strictly decreasing. Assume on a given step of the algorithm
that a < b bracket the solution; i.e., g(a) > d > g(b). Let c = (a + b)/2. Then on
the next step of the algorithm, the new bracket values a and b are determined by

if(g(c) > d) then {a ← c and b← b}
if(g(c) < d) then {a ← a and b← c}.

The algorithm continues until |a− b| < ε, where ε > 0 is a specified tolerance.
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Example 4.3.2 (Confidence Interval for a Bernoulli Proportion). Let X have a
Bernoulli distribution with θ as the probability of success. Let Ω = (0, 1). Suppose
X1, X2, . . . , Xn is a random sample on X . As our point estimator of θ, we consider
X, which is the sample proportion of successes. The cdf of nX is binomial(n.θ).
Thus

FX(x; θ) = P (nX ≤ nx)

=

nx∑
j=0

(
n

j

)
θj(1− θ)n−j

= 1−
n∑

j=nx+1

(
n

j

)
θj(1− θ)n−j

= 1−
∫ θ

0

n!

(nx)![n− (nx + 1]!
znx(1− z)n−(nx+1) dz, (4.3.2)

where the last equality, involving the incomplete β-function, follows from Exercise
4.3.6. By the fundamental theorem of calculus and expression (4.3.2),

d

dθ
FX(x; θ) = − n!

(nx)![n− (nx + 1]!
θnx(1 − θ)n−(nx+1) < 0;

hence, FX(x; θ) is a strictly decreasing function of θ, for each x. Next, let α1, α2 > 0
be specified constants such that α1 + α2 < 1/2 and let θ and θ solve the equations

FX(x−; θ) = 1− α2 and Fx(X; θ) = α1. (4.3.3)

Then (θ, θ) is a confidence interval for θ with confidence coefficient at least 1 − α,
where α = α1 + α2. These equations can be solved iteratively, as discussed in the
following numerical illustration.

Numerical Illustration. Suppose n = 30 and the realization of the sample mean
is x = 0.60, i.e., the sample produced nx = 18 successes. Take α1 = α2 = 0.05.
Because the support of the binomial consists of integers and nx = 18, we can write
equations (4.3.3) as∑17

j=0

(
n
j

)
θj(1− θ)n−j = 0.95 and

∑18
j=0

(
n
j

)
θ

j
(1− θ)n−j = 0.05 . (4.3.4)

Let bin(n, p) denote a random variable with binomial distribution with parameters
n and p. Because P (bin(30, 0.4) ≤ 17) = pbinom(17,30,.4) = 0.9787 and because
P (bin(30, 0.45) ≤ 17) = pbinom(17,30,.45) = 0.9286, the values 0.4 and 0.45 bracket
the solution to the first equation. We use these bracket values as input to the R
function1 binomci.r which iteratively solves the equation. The call and its output
are:

> binomci(17,30,.4,.45,.95); $solution 0.4339417

1Download this function at the site given in the preface.



4.3. ∗Confidence Intervals for Parameters of Discrete Distributions 251

So the solution to the first equation is θ = 0.434. In the same way, because
P (bin(30, 0.7) ≤ 18) = 0.1593 and P (bin(30, 0.8) ≤ 18) = 0.0094, the values 0.7
and 0.8 bracket the solution to the second equation. The R segment for the solution
is:

> binomci(18,30,.7,.8,.05); $solution 0.75047

Thus the confidence interval is (0.434, 0.750), with a confidence of at least 90%.
For comparison, the asymptotic 90% confidence interval of expression (4.2.7) is
(0.453, 0.747); see Exercise 4.3.2.

Example 4.3.3 (Confidence Interval for the Mean of a Poisson Distribution). Let
X1, X2, . . . , Xn be a random sample on a random variable X that has a Poisson
distribution with mean θ. Let X = n−1

∑n
i=1 Xi be our point estimator of θ. As

with the Bernoulli confidence interval in the last example, we can work with nX,
which, in this case, has a Poisson distribution with mean nθ. The cdf of X is

FX(x; θ) =

nx∑
j=0

e−nθ (nθ)j

j!

=
1

Γ(nx + 1)

∫ ∞

nθ

xnxe−x dx, (4.3.5)

where the integral equation is obtained in Exercise 4.3.7. From expression (4.3.5),
we immediately have

d

dθ
FX(x; θ) =

−n

Γ(nx + 1)
(nθ)nxe−nθ < 0.

Therefore, FX(x; θ) is a strictly decreasing function of θ for every fixed x. For a
given sample, let x be the realization of the statistic X . Hence, as discussed above,
for α1, α2 > 0 such that α1 + α2 < 1/2, the confidence interval is given by (θ, θ),
where ∑nx−1

j=0 e−nθ (nθ)j

j! = 1− α2 and
∑nx

j=0 e−nθ (nθ)j

j! = α1. (4.3.6)

The confidence coefficient of the interval (θ, θ) is at least 1−α = 1− (α1 + α2). As
with the Bernoulli proportion, these equations can be solved iteratively.

Numerical Illustration. Suppose n = 25 and the realized value of X is x = 5;
hence, nx = 125 events have occurred. We select α1 = α2 = 0.05. Then, by (4.3.7),
our confidence interval solves the equations∑124

j=0 e−nθ (nθ)j

j! = 0.95 and
∑125

j=0 e−nθ (nθ)j

j! = 0.05. (4.3.7)

Our R function2 poissonci.r uses the bisection algorithm to solve these equations.
Since ppois(124, 25 ∗ 4) = 0.9932 and ppois(124, 25 ∗ 4.4) = 0.9145, for the first
equation, 4.0 and 4.4 bracket the solution. Here is the call to poissonci.r along
with the solution (the lower bound of the confidence interval):

2Download this function at the site given in the Preface.
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> poissonci(124,25,4,4.4,.95); $solution 4.287836

Since ppois(125, 25 ∗ 5.5) = 0.1528 and ppois(125, 25 ∗ 6.0) = 0.0204, for the second
equation, 5.5 and 6.0 bracket the solution. Hence, the computation of the lower
bound of the confidence interval is:

> poissonci(125,25,5.5,6,.05); $solution 5.800575

So the confidence interval is (4.287, 5.8), with confidence at least 90%. Note that
the confidence interval is right-skewed, similar to the Poisson distribution.

A brief sketch of the theory behind this confidence interval follows. Consider
the general setup in the first paragraph of this section, where T is an estimator of
the unknown parameter θ and FT (t; θ) is the cdf of T . Define

θ = sup{θ : FT (T ; θ) ≥ α1} (4.3.8)

θ = inf{θ : FT (T−; θ) ≤ 1− α2}. (4.3.9)

Hence, we have

θ > θ ⇒ FT (T ; θ) ≤ α1

θ < θ ⇒ FT (T−; θ) ≥ 1− α2.

These implications lead to

P [θ < θ < θ] = 1− P [{θ < θ} ∪ {θ > θ}]
= 1− P [θ < θ]− P [θ > θ]

≥ 1− P [FT (T−; θ) ≥ 1− α2]− P [FT (T ; θ) ≤ α1]

≥ 1− α1 − α2,

where the last inequality is evident from equations (4.3.8) and (4.3.9). A rigorous
proof can be based on Exercise 4.8.13; see page 425 of Shao (1998) for details.

EXERCISES

4.3.1. Recall For the baseball data (bb.rda), 15 out of 59 ballplayers are left-
handed. Let p be the probability that a professional baseball player is left-handed.
Determine an exact 90% confidence interval for p. Show first that the equations to
be solved are:∑14

j=0

(
n
j

)
θj(1 − θ)n−j = 0.95 and

∑15
j=0

(
n
j

)
θ

j
(1 − θ)n−j = 0.05 .

Then do the following steps to obtain the confidence interval.

(a) Show that 0.10 and 0.17 bracket the solution to the first equation.

(b) Show that 0.34 and 0.38 bracket the solution to the second equation.

(c) Then use the R function binomci.r to solve the equations.

4.3.2. In Example 4.3.2, verify the result for the asymptotic confidence interval for
θ.
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4.3.3. In Exercise 4.2.20, the large sample confidence interval was obtained for the
probability that a tack tossed on a table lands point up. Find the discrete exact
confidence interval for this proportion.

4.3.4. Suppose X1, X2, . . . , X10 is a random sample on a random variable X that
has a Poisson distribution with mean θ. Suppose the realized value of the sample
mean is 0.5; i.e., nx = 5 events occurred. Suppose we want to compute the exact
90% confidence interval for θ, as determined by equations (4.3.7).

(a) Show that 0.19 and 0.20 bracket the solution to the first equation.

(b) Show that 1.0 and 1.1 bracket the solution to the second equation.

(c) Then use the R function poissonci.r to solve the equations.

4.3.5. Consider the same setup as in Example 4.3.1 except now assume that σ2

is unknown. Using the distribution of (X − θ)/(S/
√

n), where S is the sample
standard deviation, set up the equations and derive the t-interval, (4.2.3), for θ.

4.3.6. Using Exercise 3.3.22, show that∫ p

0

n!

(k − 1)!(n− k)!
zk−1(1− z)n−k dz =

n∑
w=k

(
n

w

)
pw(1− p)n−w,

where 0 < p < 1, and k and n are positive integers such that k ≤ n.
Hint: Differentiate both sides with respect to p. The derivative of the right side is
a sum of differences. Show it simplifies to the derivative of the left side. Hence, the
sides differ by a constant. Finally, show that the constant is 0.

4.3.7. This exercise obtains a useful identity for the cdf of a Poisson cdf.

(a) Use Exercise 3.3.5 to show that this identity is true:

λn

Γ(n)

∫ ∞

1

xn−1e−xλ dx =
n−1∑
j=0

e−λ λj

j!
,

for λ > 0 and n a positive integer.

Hint: Just consider a Poisson process on the unit interval with mean λ. Let
Wn be the waiting time until the nth event. Then the left side is P (Wn > 1).
Why?

(b) Obtain the identity used in Example 4.3.3, by making the transformation
z = λx in the above integral.

4.4 Order Statistics

In this section the notion of an order statistic is defined and some of its simple
properties are investigated. These statistics have in recent times come to play an
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important role in statistical inference partly because some of their properties do not
depend upon the distribution from which the random sample is obtained.

Let X1, X2, . . . , Xn denote a random sample from a distribution of the continu-
ous type having a pdf f(x) that has support S = (a, b), where −∞ ≤ a < b ≤ ∞.
Let Y1 be the smallest of these Xi, Y2 the next Xi in order of magnitude, . . . , and
Yn the largest of Xi. That is, Y1 < Y2 < · · · < Yn represent X1, X2, . . . , Xn when
the latter are arranged in ascending order of magnitude. We call Yi, i = 1, 2, . . . , n,
the ith order statistic of the random sample X1, X2, . . . , Xn. Then the joint pdf
of Y1, Y2, . . . , Yn is given in the following theorem.

Theorem 4.4.1. Using the above notation, let Y1 < Y2 < · · · < Yn denote the
n order statistics based on the random sample X1, X2, . . . , Xn from a continuous
distribution with pdf f(x) and support (a, b). Then the joint pdf of Y1, Y2, . . . , Yn is
given by

g(y1, y2, . . . , yn) =

{
n!f(y1)f(y2) · · · f(yn) a < y1 < y2 < · · · < yn < b
0 elsewhere.

(4.4.1)

Proof: Note that the support of X1, X2, . . . , Xn can be partitioned into n! mutually
disjoint sets that map onto the support of Y1, Y2, . . . , Yn, namely, {(y1, y2, . . . , yn) :
a < y1 < y2 < · · · < yn < b}. One of these n! sets is a < x1 < x2 < · · · < xn < b,
and the others can be found by permuting the n xs in all possible ways. The
transformation associated with the one listed is x1 = y1, x2 = y2, . . . , xn = yn,
which has a Jacobian equal to 1. However, the Jacobian of each of the other
transformations is either ±1. Thus

g(y1, y2, . . . , yn) =

n!∑
i=1

|Ji|f(y1)f(y2) · · · f(yn)

=

{
n!f(y1)f(y2) · · · f(yn) a < y1 < y2 < · · · < yn < b
0 elsewhere,

as was to be proved.

Example 4.4.1. Let X denote a random variable of the continuous type with a pdf
f(x) that is positive and continuous, with support S = (a, b), −∞ ≤ a < b ≤ ∞.
The distribution function F (x) of X may be written

F (x) =

∫ x

a

f(w) dw, a < x < b.

If x ≤ a, F (x) = 0; and if b ≤ x, F (x) = 1. Thus there is a unique median m of the
distribution with F (m) = 1

2 . Let X1, X2, X3 denote a random sample from this
distribution and let Y1 < Y2 < Y3 denote the order statistics of the sample. Note
that Y2 is the sample median. We compute the probability that Y2 ≤ m. The joint
pdf of the three order statistics is

g(y1, y2, y3) =

{
6f(y1)f(y2)f(y3) a < y1 < y2 < y3 < b
0 elsewhere.
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The pdf of Y2 is then

h(y2) = 6f(y2)

∫ b

y2

∫ y2

a

f(y1)f(y3) dy1dy3

=

{
6f(y2)F (y2)[1− F (y2)] a < y2 < b
0 elsewhere.

Accordingly,

P (Y2 ≤ m) = 6

∫ m

a

{F (y2)f(y2)− [F (y2)]
2f(y2)} dy2

= 6

{
[F (y2)]

2

2
− [F (y2)]

3

3

}m

a

=
1

2
.

Hence, for this situation, the median of the sample median Y2 is the population
median m.

Once it is observed that∫ x

a

[F (w)]α−1f(w) dw =
[F (x)]α

α
, α > 0,

and that ∫ b

y

[1− F (w)]β−1f(w) dw =
[1− F (y)]β

β
, β > 0,

it is easy to express the marginal pdf of any order statistic, say Yk, in terms of F (x)
and f(x). This is done by evaluating the integral

gk(yk) =

∫ yk

a

· · ·
∫ y2

a

∫ b

yk

· · ·
∫ b

yn−1

n!f(y1)f(y2) · · · f(yn) dyn · · · dyk+1 dy1 · · ·dyk−1.

The result is

gk(yk) =

{ n!
(k−1)!(n−k)! [F (yk)]k−1[1− F (yk)]n−kf(yk) a < yk < b

0 elsewhere.
(4.4.2)

Example 4.4.2. Let Y1 < Y2 < Y3 < Y4 denote the order statistics of a random
sample of size 4 from a distribution having pdf

f(x) =

{
2x 0 < x < 1
0 elsewhere.

We express the pdf of Y3 in terms of f(x) and F (x) and then compute P (1
2 < Y3).

Here F (x) = x2, provided that 0 < x < 1, so that

g3(y3) =

{
4!

2! 1! (y
2
3)

2(1− y2
3)(2y3) 0 < y3 < 1

0 elsewhere.
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Thus

P (1
2 < Y3) =

∫ ∞

1/2

g3(y3) dy3

=

∫ 1

1/2

24(y5
3 − y7

3) dy3 =
243

256
.

Finally, the joint pdf of any two order statistics, say Yi < Yj , is easily expressed
in terms of F (x) and f(x). We have

gij(yi, yj) =

∫ yi

a

· · ·
∫ y2

a

∫ yj

yi

· · ·
∫ yj

yj−2

∫ b

yj

· · ·
∫ b

yn−1

n!f(y1)× · · ·

× f(yn) dyn · · · dyj+1dyj−1 · · · dyi+1dy1 · · ·dyi−1.

Since, for γ > 0,∫ y

x

[F (y)− F (w)]γ−1f(w) dw = − [F (y)− F (w)]γ

γ

∣∣∣∣y
x

=
[F (y)− F (x)]γ

γ
,

it is found that

gij(yi, yj) =

⎧⎨⎩
n!

(i−1)!(j−i−1)!(n−j)! [F (yi)]
i−1[F (yj)−F (yi)]

j−i−1

×[1− F (yj)]
n−jf(yi)f(yj) a < yi < yj < b

0 elsewhere.
(4.4.3)

Remark 4.4.1 (Heuristic Derivation). There is an easy method of remembering
the pdf of a vector of order statistics such as the one given in formula (4.4.3). The
probability P (yi < Yi < yi + Δi, yj < Yj < yj + Δj), where Δi and Δj are small,
can be approximated by the following multinomial probability. In n independent
trials, i−1 outcomes must be less than yi [an event that has probability p1 = F (yi)
on each trial]; j − i − 1 outcomes must be between yi + Δi and yj [an event with
approximate probability p2 = F (yj)−F (yi) on each trial]; n− j outcomes must be
greater than yj +Δj [an event with approximate probability p3 = 1−F (yj) on each
trial]; one outcome must be between yi and yi + Δi [an event with approximate
probability p4 = f(yi)Δi on each trial]; and, finally, one outcome must be between
yj and yj + Δj [an event with approximate probability p5 = f(yj)Δj on each trial].
This multinomial probability is

n!

(i− 1)!(j − i− 1)!(n− j)! 1! 1!
pi−1
1 pj−i−1

2 pn−j
3 p4p5,

which is gi,j(yi, yj)ΔiΔj , where gi,j(yi, yj) is given in expression (4.4.3).
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Certain functions of the order statistics Y1, Y2, . . . , Yn are important statistics
themselves. The sample range of the random sample is given by Yn − Y1 and the
sample midrange is given by (Y1 + Yn)/2, which is called the midrange of the
random sample. The sample median of the random sample is defined by

Q2 =

{
Y(n+1)/2 if n is odd
(Yn/2 + Y(n/2)+1)/2 if n is even.

(4.4.4)

Example 4.4.3. Let Y1, Y2, Y3 be the order statistics of a random sample of size
3 from a distribution having pdf

f(x) =

{
1 0 < x < 1
0 elsewhere.

We seek the pdf of the sample range Z1 = Y3 − Y1. Since F (x) = x, 0 < x < 1, the
joint pdf of Y1 and Y3 is

g13(y1, y3) =

{
6(y3 − y1) 0 < y1 < y3 < 1
0 elsewhere.

In addition to Z1 = Y3 − Y1, let Z2 = Y3. The functions z1 = y3 − y1, z2 = y3 have
respective inverses y1 = z2− z1, y3 = z2, so that the corresponding Jacobian of the
one-to-one transformation is

J =

∣∣∣∣∣∣
∂y1

∂z1

∂y1

∂z2

∂y3

∂z1

∂y3

∂z2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ −1 1

0 1

∣∣∣∣∣∣ = −1.

Thus the joint pdf of Z1 and Z2 is

h(z1, z2) =

{
| − 1|6z1 = 6z1 0 < z1 < z2 < 1
0 elsewhere.

Accordingly, the pdf of the range Z1 = Y3 − Y1 of the random sample of size 3 is

h1(z1) =

{ ∫ 1

z1
6z1 dz2 = 6z1(1 − z1) 0 < z1 < 1

0 elsewhere.

4.4.1 Quantiles

Let X be a random variable with a continuous cdf F (x). For 0 < p < 1, define
the pth quantile of X to be ξp = F−1(p). For example, ξ0.5, the median of X , is
the 0.5 quantile. Let X1, X2, . . . , Xn be a random sample from the distribution of
X and let Y1 < Y2 < · · · < Yn be the corresponding order statistics. Let k be the
greatest integer less than or equal to [p(n + 1)]. We next define an estimator of ξp

after making the following observation. The area under the pdf f(x) to the left of
Yk is F (Yk). The expected value of this area is

E(F (Yk)) =

∫ b

a

F (yk)gk(yk) dyk,
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where gk(yk) is the pdf of Yk given in expression (4.4.2). If, in this integral, we
make a change of variables through the transformation z = F (yk), we have

E(F (Yk)) =

∫ 1

0

n!

(k − 1)!(n− k)!
zk(1− z)n−k dz.

Comparing this to the integral of a beta pdf, we see that it is equal to

E(F (Yk)) =
n!k!(n− k)!

(k − 1)!(n− k)!(n + 1)!
=

k

n + 1
.

On the average, there is k/(n + 1) of the total area to the left of Yk. Because
p

.
= k/(n + 1), it seems reasonable to take Yk as an estimator of the quantile ξp.

Hence, we call Yk the pth sample quantile It is also called the 100pth percentile
of the sample.

Remark 4.4.2. Some statisticians define sample quantiles slightly differently from
what we have. For one modification with 1/(n + 1) < p < n/(n + 1), if (n + 1)/p
is not equal to an integer, then the pth quantile of the sample may be defined as
follows. Write (n + 1)p = k + r, where k = [(n + 1)p] and r is a proper fraction,
using the weighted average. Then the pth quantile of the sample is the weighted
average

(1− r)Yk + rYk+1, (4.4.5)

which is an estimator of the pth quantile. As n becomes large, however, all these
modified definitions are essentially the same. For R code, let the R vector x contain
the realization of the sample. Then the call quantile(x,p) computes a pth quantile
of form (4.4.5).

Sample quantiles are useful descriptive statistics. For instance, if yk is the pth
quantile of the realized sample, then we know that approximately p100% of the data
are less than or equal to yk and approximately (1− p)100% of the data are greater
than or equal to yk. Next we discuss two statistical applications of quantiles.

A five-number summary of the data consists of the following five sample quan-
tiles: the minimum (Y1), the first quartile (Y.25(n+1)), the median defined in expres-
sion (4.4.4), the third quartile (Y.75(n+1)), and the maximum (Yn). For this section,
we use the notation Q1, Q2, and Q3 to denote, respectively, the first quartile, me-
dian, and third quartile of the sample.

The five-number summary divides the data into their quartiles, offering a sim-
ple and easily interpretable description of the data. Five-number summaries were
made popular by the work of the late Professor John Tukey [see Tukey (1977) and
Mosteller and Tukey (1977)]. Tukey used the median of the lower half of the data
(from minimum to median) and the median of the upper half of the data instead
of the first and third quartiles. He referred to these quantities as the hinges of
the data. The R function fivenum(x) returns the hinges along with the minimum,
median, and maximum of the data.

Example 4.4.4. The following data are the ordered realizations of a random sample
of size 15 on a random variable X .
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56 70 89 94 96 101 102 102
102 105 106 108 110 113 116

For these data, since n + 1 = 16, the realizations of the five-number summary are
y1 = 56, Q1 = y4 = 94, Q2 = y8 = 102, Q3 = y12 = 108, and y15 = 116. Hence,
based on the five-number summary, the data range from 56 to 116; the middle 50%
of the data range from 94 to 108; and the middle of the data occurred at 102. The
data are in the file eg4.4.4data.rda.

The five-number summary is the basis for a useful and quick plot of the data.
This is called a boxplot of the data. The box encloses the middle 50% of the
data and a line segment is usually used to indicate the median. The extreme order
statistics, however, are very sensitive to outlying points. So care must be used in
placing these on the plot. We make use of the box and whisker plots defined by
John Tukey. In order to define this plot, we need to define a potential outlier. Let
h = 1.5(Q3−Q1) and define the lower fence (LF ) and the upper fence (UF ) by

LF = Q1 − h and UF = Q3 + h. (4.4.6)

Points that lie outside the fences, i.e., outside the interval (LF, UF ), are called
potential outliers and they are denoted by the symbol “0” on the boxplot. The
whiskers then protrude from the sides of the box to what are called the adjacent
points, which are the points within the fences but closest to the fences. Exercise
4.4.2 shows that the probability of an observation from a normal distribution being
a potential outlier is 0.006977.

Example 4.4.5 (Example 4.4.4, Continued). Consider the data given in Example
4.4.4. For these data, h = 1.5(108− 94) = 21, LF = 73, and UF = 129. Hence the
observations 56 and 70 are potential outliers. There are no outliers on the high side
of the data. The lower adjacent point is 89. The boxplot of the data set is given in
Panel A of Figure 4.4.1, which was computed by the R segment boxplot(x) where
the R vector x contains the data.

Note that the point 56 is over 2h from Q1. Some statisticians call such a point
an “outlier” and label it with a symbol other than “O,” but we do not make this
distinction.

In practice, we often assume that the data follow a certain distribution. For
example, we may assume that X1, . . . , Xn are a random sample from a normal
distribution with unknown mean and variance. Thus the form of the distribution
of X is known, but the specific parameters are not. Such an assumption needs to
be checked and there are many statistical tests which do so; see D’Agostino and
Stephens (1986) for a thorough discussion of such tests. As our second statistical
application of quantiles, we discuss one such diagnostic plot in this regard.

We consider the location and scale family. Suppose X is a random variable
with cdf F ((x − a)/b), where F (x) is known but a and b > 0 may not be. Let
Z = (X−a)/b; then Z has cdf F (z). Let 0 < p < 1 and let ξX,p be the pth quantile
of X . Let ξZ,p be the pth quantile of Z = (X − a)/b. Because F (z) is known, ξZ,p

is known. But

p = P [X ≤ ξX,p] = P

[
Z ≤ ξX,p − a

b

]
,
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Figure 4.4.1: Boxplot and quantile plots for the data of Example 4.4.4.

from which we have the linear relationship

ξX,p = bξZ,p + a. (4.4.7)

Thus, if X has a cdf of the form of F ((x − a)/b), then the quantiles of X are
linearly related to the quantiles of Z. Of course, in practice, we do not know the
quantiles of X , but we can estimate them. Let X1, . . . , Xn be a random sample from
the distribution of X and let Y1 < · · · < Yn be the order statistics. For k = 1, . . . , n,
let pk = k/(n + 1). Then Yk is an estimator of ξX,pk

. Denote the corresponding
quantiles of the cdf F (z) by ξZ,pk

= F−1(pk). Let yk denote the realized value of
Yk. The plot of yk versus ξZ,pk

is called a q−q plot, as it plots one set of quantiles
from the sample against another set from the theoretical cdf F (z). Based on the
above discussion, the linearity of such a plot indicates that the cdf of X is of the
form F ((x− a)/b).

Example 4.4.6 (Example 4.4.5, Continued). Panels B, C, and D of Figure 4.4.1
contain q−q plots of the data of Example 4.4.4 for three different distributions.
The quantiles of a standard normal random variable are used for the plot in Panel
B. Hence, as described above, this is the plot of yk versus Φ−1(k/(n + 1)), for
k = 1, 2, . . . , n. For Panel C, the population quantiles of the standard Laplace
distribution are used; that is, the density of Z is f(z) = (1/2)e−|z|, −∞ < z < ∞.
For Panel D, the quantiles were generated from an exponential distribution with
density f(z) = e−z, 0 < z < ∞, zero elsewhere. The generation of these quantiles
is discussed in Exercise 4.4.1.

The plot farthest from linearity is that of Panel D. Note that this plot gives
an indication of a more correct distribution. For the points to lie on a line, the
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lower quantiles of Z must be spread out as are the higher quantiles; i.e., symmetric
distributions may be more appropriate. The plots in Panels B and C are more
linear than that of Panel D, but they still contain some curvature. Of the two,
Panel C appears to be more linear. Actually, the data were generated from a
Laplace distribution, so one would expect that Panel C would be the most linear of
the three plots.

Many computer packages have commands to obtain the population quantiles
used in this example. The R function qqplotc4s2.r, at the site listed in Chapter
1, obtains the normal, Laplace, and exponential quantiles used for Figure 4.4.1 and
the plot. The call is qqplotc4s2(x) where the R vector x contains the data.

The q−q plot using normal quantiles is often called a normal q−q plot. If the
data are in the R vector x, the plot is obtained by the call qqnorm(x).

4.4.2 Confidence Intervals for Quantiles

Let X be a continuous random variable with cdf F (x). For 0 < p < 1, define the
100pth distribution percentile to be ξp, where F (ξp) = p. For a sample of size n on
X , let Y1 < Y2 < · · · < Yn be the order statistics. Let k = [(n + 1)p]. Then the
100pth sample percentile Yk is a point estimate of ξp.

We now derive a distribution free confidence interval for ξp, meaning it is a
confidence interval for ξp which is free of any assumptions about F (x) other than
it is of the continuous type. Let i < [(n + 1)p] < j, and consider the order statistics
Yi < Yj and the event Yi < ξp < Yj . For the ith order statistic Yi to be less than
ξp, it must be true that at least i of the X values are less than ξp. Moreover, for
the jth order statistic to be greater than ξp, fewer than j of the X values are less
than ξp. To put this in the context of a binomial distribution, the probability of
success is P (X < ξp) = F (ξp) = p. Further, the event Yi < ξp < Yj is equivalent to
obtaining between i (inclusive) and j (exclusive) successes in n independent trials.
Thus, taking probabilities, we have

P (Yi < ξp < Yj) =

j−1∑
w=i

(
n

w

)
pw(1− p)n−w. (4.4.8)

When particular values of n, i, and j are specified, this probability can be computed.
By this procedure, suppose that it has been found that γ = P (Yi < ξp < Yj). Then
the probability is γ that the random interval (Yi, Yj) includes the quantile of order
p. If the experimental values of Yi and Yj are, respectively, yi and yj, the interval
(yi, yj) serves as a 100γ% confidence interval for ξp, the quantile of order p. We use
this in the next example to find a confidence interval for the median.

Example 4.4.7 (Confidence Interval for the Median). Let X be a continuous ran-
dom variable with cdf F (x). Let ξ1/2 denote the median of F (x); i.e., ξ1/2 solves
F (ξ1/2) = 1/2. Suppose X1, X2, . . . , Xn is a random sample from the distribution
of X with corresponding order statistics Y1 < Y2 < · · · < Yn. As before, let Q2

denote the sample median, which is a point estimator of ξ1/2. Select α, so that
0 < α < 1. Take cα/2 to be the α/2th quantile of a binomial b(n, 1/2) distribution;
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that is, P [S ≤ cα/2] = α/2, where S is distributed b(n, 1/2). Then note also that
P [S ≥ n − cα/2] = α/2. (Because of the discreteness of the binomial distribu-
tion, either take a value of α for which these probabilities are correct or change the
equalities to approximations.) Thus it follows from expression (4.4.8) that

P [Ycα/2+1 < ξ1/2 < Yn−cα/2
] = 1− α. (4.4.9)

Hence, when the sample is drawn, if ycα/2+1 and yn−cα/2
are the realized values of

the order statistics Ycα/2+1 and Yn−cα/2
, then the interval

(ycα/2+1, yn−cα/2
) (4.4.10)

is a (1− α)100% confidence interval for ξ1/2.
To illustrate this confidence interval, consider the data of Example 4.4.4. Sup-

pose we want an 88% confidence interval for ξ1/2. Then α/2 = 0.060. Then cα/2 = 4
because P [S ≤ 4] =pbinom(4,15,.5)= 0.059, where the distribution of S is bino-
mial with n = 15 and p = 0.5. Therefore, an 88% confidence interval for ξ1/2 is
(y5, y11) = (96, 106).

The R function onesampsgn(x) computes a confidence interval for the median.
For the data in Example 4.4.4, the code onesampsgn(x,alpha=.12) computes the
confidence interval (96, 106) for the median.

Note that because of the discreteness of the binomial distribution, only certain
confidence levels are possible for this confidence interval for the median. If we further
assume that f(x) is symmetric about ξ, Chapter 10 presents other distribution free
confidence intervals where this discreteness is much less of a problem.

EXERCISES

4.4.1. Obtain closed-form expressions for the distribution quantiles based on the
exponential and Laplace distributions as discussed in Example 4.4.6.

4.4.2. Suppose the pdf f(x) is symmetric about 0 with cdf F (x). Show that the
probability of a potential outlier from this distribution is 2F (4q1), where F−1(0.25) =
q1 Use this to obtain the probability that an observation is a potential outlier for
the following distributions.

(a) The underlying distribution is normal. Use the N(0, 1) distribution.

(b) The underlying distribution is logistic; that is, the pdf is given by

f(x) =
e−x

(1 + e−x)2
, −∞ < x < ∞. (4.4.11)

(c) The underlying distribution is Laplace, with the pdf

f(x) =
1

2
e−|x|, −∞ < x < ∞. (4.4.12)
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4.4.3. Consider the sample of data (data are in the file ex4.4.3data.rda):

13 5 202 15 99 4 67 83 36 11 301
23 213 40 66 106 78 69 166 84 64

(a) Obtain the five-number summary of these data.

(b) Determine if there are any outliers.

(c) Boxplot the data. Comment on the plot.

4.4.4. Consider the data in Exercise 4.4.3. Obtain the normal q−q plot for these
data. Does the plot suggest that the underlying distribution is normal? If not, use
the plot to determine a more appropriate distribution. Confirm your choice with a
q−q based on the quantiles using your chosen distribution.

4.4.5. Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size
4 from the distribution having pdf f(x) = e−x, 0 < x < ∞, zero elsewhere. Find
P (Y4 ≥ 3).

4.4.6. Let X1, X2, X3 be a random sample from a distribution of the continuous
type having pdf f(x) = 2x, 0 < x < 1, zero elsewhere.

(a) Compute the probability that the smallest of X1, X2, X3 exceeds the median
of the distribution.

(b) If Y1 < Y2 < Y3 are the order statistics, find the correlation between Y2 and
Y3.

4.4.7. Let f(x) = 1
6 , x = 1, 2, 3, 4, 5, 6, zero elsewhere, be the pmf of a distribution

of the discrete type. Show that the pmf of the smallest observation of a random
sample of size 5 from this distribution is

g1(y1) =

(
7− y1

6

)5

−
(

6− y1

6

)5

, y1 = 1, 2, . . . , 6,

zero elsewhere. Note that in this exercise the random sample is from a distribution
of the discrete type. All formulas in the text were derived under the assumption
that the random sample is from a distribution of the continuous type and are not
applicable. Why?

4.4.8. Let Y1 < Y2 < Y3 < Y4 < Y5 denote the order statistics of a random sample
of size 5 from a distribution having pdf f(x) = e−x, 0 < x < ∞, zero elsewhere.
Show that Z1 = Y2 and Z2 = Y4 − Y2 are independent.
Hint: First find the joint pdf of Y2 and Y4.

4.4.9. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n
from a distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Show that the
kth order statistic Yk has a beta pdf with parameters α = k and β = n− k + 1.
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4.4.10. Let Y1 < Y2 < · · · < Yn be the order statistics from a Weibull distribution,
Exercise 3.3.26. Find the distribution function and pdf of Y1.

4.4.11. Find the probability that the range of a random sample of size 4 from the
uniform distribution having the pdf f(x) = 1, 0 < x < 1, zero elsewhere, is less
than 1

2 .

4.4.12. Let Y1 < Y2 < Y3 be the order statistics of a random sample of size 3 from
a distribution having the pdf f(x) = 2x, 0 < x < 1, zero elsewhere. Show that
Z1 = Y1/Y2, Z2 = Y2/Y3, and Z3 = Y3 are mutually independent.

4.4.13. Suppose a random sample of size 2 is obtained from a distribution that has
pdf f(x) = 2(1− x), 0 < x < 1, zero elsewhere. Compute the probability that one
sample observation is at least twice as large as the other.

4.4.14. Let Y1 < Y2 < Y3 denote the order statistics of a random sample of size
3 from a distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere. Let Z =
(Y1 + Y3)/2 be the midrange of the sample. Find the pdf of Z.

4.4.15. Let Y1 < Y2 denote the order statistics of a random sample of size 2 from
N(0, σ2).

(a) Show that E(Y1) = −σ/
√

π.
Hint: Evaluate E(Y1) by using the joint pdf of Y1 and Y2 and first integrating
on y1.

(b) Find the covariance of Y1 and Y2.

4.4.16. Let Y1 < Y2 be the order statistics of a random sample of size 2 from a
distribution of the continuous type which has pdf f(x) such that f(x) > 0, provided
that x ≥ 0, and f(x) = 0 elsewhere. Show that the independence of Z1 = Y1 and
Z2 = Y2 − Y1 characterizes the gamma pdf f(x), which has parameters α = 1 and
β > 0. That is, show that Y1 and Y2 are independent if and only if f(x) is the pdf
of a Γ(1, β) distribution.
Hint: Use the change-of-variable technique to find the joint pdf of Z1 and Z2 from
that of Y1 and Y2. Accept the fact that the functional equation h(0)h(x + y) ≡
h(x)h(y) has the solution h(x) = c1e

c2x, where c1 and c2 are constants.

4.4.17. Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size
n = 4 from a distribution with pdf f(x) = 2x, 0 < x < 1, zero elsewhere.

(a) Find the joint pdf of Y3 and Y4.

(b) Find the conditional pdf of Y3, given Y4 = y4.

(c) Evaluate E(Y3|y4).

4.4.18. Two numbers are selected at random from the interval (0, 1). If these
values are uniformly and independently distributed, by cutting the interval at these
numbers, compute the probability that the three resulting line segments can form
a triangle.
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4.4.19. Let X and Y denote independent random variables with respective proba-
bility density functions f(x) = 2x, 0 < x < 1, zero elsewhere, and g(y) = 3y2, 0 <
y < 1, zero elsewhere. Let U = min(X, Y ) and V = max(X, Y ). Find the joint pdf
of U and V .
Hint: Here the two inverse transformations are given by x = u, y = v and
x = v, y = u.

4.4.20. Let the joint pdf of X and Y be f(x, y) = 12
7 x(x+y), 0 < x < 1, 0 < y < 1,

zero elsewhere. Let U = min(X, Y ) and V = max(X, Y ). Find the joint pdf of U
and V .

4.4.21. Let X1, X2, . . . , Xn be a random sample from a distribution of either type.
A measure of spread is Gini’s mean difference

G =
n∑

j=2

j−1∑
i=1

|Xi −Xj |/
(

n

2

)
. (4.4.13)

(a) If n = 10, find a1, a2, . . . , a10 so that G =
∑10

i=1 aiYi, where Y1, Y2, . . . , Y10 are
the order statistics of the sample.

(b) Show that E(G) = 2σ/
√

π if the sample arises from the normal distribution
N(μ, σ2).

4.4.22. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n
from the exponential distribution with pdf f(x) = e−x, 0 < x < ∞, zero elsewhere.

(a) Show that Z1 = nY1, Z2 = (n− 1)(Y2−Y1), Z3 = (n− 2)(Y3−Y2), . . . , Zn =
Yn−Yn−1 are independent and that each Zi has the exponential distribution.

(b) Demonstrate that all linear functions of Y1, Y2, . . . , Yn, such as
∑n

1 aiYi, can
be expressed as linear functions of independent random variables.

4.4.23. In the Program Evaluation and Review Technique (PERT), we are inter-
ested in the total time to complete a project that is comprised of a large number of
subprojects. For illustration, let X1, X2, X3 be three independent random times for
three subprojects. If these subprojects are in series (the first one must be completed
before the second starts, etc.), then we are interested in the sum Y = X1 +X2+X3.
If these are in parallel (can be worked on simultaneously), then we are interested in
Z = max(X1, X2, X3). In the case each of these random variables has the uniform
distribution with pdf f(x) = 1, 0 < x < 1, zero elsewhere, find (a) the pdf of Y
and (b) the pdf of Z.

4.4.24. Let Yn denote the nth order statistic of a random sample of size n from
a distribution of the continuous type. Find the smallest value of n for which the
inequality P (ξ0.9 < Yn) ≥ 0.75 is true.

4.4.25. Let Y1 < Y2 < Y3 < Y4 < Y5 denote the order statistics of a random sample
of size 5 from a distribution of the continuous type. Compute:
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(a) P (Y1 < ξ0.5 < Y5).

(b) P (Y1 < ξ0.25 < Y3).

(c) P (Y4 < ξ0.80 < Y5).

4.4.26. Compute P (Y3 < ξ0.5 < Y7) if Y1 < · · · < Y9 are the order statistics of a
random sample of size 9 from a distribution of the continuous type.

4.4.27. Find the smallest value of n for which P (Y1 < ξ0.5 < Yn) ≥ 0.99, where Y1 <
· · · < Yn are the order statistics of a random sample of size n from a distribution of
the continuous type.

4.4.28. Let Y1 < Y2 denote the order statistics of a random sample of size 2 from
a distribution that is N(μ, σ2), where σ2 is known.

(a) Show that P (Y1 < μ < Y2) = 1
2 and compute the expected value of the

random length Y2 − Y1.

(b) If X is the mean of this sample, find the constant c that solves the equation
P (X−cσ < μ < X +cσ) = 1

2 , and compare the length of this random interval
with the expected value of that of part (a).

4.4.29. Let y1 < y2 < y3 be the observed values of the order statistics of a random
sample of size n = 3 from a continuous type distribution. Without knowing these
values, a statistician is given these values in a random order, and she wants to select
the largest; but once she refuses an observation, she cannot go back. Clearly, if she
selects the first one, her probability of getting the largest is 1/3. Instead, she decides
to use the following algorithm: She looks at the first but refuses it and then takes
the second if it is larger than the first, or else she takes the third. Show that this
algorithm has probability of 1/2 of selecting the largest.

4.4.30. Refer to Exercise 4.1.1. Using expression (4.4.10), obtain a confidence
interval (with confidence close to 90%) for the median lifetime of a motor. What
does the interval mean?

4.4.31. Let Y1 < Y2 < · · · < Yn denote the order statistics of a random sample of
size n from a distribution that has pdf f(x) = 3x2/θ3, 0 < x < θ, zero elsewhere.

(a) Show that P (c < Yn/θ < 1) = 1− c3n, where 0 < c < 1.

(b) If n is 4 and if the observed value of Y4 is 2.3, what is a 95% confidence interval
for θ?

4.4.32. Reconsider the weight of professional baseball players in the data file bb.rda.
Obtain comparison boxplots of the weights of the hitters and pitchers (use the R
code boxplot(x,y) where x and y contain the weights of the hitters and pitchers,
respectively). Then obtain 95% confidence intervals for the median weights of the
hitters and pitchers (use the R function onesampsgn). Comment.
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4.5 Introduction to Hypothesis Testing

Point estimation and confidence intervals are useful statistical inference procedures.
Another type of inference that is frequently used concerns tests of hypotheses. As
in Sections 4.1 through 4.3, suppose our interest centers on a random variable X
that has density function f(x; θ), where θ ∈ Ω. Suppose we think, due to theory
or a preliminary experiment, that θ ∈ ω0 or θ ∈ ω1, where ω0 and ω1 are disjoint
subsets of Ω and ω0 ∪ ω1 = Ω. We label these hypotheses as

H0 : θ ∈ ω0 versus H1 : θ ∈ ω1. (4.5.1)

The hypothesis H0 is referred to as the null hypothesis, while H1 is referred to as
the alternative hypothesis. Often the null hypothesis represents no change or no
difference from the past, while the alternative represents change or difference. The
alternative is often referred to as the research worker’s hypothesis. The decision
rule to take H0 or H1 is based on a sample X1, . . . , Xn from the distribution of X
and, hence, the decision could be wrong. For instance, we could decide that θ ∈ ω1

when really θ ∈ ω0 or we could decide that θ ∈ ω0 when, in fact, θ ∈ ω1. We label
these errors Type I and Type II errors, respectively, later in this section. As we
show in Chapter 8, a careful analysis of these errors can lead in certain situations
to optimal decision rules. In this section, though, we simply want to introduce the
elements of hypothesis testing. To set ideas, consider the following example.

Example 4.5.1 (Zea mays Data). In 1878 Charles Darwin recorded some data
on the heights of Zea mays plants to determine what effect cross-fertilization or
self-fertilization had on the height of Zea mays. The experiment was to select one
cross-fertilized plant and one self-fertilized plant, grow them in the same pot, and
then later measure their heights. An interesting hypothesis for this example would
be that the cross-fertilized plants are generally taller than the self-fertilized plants.
This is the alternative hypothesis, i.e., the research worker’s hypothesis. The null
hypothesis is that the plants generally grow to the same height regardless of whether
they were self- or cross-fertilized. Data for 15 pots were recorded.

We represent the data as (Y1, Z1), . . . , (Y15, Z15), where Yi and Zi are the heights
of the cross-fertilized and self-fertilized plants, respectively, in the ith pot. Let
Xi = Yi − Zi. Due to growing in the same pot, Yi and Zi may be dependent ran-
dom variables, but it seems appropriate to assume independence between pots, i.e.,
independence between the paired random vectors. So we assume that X1, . . . , X15

form a random sample. As a tentative model, consider the location model

Xi = μ + ei, i = 1, . . . , 15,

where the random variables ei are iid with continuous density f(x). For this model,
there is no loss in generality in assuming that the mean of ei is 0, for, otherwise, we
can simply redefine μ. Hence, E(Xi) = μ. Further, the density of Xi is fX(x; μ) =
f(x−μ). In practice, the goodness of the model is always a concern and diagnostics
based on the data would be run to confirm the quality of the model.

If μ = E(Xi) = 0, then E(Yi) = E(Zi); i.e., on average, the cross-fertilized
plants grow to the same height as the self-fertilized plants. While, if μ > 0 then
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Table 4.5.1: 2× 2 Decision Table for a Hypothesis Test

True State of Nature
Decision H0 is True H1 is True
Reject H0 Type I Error Correct Decision
Accept H0 Correct Decision Type II Error

E(Yi) > E(Zi); i.e., on average the cross-fertilized plants are taller than the self-
fertilized plants. Under this model, our hypotheses are

H0 : μ = 0 versus H1 : μ > 0. (4.5.2)

Hence, ω0 = {0} represents no difference in the treatments, while ω1 = (0,∞)
represents that the mean height of cross-fertilized Zea mays exceeds the mean height
of self-fertilized Zea mays.

To complete the testing structure for the general problem described at the be-
ginning of this section, we need to discuss decision rules. Recall that X1, . . . , Xn

is a random sample from the distribution of a random variable X that has den-
sity f(x; θ), where θ ∈ Ω. Consider testing the hypotheses H0 : θ ∈ ω0 versus
H1 : θ ∈ ω1, where ω0 ∪ ω1 = Ω. Denote the space of the sample by D; that is,
D = space {(X1, . . . , Xn)}. A test of H0 versus H1 is based on a subset C of D.
This set C is called the critical region and its corresponding decision rule (test)
is

Reject H0 (Accept H1) if (X1, . . . , Xn) ∈ C (4.5.3)

Retain H0 (Reject H1) if (X1, . . . , Xn) ∈ Cc.

For a given critical region, the 2 × 2 decision table as shown in Table 4.5.1,
summarizes the results of the hypothesis test in terms of the true state of nature.
Besides the correct decisions, two errors can occur. A Type I error occurs if H0 is
rejected when it is true, while a Type II error occurs if H0 is accepted when H1 is
true.

The goal, of course, is to select a critical region from all possible critical regions
which minimizes the probabilities of these errors. In general, this is not possible.
The probabilities of these errors often have a seesaw effect. This can be seen imme-
diately in an extreme case. Simply let C = φ. With this critical region, we would
never reject H0, so the probability of Type I error would be 0, but the probability of
Type II error is 1. Often we consider Type I error to be the worse of the two errors.
We then proceed by selecting critical regions that bound the probability of Type I
error and then among these critical regions we try to select one that minimizes the
probability of Type II error.

Definition 4.5.1. We say a critical region C is of size α if

α = max
θ∈ω0

Pθ[(X1, . . . , Xn) ∈ C]. (4.5.4)
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Over all critical regions of size α, we want to consider critical regions that have
lower probabilities of Type II error. We also can look at the complement of a Type
II error, namely, rejecting H0 when H1 is true, which is a correct decision, as marked
in Table 4.5.1. Since we desire to maximize the probability of this latter decision,
we want the probability of it to be as large as possible. That is, for θ ∈ ω1, we want
to maximize

1− Pθ[Type II Error] = Pθ[(X1, . . . , Xn) ∈ C].

The probability on the right side of this equation is called the power of the test
at θ. It is the probability that the test detects the alternative θ when θ ∈ ω1 is
the true parameter. So minimizing the probability of Type II error is equivalent to
maximizing power.

We define the power function of a critical region to be

γC(θ) = Pθ[(X1, . . . , Xn) ∈ C]; θ ∈ ω1. (4.5.5)

Hence, given two critical regions C1 and C2, which are both of size α, C1 is better
than C2 if γC1(θ) ≥ γC2(θ) for all θ ∈ ω1. In Chapter 8, we obtain optimal critical
regions for specific situations. In this section, we want to illustrate these concepts
of hypothesis testing with several examples.

Example 4.5.2 (Test for a Binomial Proportion of Success). Let X be a Bernoulli
random variable with probability of success p. Suppose we want to test, at size α,

H0 : p = p0 versus H1 : p < p0, (4.5.6)

where p0 is specified. As an illustration, suppose “success” is dying from a certain
disease and p0 is the probability of dying with some standard treatment. A new
treatment is used on several (randomly chosen) patients, and it is hoped that the
probability of dying under this new treatment is less than p0. Let X1, . . . , Xn be
a random sample from the distribution of X and let S =

∑n
i=1 Xi be the total

number of successes in the sample. An intuitive decision rule (critical region) is

Reject H0 in favor of H1 if S ≤ k, (4.5.7)

where k is such that α = PH0 [S ≤ k]. Since S has a b(n, p0) distribution under H0,
k is determined by α = Pp0 [S ≤ k]. Because the binomial distribution is discrete,
however, it is likely that there is no integer k that solves this equation. For example,
suppose n = 20, p0 = 0.7, and α = 0.15. Then under H0, S has a binomial b(20, 0.7)
distribution. Hence, computationally, PH0 [S ≤ 11] =pbinom(11,20,0.7)= 0.1133
and PH0 [S ≤ 12] =pbinom(12,20,0.7)= 0.2277. Hence, erring on the conservative
side, we would probably choose k to be 11 and α = 0.1133. As n increases, this is
less of a problem; see, also, the later discussion on p-values. In general, the power
of the test for the hypotheses (4.5.6) is

γ(p) = Pp[S ≤ k] , p < p0. (4.5.8)

The curve labeled Test 1 in Figure 4.5.1 is the power function for the case n = 20,
p0 = 0.7, and α = 0.1133. Notice that the power function is decreasing. The
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power is higher to detect the alternative p = 0.2 than p = 0.6. In Section 8.2, we
prove in general the monotonicity of the power function for binomial tests of these
hypotheses. Using this monotonicity, we extend our test to the more general null
hypothesis H0 : p ≥ p0 rather than simply H0 : p = p0. Using the same decision
rule as we used for the hypotheses (4.5.6), the definition of the size of a test (4.5.4),
and the monotonicity of the power curve, we have

max
p≥p0

Pp[S ≤ k] = Pp0 [S ≤ k] = α,

i.e., the same size as for the original null hypothesis.

p
0.4 0.5 0.7 0.8

0.8

0.4

0.2

(p)

Test 1: size    = 0.113

Test 2: size    = 0.227

Figure 4.5.1: Power curves for tests 1 and 2; see Example 4.5.2.

Denote by Test 1 the test for the situation with n = 20, p0 = 0.70, and size
α = 0.1133. Suppose we have a second test (Test 2) with an increased size. How
does the power function of Test 2 compare to Test 1? As an example, suppose
for Test 2, we select α = 0.2277. Hence, for Test 2, we reject H0 if S ≤ 12.
Figure 4.5.1 displays the resulting power function. Note that while Test 2 has a
higher probability of committing a Type I error, it also has a higher power at each
alternative p < 0.7. Exercise 4.5.7 shows that this is true for these binomial tests.
It is true in general; that is, if the size of the test increases, power does too. For
this example, the R function binpower.r, found at the site listed in the Preface,
produces a version of Figure 4.5.1.

Remark 4.5.1 (Nomenclature). Since in Example 4.5.2, the first null hypothesis
H0 : p = p0 completely specifies the underlying distribution, it is called a simple
hypothesis. Most hypotheses, such as H1 : p < p0, are composite hypotheses,
because they are composed of many simple hypotheses and, hence, do not completely
specify the distribution.

As we study more and more statistics, we discover that often other names are
used for the size, α, of the critical region. Frequently, α is also called the signifi-
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cance level of the test associated with that critical region. Moreover, sometimes
α is called the “maximum of probabilities of committing an error of Type I” and
the “maximum of the power of the test when H0 is true.” It is disconcerting to the
student to discover that there are so many names for the same thing. However, all
of them are used in the statistical literature, and we feel obligated to point out this
fact.

The test in the last example is based on the exact distribution of its test statistic,
i.e., the binomial distribution. Often we cannot obtain the distribution of the test
statistic in closed form. As with approximate confidence intervals, however, we can
frequently appeal to the Central Limit Theorem to obtain an approximate test; see
Theorem 4.2.1. Such is the case for the next example.

Example 4.5.3 (Large Sample Test for the Mean). Let X be a random variable
with mean μ and finite variance σ2. We want to test the hypotheses

H0 : μ = μ0 versus H1 : μ > μ0, (4.5.9)

where μ0 is specified. To illustrate, suppose μ0 is the mean level on a standardized
test of students who have been taught a course by a standard method of teaching.
Suppose it is hoped that a new method that incorporates computers has a mean
level μ > μ0, where μ = E(X) and X is the score of a student taught by the new
method. This conjecture is tested by having n students (randomly selected) taught
under this new method.

Let X1, . . . , Xn be a random sample from the distribution of X and denote the
sample mean and variance by X and S2, respectively. Because X is an unbiased
estimate of μ, an intuitive decision rule is given by

Reject H0 in favor of H1 if X is much larger than μ0. (4.5.10)

In general, the distribution of the sample mean cannot be obtained in closed form.
In Example 4.5.4, under the strong assumption of normality for the distribution of
X , we obtain an exact test. For now, the Central Limit Theorem (Theorem 4.2.1)
shows that the distribution of (X − μ)/(S/

√
n) is approximately N(0, 1). Using

this, we obtain a test with an approximate size α, with the decision rule

Reject H0 in favor of H1 if X−μ0

S/
√

n
≥ zα. (4.5.11)

The test is intuitive. To reject H0, X must exceed μ0 by at least zαS/
√

n. To
approximate the power function of the test, we use the Central Limit Theorem.
Upon substituting σ for S, it readily follows that the approximate power function
is

γ(μ) = Pμ(X ≥ μ0 + zασ/
√

n)

= Pμ

(
X − μ

σ/
√

n
≥ μ0 − μ

σ/
√

n
+ zα

)
≈ 1− Φ

(
zα +

√
n(μ0 − μ)

σ

)
= Φ

(
−zα −

√
n(μ0 − μ)

σ

)
. (4.5.12)
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So if we have some reasonable idea of what σ equals, we can compute the approxi-
mate power function. As Exercise 4.5.1 shows, this approximate power function is
strictly increasing in μ, so as in the last example, we can change the null hypotheses
to

H0 : μ ≤ μ0 versus H1 : μ > μ0. (4.5.13)

Our asymptotic test has approximate size α for these hypotheses.

Example 4.5.4 (Test for μ Under Normality). Let X have a N(μ, σ2) distribution.
As in Example 4.5.3, consider the hypotheses

H0 : μ = μ0 versus H1 : μ > μ0, (4.5.14)

where μ0 is specified. Assume that the desired size of the test is α, for 0 < α < 1,
Suppose X1, . . . , Xn is a random sample from a N(μ, σ2) distribution. Let X and
S2 denote the sample mean and variance, respectively. Our intuitive rejection rule
is to reject H0 in favor of H1 if X is much larger than μ0. Unlike Example 4.5.3, we
now know the distribution of the statistic X. In particular, by Part (d) of Theorem
3.6.1, under H0 the statistic T = (X − μ0)/(S/

√
n) has a t-distribution with n− 1

degrees of freedom. Using the distribution of T , it follows that this rejection rule
has exact level α:

Reject H0 in favor of H1 if T = X−μ0

S/
√

n
≥ tα,n−1, (4.5.15)

where tα,n−1 is the upper α critical point of a t-distribution with n − 1 degrees of
freedom; i.e., α = P (T > tα,n−1). This is often called the t-test of H0 : μ = μ0.

Note the differences between this rejection rule and the large sample rule, (4.5.11).
The large sample rule has approximate level α, while this has exact level α. Of
course, we now have to assume that X has a normal distribution. In practice, we
may not be willing to assume that the population is normal. Usually t-critical val-
ues are larger than z-critical values; hence, the t-test is conservative relative to the
large sample test. So, in practice, many statisticians often use the t-test.

The R code t.test(x,mu=mu0,alt="greater") computes the t-test for the hy-
potheses (4.5.14), where the R vector x contains the sample.

Example 4.5.5 (Example 4.5.1, Continued). The data for Darwin’s experiment
on Zea mays are recorded in Table 4.5.2 and are, also, in the file darwin.rda. A
boxplot and a normal q−q plot of the 15 differences, xi = yi − zi, are found in
Figure 4.5.2. Based on these plots, we can see that there seem to be two outliers,
Pots 2 and 15. In these two pots, the self-fertilized Zea mays are much taller than
their cross-fertilized pairs. Except for these two outliers, the differences, yi− zi, are
positive, indicating that the cross-fertilization leads to taller plants. We proceed
to conduct a test of hypotheses (4.5.2), as discussed in Example 4.5.4. We use the
decision rule given by (4.5.15) with α = 0.05. As Exercise 4.5.2 shows, the values
of the sample mean and standard deviation for the differences, xi, are x = 2.62
and sx = 4.72. Hence the t-test statistic is 2.15, which exceeds the t-critical value,
t.05,14 =qt(0.95,14)= 1.76. Thus we reject H0 and conclude that cross-fertilized
Zea mays are on the average taller than self-fertilized Zea mays. Because of the
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Table 4.5.2: Plant Growth

Pot 1 2 3 4 5 6 7 8
Cross 23.500 12.000 21.000 22.000 19.125 21.500 22.125 20.375
Self 17.375 20.375 20.000 20.000 18.375 18.625 18.625 15.250
Pot 9 10 11 12 13 14 15
Cross 18.250 21.625 23.250 21.000 22.125 23.000 12.000
Self 16.500 18.000 16.250 18.000 12.750 15.500 18.000

outliers, normality of the error distribution is somewhat dubious, and we use the
test in a conservative manner, as discussed at the end of Example 4.5.4.

Assuming that the rda file darwin.rda has been loaded in R, the code for the
above t-test is t.test(cross-self,mu=0,alt="greater") which evaluates the t-
test statistic to be 2.1506.
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Figure 4.5.2: Boxplot and normal q−q plot for the data of Example 4.5.5.

EXERCISES
In many of these exercises, use R or another statistical package for computations
and graphs of power functions.

4.5.1. Show that the approximate power function given in expression (4.5.12) of
Example 4.5.3 is a strictly increasing function of μ. Show then that the test discussed
in this example has approximate size α for testing

H0 : μ ≤ μ0 versus H1 : μ > μ0.

4.5.2. For the Darwin data tabled in Example 4.5.5, verify that the Student t-test
statistic is 2.15.

4.5.3. Let X have a pdf of the form f(x; θ) = θxθ−1, 0 < x < 1, zero elsewhere,
where θ ∈ {θ : θ = 1, 2}. To test the simple hypothesis H0 : θ = 1 against the
alternative simple hypothesis H1 : θ = 2, use a random sample X1, X2 of size n = 2
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and define the critical region to be C = {(x1, x2) : 3
4 ≤ x1x2}. Find the power

function of the test.

4.5.4. Let X have a binomial distribution with the number of trials n = 10 and
with p either 1/4 or 1/2. The simple hypothesis H0 : p = 1

2 is rejected, and the
alternative simple hypothesis H1 : p = 1

4 is accepted, if the observed value of X1, a
random sample of size 1, is less than or equal to 3. Find the significance level and
the power of the test.

4.5.5. Let X1, X2 be a random sample of size n = 2 from the distribution having
pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞, zero elsewhere. We reject H0 : θ = 2 and
accept H1 : θ = 1 if the observed values of X1, X2, say x1, x2, are such that

f(x1; 2)f(x2; 2)

f(x1; 1)f(x2; 1)
≤ 1

2
.

Here Ω = {θ : θ = 1, 2}. Find the significance level of the test and the power of the
test when H0 is false.

4.5.6. Consider the tests Test 1 and Test 2 for the situation discussed in Example
4.5.2. Consider the test that rejects H0 if S ≤ 10. Find the level of significance for
this test and sketch its power curve as in Figure 4.5.1.

4.5.7. Consider the situation described in Example 4.5.2. Suppose we have two
tests A and B defined as follows. For Test A, H0 is rejected if S ≤ kA, while for
Test B, H0 is rejected if S ≤ kB. If Test A has a higher level of significance than
Test B, show that Test A has higher power than Test B at each alternative.

4.5.8. Let us say the life of a tire in miles, say X , is normally distributed with mean
θ and standard deviation 5000. Past experience indicates that θ = 30,000. The
manufacturer claims that the tires made by a new process have mean θ > 30,000.
It is possible that θ = 35,000. Check his claim by testing H0 : θ = 30,000 against
H1 : θ > 30,000. We observe n independent values of X , say x1, . . . , xn, and we
reject H0 (thus accept H1) if and only if x ≥ c. Determine n and c so that the power
function γ(θ) of the test has the values γ(30,000) = 0.01 and γ(35,000) = 0.98.

4.5.9. Let X have a Poisson distribution with mean θ. Consider the simple hy-
pothesis H0 : θ = 1

2 and the alternative composite hypothesis H1 : θ < 1
2 . Thus

Ω = {θ : 0 < θ ≤ 1
2}. Let X1, . . . , X12 denote a random sample of size 12 from this

distribution. We reject H0 if and only if the observed value of Y = X1+· · ·+X12 ≤ 2.
Show that the following R code graphs the power function of this test:
theta=seq(.1,.5,.05); gam=ppois(2,theta*12)

plot(gam~theta,pch=" ",xlab=expression(theta),ylab=expression(gamma))

lines(gam~theta)

Run the code. Determine the significance level from the plot.

4.5.10. Let Y have a binomial distribution with parameters n and p. We reject
H0 : p = 1

2 and accept H1 : p > 1
2 if Y ≥ c. Find n and c to give a power function

γ(p) which is such that γ(1
2 ) = 0.10 and γ(2

3 ) = 0.95, approximately.
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4.5.11. Let Y1 < Y2 < Y3 < Y4 be the order statistics of a random sample of size
n = 4 from a distribution with pdf f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere, where
0 < θ. The hypothesis H0 : θ = 1 is rejected and H1 : θ > 1 is accepted if the
observed Y4 ≥ c.

(a) Find the constant c so that the significance level is α = 0.05.

(b) Determine the power function of the test.

4.5.12. Let X1, X2, . . . , X8 be a random sample of size n = 8 from a Poisson
distribution with mean μ. Reject the simple null hypothesis H0 : μ = 0.5 and
accept H1 : μ > 0.5 if the observed sum

∑8
i=1 xi ≥ 8.

(a) Show that the significance level is 1-ppois(7,8*.5).

(b) Use R to determine γ(0.75), γ(1), and γ(1.25).

(c) Modify the code in Exercise 4.5.9 to obtain a plot of the power function.

4.5.13. Let p denote the probability that, for a particular tennis player, the first
serve is good. Since p = 0.40, this player decided to take lessons in order to increase
p. When the lessons are completed, the hypothesis H0 : p = 0.40 is tested against
H1 : p > 0.40 based on n = 25 trials. Let Y equal the number of first serves that
are good, and let the critical region be defined by C = {Y : Y ≥ 13}.

(a) Show that α is computed by α =1-pbinom(12,25,.4).

(b) Find β = P (Y < 13) when p = 0.60; that is, β = P (Y ≤ 12; p = 0.60) so
that 1− β is the power at p = 0.60.

4.5.14. Let S denote the number of success in n = 40 Bernoulli trials with prob-
ability of success p. Consider the hypotheses: H0 : p ≤ 0.3 versus H1 : p > 0.3.
Consider the two tests: (1) Reject H0 if S ≥ 16 and (2) Reject H0 if S ≥ 17.
Determine the level of these tests. The R function binpower.r produces a version
of Figure 4.5.1. For this exercise, write a similar R function that graphs the power
functions of the above two tests.

4.6 Additional Comments About Statistical Tests

All of the alternative hypotheses considered in Section 4.5 were one-sided hy-
potheses. For illustration, in Exercise 4.5.8 we tested H0 : μ = 30,000 against the
one-sided alternative H1 : μ > 30,000, where μ is the mean of a normal distribution
having standard deviation σ = 5000. Perhaps in this situation, though, we think
the manufacturer’s process has changed but are unsure of the direction. That is,
we are interested in the alternative H1 : μ 
= 30,000. In this section, we further ex-
plore hypotheses testing and we begin with the construction of a test for a two-sided
alternative.
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Example 4.6.1 (Large Sample Two-Sided Test for the Mean). In order to see how
to construct a test for a two-sided alternative, reconsider Example 4.5.3, where we
constructed a large sample one-sided test for the mean of a random variable. As
in Example 4.5.3, let X be a random variable with mean μ and finite variance σ2.
Here, though, we want to test

H0 : μ = μ0 versus H1 : μ 
= μ0, (4.6.1)

where μ0 is specified. Let X1, . . . , Xn be a random sample from the distribution of
X and denote the sample mean and variance by X and S2, respectively. For the
one-sided test, we rejected H0 if X was too large; hence, for the hypotheses (4.6.1),
we use the decision rule

Reject H0 in favor of H1 if X ≤ h or X ≥ k, (4.6.2)

where h and k are such that α = PH0 [X ≤ h or X ≥ k]. Clearly, h < k; hence, we
have

α = PH0 [X ≤ h or X ≥ k] = PH0 [X ≤ h] + PH0 [X ≥ k].

Since, at least for large samples, the distribution of X is symmetrically distributed
about μ0, under H0, an intuitive rule is to divide α equally between the two terms
on the right side of the above expression; that is, h and k are chosen by

PH0 [X ≤ h] = α/2 and PH0 [X ≥ k] = α/2. (4.6.3)

From Theorem 4.2.1, it follows that (X − μ0)/(S/
√

n) is approximately N(0, 1).
This and (4.6.3) lead to the approximate decision rule

Reject H0 in favor of H1 if
∣∣∣X−μ0

S/
√

n

∣∣∣ ≥ zα/2. (4.6.4)

Upon substituting σ for S, it readily follows that the approximate power function
is

γ(μ) = Pμ(X ≤ μ0 − zα/2σ/
√

n) + Pμ(X ≥ μ0 + zα/2σ/
√

n)

= Φ

(√
n(μ0 − μ)

σ
− zα/2

)
+ 1− Φ

(√
n(μ0 − μ)

σ
+ zα/2

)
, (4.6.5)

where Φ(z) is the cdf of a standard normal random variable; see (3.4.9). So if we
have some reasonable idea of what σ equals, we can compute the approximate power
function. Note that the derivative of the power function is

γ′(μ) =

√
n

σ

[
φ

(√
n(μ0 − μ)

σ
+ zα/2

)
− φ

(√
n(μ0 − μ)

σ
− zα/2

)]
, (4.6.6)

where φ(z) is the pdf of a standard normal random variable. Then we can show that
γ(μ) has a critical value at μ0 which is the minimum; see Exercise 4.6.2. Further,
γ(μ) is strictly decreasing for μ < μ0 and strictly increasing for μ > μ0.
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Consider again the situation at the beginning of this section. Suppose we want
to test

H0 : μ = 30, 000 versus H1 : μ 
= 30, 000. (4.6.7)

Suppose n = 20 and α = 0.01. Then the rejection rule (4.6.4) becomes

Reject H0 in favor of H1 if
∣∣∣X−30,000

S/
√

20

∣∣∣ ≥ 2.575. (4.6.8)

Figure 4.6.1 displays the power curve for this test when σ = 5000 is substituted
in for S. For comparison, the power curve for the test with level α = 0.05 is also
shown. The R function zpower computes a version of this figure.
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(  )

Figure 4.6.1: Power curves for the tests of the hypotheses (4.6.7).

This two-sided test for the mean is approximate. If we assume that X has a
normal distribution, then, as Exercise 4.6.3 shows, the following test has exact size
α for testing H0 : μ = μ0 versus H1 : μ 
= μ0:

Reject H0 in favor of H1 if
∣∣∣X−μ0

S/
√

n

∣∣∣ ≥ tα/2,n−1. (4.6.9)

It too has a bowl-shaped power curve similar to Figure 4.6.1, although it is not as
easy to show; see Lehmann (1986).

For computation in R, the code t.test(x,mu=mu0) obtains the two-sided t-test
of hypotheses (4.6.1), when the R vector x contains the sample.

There exists a relationship between two-sided tests and confidence intervals.
Consider the two-sided t-test (4.6.9). Here, we use the rejection rule with “if and
only if” replacing “if.” Hence, in terms of acceptance, we have

Accept H0 if and only if μ0 − tα/2,n−1S/
√

n < X < μ0 + tα/2,n−1S/
√

n.

But this is easily shown to be

Accept H0 if and only if μ0 ∈ (X − tα/2,n−1S/
√

n, X + tα/2,n−1S/
√

n); (4.6.10)
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that is, we accept H0 at significance level α if and only if μ0 is in the (1− α)100%
confidence interval for μ. Equivalently, we reject H0 at significance level α if and
only if μ0 is not in the (1 − α)100% confidence interval for μ. This is true for all
the two-sided tests and hypotheses discussed in this text. There is also a similar
relationship between one-sided tests and one-sided confidence intervals.

Once we recognize this relationship between confidence intervals and tests of
hypothesis, we can use all those statistics that we used to construct confidence
intervals to test hypotheses, not only against two-sided alternatives but one-sided
ones as well. Without listing all of these in a table, we present enough of them so
that the principle can be understood.

Example 4.6.2. Let independent random samples be taken from N(μ1, σ
2) and

N(μ2, σ
2), respectively. Say these have the respective sample characteristics n1,

X, S2
1 and n2, Y , S2

2 . Let n = n1 + n2 denote the combined sample size and let
S2

p = [(n1 − 1)S2
1 + (n2 − 1)S2

2 ]/(n − 2), (4.2.11), be the pooled estimator of the
common variance. At α = 0.05, reject H0 : μ1 = μ2 and accept the one-sided
alternative H1 : μ1 > μ2 if

T =
X − Y − 0

Sp

√
1

n1
+ 1

n2

≥ t.05,n−2,

because, under H0 : μ1 = μ2, T has a t(n−2)-distribution. A rigorous development
of this test is given in Example 8.3.1.

Example 4.6.3. Say X is b(1, p). Consider testing H0 : p = p0 against H1 : p < p0.
Let X1 . . . , Xn be a random sample from the distribution of X and let p̂ = X. To
test H0 versus H1, we use either

Z1 =
p̂− p0√

p0(1 − p0)/n
≤ c or Z2 =

p̂− p0√
p̂(1− p̂)/n

≤ c.

If n is large, both Z1 and Z2 have approximate standard normal distributions pro-
vided that H0 : p = p0 is true. Hence, if c is set at −1.645, then the approximate
significance level is α = 0.05. Some statisticians use Z1 and others Z2. We do
not have strong preferences one way or the other because the two methods provide
about the same numerical results. As one might suspect, using Z1 provides better
probabilities for power calculations if the true p is close to p0, while Z2 is better
if H0 is clearly false. However, with a two-sided alternative hypothesis, Z2 does
provide a better relationship with the confidence interval for p. That is, |Z2| < zα/2

is equivalent to p0 being in the interval from

p̂− zα/2

√
p̂(1− p̂)

n
to p̂ + zα/2

√
p̂(1− p̂)

n
,

which is the interval that provides a (1 − α)100% approximate confidence interval
for p as considered in Section 4.2.

In closing this section, we introduce the concept of randomized tests.
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Example 4.6.4. Let X1, X2, . . . , X10 be a random sample of size n = 10 from a
Poisson distribution with mean θ. A critical region for testing H0 : θ = 0.1 against
H1 : θ > 0.1 is given by Y =

∑10
1 Xi ≥ 3. The statistic Y has a Poisson distribution

with mean 10θ. Thus, with θ = 0.1 so that the mean of Y is 1, the significance level
of the test is

P (Y ≥ 3) = 1− P (Y ≤ 2) = 1− ppois(2,1) = 1− 0.920 = 0.080.

If, on the other hand, the critical region defined by
∑10

1 xi ≥ 4 is used, the signifi-
cance level is

α = P (Y ≥ 4) = 1− P (Y ≤ 3) = 1− ppois(3,1) = 1− 0.981 = 0.019.

For instance, if a significance level of about α = 0.05, say, is desired, most statisti-
cians would use one of these tests; that is, they would adjust the significance level
to that of one of these convenient tests. However, a significance level of α = 0.05
can be achieved in the following way. Let W have a Bernoulli distribution with
probability of success equal to

P (W = 1) =
0.050− 0.019

0.080− 0.019
=

31

61
.

Assume that W is selected independently of the sample. Consider the rejection rule

Reject H0 if
∑10

1 xi ≥ 4 or if
∑10

1 xi = 3 and W = 1.

The significance level of this rule is

PH0 (Y ≥ 4) + PH0 ({Y = 3} ∩ {W = 1}) = PH0(Y ≥ 4)

+ PH0(Y = 3)P (W = 1)

= 0.019 + 0.061
31

61
= 0.05;

hence, the decision rule has exactly level 0.05. The process of performing the auxil-
iary experiment to decide whether to reject or not when Y = 3 is sometimes referred
to as a randomized test.

4.6.1 Observed Significance Level, p-value

Not many statisticians like randomized tests in practice, because the use of them
means that two statisticians could make the same assumptions, observe the same
data, apply the same test, and yet make different decisions. Hence, they usually
adjust their significance level so as not to randomize. As a matter of fact, many
statisticians report what are commonly called observed significance levels or
p-values (for probability values).

A general example suffices to explain observed significance levels. Let X1, . . . , Xn

be a random sample from a N(μ, σ2) distribution, where both μ and σ2 are unknown.
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Consider, first, the one-sided hypotheses H0 : μ = μ0 versus H1 : μ > μ0, where μ0

is specified. Write the rejection rule as

Reject H0 in favor of H1, if X ≥ k, (4.6.11)

where X is the sample mean. Previously we have specified a level and then solved
for k. In practice, though, the level is not specified. Instead, once the sample
is observed, the realized value x of X is computed and we ask the question: Is x
sufficiently large to reject H0 in favor of H1? To answer this we calculate the p-value
which is the probability,

p-value = PH0(X ≥ x). (4.6.12)

Note that this is a data-based “significance level” and we call it the observed
significance level or the p-value. The hypothesis H0 is rejected at all levels greater
than or equal to the p-value. For example, if the p-value is 0.048, and the nominal
α level is 0.05 then H0 would be rejected; however, if the nominal α level is 0.01,
then H0 would not be rejected. In summary, the experimenter sets the hypotheses;
the statistician selects the test statistic and rejection rule; the data are observed
and the statistician reports the p-value to the experimenter; and the experimenter
decides whether the p-value is sufficiently small to warrant rejection of H0 in favor
of H1. The following example provides a numerical illustration.

Example 4.6.5. Recall the Darwin data discussed in Example 4.5.5. It was a
paired design on the heights of cross and self-fertilized Zea mays plants. In each of
15 pots, one cross-fertilized and one self-fertilized were grown. The data of interest
are the 15 paired differences, (cross − self). As in Example 4.5.5, let Xi denote the
paired difference for the ith pot. Let μ be the true mean difference. The hypotheses
of interest are H0 : μ = 0 versus H1 : μ > 0. The standardized rejection rule is

Reject H0 in favor of H1 if T ≥ k,

where T = X/(S/
√

15), where X and S are respectively the sample mean and
standard deviation of the differences. The alternative hypothesis states that on the
average cross-fertilized plants are taller than self-fertilized plants. From Example
4.5.5 the t-test statistic has the value 2.15. Letting t(14) denote a random variable
with the t-distribution with 14 degrees of freedom, and using R the p-value for the
experiment is

P [t(14) > 2.15] = 1− pt(2.15,14) = 1− 0.9752 = 0.0248. (4.6.13)

In practice, with this p-value, H0 would be rejected at all levels greater than or
equal to 0.0248. This observed significance level is also part of the output from the
R call t.test(cross-self,mu=0,alt="greater").

Returning to the discussion above, suppose the hypotheses are H0 : μ = μ0

versus H1 : μ < μ0. Obviously, the observed significance level in this case is
p-value = PH0 (X ≤ x). For the two-sided hypotheses H0 : μ = μ0 versus H1 : μ 
=
μ0, our “unspecified” rejection rule is

Reject H0 in favor of H1, if X ≤ l or X ≥ k. (4.6.14)
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For the p-value, compute each of the one-sided p-values, take the smaller p-value, and
double it. For an illustration, in the Darwin example, suppose the the hypotheses
are H0 : μ = 0 versus H1 : μ 
= 0. Then the p-value is 2(0.0248) = 0.0496. As
a final note on p-values for two-sided hypotheses, suppose the test statistic can
be expressed in terms of a t-test statistic. In this case the p-value can be found
equivalently as follows. If d is the realized value of the t-test statistic then the
p-value is

p-value = PH0 [|t| ≥ |d|], (4.6.15)

where, under H0, t has a t-distribution with n− 1 degrees of freedom.
In this discussion on p-values, keep in mind that good science dictates that the

hypotheses should be known before the data are drawn.

EXERCISES

4.6.1. The R function zpower, found at the site listed in the Preface, computes
the plot in Figure 4.6.1. Consider the two-sided test for proportions discussed in
Example 4.6.3 based on the test statistic Z1. Specifically consider the hypotheses
H0 : p = .0.6 versus H1 : p 
= 0.6. Using the sample size n = 50 and the level
α = 0.05, write a R program, similar to zpower, which computes a plot of the
power curve for this test on a proportion.

4.6.2. Consider the power function γ(μ) and its derivative γ′(μ) given by (4.6.5)
and (4.6.6). Show that γ′(μ) is strictly negative for μ < μ0 and strictly positive for
μ > μ0.

4.6.3. Show that the test defined by 4.6.9 has exact size α for testing H0 : μ = μ0

versus H1 : μ 
= μ0.

4.6.4. Consider the one-sided t-test for H0 : μ = μ0 versus HA1 : μ > μ0 con-
structed in Example 4.5.4 and the two-sided t-test for t-test for H0 : μ = μ0 versus
H1 : μ 
= μ0 given in (4.6.9). Assume that both tests are of size α. Show that for
μ > μ0, the power function of the one-sided test is larger than the power function
of the two-sided test.

4.6.5. On page 373 Rasmussen (1992) discussed a paired design. A baseball coach
paired 20 members of his team by their speed; i.e., each member of the pair has
about the same speed. Then for each pair, he randomly chose one member of the
pair and told him that if could beat his best time in circling the bases he would
give him an award (call this response the time of the “self” member). For the other
member of the pair the coach’s instruction was an award if he could beat the time
of the other member of the pair (call this response the time of the “rival”member).
Each member of the pair knew who his rival was. The data are given below, but are
also in the file selfrival.rda. Let μd be the true difference in times (rival minus
self) for a pair. The hypotheses of interest are H0 : μd = 0 versus H1 : μd < 0. The
data are in order by pairs, so do not mix the order.

self: 16.20 16.78 17.38 17.59 17.37 17.49 18.18 18.16 18.36 18.53
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15.92 16.58 17.57 16.75 17.28 17.32 17.51 17.58 18.26 17.87

rival: 15.95 16.15 17.05 16.99 17.34 17.53 17.34 17.51 18.10 18.19

16.04 16.80 17.24 16.81 17.11 17.22 17.33 17.82 18.19 17.88

(a) Obtain comparison boxplots of the data. Comment on the comparison plots.
Are there any outliers?

(b) Compute the paired t-test and obtain the p-value. Are the data significant at
the 5% level of significance?

(c) Obtain a point estimate of μd and a 95% confidence interval for it.

(d) Conclude in terms of the problem.

4.6.6. Verzani (2014), page 323, presented a data set concerning the effect that
different dosages of the drug AZT have on patients with HIV. The responses we
consider are the p24 antigen levels of HIV patients after their treatment with AZT.
Of the 20 HIV patients in the study, 10 were randomly assign the dosage of 300 mg
of AZT while the other 10 were assigned 600 mg. The hypotheses of interest are
H0 : Δ = 0 versus H1 : Δ 
= 0 where Δ = μ600−μ300 and μ600 and μ300 are the true
mean p24 antigen levels under dosages of 600 mg and 300 mg of AZT, respectively.
The data are given below but are also available in the file aztdoses.rda.

300 mg 284 279 289 292 287 295 285 279 306 298
600 mg 298 307 297 279 291 335 299 300 306 291

(a) Obtain comparison boxplots of the data. Identify outliers by patient. Com-
ment on the comparison plots.

(b) Compute the two-sample t-test and obtain the p-value. Are the data signifi-
cant at the 5% level of significance?

(c) Obtain a point estimate of Δ and a 95% confidence interval for it.

(d) Conclude in terms of the problem.

4.6.7. Among the data collected for the World Health Organization air quality
monitoring project is a measure of suspended particles in μg/m3. Let X and Y equal
the concentration of suspended particles in μg/m3 in the city center (commercial
district) for Melbourne and Houston, respectively. Using n = 13 observations of X
and m = 16 observations of Y , we test H0 : μX = μY against H1 : μX < μY .

(a) Define the test statistic and critical region, assuming that the unknown vari-
ances are equal. Let α = 0.05.

(b) If x = 72.9, sx = 25.6, y = 81.7, and sy = 28.3, calculate the value of the
test statistic and state your conclusion.
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4.6.8. Let p equal the proportion of drivers who use a seat belt in a country that
does not have a mandatory seat belt law. It was claimed that p = 0.14. An
advertising campaign was conducted to increase this proportion. Two months after
the campaign, y = 104 out of a random sample of n = 590 drivers were wearing
their seat belts. Was the campaign successful?

(a) Define the null and alternative hypotheses.

(b) Define a critical region with an α = 0.01 significance level.

(c) Determine the approximate p-value and state your conclusion.

4.6.9. In Exercise 4.2.18 we found a confidence interval for the variance σ2 using
the variance S2 of a random sample of size n arising from N(μ, σ2), where the mean
μ is unknown. In testing H0 : σ2 = σ2

0 against H1 : σ2 > σ2
0 , use the critical region

defined by (n− 1)S2/σ2
0 ≥ c. That is, reject H0 and accept H1 if S2 ≥ cσ2

0/(n− 1).
If n = 13 and the significance level α = 0.025, determine c.

4.6.10. In Exercise 4.2.27, in finding a confidence interval for the ratio of the
variances of two normal distributions, we used a statistic S2

1/S2
2 , which has an F -

distribution when those two variances are equal. If we denote that statistic by F ,
we can test H0 : σ2

1 = σ2
2 against H1 : σ2

1 > σ2
2 using the critical region F ≥ c. If

n = 13, m = 11, and α = 0.05, find c.

4.7 Chi-Square Tests

In this section we introduce tests of statistical hypotheses called chi-square tests.
A test of this sort was originally proposed by Karl Pearson in 1900, and it provided
one of the earlier methods of statistical inference.

Let the random variable Xi be N(μi, σ
2
i ), i = 1, 2, . . . , n, and let X1, X2, . . . , Xn

be mutually independent. Thus the joint pdf of these variables is

1

σ1σ2 · · ·σn(2π)n/2
exp

[
−1

2

n∑
1

(
xi − μi

σi

)2
]

, −∞ < xi < ∞.

The random variable that is defined by the exponent (apart from the coefficient
− 1

2 ) is
∑n

1 [(Xi − μi)/σi]
2, and this random variable has a χ2(n) distribution. In

Section 3.5 we generalized this joint normal distribution of probability to n random
variables that are dependent and we called the distribution a multivariate normal
distribution. Theorem 3.5.1 shows a similar result holds for the exponent in the
multivariate normal case, also.

Let us now discuss some random variables that have approximate chi-square
distributions. Let X1 be b(n, p1). Consider the random variable

Y =
X1 − np1√
np1(1− p1)

,
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which has, as n → ∞, an approximate N(0, 1) distribution (see Theorem 4.2.1).
Furthermore, as discussed in Example 5.3.6, the distribution of Y 2 is approximately
χ2(1). Let X2 = n − X1 and let p2 = 1 − p1. Let Q1 = Y 2. Then Q1 may be
written as

Q1 =
(X1 − np1)

2

np1(1− p1)
=

(X1 − np1)
2

np1
+

(X1 − np1)
2

n(1− p1)

=
(X1 − np1)

2

np1
+

(X2 − np2)
2

np2
(4.7.1)

because (X1 − np1)
2 = (n − X2 − n + np2)

2 = (X2 − np2)
2. This result can be

generalized as follows.
Let X1, X2, . . . , Xk−1 have a multinomial distribution with the parameters n

and p1, . . . , pk−1, as in Section 3.1. Let Xk = n − (X1 + · · · + Xk−1) and let
pk = 1− (p1 + · · ·+ pk−1). Define Qk−1 by

Qk−1 =

k∑
i=1

(Xi − npi)
2

npi
.

It is proved in a more advanced course that, as n →∞, Qk−1 has an approximate
χ2(k − 1) distribution. Some writers caution the user of this approximation to be
certain that n is large enough so that each npi, i = 1, 2, . . . , k, is at least equal
to 5. In any case, it is important to realize that Qk−1 does not have a chi-square
distribution, only an approximate chi-square distribution.

The random variable Qk−1 may serve as the basis of the tests of certain statis-
tical hypotheses which we now discuss. Let the sample space A of a random ex-
periment be the union of a finite number k of mutually disjoint sets A1, A2, . . . , Ak.
Furthermore, let P (Ai) = pi, i = 1, 2, . . . , k, where pk = 1 − p1 − · · · − pk−1,
so that pi is the probability that the outcome of the random experiment is an
element of the set Ai. The random experiment is to be repeated n indepen-
dent times and Xi represents the number of times the outcome is an element
of set Ai. That is, X1, X2, . . . , Xk = n − X1 − · · · − Xk−1 are the frequen-
cies with which the outcome is, respectively, an element of A1, A2, . . . , Ak. Then
the joint pmf of X1, X2, . . . , Xk−1 is the multinomial pmf with the parameters
n, p1, . . . , pk−1. Consider the simple hypothesis (concerning this multinomial pmf)
H0 : p1 = p10, p2 = p20, . . . , pk−1 = pk−1,0 (pk = pk0 = 1 − p10 − · · · − pk−1,0),
where p10, . . . , pk−1,0 are specified numbers. It is desired to test H0 against all
alternatives.

If the hypothesis H0 is true, the random variable

Qk−1 =
k∑
1

(Xi − npi0)
2

npi0

has an approximate chi-square distribution with k − 1 degrees of freedom. Since,
when H0 is true, npi0 is the expected value of Xi, one would feel intuitively that
observed values of Qk−1 should not be too large if H0 is true. Our test is then
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to reject H0 if Qk−1 ≥ c. To determine a test with level of significance α, we
can use tables of the χ2-distribution or a computer package. Using R, we compute
the critical value c by qchisq(1− α,k-1). If, then, the hypothesis H0 is rejected
when the observed value of Qk−1 is at least as great as c, the test of H0 has a
significance level that is approximately equal to α. Also if q is the realized value of
the test statistic Qk−1 then the observed significance level of the test is computed
in R by 1-pchisq(q,k-1). This is frequently called a goodness-of-fit test. Some
illustrative examples follow.

Example 4.7.1. One of the first six positive integers is to be chosen by a random
experiment (perhaps by the cast of a die). Let Ai = {x : x = i}, i = 1, 2, . . . , 6. The
hypothesis H0 : P (Ai) = pi0 = 1

6 , i = 1, 2, . . . , 6, is tested, at the approximate 5%
significance level, against all alternatives. To make the test, the random experiment
is repeated under the same conditions, 60 independent times. In this example, k = 6
and npi0 = 60(1

6 ) = 10, i = 1, 2, . . . , 6. Let Xi denote the frequency with which
the random experiment terminates with the outcome in Ai, i = 1, 2, . . . , 6, and let
Q5 =

∑6
1(Xi − 10)2/10. Since there are 6 − 1 = 5 degrees of freedom, the critical

value for a level α = 0.05 test is qchisq(0.95,5) = 11.0705. Now suppose that
the experimental frequencies of A1, A2, . . . , A6 are, respectively, 13, 19, 11, 8, 5, and
4. The observed value of Q5 is

(13− 10)2

10
+

(19− 10)2

10
+

(11− 10)2

10
+

(8 − 10)2

10
+

(5− 10)2

10
+

(4− 10)2

10
= 15.6.

Since 15.6 > 11.0705, the hypothesis P (Ai) = 1
6 , i = 1, 2, . . . , 6, is rejected at the

(approximate) 5% significance level.
The following R segment computes this test, returning the test statistic and the

p-value as shown:
ps=rep(1/6,6); x=c(13,19,11,8,5,4); chisq.test(x,p=ps)

X-squared = 15.6, df = 5, p-value = 0.008084.

Example 4.7.2. A point is to be selected from the unit interval {x : 0 < x < 1}
by a random process. Let A1 = {x : 0 < x ≤ 1

4}, A2 = {x : 1
4 < x ≤ 1

2}, A3 =
{x : 1

2 < x ≤ 3
4}, and A4 = {x : 3

4 < x < 1}. Let the probabilities pi, i = 1, 2, 3, 4,
assigned to these sets under the hypothesis be determined by the pdf 2x, 0 < x < 1,
zero elsewhere. Then these probabilities are, respectively,

p10 =

∫ 1/4

0

2xdx = 1
16 , p20 = 3

16 , p30 = 5
16 , p40 = 7

16 .

Thus the hypothesis to be tested is that p1, p2, p3, and p4 = 1 − p1 − p2 − p3 have
the preceding values in a multinomial distribution with k = 4. This hypothesis is
to be tested at an approximate 0.025 significance level by repeating the random
experiment n = 80 independent times under the same conditions. Here the npi0 for
i = 1, 2, 3, 4, are, respectively, 5, 15, 25, and 35. Suppose the observed frequencies
of A1, A2, A3, and A4 are 6, 18, 20, and 36, respectively. Then the observed value



286 Some Elementary Statistical Inferences

of Q3 =
∑4

1(Xi − npi0)
2/(npi0) is

(6 − 5)2

5
+

(18− 15)2

15
+

(20− 25)2

25
+

(36− 35)2

35
=

64

35
= 1.83.

The following R segment calculates the test and p-value:
x=c(6,18,20,36); ps=c(1,3,5,7)/16; chisq.test(x,p=ps)

X-squared = 1.8286, df = 3, p-value = 0.6087

Hence, we fail to reject H0 at level 0.0250.

Thus far we have used the chi-square test when the hypothesis H0 is a simple
hypothesis. More often we encounter hypotheses H0 in which the multinomial prob-
abilities p1, p2, . . . , pk are not completely specified by the hypothesis H0. That is,
under H0, these probabilities are functions of unknown parameters. For an illustra-
tion, suppose that a certain random variable Y can take on any real value. Let us
partition the space {y : −∞ < y <∞} into k mutually disjoint sets A1, A2, . . . , Ak

so that the events A1, A2, . . . , Ak are mutually exclusive and exhaustive. Let H0 be
the hypothesis that Y is N(μ, σ2) with μ and σ2 unspecified. Then each

pi =

∫
Ai

1√
2πσ

exp[−(y − μ)2/2σ2] dy, i = 1, 2, . . . , k,

is a function of the unknown parameters μ and σ2. Suppose that we take a random
sample Y1, . . . , Yn of size n from this distribution. If we let Xi denote the frequency
of Ai, i = 1, 2, . . . , k, so that X1 + X2 + · · ·+ Xk = n, the random variable

Qk−1 =

k∑
i=1

(Xi − npi)
2

npi

cannot be computed once X1, . . . , Xk have been observed, since each pi, and hence
Qk−1, is a function of μ and σ2. Accordingly, choose the values of μ and σ2 that
minimize Qk−1. These values depend upon the observed X1 = x1, . . . , Xk = xk and
are called minimum chi-square estimates of μ and σ2. These point estimates of
μ and σ2 enable us to compute numerically the estimates of each pi. Accordingly,
if these values are used, Qk−1 can be computed once Y1, Y2, . . . , Yn, and hence
X1, X2, . . . , Xk, are observed. However, a very important aspect of the fact, which
we accept without proof, is that now Qk−1 is approximately χ2(k− 3). That is, the
number of degrees of freedom of the approximate chi-square distribution of Qk−1 is
reduced by one for each parameter estimated by the observed data. This statement
applies not only to the problem at hand but also to more general situations. Two
examples are now be given. The first of these examples deals with the test of the
hypothesis that two multinomial distributions are the same.

Remark 4.7.1. In many cases, such as that involving the mean μ and the variance
σ2 of a normal distribution, minimum chi-square estimates are difficult to com-
pute. Other estimates, such as the maximum likelihood estimates of Example 4.1.3,
μ̂ = Y and σ̂2 = (n − 1)S2/n, are used to evaluate pi and Qk−1. In general, Qk−1

is not minimized by maximum likelihood estimates, and thus its computed value
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is somewhat greater than it would be if minimum chi-square estimates are used.
Hence, when comparing it to a critical value listed in the chi-square table with k−3
degrees of freedom, there is a greater chance of rejection than there would be if the
actual minimum of Qk−1 is used. Accordingly, the approximate significance level of
such a test may be higher than the p-value as calculated in the χ2-analysis. This
modification should be kept in mind and, if at all possible, each pi should be esti-
mated using the frequencies X1, . . . , Xk rather than directly using the observations
Y1, Y2, . . . , Yn of the random sample.

Example 4.7.3. In this example, we consider two multinomial distributions with
parameters nj , p1j , p2j, . . . , pkj and j = 1, 2, respectively. Let Xij , i = 1, 2, . . . , k,
j = 1, 2, represent the corresponding frequencies. If n1 and n2 are large and the
observations from one distribution are independent of those from the other, the
random variable

2∑
j=1

k∑
i=1

(Xij − njpij)
2

njpij

is the sum of two independent random variables each of which we treat as though it
were χ2(k− 1); that is, the random variable is approximately χ2(2k− 2). Consider
the hypothesis

H0 : p11 = p12, p21 = p22, . . . , pk1 = pk2,

where each pi1 = pi2, i = 1, 2, . . . , k, is unspecified. Thus we need point estimates
of these parameters. The maximum likelihood estimator of pi1 = pi2, based upon
the frequencies Xij , is (Xi1 + Xi2)/(n1 + n2), i = 1, 2, . . . , k. Note that we need
only k − 1 point estimates, because we have a point estimate of pk1 = pk2 once we
have point estimates of the first k − 1 probabilities. In accordance with the fact
that has been stated, the random variable

Qk−1 =

2∑
j=1

k∑
i=1

{Xij − nj [(Xi1 + Xi2)/(n1 + n2)]}2
nj [(Xi1 + Xi2)/(n1 + n2)]

has an approximate χ2 distribution with 2k−2− (k−1) = k−1 degrees of freedom.
Thus we are able to test the hypothesis that two multinomial distributions are the
same. For a specified level α, the hypothesis H0 is rejected when the computed
value of Qk−1 exceeds the 1− α quantile of a χ2-distribution with k − 1 degrees of
freedom. This test is often called the chi-square test for homogeneity (the null is
equivalent to homogeneous distributions).

The second example deals with the subject of contingency tables.

Example 4.7.4. Let the result of a random experiment be classified by two at-
tributes (such as the color of the hair and the color of the eyes). That is, one
attribute of the outcome is one and only one of certain mutually exclusive and
exhaustive events, say A1, A2, . . . , Aa; and the other attribute of the outcome is
also one and only one of certain mutually exclusive and exhaustive events, say
B1, B2, . . . , Bb. Let pij = P (Ai ∩ Bj), i = 1, 2, . . . , a; j = 1, 2, . . . , b. The random
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experiment is repeated n independent times and Xij denotes the frequency of the
event Ai ∩Bj . Since there are k = ab such events as Ai ∩Bj , the random variable

Qab−1 =
b∑

j=1

a∑
i=1

(Xij − npij)
2

npij

has an approximate chi-square distribution with ab−1 degrees of freedom, provided
that n is large. Suppose that we wish to test the independence of the A and the B
attributes, i.e., the hypothesis H0 : P (Ai ∩Bj) = P (Ai)P (Bj), i = 1, 2, . . . , a; j =
1, 2, . . . , b. Let us denote P (Ai) by pi. and P (Bj) by p.j. It follows that

pi. =

b∑
j=1

pij , p.j =

a∑
i=1

pij , and 1 =

b∑
j=1

a∑
i=1

pij =

b∑
j=1

p.j =

a∑
i=1

pi..

Then the hypothesis can be formulated as H0 : pij = pi.p.j, i = 1, 2, . . . , a; j =
1, 2, . . . , b. To test H0, we can use Qab−1 with pij replaced by pi.p.j . But if
pi., i = 1, 2, . . . , a, and p.j, j = 1, 2, . . . , b, are unknown, as they frequently are
in applications, we cannot compute Qab−1 once the frequencies are observed. In
such a case, we estimate these unknown parameters by

p̂i· = Xi·

n , where Xi· =

b∑
j=1

Xij , for i = 1, 2, . . . , a,

and

p̂·j =
X·j

n , where X·j =

a∑
i=1

Xij , for j = 1, 2, . . . , b.

Since
∑

i pi. =
∑

j p.j = 1, we have estimated only a−1+b−1 = a+b−2 parameters.
So if these estimates are used in Qab−1, with pij = pi.p.j , then, according to the
rule that has been stated in this section, the random variable

b∑
j=1

a∑
i=1

[Xij − n(Xi./n)(X.j/n)]2

n(Xi./n)(X.j/n)
(4.7.2)

has an approximate chi-square distribution with ab−1− (a+ b−2) = (a−1)(b−1)
degrees of freedom provided that H0 is true. For a specified level α, the hypothesis
H0 is then rejected if the computed value of this statistic exceeds the 1−α quantile
of a χ2-distribution with (a− 1)(b− 1) degrees of freedom. This is the χ2-test for
independence.

For an illustration, reconsider Example 4.1.5 in which we presented data on hair
color of Scottish children. The eye colors of the children were also recorded. The
complete data are in the following contingency table (with additionally the marginal
sums). The contingency table is also in the file scotteyehair.rda.
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Fair Red Medium Dark Black Margin
Blue 1368 170 1041 398 1 2978
Light 2577 474 2703 932 11 6697
Medium 1390 420 3826 1842 33 7511
Dark 454 255 1848 2506 112 5175

Margin 5789 1319 9418 5678 157 22361

The table indicates that hair and eye color are dependent random variables. For
example, the observed frequency of children with blue eyes and black hair is 1
while the expected frequency under independence is 2978× 157/22361 = 20.9. The
contribution to the test statistic from this one cell is (1 − 20.9)2/20.9 = 19.95
that nearly exceeds the test statistic’s χ2 critical value at level 0.05, which is
qchisq(.95,12) = 21.026. The χ2-test statistic for independence is tedious to
compute and the reader is advised to use a statistical package. For R, assume
that the contingency table without margin sums is in the matrix scotteyehair.
Then the code chisq.test(scotteyehair) returns the χ2 test statistic and the
p-value as: X-squared = 3683.9, df = 12, p-value < 2.2e-16. Thus the re-
sult is highly significant. Based on this study, hair color and eye color of Scottish
children are dependent on one another. To investigate where the dependence is the
strongest in a contingency table, we recommend considering the table of expected
frequencies and the table of Pearson residuals. The later are the square roots
(with the sign of the numerators) of the summands in expression (4.7.2) defining the
test statistic. The sum of the squared Pearson residuals equals the χ2-test statistic.
In R, the following code obtains both of these items:

fit = chisq.test(scotteyehair); fit$expected; fit$residual

Based on running this code, the largest residual is 32.8 for the cell dark hair and
dark eyes. The observed frequency is 2506 while the expected frequency under
independence is 1314.

In each of the four examples of this section, we have indicated that the statistic
used to test the hypothesis H0 has an approximate chi-square distribution, provided
that n is sufficiently large and H0 is true. To compute the power of any of these tests
for values of the parameters not described by H0, we need the distribution of the
statistic when H0 is not true. In each of these cases, the statistic has an approximate
distribution called a noncentral chi-square distribution. The noncentral chi-
square distribution is discussed later in Section 9.3.

EXERCISES

4.7.1. Consider Example 4.7.2. Suppose the observed frequencies of A1, . . . , A4

are 20, 30, 92, and 105, respectively. Modify the R code given in the example to
calculate the test for these new frequencies. Report the p-value.

4.7.2. A number is to be selected from the interval {x : 0 < x < 2} by a random
process. Let Ai = {x : (i − 1)/2 < x ≤ i/2}, i = 1, 2, 3, and let A4 = {x :
3
2 < x < 2}. For i = 1, 2, 3, 4, suppose a certain hypothesis assigns probabilities
pi0 to these sets in accordance with pi0 =

∫
Ai

(1
2 )(2 − x) dx, i = 1, 2, 3, 4. This
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hypothesis (concerning the multinomial pdf with k = 4) is to be tested at the 5%
level of significance by a chi-square test. If the observed frequencies of the sets
Ai, i = 1, 2, 3, 4, are respectively, 30, 30, 10, 10, would H0 be accepted at the
(approximate) 5% level of significance? Use R code similar to that of Example 4.7.2
for the computation.

4.7.3. Define the sets A1 = {x : −∞ < x ≤ 0}, Ai = {x : i − 2 < x ≤ i − 1},
i = 2, . . . , 7, and A8 = {x : 6 < x < ∞}. A certain hypothesis assigns probabilities
pi0 to these sets Ai in accordance with

pi0 =

∫
Ai

1

2
√

2π
exp

[
− (x− 3)2

2(4)

]
dx, i = 1, 2, . . . , 7, 8.

This hypothesis (concerning the multinomial pdf with k = 8) is to be tested, at the
5% level of significance, by a chi-square test. If the observed frequencies of the sets
Ai, i = 1, 2, . . . , 8, are, respectively, 60, 96, 140, 210, 172, 160, 88, and 74, would
H0 be accepted at the (approximate) 5% level of significance? Use R code similar
to that discussed in Example 4.7.2. The probabilities are easily computed in R; for
example, p30 = pnorm(2,3,2)− pnorm(1,3,2).

4.7.4. A die was cast n = 120 independent times and the following data resulted:

Spots Up 1 2 3 4 5 6
Frequency b 20 20 20 20 40− b

If we use a chi-square test, for what values of b would the hypothesis that the die
is unbiased be rejected at the 0.025 significance level?

4.7.5. Consider the problem from genetics of crossing two types of peas. The
Mendelian theory states that the probabilities of the classifications (a) round and
yellow, (b) wrinkled and yellow, (c) round and green, and (d) wrinkled and green
are 9

16 , 3
16 , 3

16 , and 1
16 , respectively. If, from 160 independent observations, the

observed frequencies of these respective classifications are 86, 35, 26, and 13, are
these data consistent with the Mendelian theory? That is, test, with α = 0.01, the
hypothesis that the respective probabilities are 9

16 , 3
16 , 3

16 , and 1
16 .

4.7.6. Two different teaching procedures were used on two different groups of stu-
dents. Each group contained 100 students of about the same ability. At the end of
the term, an evaluating team assigned a letter grade to each student. The results
were tabulated as follows.

Grade
Group A B C D F Total

I 15 25 32 17 11 100
II 9 18 29 28 16 100

If we consider these data to be independent observations from two respective multi-
nomial distributions with k = 5, test at the 5% significance level the hypothesis
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Table 4.7.1: Contingency Table for Type of Crime and Alcoholic Status Data

Crime Alcoholic Non-Alcoholic
Arson 50 43
Rape 88 62
Violence 155 110
Theft 379 300
Coining 18 14
Fraud 63 144

that the two distributions are the same (and hence the two teaching procedures are
equally effective). For computation in R, use

r1=c(15,25,32,17,11);r2=c(9,18,29,28,16);mat=rbind(r1,r2)

chisq.test(mat)

4.7.7. Kloke and McKean (2014) present a data set concerning crime and alco-
holism. The data they discuss is in Table 4.7.1. It contains the frequencies of
criminals who committed certain crimes and whether or not they are alcoholics.
The data are also in the file crimealk.rda.

(a) Using code similar to that given in Exercise 4.7.6, compute the χ2-test for
independence between type of crime and alcoholic status. Conclude in terms
of the problem, using the p-value.

(b) Use the Pearson residuals to determine which part of the table contains the
strongest information concerning dependence.

(c) Use a χ2-test to confirm your suspicions in Part (b). This is a conditional test
based on the data, but, in practice, such tests are used for planning future
studies.

4.7.8. Let the result of a random experiment be classified as one of the mutually
exclusive and exhaustive ways A1, A2, A3 and also as one of the mutually exhaustive
ways B1, B2, B3, B4. Say that 180 independent trials of the experiment result in
the following frequencies:

B1 B2 B3 B4

A1 15− 3k 15− k 15 + k 15 + 3k
A2 15 15 15 15
A3 15 + 3k 15 + k 15− k 15− 3k

where k is one of the integers 0, 1, 2, 3, 4, 5. What is the smallest value of k that
leads to the rejection of the independence of the A attribute and the B attribute at
the α = 0.05 significance level?

4.7.9. It is proposed to fit the Poisson distribution to the following data:
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x 0 1 2 3 3 < x
Frequency 20 40 16 18 6

(a) Compute the corresponding chi-square goodness-of-fit statistic.
Hint: In computing the mean, treat 3 < x as x = 4.

(b) How many degrees of freedom are associated with this chi-square?

(c) Do these data result in the rejection of the Poisson model at the α = 0.05
significance level?

4.8 The Method of Monte Carlo

In this section we introduce the concept of generating observations from a speci-
fied distribution or sample. This is often called Monte Carlo generation. This
technique has been used for simulating complicated processes and investigating fi-
nite sample properties of statistical methodology for some time now. In the last 30
years, however, this has become a very important concept in modern statistics in
the realm of inference based on the bootstrap (resampling) and modern Bayesian
methods. We repeatedly make use of this concept throughout the book.

For the most part, a generator of random uniform observations is all that is
needed. It is not easy to construct a device that generates random uniform observa-
tions. However, there has been considerable work done in this area, not only in the
construction of such generators, but in the testing of their accuracy as well. Most
statistical software packages, such as R, have reliable uniform generators.

Suppose then we have a device capable of generating a stream of independent
and identically distributed observations from a uniform (0, 1) distribution. For
example, the following command generates 10 such observations in the language R:
runif(10) . In this command the r stands for random, the unif stands for uniform,
the 10 stands for the number of observations requested, and the lack of additional
arguments means that the standard uniform (0, 1) generator is used.

For observations from a discrete distribution, often a uniform generator suffices.
For a simple example, consider an experiment where a fair six-sided die is rolled
and the random variable X is 1 if the upface is a “low number,” namely {1, 2};
otherwise, X = 0. Note that the mean of X is μ = 1/3. If U has a uniform (0, 1)
distribution, then X can be realized as

X =

{
1 if 0 < U ≤ 1/3
0 if 1/3 < U < 1.

Using the command above, we used the following R code to generate 10 observations
from this experiment:

n = 10; u = runif(n); x = rep(0,n); x[u < 1/3] = 1; x

The following table displays the results.
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ui 0.4743 0.7891 0.5550 0.9693 0.0299
xi 0 0 0 0 1
ui 0.8425 0.6012 0.1009 0.0545 0.4677
xi 0 0 1 1 0

Note that observations form a realization of a random sample X1, . . . , X10 drawn
from the distribution of X . For these 10 observations, the realized value of the
statistic X is x = 0.3.

Example 4.8.1 (Estimation of π). Consider the experiment where a pair of num-
bers (U1, U2) is chosen at random in the unit square, as shown in Figure 4.8.1; that
is, U1 and U2 are iid uniform (0, 1) random variables. Since the point is chosen at
random, the probability of (U1, U2) lying within the unit circle is π/4. Let X be
the random variable,

X =

{
1 if U2

1 + U2
2 < 1

0 otherwise.

u2

u1
1.00.5

1.0

0.5

0.0
0.0

Figure 4.8.1: Unit square with the first quadrant of the unit circle, Example 4.8.1.

Hence the mean of X is μ = π/4. Now suppose π is unknown. One way of
estimating π is to repeat the experiment n independent times, hence, obtaining
a random sample X1, . . . , Xn on X . The statistic 4X is an unbiased estimator of π.
The R function piest repeats this experiment n times, returning the estimate of π.
This function and other R functions discussed in this chapter are available at the
site discussed in the Preface. Figure 4.8.1 shows 20 realizations of this experiment.
Note that of the 20 points, 15 fall within the unit circle. Hence our estimate of π is
4(15/20) = 3.00. We ran this code for various values of n with the following results:
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n 100 500 1000 10,000 100,000
4x 3.24 3.072 3.132 3.138 3.13828

1.96 · 4
√

x(1− x)/n 0.308 0.148 0.102 0.032 0.010

We can use the large sample confidence interval derived in Section 4.2 to estimate
the error of estimation. The corresponding 95% confidence interval for π is(

4x− 1.96 · 4
√

x(1− x)/n, 4x + 1.96 · 4
√

x(1− x)/n
)

. (4.8.1)

The last row of the above table contains the error part of the confidence intervals.
Notice that all five confidence intervals trapped the true value of π.

What about continuous random variables? For these we have the following
theorem:

Theorem 4.8.1. Suppose the random variable U has a uniform (0, 1) distribution.
Let F be a continuous distribution function. Then the random variable X = F−1(U)
has distribution function F .

Proof: Recall from the definition of a uniform distribution that U has the distri-
bution function FU (u) = u for u ∈ (0, 1). Using this, the distribution-function
technique, and assuming that F (x) is strictly monotone, the distribution function
of X is

P [X ≤ x] = P [F−1(U) ≤ x]

= P [U ≤ F (x)]

= F (x),

which proves the theorem.

In the proof, we assumed that F (x) was strictly monotone. As Exercise 4.8.13
shows, we can weaken this.

We can use this theorem to generate realizations (observations) of many different
random variables. For example, suppose X has the Γ(1, β)-distribution. Suppose
we have a uniform generator and we want to generate a realization of X . The
distribution function of X is

F (x) = 1− e−x/β, x > 0.

Hence the inverse of the distribution function is given by

F−1(u) = −β log(1− u), 0 < u < 1. (4.8.2)

So if U has the uniform (0, 1) distribution, then X = −β log(1−U) has the Γ(1, β)-
distribution. For instance, suppose β = 1 and our uniform generator generated the
following stream of uniform observations:

0.473, 0.858, 0.501, 0.676, 0.240.
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Then the corresponding stream of exponential observations is

0.641, 1.95, 0.696, 1.13, 0.274.

As the next example shows, we can generate Poisson realizations using this expo-
nential generation.

Example 4.8.2 (Simulating Poisson Processes). Let X be the number of occur-
rences of an event over a unit of time and assume that it has a Poisson distribution
with mean λ, (3.2.1). Let T1, T2, T3, . . . be the interarrival times of the occurrences.
Recall from Remark 3.3.1 that T1, T2, T3, . . . are iid with the common Γ(1, 1/λ)-

distribution. Note that X = k if and only if
∑k

j=1 Tj ≤ 1 and
∑k+1

j=1 Tj > 1. Using
this fact and the generation of Γ(1, 1/λ) variates discussed above, the following
algorithm generates a realization of X (assume that the uniforms generated are
independent of one another).

1. Set X = 0 and T = 0.
2. Generate U uniform (0, 1) and let Y = −(1/λ) log(1− U).
3. Set T = T + Y .
4. If T > 1, output X ;

else set X = X + 1 and go to step 2.

The R function poisrand provides an implementation of this algorithm, generating
n simulations of a Poisson distribution with parameter λ. As an illustration, we
obtained 1000 realizations from a Poisson distribution with λ = 5 by running R
with the R code temp = poisrand(1000,5), which stores the realizations in the
vector temp. The sample average of these realizations is computed by the command
mean(temp). In the situation that we ran, the realized mean was 4.895.

Example 4.8.3 (Monte Carlo Integration). Suppose we want to obtain the integral∫ b

a g(x) dx for a continuous function g over the closed and bounded interval [a, b].
If the antiderivative of g does not exist, then numerical integration is in order. A
simple numerical technique is the method of Monte Carlo. We can write the integral
as ∫ b

a

g(x) dx = (b− a)

∫ b

a

g(x)
1

b− a
dx = (b− a)E[g(X)],

where X has the uniform (a, b) distribution. The Monte Carlo technique is then to
generate a random sample X1, . . . , Xn of size n from the uniform (a, b) distribution

and compute Yi = (b− a)g(Xi). Then Y is an unbiased estimator of
∫ b

a
g(x) dx.

Example 4.8.4 (Estimation of π by Monte Carlo Integration). For a numerical
example, reconsider the estimation of π. Instead of the experiment described in
Example 4.8.1, we use the method of Monte Carlo integration. Let g(x) = 4

√
1− x2

for 0 < x < 1. Then

π =

∫ 1

0

g(x) dx = E[g(X)],

where X has the uniform (0, 1) distribution. Hence we need to generate a random
sample X1, . . . , Xn from the uniform (0, 1) distribution and form Yi = 4

√
1−X2

i .
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Then Y is a unbiased estimator of π. Note that Y is estimating a mean, so the
large sample confidence interval (4.2.6) derived in Example 4.2.2 for means can be
used to estimate the error of estimation. Recall that this 95% confidence interval is
given by

(y − 1.96s/
√

n, y + 1.96s/
√

n),

where s is the value of the sample standard deviation. We coded this algorithm
in the R function piest2. The table below gives the results for estimates of π for
various runs of different sample sizes along with the confidence intervals.

n 100 1000 10,000 100,000
y 3.217849 3.103322 3.135465 3.142066

y − 1.96(s/
√

n) 3.054664 3.046330 3.118080 3.136535
y + 1.96(s/

√
n) 3.381034 3.160314 3.152850 3.147597

Note that for each experiment the confidence interval trapped π.

Numerical integration techniques have made great strides over the last 30 years.
But the simplicity of integration by Monte Carlo still makes it a powerful technique.

As Theorem 4.8.1 shows, if we can obtain F−1
X (u) in closed form, then we can

easily generate observations with cdf FX . In many cases where this is not possible,
techniques have been developed to generate observations. Note that the normal
distribution serves as an example of such a case, and, in the next example, we show
how to generate normal observations. In Section 4.8.1, we discuss an algorithm that
can be adapted for many of these cases.

Example 4.8.5 (Generating Normal Observations). To simulate normal variables,
Box and Muller (1958) suggested the following procedure. Let Y1, Y2 be a random
sample from the uniform distribution over 0 < y < 1. Define X1 and X2 by

X1 = (−2 logY1)
1/2 cos(2πY2),

X2 = (−2 logY1)
1/2 sin(2πY2).

This transformation is one-to-one and maps {(y1, y2) : 0 < y1 < 1, 0 < y2 < 1}
onto {(x1, x2) : −∞ < x1 < ∞, −∞ < x2 < ∞} except for sets involving x1 = 0
and x2 = 0, which have probability zero. The inverse transformation is given by

y1 = exp

(
−x2

1 + x2
2

2

)
,

y2 =
1

2π
arctan

x2

x1
.

This has the Jacobian

J =

∣∣∣∣∣∣∣∣
(−x1) exp

(
−x2

1 + x2
2

2

)
(−x2) exp

(
−x2

1 + x2
2

2

)
−x2/x2

1

(2π)(1 + x2
2/x2

1)

1/x1

(2π)(1 + x2
2/x2

1)

∣∣∣∣∣∣∣∣
=

−(1 + x2
2/x2

1) exp

(
−x2

1 + x2
2

2

)
(2π)(1 + x2

2/x2
1)

=

− exp

(
−x2

1 + x2
2

2

)
2π

.
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Since the joint pdf of Y1 and Y2 is 1 on 0 < y1 < 1, 0 < y2 < 1, and zero elsewhere,
the joint pdf of X1 and X2 is

exp

(
−x2

1 + x2
2

2

)
2π

, −∞ < x1 < ∞, −∞ < x2 < ∞.

That is, X1 and X2 are independent, standard normal random variables. One of the
most commonly used normal generators is a variant of the above procedure called
the Marsaglia and Bray (1964) algorithm; see Exercise 4.8.21.

Observations from a contaminated normal distribution, discussed in Section
3.4.1, can easily be generated using a normal generator and a uniform generator.
We close this section by estimating via Monte Carlo the significance level of a t-test
when the underlying distribution is a contaminated normal.

Example 4.8.6. Let X be a random variable with mean μ and consider the hy-
potheses

H0 : μ = 0 versus H1 : μ > 0. (4.8.3)

Suppose we decide to base this test on a sample of size n = 20 from the distribution
of X , using the t-test with rejection rule

Reject H0 : μ = 0 in favor of H1 : μ > 0 if t > t.05,19 = 1.729, (4.8.4)

where t = x/(s/
√

20) and x and s are the sample mean and standard deviation,
respectively. If X has a normal distribution, then this test has level 0.05. But what
if X does not have a normal distribution? In particular, for this example, suppose
X has the contaminated normal distribution given by (3.4.17) with ε = 0.25 and
σc = 25; that is, 75% of the time an observation is generated by a standard normal
distribution, while 25% of the time it is generated by a normal distribution with
mean 0 and standard deviation 25. Hence the mean of X is 0, so H0 is true.
To obtain the exact significance level of the test would be quite complicated. We
would have to obtain the distribution of t when X has this contaminated normal
distribution. As an alternative, we estimate the level (and the error of estimation)
by simulation. Let N be the number of simulations. The following algorithm gives
the steps of our simulation:

1. Set k = 1, I = 0.

2. Simulate a random sample of size 20 from the distribution of X .

3. Based on this sample, compute the test statistic t.

4. If t > 1.729, increase I by 1.

5. If k = N ; go to step 6; else increase k by 1 and go to step 2.

6. Compute α̂ = I/N and the approximate error = 1.96
√

α̂(1− α̂)/N .
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Then α̂ is our simulated estimate of α and the half-width of a confidence interval
for α serves as our estimate of the error of estimation.

The R function empalphacn implements this algorithm. We ran it for N =
10,000 obtaining the results:

No. Simulat. Empirical α̂ Error 95% CI for α
10,000 0.0412 0.0039 (0.0373, 0.0451)

Based on these results, the t-test appears to be conservative when the sample is
drawn from this contaminated normal distribution.

4.8.1 Accept–Reject Generation Algorithm

In this section, we develop the accept–reject procedure that can often be used to
simulate random variables whose inverse cdf cannot be obtained in closed form. Let
X be a continuous random variable with pdf f(x). For this discussion, we call this
pdf the target pdf. Suppose it is relatively easy to generate an observation of the
random variable Y which has pdf g(x) and that for some constant M we have

f(x) ≤Mg(x) , −∞ < x < ∞. (4.8.5)

We call g(x) the instrumental pdf. For clarity, we write the accept–reject as an
algorithm:

Algorithm 4.8.1 (Accept–Reject Algorithm). Let f(x) be a pdf. Suppose that Y
is a random variable with pdf g(y), U is a random variable with a uniform(0, 1)
distribution, Y and U are independent, and (4.8.5) holds. The following algorithm
generates a random variable X with pdf f(x).

1. Generate Y and U .

2. If U ≤ f(Y )
Mg(Y ) , then take X = Y . Otherwise return to step 1.

3. X has pdf f(x).

Proof of the validity of the algorithm: Let −∞ < x < ∞. Then

P [X ≤ x] = P

[
Y ≤ x|U ≤ f(Y )

Mg(Y )

]

=
P

[
Y ≤ x, U ≤ f(Y )

Mg(Y )

]
P

[
U ≤ f(Y )

Mg(Y )

]
=

∫ x

−∞
[∫ f(y)/Mg(y)

0 du
]
g(y)dy∫∞

−∞
[∫ f(y)/Mg(y)

0
du

]
g(y)dy

=

∫ x

−∞
f(y)

Mg(y)g(y)dy∫∞
−∞

f(y)
Mg(y)g(y)dy

(4.8.6)

=

∫ x

−∞
f(y) dy. (4.8.7)
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Hence, by differentiating both sides, we find that the pdf of X is f(x).

There are two facts worth noting. First, the probability of an acceptance in the
algorithm is 1/M . This can be seen in the derivation in the proof of the theorem.
Just consider the denominators in the derivation which show that

P

[
U ≤ f(Y )

Mg(Y )

]
=

1

M
. (4.8.8)

Hence, for efficiency of the algorithm we want M as small as possible. Secondly,
normalizing constants of the two pdfs f(x) and g(x) can be ignored. For example,
if f(x) = kh(x) and g(x) = ct(x) for constants c and k, then we can use the rule

h(x) ≤ M2t(x) , −∞ < x < ∞, (4.8.9)

and change the ratio in step 2 of the algorithm to U ≤ h(Y )/[M2t(Y )]. It follows
directly that expression (4.8.5) holds if and only if expression (4.8.9) holds where
M2 = cM/k. This often simplifies the use of the accept–reject algorithm.

We next present two examples of the accept–reject algorithm. The first exam-
ple offers a normal generator where the instrumental random variable, Y , has a
Cauchy distribution. The second example shows how all gamma distributions can
be generated.

Example 4.8.7. Suppose that X is a normally distributed random variable with
pdf φ(x) = (2π)−1/2 exp{−x2/2} and Y has a Cauchy distribution with pdf g(x) =
π−1(1+x2)−1. As Exercise 4.8.9 shows, the Cauchy distribution is easy to simulate
because its inverse cdf is a known function. Ignoring normalizing constants, the
ratio to bound is

f(x)

g(x)
∝ (1 + x2) exp{−x2/2}, −∞ < x <∞. (4.8.10)

As Exercise 4.8.17 shows, the derivative of this ratio is −x exp{−x2/2}(x2 − 1),
which has critical values at ±1. These values provide maxima to (4.8.10). Hence,

(1 + x2) exp{−x2/2} ≤ 2 exp{−1/2} = 1.213,

so M2 = 1.213. Hence, from the above discussion, M = (π/
√

2π)1.213 = 1.520.
Hence, the acceptance rate of the algorithm is 1/M = 0.6577.

Example 4.8.8. Suppose we want to generate observations from a Γ(α, β). First,
if Y has a Γ(α, 1)-distribution then βY has a Γ(α, β)-distribution. Hence, we need
only consider Γ(α, 1) distributions. So let X have a Γ(α, 1)-distribution. If α is a
positive integer then by Theorem 3.3.1 we can write X as

X = T1 + T2 + · · ·+ Tα,

where T1, T2, · · · , Tα are independent and identically distributed with the common
Γ(1, 1)-distribution. In the discussion around expression (4.8.2), we have shown how
to generate Ti.
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Assume then that X has a Γ(α, 1) distribution, where α is not an integer. As-
sume first that α > 1. Let Y have a Γ([α], 1/b) distribution, where b < 1 is chosen
later and, as usual, [α] means the greatest integer less than or equal to α. To es-
tablish rule (4.8.9), consider the ratio, with h(x) and t(x) proportional to the pdfs
of x and y, respectively, given by

h(x)

t(x)
= b−[α]xα−[α]e−(1−b)x, (4.8.11)

where we have ignored some of the normalizing constants. We next determine the
constant b.

As Exercise 4.8.14 shows, the derivative of expression (4.8.11) is

d

dx
b−[α]xα−[α]e−(1−b)x = b−[α]e−(1−b)x[(α− [α])− x(1 − b)]xα−[α]−1, (4.8.12)

which has a maximum critical value at x = (α − [α])/(1 − b). Hence, using the
maximum of h(x)/t(x),

h(x)

t(x)
≤ b−[α]

[
α− [α]

(1− b)e

]α−[α]

. (4.8.13)

Now, we need to find our choice of b. Differentiating the right side of this inequality
with respect to b, we get, as Exercise 4.8.15 shows,

d

db
b−[α](1− b)[α]−α = −b−[α](1− b)[α]−α

[
[α]− αb

b(1− b)

]
, (4.8.14)

which has a critical value at b = [α]/α < 1. As shown in that exercise, this value
of b provides a minimum of the right side of expression (4.8.13). Thus, if we take
b = [α]/α < 1, then equality (4.8.13) holds and it is the tightest inequality possible
and, hence, provides the highest acceptance rate. The final value of M is the right
side of expression (4.8.13) evaluated at b = [α]/α < 1.

What if 0 < α < 1? Then the above argument does not work. In this case
write X = Y U1/α where Y has a Γ(α + 1, 1)-distribution, U has a uniform (0, 1)-
distribution, and Y and U are independent. Then, as the derivation in Exercise
4.8.16 shows, X has a Γ(α, 1)-distribution and we are finished.

For further discussion, see Kennedy and Gentle (1980) and Robert and Casella
(1999).

EXERCISES

4.8.1. Prove the converse of Theorem MCT. That is, let X be a random variable
with a continuous cdf F (x). Assume that F (x) is strictly increasing on the space
of X . Consider the random variable Z = F (X). Show that Z has a uniform
distribution on the interval (0, 1).
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4.8.2. Recall that log 2 =
∫ 1

0
1

x+1 dx. Hence, by using a uniform(0, 1) generator,
approximate log 2. Obtain an error of estimation in terms of a large sample 95%
confidence interval. Write an R function for the estimate and the error of estimation.
Obtain your estimate for 10,000 simulations and compare it to the true value.

4.8.3. Similar to Exercise 4.8.2 but now approximate
∫ 1.96

0
1√
2π

exp
{
− 1

2 t2
}

dt.

4.8.4. Suppose X is a random variable with the pdf fX(x) = b−1f((x − a)/b),
where b > 0. Suppose we can generate observations from f(z). Explain how we can
generate observations from fX(x).

4.8.5. Determine a method to generate random observations for the logistic pdf,
(4.4.11). Write an R function that returns a random sample of observations from
a logistic distribution. Use your function to generate 10,000 observations from this
pdf. Then obtain a histogram (use hist(x,pr=T), where x contains the observa-
tions). On this histogram overlay a plot of the pdf.

4.8.6. Determine a method to generate random observations for the following pdf:

f(x) =

{
4x3 0 < x < 1
0 elsewhere.

Write an R function that returns a random sample of observations from this pdf.

4.8.7. Obtain the inverse function of the cdf of the Laplace pdf, given by f(x) =
(1/2)e−|x|, for −∞ < x < ∞. Write an R function that returns a random sample
of observations from this distribution.

4.8.8. Determine a method to generate random observations for the extreme-valued
pdf that is given by

f(x) = exp {x− ex} , −∞ < x < ∞. (4.8.15)

Write an R function that returns a random sample of observations from an extreme-
valued distribution. Use your function to generate 10,000 observations from this pdf.
Then obtain a histogram (use hist(x,pr=T), where x contains the observations).
On the histogram overlay a plot of the pdf.

4.8.9. Determine a method to generate random observations for the Cauchy distri-
bution with pdf

f(x) =
1

π(1 + x2)
, −∞ < x < ∞. (4.8.16)

Write an R function that returns a random sample of observations from this Cauchy
distribution.

4.8.10. Suppose we are interested in a particular Weibull distribution with pdf

f(x) =

{
1
θ3 3x2e−x3/θ3

0 < x < ∞
0 elsewhere.

Determine a method to generate random observations from this Weibull distribu-
tion. Write an R function that returns such a sample.
Hint: Find F−1(u).
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4.8.11. Consider the situation in Example 4.8.6 with the hypotheses (4.8.3). Write
an algorithm that simulates the power of the test (4.8.4) to detect the alternative
μ = 0.5 under the same contaminated normal distribution as in the example. Modify
the R function empalphacn(N) to simulate this power and to obtain an estimate of
the error of estimation.

4.8.12. For the last exercise, write an algorithm to simulate the significance level
and power to detect the alternative μ = 0.5 for the test (4.8.4) when the underlying
distribution is the logistic distribution (4.4.11).

4.8.13. For the proof of Theorem 4.8.1, we assumed that the cdf was strictly in-
creasing over its support. Consider a random variable X with cdf F (x) that is not
strictly increasing. Define as the inverse of F (x) the function

F−1(u) = inf{x : F (x) ≥ u}, 0 < u < 1.

Let U have a uniform (0, 1) distribution. Prove that the random variable F−1(U)
has cdf F (x).

4.8.14. Verify the derivative in expression (4.8.12) and show that the function
(4.8.11) attains a maximum at the critical value x = (α − [α])/(1− b).

4.8.15. Derive expression (4.8.14) and show that the resulting critical value b =
[α]/α < 1 gives a minimum of the function that is the right side of expression
(4.8.13).

4.8.16. Assume that Y1 has a Γ(α + 1, 1)-distribution, Y2 has a uniform (0, 1)
distribution, and Y1 and Y2 are independent. Consider the transformation X1 =

Y1Y
1/α
2 and X2 = Y2.

(a) Show that the inverse transformation is: y1 = x1/x
1/α
2 and y2 = x2 with

support 0 < x1 <∞ and 0 < x2 < 1.

(b) Show that the Jacobian of the transformation is 1/x
1/α
2 and the pdf of (X1, X2)

is

f(x1, x2) =
1

Γ(α + 1)

xα
1

x2
exp

{
− x1

x
1/α
2

}
1

x
1/α
2

, 0 < x1 < ∞ and 0 < x2 < 1.

(c) Show that the marginal distribution of X1 is Γ(α, 1).

4.8.17. Show that the derivative of the ratio in expression (4.8.10) is given by the
function −x exp{−x2/2}(x2 − 1) with critical values ±1. Show that the critical
values provide maxima for expression (4.8.10).

4.8.18. Consider the pdf

f(x) =

{
βxβ−1 0 < x < 1
0 elsewhere,

for β > 1.
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(a) Use Theorem 4.8.1 to generate an observation from this pdf.

(b) Use the accept–reject algorithm to generate an observation from this pdf.

4.8.19. Proceeding similar to Example 4.8.7, use the accept–reject algorithm to
generate an observation from a t distribution with r > 1 degrees of freedom when
g(x) is the Cauchy pdf.

4.8.20. For α > 0 and β > 0, consider the following accept–reject algorithm:

1. Generate U1 and U2 iid uniform(0, 1) random variables. Set V1 = U
1/α
1 and

V2 = U
1/β
2 .

2. Set W = V1 + V2. If W ≤ 1, set X = V1/W ; else go to step 1.

3. Deliver X .

Show that X has a beta distribution with parameters α and β, (3.3.9). See Kennedy
and Gentle (1980).

4.8.21. Consider the following algorithm:

1. Generate U and V independent uniform (−1, 1) random variables.

2. Set W = U2 + V 2.

3. If W > 1 go to step 1.

4. Set Z =
√

(−2 logW )/W and let X1 = UZ and X2 = V Z.

Show that the random variables X1 and X2 are iid with a common N(0, 1) distri-
bution. This algorithm was proposed by Marsaglia and Bray (1964).

4.9 Bootstrap Procedures

In the last section, we introduced the method of Monte Carlo and discussed several
of its applications. In the last few years, however, Monte Carlo procedures have
become increasingly used in statistical inference. In this section, we present the
bootstrap, one of these procedures. We concentrate on confidence intervals and
tests for one- and two-sample problems in this section.

4.9.1 Percentile Bootstrap Confidence Intervals

Let X be a random variable of the continuous type with pdf f(x; θ), for θ ∈ Ω.

Suppose X = (X1, X2, . . . , Xn) is a random sample on X and θ̂ = θ̂(X) is a point
estimator of θ. The vector notation, X, proves useful in this section. In Sections 4.2
and 4.3, we discussed the problem of obtaining confidence intervals for θ in certain
situations. In this section, we discuss a general method called the percentile boot-
strap procedure, which is a resampling procedure. It was proposed by Efron (1979).
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Informative discussions of such procedures can be found in Efron and Tibshirani
(1993) and Davison and Hinkley (1997).

To motivate the procedure, suppose for the moment that

θ̂ has a N(θ, σ2bθ) distribution. (4.9.1)

Then as in Section 4.2, a (1− α)100% confidence interval for θ is (θ̂L, θ̂U ), where

θ̂L = θ̂ − z(1−α/2)σbθ and θ̂U = θ̂ − z(α/2)σbθ, (4.9.2)

and z(γ) denotes the γ100th percentile of a standard normal random variable; i.e.,
z(γ) = Φ−1(γ), where Φ is the cdf of a N(0, 1) random variable (see also Exercise
4.9.5). We have gone to a superscript notation here to avoid confusion with the
usual subscript notation on critical values.

Now suppose that θ̂ and σbθ are realizations from the sample and θ̂L and θ̂U are

calculated as in (4.9.2). Next suppose that θ̂∗ is a random variable with a N(θ̂, σ2bθ)

distribution. Then, by (4.9.2),

P (θ̂∗ ≤ θ̂L) = P

(
θ̂∗ − θ̂

σbθ
≤ −z(1−α/2)

)
= α/2. (4.9.3)

Likewise, P (θ̂∗ ≤ θ̂U ) = 1 − (α/2). Therefore, θ̂L and θ̂U are the α
2 100th and

(1 − α
2 )100th percentiles of the distribution of θ̂∗. That is, the percentiles of the

N(θ̂, σ2bθ) distribution form the (1− α)100% confidence interval for θ.
We want our final procedure to be quite general, so the normality assumption

(4.9.1) is definitely not desired and, in Remark 4.9.1, we do show that this assump-

tion is not necessary. So, in general, let H(t) denote the cdf of θ̂.
In practice, though, we do not know the function H(t). Hence the above con-

fidence interval defined by statement (4.9.3) cannot be obtained. But suppose we

could take an infinite number of samples X1,X2, . . .; obtain θ̂∗ = θ̂(X∗) for each

sample X∗; and then form the histogram of these estimates θ̂∗. The percentiles
of this histogram would be the confidence interval defined by expression (4.9.3).
Since we only have one sample, this is impossible. It is, however, the idea behind
bootstrap procedures.

Bootstrap procedures simply resample from the empirical distribution defined
by the one sample. The sampling is done at random and with replacement and
the resamples are all of size n, the size of the original sample. That is, suppose
x′ = (x1, x2, . . . , xn) denotes the realization of the sample. Let F̂n denote the

empirical distribution function of the sample. Recall that F̂n is a discrete cdf that
puts mass n−1 at each point xi and that F̂n(x) is an estimator of F (x). Then a

bootstrap sample is a random sample, say x∗′ = (x∗
1, x

∗
2, . . . , x

∗
n), drawn from F̂n.

For example, it follows from the definition of expectation that

E(x∗
i ) =

n∑
i=1

xi
1

n
=

1

n

n∑
i=1

xi = x. (4.9.4)
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Likewise V (x∗
i ) = n−1

∑n
i=1(xi − x)2; see Exercise 4.9.2. At first glance, this re-

sampling the sample seems like it would not work. But our only information on
sampling variability is within the sample itself, and by resampling the sample we
are simulating this variability.

We now give an algorithm that obtains a bootstrap confidence interval. For
clarity, we present a formal algorithm, which can be readily coded into languages
such as R. Let x′ = (x1, x2, . . . , xn) be the realization of a random sample drawn

from a cdf F (x; θ), θ ∈ Ω. Let θ̂ be a point estimator of θ. Let B, an integer, denote
the number of bootstrap replications, i.e., the number of resamples. In practice, B
is often 3000 or more.

1. Set j = 1.

2. While j ≤ B, do steps 2–5.

3. Let x∗
j be a random sample of size n drawn from the sample x. That is, the

observations x∗
j are drawn at random from x1, x2, . . . , xn, with replacement.

4. Let θ̂∗j = θ̂(x∗
j ).

5. Replace j by j + 1.

6. Let θ̂∗(1) ≤ θ̂∗(2) ≤ · · · ≤ θ̂∗(B) denote the ordered values of θ̂∗1, θ̂
∗
2, . . . , θ̂

∗
B. Let

m = [(α/2)B], where [·] denotes the greatest integer function. Form the
interval

(θ̂∗(m), θ̂
∗
(B+1−m)); (4.9.5)

that is, obtain the α
2 100% and (1 − α

2 )100% percentiles of the sampling dis-

tribution of θ̂∗1 , θ̂∗2, . . . , θ̂
∗
B.

The interval in (4.9.5) is called the percentile bootstrap confidence interval for
θ. In step 6, the subscripted parenthetical notation is a common notation for order
statistics (Section 4.4), which is handy in this section.

For the remainder of this subsection, we use as our estimator of θ the sample
mean. For the sample mean, the following R function percentciboot is an R im-
plementation of this algorithm (it can be downloaded at the site listed in Chapter
1):

percentciboot <- function(x,b,alpha){

theta=mean(x); thetastar=rep(0,b); n=length(x)

for(i in 1:b){xstar=sample(x,n,replace=T)

thetastar[i]=mean(xstar)}

thetastar=sort(thetastar); pick=round((alpha/2)*(b+1))

lower=thetastar[pick]; upper=thetastar[b-pick+1]

list(theta=theta,lower=lower,upper=upper)}

#list(theta=theta,lower=lower,upper=upper,thetasta=thetastar)}

The input consists of the sample x, the number of bootstraps b, and the desired
confidence coefficient alpha. The second line of code computes the mean and the
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size of the sample and provides a vector to store the θ̂∗s. In the for loop, the
ith bootstrap sample is obtained by the single command sample(x,n,replace=T),
which is followed by the computation of θ̂∗i . The remainder of the code forms the
bootstrap confidence interval, while the list command returns the estimate and
the bootstrap confidence interval. The optional second list command returns the
θ̂∗s, also. Notice that it easy to change the code for an estimator other than the
mean. For example, to obtain a bootstrap confidence interval for the median just
replace the two occurrences of mean with median. We illustrate this discussion in
the next example.

Example 4.9.1. In this example, we sample from a known distribution, but, in
practice, the distribution is usually unknown. Let X1, X2, . . . , Xn be a random
sample from a Γ(1, β) distribution. Since the mean of this distribution is β, the
sample average X is an unbiased estimator of β. In this example, the X serves as
our point estimator of β. The following 20 data points are the realizations (rounded)
of a random sample of size n = 20 from a Γ(1, 100) distribution:

131.7 182.7 73.3 10.7 150.4 42.3 22.2 17.9 264.0 154.4
4.3 265.6 61.9 10.8 48.8 22.5 8.8 150.6 103.0 85.9

The value of X for this sample is x = 90.59, which is our point estimate of β.
For illustration, we generated one bootstrap sample of these data. This ordered
bootstrap sample is

4.3 4.3 4.3 10.8 10.8 10.8 10.8 17.9 22.5 42.3
48.8 48.8 85.9 131.7 131.7 150.4 154.4 154.4 264.0 265.6

The sample mean of this particular bootstrap sample is x∗ = 78.725. To obtain
our bootstrap confidence interval for β, we need to compute many more resam-
ples. For this computation, we used the R function percentciboot discussed
above. Let x denote the R vector of the original sample of observations. We se-
lected 3000 as the number of bootstraps and chose α = 0.10. We used the code
percentciboot(x,3000,.10) to compute our bootstrap confidence interval. Fig-
ure 4.9.1 displays a histogram of the 3000 sample means x∗s computed by the code.
The sample mean of these 3000 values is 90.13, close to x = 90.59. Our program also
obtained a 90% (bootstrap percentile) confidence interval given by (61.655, 120.48),
which the reader can locate on the figure. It does trap the true value μ = 100.
Exercise 4.9.3 shows that if we are sampling from a Γ(1, β) distribution, then the
interval (2nx/[χ2

2n](1−(α/2)), 2nx/[χ2
2n](α/2)) is an exact (1− α)100% confidence in-

terval for β. Note that, in keeping with our superscript notation for critical values,
[χ2

2n](γ) denotes the γ100% percentile of a χ2 distribution with 2n degrees of free-
dom. This exact 90% confidence interval for our sample is (64.99, 136.69).

What about the validity of a bootstrap confidence interval? Davison and Hink-
ley (1997) discuss the theory behind the bootstrap in Chapter 2 of their book.
Under some general conditions, they show that the bootstrap confidence interval is
asymptotically valid.
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Figure 4.9.1: Histogram of the 3000 bootstrap x∗s. The 90% bootstrap confidence
interval is (61.655, 120.48).

One way of improving the bootstrap is to use a pivot random variable, a variable
whose distribution is free of other parameters. For instance, in the last example,
instead of using X, use X/σ̂X , where σ̂X = S/

√
n and S = [

∑
(Xi−X)2/(n−1)]1/2;

that is, adjust X by its standard error. This is discussed in Exercise 4.9.6. Other
improvements are discussed in the two books cited earlier.

Remark 4.9.1. ∗Briefly, we show that the normal assumption on the distribution
of θ̂, (4.9.1), is transparent to the argument around expression (4.9.3); see Efron

and Tibshirani (1993) for further discussion. Suppose H is the cdf of θ̂ and that H
depends on θ. Then, using Theorem 4.8.1, we can find an increasing transformation
φ = m(θ) such that the distribution of φ̂ = m(θ̂) is N(φ, σ2

c ), where φ = m(θ)
and σ2

c is some variance. For example, take the transformation to be m(θ) =
F−1

c (H(θ)), where Fc(x) is the cdf of a N(φ, σ2
c ) distribution. Then, as above,

(φ̂ − z(1−α/2)σc, φ̂− z(α/2)σc) is a (1 − α)100% confidence interval for φ. But note
that

1− α = P
[
φ̂− z(1−α/2)σc < φ < φ̂− z(α/2)σc)

]
= P

[
m−1(φ̂− z(1−α/2)σc) < θ < m−1(φ̂− z(α/2)σc)

]
. (4.9.6)

Hence, (m−1(φ̂−z(1−α/2)σc), m
−1(φ̂−z(α/2)σc)) is a (1−α)100% confidence interval

for θ. Now suppose Ĥ is the cdf H with a realization θ̂ substituted in for θ, i.e.,
analogous to the N(θ̂, σ2bθ) distribution above. Suppose θ̂∗ is a random variable with
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cdf Ĥ . Let φ̂ = m(θ̂) and φ̂∗ = m(θ̂∗). We have

P
[
θ̂∗ ≤ m−1(φ̂ − z(1−α/2)σc)

]
= P

[
φ̂∗ ≤ φ̂− z(1−α/2)σc

]
= P

[
φ̂∗ − φ̂

σc
≤ −z(1−α/2)

]
= α/2,

similar to (4.9.3). Therefore, m−1(φ̂ − z(1−α/2)σc) is the α
2 100th percentile of the

cdf Ĥ . Likewise, m−1(φ̂ − z(α/2)σc) is the (1 − α
2 )100th percentile of the cdf Ĥ .

Therefore, in the general case too, the percentiles of the distribution of Ĥ form the
confidence interval for θ.

4.9.2 Bootstrap Testing Procedures

Bootstrap procedures can also be used effectively in testing hypotheses. We begin
by discussing these procedures for two-sample problems, which cover many of the
nuances of the use of the bootstrap in testing.

Consider a two-sample location problem; that is, X′ = (X1, X2, . . . , Xn1) is
a random sample from a distribution with cdf F (x) and Y′ = (Y1, Y2, . . . , Yn2)
is a random sample from a distribution with the cdf F (x − Δ), where Δ ∈ R.
The parameter Δ is the shift in locations between the two samples. Hence Δ can
be written as the difference in location parameters. In particular, assuming that
the means μY and μX exist, we have Δ = μY − μX . We consider the one-sided
hypotheses given by

H0 : Δ = 0 versus H1 : Δ > 0 . (4.9.7)

As our test statistic, we take the difference in sample means, i.e.,

V = Y −X. (4.9.8)

Our decision rule is to reject H0 if V ≥ c. As is often done in practice, we base
our decision on the p-value of the test. Recall if the samples result in the values
x1, x2, . . . , xn1 and y1, y2, . . . , yn2 with realized sample means x and y, respectively,
then the p-value of the test is

p̂ = PH0 [V ≥ y − x]. (4.9.9)

Our goal is a bootstrap estimate of the p-value. But, unlike the last section,
the bootstraps here have to be performed when H0 is true. An easy way to do this
is to combine the samples into one large sample and then to resample at random
and with replacement the combined sample into two samples, one of size n1 (new
xs) and one of size n2 (new ys). Hence the resampling is performed under one
distribution; i.e., H0 is true. Let B be a positive integer and let v = y − x. Our
bootstrap algorithm is

1. Combine the samples into one sample: z′ = (x′,y′).

2. Set j = 1.
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3. While j ≤ B, do steps 3–6.

4. Obtain a random sample with replacement of size n1 from z. Call the sample
x∗′ = (x∗

1, x
∗
2, . . . , x

∗
n1

). Compute x∗
j .

5. Obtain a random sample with replacement of size n2 from z. Call the sample
y∗′ = (y∗

1 , y∗
2 , . . . , y∗

n2
). Compute y∗j .

6. Compute v∗j = y∗
j − x∗

j .

7. The bootstrap estimated p-value is given by

p̂∗ =
#B

j=1{v∗j ≥ v}
B

. (4.9.10)

Note that the theory cited above for the bootstrap confidence intervals covers this
testing situation also. Hence, this bootstrap p-value is valid.

Example 4.9.2. For illustration, we generated data sets from a contaminated nor-
mal distribution, using the R function rcn. Let W be a random variable with
the contaminated normal distribution (3.4.17) with proportion of contamination
ε = 0.20 and σc = 4. Thirty independent observations W1, W2, . . . , W30 were gen-
erated from this distribution. Then we let Xi = 10Wi + 100 for 1 ≤ i ≤ 15 and
Yi = 10Wi+15 + 120 for 1 ≤ i ≤ 15. Hence the true shift parameter is Δ = 20. The
actual (rounded) data are

X variates
94.2 111.3 90.0 99.7 116.8 92.2 166.0 95.7

109.3 106.0 111.7 111.9 111.6 146.4 103.9
Y variates

125.5 107.1 67.9 98.2 128.6 123.5 116.5 143.2
120.3 118.6 105.0 111.8 129.3 130.8 139.8

Based on the comparison boxplots below, the scales of the two data sets appear to
be the same, while the y-variates (Sample 2) appear to be shifted to the right of
x-variates (Sample 1).

--------

Sample 1 ----I +I-- * O

--------

----------

Sample 2 * ------I + I--------

----------

+---------+---------+---------+---------+---------+------C3

60 80 100 120 140 160
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There are three outliers in the data sets.

Our test statistic for these data is v = y−x = 117.74−111.11 = 6.63. Computing
with the R function boottesttwo, we performed the bootstrap algorithm given
above for B = 3000 bootstrap replications. The bootstrap p-value was p̂∗ = 0.169.
This means that (0.169)(3000) = 507 of the bootstrap test statistics exceeded the
value of the test statistic. Furthermore, these bootstrap values were generated under
H0. In practice, H0 would generally not be rejected for a p-value this high. In Figure
4.9.2, we display a histogram of the 3000 values of the bootstrap test statistic that
were obtained. The relative area to the right of the value of the test statistic, 6.63,
is approximately equal to p̂∗.
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Figure 4.9.2: Histogram of the 3000 bootstrap v∗s. Locate the value of the test
statistic v = y − x = 6.63 on the horizontal axis. The area (proportional to overall
area) to the right is the p-value of the bootstrap test.

For comparison purposes, we used the two-sample “pooled” t-test discussed in
Example 4.6.2 to test these hypotheses. As the reader can obtain in Exercise 4.9.8,
for these data, t = 0.93 with a p-value of 0.18, which is quite close to the bootstrap
p-value.

The above test uses the difference in sample means as the test statistic. Certainly
other test statistics could be used. Exercise 4.9.7 asks the reader to obtain the
bootstrap test based on the difference in sample medians. Often, as with confidence
intervals, standardizing the test statistic by a scale estimator improves the bootstrap
test.

The bootstrap test described above for the two-sample problem is analogous to
permutation tests. In the permutation test, the test statistic is calculated for all
possible samples of xs and ys drawn without replacement from the combined data.
Often, it is approximated by Monte Carlo methods, in which case it is quite similar
to the bootstrap test except, in the case of the bootstrap, the sampling is done with
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replacement; see Exercise 4.9.10. Usually, the permutation tests and the bootstrap
tests give very similar solutions; see Efron and Tibshirani (1993) for discussion.

As our second testing situation, consider a one-sample location problem. Sup-
pose X1, X2, . . . , Xn is a random sample from a continuous cdf F (x) with finite
mean μ. Suppose we want to test the hypotheses

H0 : μ = μ0 versus H1 : μ > μ0,

where μ0 is specified. As a test statistic we use X with the decision rule

Reject H0 in favor of H1 if X is too large.

Let x1, x2, . . . , xn be the realization of the random sample. We base our decision
on the p-value of the test, namely,

p̂ = PH0 [X ≥ x],

where x is the realized value of the sample average when the sample is drawn. Our
bootstrap test is to obtain a bootstrap estimate of this p-value. At first glance, one
might proceed by bootstrapping the statistic X . But note that the p-value must be
estimated under H0. To assure that H0 is true, bootstrap the values:

zi = xi − x + μ0, i = 1, 2, . . . , n. (4.9.11)

Our bootstrap procedure is to randomly sample with replacement from z1, z2, . . . , zn.
Let (z∗j,1, . . . , z

∗
j,1) denote, say, the jth bootstrap sample. As in expression (4.9.4),

it follows that E(z∗j,i) = μ0. Hence, using the zis, the bootstrap resampling is
performed under H0. Denote the test statistic by the sample mean z∗j . Then the
bootstrap p-value is

p̂∗ =
#B

j=1{z∗j ≥ x}
B

. (4.9.12)

Example 4.9.3. To illustrate the bootstrap test just described, consider the fol-
lowing data set. We generated n = 20 observations Xi = 10Wi + 100, where Wi

has a contaminated normal distribution with proportion of contamination 20% and
σc = 4. Suppose we are interested in testing

H0 : μ = 90 versus H1 : μ > 90.

Because the true mean of Xi is 100, the null hypothesis is false. The data generated
are

119.7 104.1 92.8 85.4 108.6 93.4 67.1 88.4 101.0 97.2
95.4 77.2 100.0 114.2 150.3 102.3 105.8 107.5 0.9 94.1

The sample mean of these values is x = 95.27, which exceeds 90, but is it significantly
over 90? As discussed above, we bootstrap the values zi = xi − 95.27 + 90. The
R function boottestonemean performs this bootstrap test. For the run we did,
it computed the 3000 values z∗j , which are displayed in the histogram in Figure
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Figure 4.9.3: Histogram of the 3000 bootstrap z∗s discussed in Example 4.9.3.
The bootstrap p-value is the area (relative to the total area) under the histogram
and to the right of the 95.27.

4.9.3. The mean of these 3000 values is 89.96, which is quite close to 90. Of these
3000 values, 563 exceeded x = 95.27; hence, the p-value of the bootstrap test is
0.188. The fraction of the total area that is to the right of 95.27 in Figure 4.9.3 is
approximately equal to 0.188. Such a high p-value is usually deemed nonsignificant;
hence, the null hypothesis would not be rejected.

For comparison, the reader is asked to show in Exercise 4.9.12 that the value of
the one-sample t-test is t = 0.84, which has a p-value of 0.20. A test based on the
median is discussed in Exercise 4.9.13.

EXERCISES

4.9.1. Consider the sulfur dioxide concentrations data discussed in Example 4.1.3.
Use the R function percentciboot to obtain a bootstrap 95% confidence interval
for the true mean concentration. Use 3000 bootstraps and compare it with the
t-confidence interval for the mean.

4.9.2. Let x1, x2, . . . , xn be the values of a random sample. A bootstrap sample,
x∗′ = (x∗

1, x
∗
2, . . . , x

∗
n), is a random sample of x1, x2, . . . , xn drawn with replacement.

(a) Show that x∗
1, x

∗
2, . . . , x

∗
n are iid with common cdf F̂n, the empirical cdf of

x1, x2, . . . , xn.

(b) Show that E(x∗
i ) = x.

(c) If n is odd, show that median {x∗
i } = x((n+1)/2).

(d) Show that V (x∗
i ) = n−1

∑n
i=1(xi − x)2.
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4.9.3. Let X1, X2, . . . , Xn be a random sample from a Γ(1, β) distribution.

(a) Show that the confidence interval (2nX/(χ2
2n)(1−(α/2)), 2nX/(χ2

2n)(α/2)) is an
exact (1 − α)100% confidence interval for β.

(b) Using part (a), show that the 90% confidence interval for the data of Example
4.9.1 is (64.99, 136.69).

4.9.4. Consider the situation discussed in Example 4.9.1. Suppose we want to
estimate the median of Xi using the sample median.

(a) Determine the median for a Γ(1, β) distribution.

(b) The algorithm for the bootstrap percentile confidence intervals is general
and hence can be used for the median. Rewrite the R code in the func-
tion percentciboot.s so that the median is the estimator. Using the sample
given in the example, obtain a 90% bootstrap percentile confidence interval
for the median. Did it trap the true median in this case?

4.9.5. Suppose X1, X2, . . . , Xn is a random sample drawn from a N(μ, σ2) distri-
bution. As discussed in Example 4.2.1, the pivot random variable for a confidence
interval is

t =
X − μ

S/
√

n
, (4.9.13)

where X and S are the sample mean and standard deviation, respectively. Recall
by Theorem 3.6.1 that t has a Student t-distribution with n− 1 degrees of freedom;
hence, its distribution is free of all parameters for this normal situation. In the

notation of this section, t
(γ)
n−1 denotes the γ100% percentile of a t-distribution with

n− 1 degrees of freedom. Using this notation, show that a (1− α)100% confidence
interval for μ is (

x− t(1−α/2) s√
n

, x− t(α/2) s√
n

)
. (4.9.14)

4.9.6. Frequently, the bootstrap percentile confidence interval can be improved if
the estimator θ̂ is standardized by an estimate of scale. To illustrate this, consider a
bootstrap for a confidence interval for the mean. Let x∗

1, x
∗
2, . . . , x

∗
n be a bootstrap

sample drawn from the sample x1, x2, . . . , xn. Consider the bootstrap pivot [analog
of (4.9.13)]:

t∗ =
x∗ − x

s∗/
√

n
, (4.9.15)

where x∗ = n−1
∑n

i=1 x∗
i and

s∗2 = (n− 1)−1
n∑

i=1

(x∗
i − x∗)2.
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(a) Rewrite the percentile bootstrap confidence interval algorithm using the mean
and collecting t∗j for j = 1, 2, . . . , B. Form the interval(

x− t∗(1−α/2) s√
n

, x− t∗(α/2) s√
n

)
, (4.9.16)

where t∗(γ) = t∗([γ∗B]); that is, order the t∗j s and pick off the quantiles.

(b) Rewrite the R program percentciboot.s and then use it to find a 90% con-
fidence interval for μ for the data in Example 4.9.3. Use 3000 bootstraps.

(c) Compare your confidence interval in the last part with the nonstandardized
bootstrap confidence interval based on the program percentciboot.s.

4.9.7. Consider the algorithm for a two-sample bootstrap test given in Section
4.9.2.

(a) Rewrite the algorithm for the bootstrap test based on the difference in medi-
ans.

(b) Consider the data in Example 4.9.2. By substituting the difference in medians
for the difference in means in the R program boottesttwo.s, obtain the
bootstrap test for the algorithm of part (a).

(c) Obtain the estimated p-value of your test for B = 3000 and compare it to the
estimated p-value of 0.063 that the authors obtained.

4.9.8. Consider the data of Example 4.9.2. The two-sample t-test of Example 4.6.2
can be used to test these hypotheses. The test is not exact here (why?), but it is
an approximate test. Show that the value of the test statistic is t = 0.93, with an
approximate p-value of 0.18.

4.9.9. In Example 4.9.3, suppose we are testing the two-sided hypotheses,

H0 : μ = 90 versus H1 : μ 
= 90.

(a) Determine the bootstrap p-value for this situation.

(b) Rewrite the R program boottestonemean to obtain this p-value.

(c) Compute the p-value based on 3000 bootstraps.

4.9.10. Consider the following permutation test for the two-sample problem with
hypotheses (4.9.7). Let x′ = (x1, x2, . . . , xn1) and y′ = (y1, y2, . . . , yn2) be the
realizations of the two random samples. The test statistic is the difference in sample
means y − x. The estimated p-value of the test is calculated as follows:

1. Combine the data into one sample z′ = (x′,y′).

2. Obtain all possible samples of size n1 drawn without replacement from z. Each
such sample automatically gives another sample of size n2, i.e., all elements
of z not in the sample of size n1. There are M =

(
n1+n2

n1

)
such samples.
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3. For each such sample j:

(a) Label the sample of size n1 by x∗ and label the sample of size n2 by y∗.

(b) Calculate v∗j = y∗ − x∗.

4. The estimated p-value is p̂∗ = #{v∗j ≥ y − x}/M .

(a) Suppose we have two samples each of size 3 which result in the realizations:
x′ = (10, 15, 21) and y′ = (20, 25, 30). Determine the test statistic and the
permutation test described above along with the p-value.

(b) If we ignore distinct samples, then we can approximate the permutation test
by using the bootstrap algorithm with resampling performed at random and
without replacement. Modify the bootstrap program boottesttwo.s to do
this and obtain this approximate permutation test based on 3000 resamples
for the data of Example 4.9.2.

(c) In general, what is the probability of having distinct samples in the approx-
imate permutation test described in the last part? Assume that the original
data are distinct values.

4.9.11. Let z∗ be drawn at random from the discrete distribution that has mass
n−1 at each point zi = xi − x + μ0, where (x1, x2, . . . , xn) is the realization of a
random sample. Determine E(z∗) and V (z∗).

4.9.12. For the situation described in Example 4.9.3, show that the value of the
one-sample t-test is t = 0.84 and its associated p-value is 0.20.

4.9.13. For the situation described in Example 4.9.3, obtain the bootstrap test
based on medians. Use the same hypotheses; i.e.,

H0 : μ = 90 versus H1 : μ > 90.

4.9.14. Consider the Darwin’s experiment on Zea mays discussed in Examples 4.5.1
and 4.5.5.

(a) Obtain a bootstrap test for this experimental data. Keep in mind that the
data are recorded in pairs. Hence your resampling procedure must keep this
dependence intact and still be under H0.

(b) Write an R program that executes your bootstrap test and compare its p-value
with that found in Example 4.5.5.

4.10 ∗Tolerance Limits for Distributions

We propose now to investigate a problem that has something of the same flavor
as that treated in Section 4.4. Specifically, can we compute the probability that a
certain random interval includes (or covers) a preassigned percentage of the prob-
ability of the distribution under consideration? And, by appropriate selection of
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the random interval, can we be led to an additional distribution-free method of
statistical inference?

Let X be a random variable with distribution function F (x) of the continuous
type. Let Z = F (X). Then, as shown in Exercise 4.8.1, Z has a uniform(0, 1)
distribution. That is, Z = F (X) has the pdf

h(z) =

{
1 0 < z < 1
0 elsewhere.

Then, if 0 < p < 1, we have

P [F (X) ≤ p] =

∫ p

0

dz = p.

Now F (x) = P (X ≤ x). Since P (X = x) = 0, then F (x) is the fractional part of
the probability for the distribution of X that is between −∞ and x. If F (x) ≤ p,
then no more than 100p% of the probability for the distribution of X is between
−∞ and x. But recall P [F (X) ≤ p] = p. That is, the probability that the random
variable Z = F (X) is less than or equal to p is precisely the probability that the
random interval (−∞, X) contains no more than 100p% of the probability for the
distribution. For example, if p = 0.70, the probability that the random interval
(−∞, X) contains no more than 70% of the probability for the distribution is 0.70;
and the probability that the random interval (−∞, X) contains more than 70% of
the probability for the distribution is 1− 0.70 = 0.30.

We now consider certain functions of the order statistics. Let X1, X2, . . . , Xn

denote a random sample of size n from a distribution that has a positive and con-
tinuous pdf f(x) if and only if a < x < b, and let F (x) denote the associated distri-
bution function. Consider the random variables F (X1), F (X2), . . . , F (Xn). These
random variables are independent and each, in accordance with Exercise 4.8.1, has
a uniform distribution on the interval (0, 1). Thus, F (X1), F (X2), . . . , F (Xn) is a
random sample of size n from a uniform distribution on the interval (0, 1). Consider
the order statistics of this random sample F (X1), F (X2), . . . , F (Xn). Let Z1 be the
smallest of these F (Xi), Z2 the next F (Xi) in order of magnitude, . . . , and Zn

the largest of F (Xi). If Y1, Y2, . . . , Yn are the order statistics of the initial random
sample X1, X2, . . . , Xn, the fact that F (x) is a nondecreasing (here, strictly increas-
ing) function of x implies that Z1 = F (Y1), Z2 = F (Y2), . . . , Zn = F (Yn). Hence, it
follows from (4.4.1) that the joint pdf of Z1, Z2, . . . , Zn is given by

h(z1, z2, . . . , zn) =

{
n! 0 < z1 < z2 < · · · < zn < 1
0 elsewhere.

(4.10.1)

This proves a special case of the following theorem.

Theorem 4.10.1. Let Y1, Y2, . . . , Yn denote the order statistics of a random sample
of size n from a distribution of the continuous type that has pdf f(x) and cdf F (x).
The joint pdf of the random variables Zi = F (Yi), i = 1, 2, . . . , n, is given by
expression (4.10.1).
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Because the distribution function of Z = F (X) is given by z, 0 < z < 1, it
follows from (4.4.2) that the marginal pdf of Zk = F (Yk) is the following beta pdf:

hk(zk) =

{
n!

(k−1)!(n−k)!z
k−1
k (1− zk)n−k 0 < zk < 1

0 elsewhere.
(4.10.2)

Moreover, from (4.4.3), the joint pdf of Zi = F (Yi) and Zj = F (Yj) is, with i < j,
given by

h(zi, zj) =

{
n!zi−1

i (zj−zi)
j−i−1(1−zj)

n−j

(i−1)!(j−i−1)!(n−j)! 0 < zi < zj < 1

0 elsewhere.
(4.10.3)

Consider the difference Zj−Zi = F (Yj)−F (Yi), i < j. Now F (yj) = P (X ≤ yj)
and F (yi) = P (X ≤ yi). Since P (X = yi) = P (X = yj) = 0, then the difference
F (yj)−F (yi) is that fractional part of the probability for the distribution of X that
is between yi and yj. Let p denote a positive proper fraction. If F (yj)−F (yi) ≥ p,
then at least 100p% of the probability for the distribution of X is between yi and
yj . Let it be given that γ = P [F (Yj) − F (Yi) ≥ p]. Then the random interval
(Yi, Yj) has probability γ of containing at least 100p% of the probability for the
distribution of X . Now if yi and yj denote, respectively, observational values of Yi

and Yj , the interval (yi, yj) either does or does not contain at least 100p% of the
probability for the distribution of X . However, we refer to the interval (yi, yj) as
a 100γ% tolerance interval for 100p% of the probability for the distribution of
X . In like vein, yi and yj are called the 100γ% tolerance limits for 100p% of the
probability for the distribution of X .

One way to compute the probability γ = P [F (Yj)−F (Yi) ≥ p] is to use equation
(4.10.3), which gives the joint pdf of Zi = F (Yi) and Zj = F (Yj). The required
probability is then given by

γ = P (Zj − Zi ≥ p) =

∫ 1−p

0

[∫ 1

p+zi

hij(zi, zj) dzj

]
dzi.

Sometimes, this is a rather tedious computation. For this reason and also for the
reason that coverages are important in distribution-free statistical inference, we
choose to introduce at this time the concept of coverage.

Consider the random variables W1 = F (Y1) = Z1, W2 = F (Y2) − F (Y1) =
Z2 − Z1, and W3 = F (Y3) − F (Y2) = Z3 − Z2, . . . , Wn = F (Yn) − F (Yn−1) =
Zn − Zn−1. The random variable W1 is called a coverage of the random interval
{x : −∞ < x < Y1} and the random variable Wi, i = 2, 3, . . . , n, is called a coverage
of the random interval {x : Yi−1 < x < Yi}. We find that the joint pdf of the n
coverages W1, W2, . . . , Wn. First we note that the inverse functions of the associated
transformation are given by

zi =

i∑
j=1

wj , for i = 1, 2, . . . , n.
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We also note that the Jacobian is equal to 1 and that the space of positive probability
density is

{(w1, w2, . . . , wn) : 0 < wi, i = 1, 2, . . . , n, w1 + · · ·+ wn < 1}.

Since the joint pdf of Z1, Z2, . . . , Zn is n!, 0 < z1 < z2 < · · · < zn < 1, zero
elsewhere, the joint pdf of the n coverages is

k(w1, . . . , wn) =

{
n! 0 < wi, i = 1, . . . , n, w1 + · · ·wn < 1
0 elsewhere.

Because the pdf k(w1, . . . , wn) is symmetric in w1, w2, . . . , wn, it is evident that the
distribution of every sum of r, r < n, of these coverages W1, . . . , Wn is exactly the
same for each fixed value of r. For instance, if i < j and r = j − i, the distribution
of Zj − Zi = F (Yj)− F (Yi) = Wi+1 + Wi+2 + · · ·+ Wj is exactly the same as that
of Zj−i = F (Yj−i) = W1 + W2 + · · ·+ Wj−i. But we know that the pdf of Zj−i is
the beta pdf of the form

hj−i(v) =

{
Γ(n+1)

Γ(j−i)Γ(n−j+i+1) v
j−i−1(1− v)n−j+i 0 < v < 1

0 elsewhere.

Consequently, F (Yj)− F (Yi) has this pdf and

P [F (Yj)− F (Yi) ≥ p] =

∫ 1

p

hj−i(v) dv.

Example 4.10.1. Let Y1 < Y2 < · · · < Y6 be the order statistics of a random
sample of size 6 from a distribution of the continuous type. We want to use the
observed interval (y1, y6) as a tolerance interval for 80% of the distribution. Then

γ = P [F (Y6)− F (Y1) ≥ 0.8]

= 1−
∫ 0.8

0

30v4(1− v) dv,

because the integrand is the pdf of F (Y6)− F (Y1). Accordingly,

γ = 1− 6(0.8)5 + 5(0.8)6 = 0.34,

approximately. That is, the observed values of Y1 and Y6 define a 34% tolerance
interval for 80% the probability for the distribution.

Remark 4.10.1. Tolerance intervals are extremely important and often they are
more desirable than confidence intervals. For illustration, consider a “fill” problem
in which a manufacturer says that each container has at least 12 ounces of the
product. Let X be the amount in a container. The company would be pleased to
note that the interval (12.1, 12.3), for instance, is a 95% tolerance interval for 99%
of the distribution of X . This would be true in this case, because the FDA allows
a very small fraction of the containers to be less than 12 ounces.
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EXERCISES

4.10.1. Let Y1 and Yn be, respectively, the first and the nth order statistic of a
random sample of size n from a distribution of the continuous type having cdf F (x).
Find the smallest value of n such that P [F (Yn)− F (Y1) ≥ 0.5] is at least 0.95.

4.10.2. Let Y2 and Yn−1 denote the second and the (n − 1)st order statistics of
a random sample of size n from a distribution of the continuous type having a
distribution function F (x). Compute P [F (Yn−1)− F (Y2) ≥ p], where 0 < p < 1.

4.10.3. Let Y1 < Y2 < · · · < Y48 be the order statistics of a random sample of size
48 from a distribution of the continuous type. We want to use the observed interval
(y4, y45) as a 100γ% tolerance interval for 75% of the distribution.

(a) What is the value of γ?

(b) Approximate the integral in part (a) by noting that it can be written as a par-
tial sum of a binomial pdf, which in turn can be approximated by probabilities
associated with a normal distribution (see Section 5.3).

4.10.4. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size
n from a distribution of the continuous type having distribution function F (x).

(a) What is the distribution of U = 1− F (Yj)?

(b) Determine the distribution of V = F (Yn) − F (Yj) + F (Yi) − F (Y1), where
i < j.

4.10.5. Let Y1 < Y2 < · · · < Y10 be the order statistics of a random sample from
a continuous-type distribution with distribution function F (x). What is the joint
distribution of V1 = F (Y4)− F (Y2) and V2 = F (Y10)− F (Y6)?
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Chapter 5

Consistency and Limiting

Distributions

In Chapter 4, we introduced some of the main concepts in statistical inference,
namely, point estimation, confidence intervals, and hypothesis tests. For readers
who on first reading have skipped Chapter 4, we review these ideas in Section 5.1.1.

The theory behind these inference procedures often depends on the distribution
of a pivot random variable. For example, suppose X1, X2, . . . , Xn is a random
sample on a random variable X which has a N(μ, σ2) distribution. Denote the
sample mean by Xn = n−1

∑n
i=1 Xi. Then the pivot random variable of interest is

Zn =
Xn − μ

σ/
√

n
.

This random variable plays a key role in obtaining exact procedures for the con-
fidence interval for μ and for tests of hypotheses concerning μ. What if X does
not have a normal distribution? In this case, in Chapter 4, we discussed inference
procedures, which were quite similar to the exact procedures, but they were based
on the “approximate” (as the sample size n gets large) distribution of Zn.

There are several types of convergence used in statistics, and in this chapter we
discuss two of the most important: convergence in probability and convergence in
distribution. These concepts provide structure to the “approximations” discussed
in Chapter 4. Beyond this, though, these concepts play a crucial role in much of
statistics and probability. We begin with convergence in probability.

5.1 Convergence in Probability

In this section, we formalize a way of saying that a sequence of random variables
{Xn} is getting “close” to another random variable X , as n →∞. We will use this
concept throughout the book.

321
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Definition 5.1.1. Let {Xn} be a sequence of random variables and let X be a ran-
dom variable defined on a sample space. We say that Xn converges in probability
to X if, for all ε > 0,

lim
n→∞P [|Xn −X | ≥ ε] = 0,

or equivalently,
lim

n→∞
P [|Xn −X | < ε] = 1.

If so, we write

Xn
P→ X.

If Xn
P→ X , we often say that the mass of the difference Xn −X is converging

to 0. In statistics, often the limiting random variable X is a constant; i.e., X is a
degenerate random variable with all its mass at some constant a. In this case, we

write Xn
P→ a. Also, as Exercise 5.1.1 shows, for a sequence of real numbers {an},

an → a is equivalent to an
P→ a.

One way of showing convergence in probability is to use Chebyshev’s Theorem
(1.10.3). An illustration of this is given in the following proof. To emphasize the fact
that we are working with sequences of random variables, we may place a subscript
n on the appropriate random variables; for example, write X as Xn.

Theorem 5.1.1 (Weak Law of Large Numbers). Let {Xn} be a sequence of iid
random variables having common mean μ and variance σ2 < ∞. Let Xn =
n−1

∑n
i=1 Xi. Then

Xn
P→ μ.

Proof: From expression (2.8.6) of Example 2.8.1, the mean and variance of Xn are
μ and σ2/n, respectively. Hence, by Chebyshev’s Theorem, we have for every ε > 0,

P [|Xn − μ| ≥ ε] = P [|Xn − μ| ≥ (ε
√

n/σ)(σ/
√

n)] ≤ σ2

nε2
→ 0.

This theorem says that all the mass of the distribution of Xn is converging to μ,
as n →∞. In a sense, for n large, Xn is close to μ. But how close? For instance, if
we were to estimate μ by Xn, what can we say about the error of estimation? We
answer this in Section 5.3.

Actually, in a more advanced course, a Strong Law of Large Numbers is proved;
see page 124 of Chung (1974). One result of this theorem is that we can weaken the
hypothesis of Theorem 5.1.1 to the assumption that the random variables Xi are
independent and each has finite mean μ. Thus the Strong Law of Large Numbers
is a first moment theorem, while the Weak Law requires the existence of the second
moment.

There are several theorems concerning convergence in probability which will
be useful in the sequel. Together the next two theorems say that convergence in
probability is closed under linearity.

Theorem 5.1.2. Suppose Xn
P→ X and Yn

P→ Y . Then Xn + Yn
P→ X + Y .
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Proof: Let ε > 0 be given. Using the triangle inequality, we can write

|Xn −X |+ |Yn − Y | ≥ |(Xn + Yn)− (X + Y )| ≥ ε.

Since P is monotone relative to set containment, we have

P [|(Xn + Yn)− (X + Y )| ≥ ε] ≤ P [|Xn −X |+ |Yn − Y | ≥ ε]

≤ P [|Xn −X | ≥ ε/2] + P [|Yn − Y | ≥ ε/2].

By the hypothesis of the theorem, the last two terms converge to 0 as n → ∞,
which gives us the desired result.

Theorem 5.1.3. Suppose Xn
P→ X and a is a constant. Then aXn

P→ aX.

Proof: If a = 0, the result is immediate. Suppose a 
= 0 . Let ε > 0 . The result
follows from these equalities:

P [|aXn − aX | ≥ ε] = P [|a||Xn −X | ≥ ε] = P [|Xn −X | ≥ ε/|a|],

and by hypotheses the last term goes to 0 as n →∞

Theorem 5.1.4. Suppose Xn
P→ a and the real function g is continuous at a. Then

g(Xn)
P→ g(a) .

Proof: Let ε > 0 . Then since g is continuous at a, there exists a δ > 0 such that if
|x− a| < δ, then |g(x)− g(a)| < ε. Thus

|g(x)− g(a)| ≥ ε ⇒ |x− a| ≥ δ.

Substituting Xn for x in the above implication, we obtain

P [|g(Xn)− g(a)| ≥ ε] ≤ P [|Xn − a| ≥ δ].

By the hypothesis, the last term goes to 0 as n →∞, which gives us the result.

This theorem gives us many useful results. For instance, if Xn
P→ a, then

X2
n

P→ a2

1/Xn
P→ 1/a, provided a 
= 0√

Xn
P→

√
a, provided a ≥ 0.

Actually, in a more advanced class, it is shown that if Xn
P→ X and g is a

continuous function, then g(Xn)
P→ g(X); see page 104 of Tucker (1967). We make

use of this in the next theorem.

Theorem 5.1.5. Suppose Xn
P→ X and Yn

P→ Y . Then XnYn
P→ XY .
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Proof: Using the above results, we have

XnYn =
1

2
X2

n +
1

2
Y 2

n −
1

2
(Xn − Yn)2

P→ 1

2
X2 +

1

2
Y 2 − 1

2
(X − Y )2 = XY.

5.1.1 Sampling and Statistics

Consider the situation where we have a random variable X whose pdf (or pmf) is
written as f(x; θ) for an unknown parameter θ ∈ Ω. For example, the distribution
of X is normal with unknown mean μ and variance σ2. Then θ = (μ, σ2) and
Ω = {θ = (μ, σ2) : −∞ < μ < ∞, σ > 0}. As another example, the distribution
of X is Γ(1, β), where β > 0 is unknown. Our information consists of a random
sample X1, X2, . . . , Xn on X ; i.e., X1, X2, . . . , Xn are independent and identically
distributed (iid) random variables with the common pdf f(x; θ), θ ∈ Ω. We say
that T is a statistic if T is a function of the sample; i.e., T = T (X1, X2, . . . , Xn).
Here, we want to consider T as a point estimator of θ. For example, if μ is
the unknown mean of X , then we may use as our point estimator the sample mean
X = n−1

∑n
i=1 Xi. When the sample is drawn let x1, x2, . . . , xn denote the observed

values of X1, X2, . . . , Xn. We call these values the realized values of the sample
and call the realized statistic t = t(x1, x2, . . . , xn) a point estimate of θ.

In Chapters 6 and 7, we discuss properties of point estimators in formal settings.
For now, we consider two properties: unbiasedness and consistency. We say
that the point estimator T for θ is unbiased if E(T ) = θ. Recall in Section
2.8, we showed that the sample mean X and the sample variance S2 are unbiased
estimators of μ and σ2 respectively; see equations (2.8.6) and (2.8.8). We next
consider consistency of a point estimator.

Definition 5.1.2 (Consistency). Let X be a random variable with cdf F (x, θ),
θ ∈ Ω. Let X1, . . . , Xn be a sample from the distribution of X and let Tn denote a
statistic. We say Tn is a consistent estimator of θ if

Tn
P→ θ.

If X1, . . . , Xn is a random sample from a distribution with finite mean μ and
variance σ2, then by the Weak Law of Large Numbers, the sample mean, Xn, is a
consistent estimator of μ.

Figure 5.1.1 displays realizations of the sample mean for samples of size 10 to
2000 in steps of 10 which are drawn from a N(0, 1) distribution. The lines on the
plot encompass the interval μ ± 0.04 for μ = 0. As n increases, the realizations
tend to stay within this interval, verifying the consistency of the sample mean. The
R function consistmean produces this plot. Within this function, if the function
mean is changed to median a similar plot on the estimator med Xi can be obtained.

Example 5.1.1 (Sample Variance). Let X1, . . . , Xn denote a random sample from
a distribution with mean μ and variance σ2. In Example 2.8.7, we showed that the
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Figure 5.1.1: Realizations of the point estimator X for samples of size 10 to 2000
in steps of 10 which are drawn from a N(0, 1) distribution.

sample variance is an unbiased estimator of σ2. We now show that it is a consistent

estimator of σ2. Recall Theorem 5.1.1 which shows that Xn
P→ μ. To show that the

sample variance converges in probability to σ2, assume further that E[X4
1 ] < ∞, so

that Var(S2) <∞. Using the preceding results, we can show the following:

S2
n =

1

n− 1

n∑
i=1

(Xi −Xn)2 =
n

n− 1

(
1

n

n∑
i=1

X2
i −X

2

n

)
P→ 1 · [E(X2

1 )− μ2] = σ2.

Hence the sample variance is a consistent estimator of σ2. From the discussion

above, we have immediately that Sn
P→ σ; that is, the sample standard deviation is

a consistent estimator of the population standard deviation.

Unlike the last example, sometimes we can obtain the convergence by using the
distribution function. We illustrate this with the following example:

Example 5.1.2 (Maximum of a Sample from a Uniform Distribution). Suppose
X1, . . . , Xn is a random sample from a uniform(0, θ) distribution. Suppose θ is
unknown. An intuitive estimate of θ is the maximum of the sample. Let Yn =
max {X1, . . . , Xn}. Exercise 5.1.4 shows that the cdf of Yn is

FYn(t) =

⎧⎨⎩
1 t > θ(

t
θ

)n
0 < t ≤ θ

0 t ≤ 0.
(5.1.1)



326 Consistency and Limiting Distributions

Hence the pdf of Yn is

fYn(t) =

{
n
θn tn−1 0 < t ≤ θ
0 elsewhere.

(5.1.2)

Based on its pdf, it is easy to show that E(Yn) = (n/(n+1))θ. Thus, Yn is a biased
estimator of θ. Note, however, that ((n + 1)/n)Yn is an unbiased estimator of θ.

Further, based on the cdf of Yn, it is easily seen that Yn
P→ θ and, hence, that the

sample maximum is a consistent estimate of θ. Note that the unbiased estimator,
((n + 1)/n)Yn, is also consistent.

To expand on Example 5.1.2, by the Weak Law of Large Numbers, Theorem
5.1.1, it follows that Xn is a consistent estimator of θ/2, so 2Xn is a consistent
estimator of θ. Note the difference in how we showed that Yn and 2Xn converge to
θ in probability. For Yn we used the cdf of Yn, but for 2Xn we appealed to the Weak
Law of Large Numbers. In fact, the cdf of 2Xn is quite complicated for the uniform
model. In many situations, the cdf of the statistic cannot be obtained, but we can
appeal to asymptotic theory to establish the result. There are other estimators of
θ. Which is the “best” estimator? In future chapters we will be concerned with such
questions.

Consistency is a very important property for an estimator to have. It is a poor
estimator that does not approach its target as the sample size gets large. Note that
the same cannot be said for the property of unbiasedness. For example, instead of
using the sample variance to estimate σ2, suppose we use V = n−1

∑n
i=1(Xi−X)2.

Then V is consistent for σ2, but it is biased, because E(V ) = (n − 1)σ2/n. Thus
the bias of V is −σ2/n, which vanishes as n →∞.

EXERCISES

5.1.1. Let {an} be a sequence of real numbers. Hence, we can also say that {an}
is a sequence of constant (degenerate) random variables. Let a be a real number.

Show that an → a is equivalent to an
P→ a.

5.1.2. Let the random variable Yn have a distribution that is b(n, p).

(a) Prove that Yn/n converges in probability to p. This result is one form of the
weak law of large numbers.

(b) Prove that 1− Yn/n converges in probability to 1− p.

(c) Prove that (Yn/n)(1− Yn/n) converges in probability to p(1− p).

5.1.3. Let Wn denote a random variable with mean μ and variance b/np, where
p > 0, μ, and b are constants (not functions of n). Prove that Wn converges in
probability to μ.
Hint: Use Chebyshev’s inequality.

5.1.4. Derive the cdf given in expression (5.1.1).
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5.1.5. Consider the R function consistmean which produces the plot shown in
Figure 5.1.1. Obtain a similar plot for the sample median when the distribution
sampled is the N(0, 1) distribution. Compare the mean and median plots.

5.1.6. Write an R function that obtains a plot similar to Figure 5.1.1 for the situ-
ation described in Example 5.1.2. For the plot choose θ = 10.

5.1.7. Let X1, . . . , Xn be iid random variables with common pdf

f(x) =

{
e−(x−θ) x > θ, −∞ < θ < ∞
0 elsewhere.

(5.1.3)

This pdf is called the shifted exponential. Let Yn = min{X1, . . . , Xn}. Prove
that Yn → θ in probability by first obtaining the cdf of Yn.

5.1.8. Using the assumptions behind the confidence interval given in expression
(4.2.9), show that √

S2
1

n1
+

S2
2

n2
/

√
σ2

1

n1
+

σ2
2

n2

P→ 1.

5.1.9. For Exercise 5.1.7, obtain the mean of Yn. Is Yn an unbiased estimator of
θ? Obtain an unbiased estimator of θ based on Yn.

5.2 Convergence in Distribution

In the last section, we introduced the concept of convergence in probability. With
this concept, we can formally say, for instance, that a statistic converges to a pa-
rameter and, furthermore, in many situations we can show this without having to
obtain the distribution function of the statistic. But how close is the statistic to the
estimator? For instance, can we obtain the error of estimation with some credence?
The method of convergence discussed in this section, in conjunction with earlier
results, gives us affirmative answers to these questions.

Definition 5.2.1 (Convergence in Distribution). Let {Xn} be a sequence of random
variables and let X be a random variable. Let FXn and FX be, respectively, the cdfs
of Xn and X. Let C(FX ) denote the set of all points where FX is continuous. We
say that Xn converges in distribution to X if

lim
n→∞

FXn(x) = FX(x), for all x ∈ C(FX).

We denote this convergence by

Xn
D→ X.

Remark 5.2.1. This material on convergence in probability and in distribution
comes under what statisticians and probabilists refer to as asymptotic theory. Of-
ten, we say that the distribution of X is the asymptotic distribution or the
limiting distribution of the sequence {Xn}. We might even refer informally to
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the asymptotics of certain situations. Moreover, for illustration, instead of saying

Xn
D→ X , where X has a standard normal distribution, we may write

Xn
D→ N(0, 1)

as an abbreviated way of saying the same thing. Clearly, the right-hand member
of this last expression is a distribution and not a random variable as it should be,
but we will make use of this convention. In addition, we may say that Xn has

a limiting standard normal distribution to mean that Xn
D→ X , where X has a

standard normal random, or equivalently Xn
D→ N(0, 1).

Motivation for considering only points of continuity of FX is given by the fol-
lowing simple example. Let Xn be a random variable with all its mass at 1

n and
let X be a random variable with all its mass at 0. Then, as Figure 5.2.1 shows,
all the mass of Xn is converging to 0, i.e., the distribution of X . At the point of
discontinuity of FX , lim FXn(0) = 0 
= 1 = FX(0), while at continuity points x of

FX (i.e., x 
= 0), limFXn(x) = FX(x). Hence, according to the definition, Xn
D→ X .

Fxn
(x)

x
n–1

1

(0, 0)

Figure 5.2.1: Cdf of Xn, that has all its mass at n−1.

Convergence in probability is a way of saying that a sequence of random variables
Xn is getting close to another random variable X . On the other hand, convergence
in distribution is only concerned with the cdfs FXn and FX . A simple example
illustrates this. Let X be a continuous random variable with a pdf fX(x) that
is symmetric about 0; i.e., fX(−x) = fX(x). Then it is easy to show that the
density of the random variable −X is also fX(x). Thus, X and −X have the same
distributions. Define the sequence of random variables Xn as

Xn =

{
X if n is odd
−X if n is even.

(5.2.1)
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Clearly, FXn(x) = FX(x) for all x in the support of X , so that Xn
D→ X . On the

other hand, the sequence Xn does not get close to X . In particular, Xn 
→ X in
probability.

Example 5.2.1. Let Xn have the cdf

Fn(x) =

∫ x

−∞

1√
1/n

√
2π

e−nw2/2 dw.

If the change of variable v =
√

nw is made, we have

Fn(x) =

∫ √
nx

−∞

1√
2π

e−v2/2 dv.

It is clear that

lim
n→∞Fn(x) =

⎧⎨⎩
0 x < 0
1
2 x = 0
1 x > 0.

Now the function

F (x) =

{
0 x < 0
1 x ≥ 0

is a cdf and limn→∞ Fn(x) = F (x) at every point of continuity of F (x). To be
sure, limn→∞ Fn(0) 
= F (0), but F (x) is not continuous at x = 0. Accordingly, the
sequence X1, X2, X3, . . . converges in distribution to a random variable that has a
degenerate distribution at x = 0.

Example 5.2.2. Even if a sequence X1, X2, X3, . . . converges in distribution to a
random variable X , we cannot in general determine the distribution of X by taking
the limit of the pmf of Xn. This is illustrated by letting Xn have the pmf

pn(x) =

{
1 x = 2 + n−1

0 elsewhere.

Clearly, limn→∞ pn(x) = 0 for all values of x. This may suggest that Xn, for
n = 1, 2, 3, . . ., does not converge in distribution. However, the cdf of Xn is

Fn(x) =

{
0 x < 2 + n−1

1 x ≥ 2 + n−1,

and

lim
n→∞

Fn(x) =

{
0 x ≤ 2
1 x > 2.

Since

F (x) =

{
0 x < 2
1 x ≥ 2

is a cdf, and since limn→∞ Fn(x) = F (x) at all points of continuity of F (x), the
sequence X1, X2, X3, . . . converges in distribution to a random variable with cdf
F (x).
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The last example shows in general that we cannot determine limiting distribu-
tions by considering pmfs or pdfs. But under certain conditions we can determine
convergence in distribution by considering the sequence of pdfs as the following
example shows.

Example 5.2.3. Let Tn have a t-distribution with n degrees of freedom, n =
1, 2, 3, . . . . Thus its cdf is

Fn(t) =

∫ t

−∞

Γ[(n + 1)/2]√
πn Γ(n/2)

1

(1 + y2/n)(n+1)/2
dy,

where the integrand is the pdf fn(y) of Tn. Accordingly,

lim
n→∞

Fn(t) = lim
n→∞

∫ t

−∞
fn(y) dy =

∫ t

−∞
lim

n→∞
fn(y) dy,

by a result in analysis (the Lebesgue Dominated Convergence Theorem) that allows
us to interchange the order of the limit and integration, provided that |fn(y)| is
dominated by a function that is integrable. This is true because

|fn(y)| ≤ 10f1(y)

and ∫ t

−∞
10f1(y) dy =

10

π
arctan t <∞,

for all real t. Hence we can find the limiting distribution by finding the limit of the
pdf of Tn. It is

lim
n→∞

fn(y) = lim
n→∞

{
Γ[(n + 1)/2]√

n/2 Γ(n/2)

}
lim

n→∞

{
1

(1 + y2/n)1/2

}

× lim
n→∞

{
1√
2π

[(
1 +

y2

n

)]−n/2
}

.

Using the fact from elementary calculus that

lim
n→∞

(
1 +

y2

n

)n

= ey2

,

the limit associated with the third factor is clearly the pdf of the standard normal
distribution. The second limit obviously equals 1. By Remark 5.2.2, the first limit
also equals 1. Thus, we have

lim
n→∞

Fn(t) =

∫ t

−∞

1√
2π

e−y2/2 dy,

and hence Tn has a limiting standard normal distribution.
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Remark 5.2.2 (Stirling’s Formula). In advanced calculus the following approxi-
mation is derived:

Γ(k + 1) ≈
√

2πkk+1/2e−k. (5.2.2)

This is known as Stirling’s formula and it is an excellent approximation when k is
large. Because Γ(k+1) = k!, for k an integer, this formula gives an idea of how fast
k! grows. As Exercise 5.2.21 shows, this approximation can be used to show that
the first limit in Example 5.2.3 is 1.

Example 5.2.4 (Maximum of a Sample from a Uniform Distribution, Continued).
Recall Example 5.1.2, where X1, . . . , Xn is a random sample from a uniform(0, θ)
distribution. Again, let Yn = max {X1, . . . , Xn}, but now consider the random
variable Zn = n(θ− Yn). Let t ∈ (0, nθ). Then, using the cdf of Yn, (5.1.1), the cdf
of Zn is

P [Zn ≤ t] = P [Yn ≥ θ − (t/n)]

= 1−
(

θ − (t/n)

θ

)n

= 1−
(

1− t/θ

n

)n

→ 1− e−t/θ.

Note that the last quantity is the cdf of an exponential random variable with mean

θ, (3.3.6), i.e., Γ(1, θ). So we say that Zn
D→ Z, where Z is distributed Γ(1, θ).

Remark 5.2.3. To simplify several of the proofs of this section, we make use of
the lim and lim of a sequence. For readers who are unfamiliar with these concepts,
we discuss them in Appendix A. In this brief remark, we highlight the properties
needed for understanding the proofs. Let {an} be a sequence of real numbers and
define the two subsequences

bn = sup{an, an+1, . . .}, n = 1, 2, 3 . . . , (5.2.3)

cn = inf{an, an+1, . . .}, n = 1, 2, 3 . . . . (5.2.4)

The sequences {bn} and {cn} are nonincreasing and nondecreasing, respectively.
Hence their limits always exist (may be ±∞) and are denoted respectively by
limn→∞ an and limn→∞ an. Further, cn ≤ an ≤ bn, for all n. Hence, by the Sand-
wich Theorem (see Theorem A.2.1 of Appendix A), if limn→∞ an = limn→∞ an,
then limn→∞ an exists and is given by limn→∞ an = limn→∞ an.

As discussed in Appendix A, several other properties of these concepts are useful.
For example, suppose {pn} is a sequence of probabilities and limn→∞ pn = 0. Then,
by the Sandwich Theorem, since 0 ≤ pn ≤ sup{pn, pn+1, . . .} for all n, we have
limn→∞ pn = 0. Also, for any two sequences {an} and {bn}, it easily follows that
limn→∞(an + bn) ≤ limn→∞ an + limn→∞ bn.

As the following theorem shows, convergence in distribution is weaker than con-
vergence in probability. Thus convergence in distribution is often called weak con-
vergence.
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Theorem 5.2.1. If Xn converges to X in probability, then Xn converges to X in
distribution.

Proof: Let x be a point of continuity of FX(x). For every ε > 0,

FXn(x) = P [Xn ≤ x]

= P [{Xn ≤ x} ∩ {|Xn −X | < ε}] + P [{Xn ≤ x} ∩ {|Xn −X | ≥ ε}]
≤ P [X ≤ x + ε] + P [|Xn −X | ≥ ε].

Based on this inequality and the fact that Xn
P→ X , we see that

lim
n→∞ FXn(x) ≤ FX(x + ε). (5.2.5)

To get a lower bound, we proceed similarly with the complement to show that

P [Xn > x] ≤ P [X ≥ x− ε] + P [|Xn −X | ≥ ε].

Hence
lim

n→∞
FXn(x) ≥ FX(x − ε). (5.2.6)

Using a relationship between lim and lim, it follows from (5.2.5) and (5.2.6) that

FX(x− ε) ≤ lim
n→∞

FXn(x) ≤ lim
n→∞

FXn(x) ≤ FX(x + ε).

Letting ε ↓ 0 gives us the desired result.

Reconsider the sequence of random variables {Xn} defined by expression (5.2.1).

Here, Xn
D→ X but Xn

P


→ X . So, in general, the converse of the above theorem is
not true. However, it is true if X is degenerate, as shown by the following theorem.

Theorem 5.2.2. If Xn converges to the constant b in distribution, then Xn con-
verges to b in probability.

Proof: Let ε > 0 be given. Then

lim
n→∞

P [|Xn − b| ≤ ε] = lim
n→∞

FXn(b + ε)− lim
n→∞

FXn [(b− ε)− 0] = 1− 0 = 1,

which is the desired result.

A result that will prove quite useful is the following:

Theorem 5.2.3. Suppose Xn converges to X in distribution and Yn converges in
probability to 0. Then Xn + Yn converges to X in distribution.

The proof is similar to that of Theorem 5.2.2 and is left to Exercise 5.2.13. We
often use this last result as follows. Suppose it is difficult to show that Xn converges
to X in distribution, but it is easy to show that Yn converges in distribution to
X and that Xn − Yn converges to 0 in probability. Hence, by this last theorem,

Xn = Yn + (Xn − Yn)
D→ X , as desired.

The next two theorems state general results. A proof of the first result can
be found in a more advanced text, while the second, Slutsky’s Theorem, follows
similarly to that of Theorem 5.2.1.
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Theorem 5.2.4. Suppose Xn converges to X in distribution and g is a continuous
function on the support of X. Then g(Xn) converges to g(X) in distribution.

An often-used application of this theorem occurs when we have a sequence of
random variables Zn which converges in distribution to a standard normal random
variable Z. Because the distribution of Z2 is χ2(1), it follows by Theorem 5.2.4
that Z2

n converges in distribution to a χ2(1) distribution.

Theorem 5.2.5 (Slutsky’s Theorem). Let Xn, X, An, and Bn be random variables

and let a and b be constants. If Xn
D→ X, An

P→ a, and Bn
P→ b, then

An + BnXn
D→ a + bX.

5.2.1 Bounded in Probability

Another useful concept, related to convergence in distribution, is boundedness in
probability of a sequence of random variables.

First consider any random variable X with cdf FX(x). Then given ε > 0, we
can bound X in the following way. Because the lower limit of FX is 0 and its upper
limit is 1, we can find η1 and η2 such that

FX(x) < ε/2 for x ≤ η1 and FX(x) > 1− (ε/2) for x ≥ η2.

Let η = max{|η1|, |η2|}. Then

P [|X | ≤ η] = FX(η)− FX(−η − 0) ≥ 1− (ε/2)− (ε/2) = 1− ε. (5.2.7)

Thus random variables which are not bounded [e.g., X is N(0, 1)] are still bounded
in this probability way. This is a useful concept for sequences of random variables,
which we define next.

Definition 5.2.2 (Bounded in Probability). We say that the sequence of random
variables {Xn} is bounded in probability if, for all ε > 0, there exist a constant
Bε > 0 and an integer Nε such that

n ≥ Nε ⇒ P [|Xn| ≤ Bε] ≥ 1− ε.

Next, consider a sequence of random variables {Xn} which converges in distri-
bution to a random variable X that has cdf F . Let ε > 0 be given and choose η so
that (5.2.7) holds for X . We can always choose η so that η and −η are continuity
points of F . We then have

lim
n→∞P [|Xn| ≤ η] ≥ lim

n→∞FXn(η)− lim
n→∞FXn(−η − 0) = FX(η)− FX(−η) ≥ 1− ε.

To be precise, we can then choose N so large that P [|Xn| ≤ η] ≥ 1− ε, for n ≥ N .
We have thus proved the following theorem

Theorem 5.2.6. Let {Xn} be a sequence of random variables and let X be a random
variable. If Xn → X in distribution, then {Xn} is bounded in probability.
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As the following example shows, the converse of this theorem is not true.

Example 5.2.5. Take {Xn} to be the following sequence of degenerate random
variables. For n = 2m even, X2m = 2+(1/(2m)) with probability 1. For n = 2m−1
odd, X2m−1 = 1+(1/(2m)) with probability 1. Then the sequence {X2, X4, X6, . . .}
converges in distribution to the degenerate random variable Y = 2, while the se-
quence {X1, X3, X5, . . .} converges in distribution to the degenerate random variable
W = 1. Since the distributions of Y and W are not the same, the sequence {Xn}
does not converge in distribution. Because all of the mass of the sequence {Xn} is
in the interval [1, 5/2], however, the sequence {Xn} is bounded in probability.

One way of thinking of a sequence that is bounded in probability (or one that is
converging to a random variable in distribution) is that the probability mass of |Xn|
is not escaping to ∞. At times we can use boundedness in probability instead of
convergence in distribution. A property we will need later is given in the following
theorem:

Theorem 5.2.7. Let {Xn} be a sequence of random variables bounded in probability
and let {Yn} be a sequence of random variables that converges to 0 in probability.
Then

XnYn
P→ 0.

Proof: Let ε > 0 be given. Choose Bε > 0 and an integer Nε such that

n ≥ Nε ⇒ P [|Xn| ≤ Bε] ≥ 1− ε.

Then

lim
n→∞

P [|XnYn| ≥ ε] ≤ lim
n→∞

P [|XnYn| ≥ ε, |Xn| ≤ Bε]

+ lim
n→∞

P [|XnYn| ≥ ε, |Xn| > Bε]

≤ lim
n→∞P [|Yn| ≥ ε/Bε] + ε = ε, (5.2.8)

from which the desired result follows.

5.2.2 Δ-Method

Recall a common problem discussed in the last three chapters is the situation where
we know the distribution of a random variable, but we want to determine the
distribution of a function of it. This is also true in asymptotic theory, and Theorems
5.2.4 and 5.2.5 are illustrations of this. Another such result is called the Δ-method.
To establish this result, we need a convenient form of the mean value theorem
with remainder, sometimes called Young’s Theorem; see Hardy (1992) or Lehmann
(1999). Suppose g(x) is differentiable at x. Then we can write

g(y) = g(x) + g′(x)(y − x) + o(|y − x|), (5.2.9)

where the notation o means

a = o(b) if and only if a
b → 0, as b → 0.
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The little-o notation is used in terms of convergence in probability, also. We
often write op(Xn), which means

Yn = op(Xn) if and only if Yn

Xn

P→ 0, as n →∞. (5.2.10)

There is a corresponding big-Op notation, which is given by

Yn = Op(Xn) if and only if Yn

Xn
is bounded in probability as n→∞. (5.2.11)

The following theorem illustrates the little-o notation, but it also serves as a
lemma for Theorem 5.2.9.

Theorem 5.2.8. Suppose {Yn} is a sequence of random variables that is bounded

in probability. Suppose Xn = op(Yn). Then Xn
P→ 0, as n →∞.

Proof: Let ε > 0 be given. Because the sequence {Yn} is bounded in probability,
there exist positive constants Nε and Bε such that

n ≥ Nε =⇒ P [|Yn| ≤ Bε] ≥ 1− ε. (5.2.12)

Also, because Xn = op(Yn), we have

Xn

Yn

P→ 0, (5.2.13)

as n →∞. We then have

P [|Xn| ≥ ε] = P [|Xn| ≥ ε, |Yn| ≤ Bε] + P [|Xn| ≥ ε, |Yn| > Bε]

≤ P

[
Xn

|Yn|
≥ ε

Bε

]
+ P [|Yn| > Bε] .

By (5.2.13) and (5.2.12), respectively, the first and second terms on the right side
can be made arbitrarily small by choosing n sufficiently large. Hence the result is
true.

We can now prove the theorem about the asymptotic procedure, which is often
called the Δ method.

Theorem 5.2.9. Let {Xn} be a sequence of random variables such that

√
n(Xn − θ)

D→ N(0, σ2). (5.2.14)

Suppose the function g(x) is differentiable at θ and g′(θ) 
= 0. Then

√
n(g(Xn)− g(θ))

D→ N(0, σ2(g′(θ))2). (5.2.15)

Proof: Using expression (5.2.9), we have

g(Xn) = g(θ) + g′(θ)(Xn − θ) + op(|Xn − θ|),
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where op is interpreted as in (5.2.10). Rearranging, we have

√
n(g(Xn)− g(θ)) = g′(θ)

√
n(Xn − θ) + op(

√
n|Xn − θ|).

Because (5.2.14) holds, Theorem 5.2.6 implies that
√

n|Xn− θ| is bounded in prob-
ability. Therefore, by Theorem 5.2.8, op(

√
n|Xn − θ|) → 0, in probability. Hence,

by (5.2.14) and Theorem 5.2.1, the result follows.

Illustrations of the Δ-method can be found in Example 5.2.8 and the exercises.

5.2.3 Moment Generating Function Technique

To find the limiting distribution function of a random variable Xn by using the
definition obviously requires that we know FXn(x) for each positive integer n. But
it is often difficult to obtain FXn(x) in closed form. Fortunately, if it exists, the
mgf that corresponds to the cdf FXn(x) often provides a convenient method of
determining the limiting cdf.

The following theorem, which is essentially Curtiss’ (1942) modification of a
theorem of Lévy and Cramér, explains how the mgf may be used in problems of
limiting distributions. A proof of the theorem is beyond of the scope of this book. It
can readily be found in more advanced books; see, for instance, page 171 of Breiman
(1968) for a proof based on characteristic functions.

Theorem 5.2.10. Let {Xn} be a sequence of random variables with mgf MXn(t)
that exists for −h < t < h for all n. Let X be a random variable with mgf M(t),

which exists for |t| ≤ h1 ≤ h. If limn→∞ MXn(t) = M(t) for |t| ≤ h1, then Xn
D→ X.

In this and the subsequent sections are several illustrations of the use of Theorem
5.2.10. In some of these examples it is convenient to use a certain limit that is
established in some courses in advanced calculus. We refer to a limit of the form

lim
n→∞

[
1 +

b

n
+

ψ(n)

n

]cn

,

where b and c do not depend upon n and where limn→∞ ψ(n) = 0. Then

lim
n→∞

[
1 +

b

n
+

ψ(n)

n

]cn

= lim
n→∞

(
1 +

b

n

)cn

= ebc. (5.2.16)

For example,

lim
n→∞

(
1− t2

n
+

t2

n3/2

)−n/2

= lim
n→∞

(
1− t2

n
+

t2/
√

n

n

)−n/2

.

Here b = −t2, c = − 1
2 , and ψ(n) = t2/

√
n. Accordingly, for every fixed value of t,

the limit is et2/2.
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Example 5.2.6. Let Yn have a distribution that is b(n, p). Suppose that the mean
μ = np is the same for every n; that is, p = μ/n, where μ is a constant. We shall
find the limiting distribution of the binomial distribution, when p = μ/n, by finding
the limit of MYn(t). Now

MYn(t) = E(etYn) = [(1 − p) + pet]n =

[
1 +

μ(et − 1)

n

]n

for all real values of t. Hence we have

lim
n→∞

MYn(t) = eμ(et−1)

for all real values of t. Since there exists a distribution, namely the Poisson distribu-
tion with mean μ, that has mgf eμ(et−1), then, in accordance with the theorem and
under the conditions stated, it is seen that Yn has a limiting Poisson distribution
with mean μ.

Whenever a random variable has a limiting distribution, we may, if we wish, use
the limiting distribution as an approximation to the exact distribution function. The
result of this example enables us to use the Poisson distribution as an approximation
to the binomial distribution when n is large and p is small. To illustrate the use
of the approximation, let Y have a binomial distribution with n = 50 and p = 1

25 .
Then, using R for the calculations, we have

Pr(Y ≤ 1) = (24
25 )50 + 50( 1

25 ) = pbinom(1,50,1/25) = 0.4004812

approximately. Since μ = np = 2, the Poisson approximation to this probability is

e−2 + 2e−2 = ppois(1,2) = 0.4060058.

Example 5.2.7. Let Zn be χ2(n). Then the mgf of Zn is (1− 2t)−n/2, t < 1
2 . The

mean and the variance of Zn are, respectively, n and 2n. The limiting distribution
of the random variable Yn = (Zn − n)/

√
2n will be investigated. Now the mgf of

Yn is

MYn(t) = E

{
exp

[
t

(
Zn − n√

2n

)]}
= e−tn/

√
2nE(etZn/

√
2n)

= exp

[
−

(
t

√
2

n

)(n

2

)](
1− 2

t√
2n

)−n/2

, t <

√
2n

2
.

This may be written in the form

MYn(t) =

(
et
√

2/n − t

√
2

n
et
√

2/n

)−n/2

, t <

√
n

2
.

In accordance with Taylor’s formula, there exists a number ξ(n), between 0 and
t
√

2/n, such that

et
√

2/n = 1 + t

√
2

n
+

1

2

(
t

√
2

n

)2

+
eξ(n)

6

(
t

√
2

n

)3

.
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If this sum is substituted for et
√

2/n in the last expression for MYn(t), it is seen that

MYn(t) =

(
1− t2

n
+

ψ(n)

n

)−n/2

,

where

ψ(n) =

√
2t3eξ(n)

3
√

n
−
√

2t3√
n
− 2t4eξ(n)

3n
.

Since ξ(n) → 0 as n →∞, then limψ(n) = 0 for every fixed value of t. In accordance
with the limit proposition cited earlier in this section, we have

lim
n→∞

MYn(t) = et2/2

for all real values of t. That is, the random variable Yn = (Zn − n)/
√

2n has a
limiting standard normal distribution.

Figure 5.2.2 displays a verification of the asymptotic distribution of the stan-
dardized Zn. For each value of n = 5, 10, 20 and 50, 1000 observations from a
χ2(n)-distribution were generated, using the R command rchisq(1000,n). Each
observation zn was standardized as yn = (zn − n)/

√
2n and a histogram of these

yns was computed. On this histogram, the pdf of a standard normal distribution is
superimposed. Note that at n = 5, the histogram of yn values is skewed, but as n
increases, the shape of the histogram nears the shape of the pdf, verifying the above
theory. These plots are computed by the R function cdistplt. In this function, it
is easy to change values of n for further such plots.

Example 5.2.8 (Example 5.2.7, Continued). In the notation of the last example,
we showed that

√
n

[
1√
2n

Zn −
1√
2

]
D→ N(0, 1). (5.2.17)

For this situation, though, there are times when we are interested in the square
root of Zn. Let g(t) =

√
t and let Wn = g(Zn/(

√
2n)) = (Zn/(

√
2n))1/2. Note that

g(1/
√

2) = 1/21/4 and g′(1/
√

2) = 2−3/4. Therefore, by the Δ-method, Theorem
5.2.9, and (5.2.17), we have

√
n
[
Wn − 1/21/4

]
D→ N(0, 2−3/2). (5.2.18)

EXERCISES

5.2.1. Let Xn denote the mean of a random sample of size n from a distribution
that is N(μ, σ2). Find the limiting distribution of Xn.

5.2.2. Let Y1 denote the minimum of a random sample of size n from a distribution
that has pdf f(x) = e−(x−θ), θ < x < ∞, zero elsewhere. Let Zn = n(Y1 − θ).
Investigate the limiting distribution of Zn.
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Figure 5.2.2: For each value of n, a histogram plot of 1000 generated values
yn is shown, where yn is discussed in Example 5.2.7. The limiting N(0, 1) pdf is
superimposed on the histogram.

5.2.3. Let Yn denote the maximum of a random sample of size n from a distribution
of the continuous type that has cdf F (x) and pdf f(x) = F ′(x). Find the limiting
distribution of Zn = n[1− F (Yn)].

5.2.4. Let Y2 denote the second smallest item of a random sample of size n from a
distribution of the continuous type that has cdf F (x) and pdf f(x) = F ′(x). Find
the limiting distribution of Wn = nF (Y2).

5.2.5. Let the pmf of Yn be pn(y) = 1, y = n, zero elsewhere. Show that Yn

does not have a limiting distribution. (In this case, the probability has “escaped”
to infinity.)

5.2.6. Let X1, X2, . . . , Xn be a random sample of size n from a distribution that is
N(μ, σ2), where σ2 > 0. Show that the sum Zn =

∑n
1 Xi does not have a limiting

distribution.

5.2.7. Let Xn have a gamma distribution with parameter α = n and β, where β is
not a function of n. Let Yn = Xn/n. Find the limiting distribution of Yn.

5.2.8. Let Zn be χ2(n) and let Wn = Zn/n2. Find the limiting distribution of Wn.

5.2.9. Let X be χ2(50). Using the limiting distribution discussed in Example 5.2.7,
approximate P (40 < X < 60). Compare your answer with that calculated by R.
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5.2.10. Modify the R function cdistplt to show histograms of the values wn

discussed in Example 5.2.8.

5.2.11. Let p = 0.95 be the probability that a man, in a certain age group, lives at
least 5 years.

(a) If we are to observe 60 such men and if we assume independence, use R to
compute the probability that at least 56 of them live 5 or more years.

(b) Find an approximation to the result of part (a) by using the Poisson distri-
bution.
Hint: Redefine p to be 0.05 and 1− p = 0.95.

5.2.12. Let the random variable Zn have a Poisson distribution with parameter
μ = n. Show that the limiting distribution of the random variable Yn = (Zn−n)/

√
n

is normal with mean zero and variance 1.

5.2.13. Prove Theorem 5.2.3.

5.2.14. Let Xn and Yn have a bivariate normal distribution with parameters μ1, μ2,
σ2

1 , σ2
2 (free of n) but ρ = 1−1/n. Consider the conditional distribution of Yn, given

Xn = x. Investigate the limit of this conditional distribution as n→∞. What is
the limiting distribution if ρ = −1 + 1/n? Reference to these facts is made in the
remark of Section 2.5.

5.2.15. Let Xn denote the mean of a random sample of size n from a Poisson
distribution with parameter μ = 1.

(a) Show that the mgf of Yn =
√

n(Xn − μ)/σ =
√

n(Xn − 1) is given by
exp[−t

√
n + n(et/

√
n − 1)].

(b) Investigate the limiting distribution of Yn as n→∞.
Hint: Replace, by its MacLaurin’s series, the expression et/

√
n, which is in the

exponent of the mgf of Yn.

5.2.16. Using Exercise 5.2.15 and the Δ-method, find the limiting distribution of√
n(

√
Xn − 1).

5.2.17. Let Xn denote the mean of a random sample of size n from a distribution
that has pdf f(x) = e−x, 0 < x < ∞, zero elsewhere.

(a) Show that the mgf MYn(t) of Yn =
√

n(Xn − 1) is

MYn(t) = [et/
√

n − (t/
√

n)et/
√

n]−n, t <
√

n.

(b) Find the limiting distribution of Yn as n→∞.

Exercises 5.2.15 and 5.2.17 are special instances of an important theorem that will
be proved in the next section.

5.2.18. Continuing with Exercise 5.2.17, use the Δ-method to find the limiting

distribution of
√

n(
√

Xn − 1).
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5.2.19. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample (see
Section 5.2) from a distribution with pdf f(x) = e−x , 0 < x < ∞, zero elsewhere.
Determine the limiting distribution of Zn = (Yn − log n).

5.2.20. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample (see
Section 5.2) from a distribution with pdf f(x) = 5x4 , 0 < x < 1, zero elsewhere.
Find p so that Zn = npY1 converges in distribution.

5.2.21. Consider Stirling’s formula (5.2.2):

(a) Run the following R code to check this formuala for k = 5 to k = 15.
ks = 5; kstp = 15; coll = c();for(j in ks:kstp){

c1=gamma(j+1); c2=sqrt(2*pi)*exp(-j+(j+.5)*log(j))

coll=rbind(coll,c(j,c1,c2))}; coll

(b) Take the log of Stirling’s formula and compare it with the R computation
lgamma(k+1).

(c) Use Stirling’s formula to show that the first limit in Example 5.2.3 is 1.

5.3 Central Limit Theorem

It was seen in Section 3.4 that if X1, X2, . . . , Xn is a random sample from a normal
distribution with mean μ and variance σ2, the random variable∑n

i=1 Xi − nμ

σ
√

n
=

√
n(Xn − μ)

σ

is, for every positive integer n, normally distributed with zero mean and unit vari-
ance. In probability theory there is a very elegant theorem called the Central
Limit Theorem (CLT). A special case of this theorem asserts the remarkable and
important fact that if X1, X2, . . . , Xn denote the observations of a random sample
of size n from any distribution having finite variance σ2 > 0 (and hence finite mean
μ), then the random variable

√
n(Xn − μ)/σ converges in distribution to a random

variable having a standard normal distribution. Thus, whenever the conditions of
the theorem are satisfied, for large n the random variable

√
n(Xn − μ)/σ has an

approximate normal distribution with mean zero and variance 1. It is then possible
to use this approximate normal distribution to compute approximate probabilities
concerning X.

We often use the notation “Yn has a limiting standard normal distribution” to
mean that Yn converges in distribution to a standard normal random variable; see
Remark 5.2.1.

The more general form of the theorem is stated, but it is proved only in the
modified case. However, this is exactly the proof of the theorem that would be
given if we could use the characteristic function in place of the mgf.
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Theorem 5.3.1 (Central Limit Theorem). Let X1, X2, . . . , Xn denote the observa-
tions of a random sample from a distribution that has mean μ and positive variance
σ2. Then the random variable Yn = (

∑n
i=1 Xi − nμ)/

√
nσ =

√
n(Xn − μ)/σ con-

verges in distribution to a random variable that has a normal distribution with mean
zero and variance 1.

Proof: For this proof, additionally assume that the mgf M(t) = E(etX) exists for
−h < t < h. If one replaces the mgf by the characteristic function ϕ(t) = E(eitX),
which always exists, then our proof is essentially the same as the proof in a more
advanced course which uses characteristic functions.

The function
m(t) = E[et(X−μ)] = e−μtM(t)

also exists for −h < t < h. Since m(t) is the mgf for X − μ, it must follow that
m(0) = 1, m′(0) = E(X − μ) = 0, and m′′(0) = E[(X − μ)2] = σ2. By Taylor’s
formula there exists a number ξ between 0 and t such that

m(t) = m(0) + m′(0)t +
m′′(ξ)t2

2

= 1 +
m′′(ξ)t2

2
.

If σ2t2/2 is added and subtracted, then

m(t) = 1 +
σ2t2

2
+

[m′′(ξ)− σ2]t2

2
(5.3.1)

Next consider M(t; n), where

M(t; n) = E

[
exp

(
t

∑
Xi − nμ

σ
√

n

)]
= E

[
exp

(
t
X1 − μ

σ
√

n

)
exp

(
t
X2 − μ

σ
√

n

)
· · · exp

(
t
Xn − μ

σ
√

n

)]
= E

[
exp

(
t
X1 − μ

σ
√

n

)]
· · ·E

[
exp

(
t
Xn − μ

σ
√

n

)]
=

{
E

[
exp

(
t
X − μ

σ
√

n

)]}n

=

[
m

(
t

σ
√

n

)]n

, −h <
t

σ
√

n
< h.

In equation (5.3.1), replace t by t/σ
√

n to obtain

m

(
t

σ
√

n

)
= 1 +

t2

2n
+

[m′′(ξ)− σ2]t2

2nσ2
,

where now ξ is between 0 and t/σ
√

n with −hσ
√

n < t < hσ
√

n. Accordingly,

M(t; n) =

{
1 +

t2

2n
+

[m′′(ξ)− σ2]t2

2nσ2

}n

.
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Since m′′(t) is continuous at t = 0 and since ξ→0 as n→∞, we have

lim
n→∞

[m′′(ξ)− σ2] = 0.

The limit proposition (5.2.16) cited in Section 5.2 shows that

lim
n→∞

M(t; n) = et2/2,

for all real values of t. This proves that the random variable Yn =
√

n(Xn − μ)/σ
has a limiting standard normal distribution.

As cited in Remark 5.2.1, we say that Yn has a limiting standard normal distri-
bution. We interpret this theorem as saying that when n is a large, fixed positive
integer, the random variable X has an approximate normal distribution with mean
μ and variance σ2/n; and in applications we often use the approximate normal pdf
as though it were the exact pdf of X . Also, we can equivalently state the conclusion
of the Central Limit Theorem as

√
n(X − μ)

D→ N(0, σ2). (5.3.2)

This is often a convenient formulation to use.

One of the key applications of the Central Limit Theorem is for statistical infer-
ence. In Examples 5.3.1–5.3.6, we present results for several such applications. As
we point out, we made use of these results in Chapter 4, but we will also use them
in the remainder of the book.

Example 5.3.1 (Large Sample Inference for μ). Let X1, X2, . . . , Xn be a ran-
dom sample from a distribution with mean μ and variance σ2, where μ and σ2

are unknown. Let X and S be the sample mean and sample standard deviation,
respectively. Then

X − μ

S/
√

n

D→ N(0, 1). (5.3.3)

To see this, write the left side as

X − μ

S/
√

n
=

(σ

S

) (X − μ)

σ/
√

n
.

Example 5.1.1 shows that S converges in probability to σ and, hence, by the theo-
rems of Section 5.2, that σ/S converges in probability to 1. Thus the result (5.3.3)
follows from the CLT and Slutsky’s Theorem, Theorem 5.2.5.

In Examples 4.2.2 and 4.5.3 of Chapter 4, we presented large sample confidence
intervals and tests for μ based on (5.3.3).

Some illustrative examples, here and below, help show the importance of this
version of the CLT.
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Example 5.3.2. Let X denote the mean of a random sample of size 75 from the
distribution that has the pdf

f(x) =

{
1 0 < x < 1
0 elsewhere.

For this situation, it can be shown that the pdf of X, g(x), has a graph when
0 < x < 1 that is composed of arcs of 75 different polynomials of degree 74. The
computation of such a probability as P (0.45 < X < 0.55) would be extremely
laborious. The conditions of the theorem are satisfied, since M(t) exists for all real
values of t. Moreover, μ = 1

2 and σ2 = 1
12 , so that using R we have approximately

P (0.45 < X < 0.55) = P

[√
n(0.45− μ)

σ
<

√
n(X − μ)

σ
<

√
n(0.55− μ)

σ

]
= P [−1.5 < 30(X − 0.5) < 1.5]

≈ pnorm(1.5)− pnorm(−1.5) = 0.8663.

Example 5.3.3 (Normal Approximation to the Binomial Distribution). Suppose
that X1, X2, . . . , Xn is a random sample from a distribution that is b(1, p). Here
μ = p, σ2 = p(1−p), and M(t) exists for all real values of t. If Yn = X1 + · · ·+Xn,
it is known that Yn is b(n, p). Calculations of probabilities for Yn, when we do
not use the Poisson approximation, are simplified by making use of the fact that
(Yn − np)/

√
np(1− p) =

√
n(Xn − p)/

√
p(1− p) =

√
n(Xn − μ)/σ has a limiting

distribution that is normal with mean zero and variance 1.
Frequently, statisticians say that Yn, or more simply Y , has an approximate

normal distribution with mean np and variance np(1 − p). Even with n as small
as 10, with p = 1

2 so that the binomial distribution is symmetric about np = 5,
we note in Figure 5.3.1 how well the normal distribution, N(5, 5

2 ), fits the binomial
distribution, b(10, 1

2 ), where the heights of the rectangles represent the probabilities
of the respective integers 0, 1, 2, . . . , 10. Note that the area of the rectangle whose
base is (k − 0.5, k + 0.5) and the area under the normal pdf between k − 0.5 and
k + 0.5 are approximately equal for each k = 0, 1, 2, . . . , 10, even with n = 10. This
example should help the reader understand Example 5.3.4.

Example 5.3.4. With the background of Example 5.3.3, let n = 100 and p = 1
2 ,

and suppose that we wish to compute P (Y = 48, 49, 50, 51, 52). Since Y is a random
variable of the discrete type, {Y = 48, 49, 50, 51, 52} and {47.5 < Y < 52.5} are
equivalent events. That is, P (Y = 48, 49, 50, 51, 52) = P (47.5 < Y < 52.5). Since
np = 50 and np(1− p) = 25, the latter probability may be written

P (47.5 < Y < 52.5) = P

(
47.5− 50

5
<

Y − 50

5
<

52.5− 50

5

)
= P

(
−0.5 <

Y − 50

5
< 0.5

)
.
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pdf.

Since (Y − 50)/5 has an approximate normal distribution with mean zero and vari-
ance 1, the probability is approximately pnorm(.5)-pnorm(-.5)= 0.3829.

The convention of selecting the event 47.5 < Y < 52.5, instead of another event,
say, 47.8 < Y < 52.3, as the event equivalent to the event Y = 48, 49, 50, 51, 52 is
due to the following observation. The probability P (Y = 48, 49, 50, 51, 52) can be
interpreted as the sum of five rectangular areas where the rectangles have widths
1 and the heights are respectively P (Y = 48), . . . , P (Y = 52). If these rectangles
are so located that the midpoints of their bases are, respectively, at the points
48, 49, . . . , 52 on a horizontal axis, then in approximating the sum of these areas
by an area bounded by the horizontal axis, the graph of a normal pdf, and two
ordinates, it seems reasonable to take the two ordinates at the points 47.5 and 52.5.
This is called the continuity correction.

We next present two examples concerning large sample inference for proportions.

Example 5.3.5 (Large Sample Inference for Proportions). Let X1, X2, . . . , Xn be
a random sample from a Bernoulli distribution with p as the probability of success.
Let p̂ be the sample proportion of successes. Then p̂ = X. Hence,

p̂− p√
p̂(1− p̂)/n

D→ N(0, 1). (5.3.4)
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This is readily established by using the CLT and the same reasoning as in Example
5.3.1; see Exercise 5.3.13.

In Examples 4.2.3 and 4.5.2 of Chapter 4, we presented large sample confidence
intervals and tests for p using (5.3.4).

Example 5.3.6 (Large Sample Inference for χ2-Tests). Another extension of Ex-
ample 5.3.3 that was used in Section 4.7 follows quickly from the Central Limit
Theorem and Theorem 5.2.4. Using the notation of Example 5.3.3, suppose Yn

has a binomial distribution with parameters n and p. Then, as in Example 5.3.3,
(Yn − np)/

√
np(1− p) converges in distribution to a random variable Z with the

N(0, 1) distribution. Hence, by Theorem 5.2.4,(
Yn − np√
np(1− p)

)2

D→ χ2(1). (5.3.5)

This was the result referenced in Chapter 4; see expression (4.7.1).

We know that X and
∑n

1 Xi have approximately normal distributions, provided
that n is large enough. Later, we find that other statistics also have approximate
normal distributions, and this is the reason that the normal distribution is so impor-
tant to statisticians. That is, while not many underlying distributions are normal,
the distributions of statistics calculated from random samples arising from these
distributions are often very close to being normal.

Frequently, we are interested in functions of statistics that have approximately
normal distributions. To illustrate, consider the sequence of random variable Yn of
Example 5.3.3. As discussed there, Yn has an approximate N [np, np(1 − p)]. So
np(1 − p) is an important function of p, as it is the variance of Yn. Thus, if p is
unknown, we might want to estimate the variance of Yn. Since E(Yn/n) = p, we
might use n(Yn/n)(1− Yn/n) as such an estimator and would want to know some-
thing about the latter’s distribution. In particular, does it also have an approximate
normal distribution? If so, what are its mean and variance? To answer questions
like these, we can apply the Δ-method, Theorem 5.2.9.

As an illustration of the Δ-method, we consider a function of the sample mean.
Assume that X1, . . . , Xn is a random sample on X which has finite mean μ and vari-
ance σ2. Then rewriting expression (5.3.2) we have by the Central Limit Theorem
that √

n(X − μ)
D→ N(0, σ2).

Hence, by the Δ-method, Theorem 5.2.9, we have

√
n[g(X)− g(μ)]

D→ N(0, σ2(g′(μ))2), (5.3.6)

for a continuous transformation g(x) such that g′(μ) 
= 0.

Example 5.3.7. Assume that we are sampling from a binomial b(1, p) distribution.
Then X is the sample proportion of successes. Here μ = p and σ2 = p(1 − p).
Suppose that we want a transformation g(p) such that the transformed asymptotic
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variance is constant; in particular, it is free of p. Hence, we seek a transformation
g(p) such that

g′(p) =
c√

p(1− p)
,

for some constant c. Integrating both sides and making the change-of-variables
z = p, dz = 1/(2

√
p) dp, we have

g(p) = c

∫
1√

p(1− p)
dp

= 2c

∫
1√

1− z2
dz = 2c arcsin(z) = 2c arcsin(

√
p).

Taking c = 1/2, for the statistic g
(
X

)
= arcsin

(√
X

)
, we obtain

√
n
[
arcsin

(√
X

)
− arcsin (

√
p)

] D→ N

(
0,

1

4

)
.

Several other such examples are given in the exercises.

EXERCISES

5.3.1. Let X denote the mean of a random sample of size 100 from a distribution
that is χ2(50). Compute an approximate value of P (49 < X < 51).

5.3.2. Let X denote the mean of a random sample of size 128 from a gamma
distribution with α = 2 and β = 4. Approximate P (7 < X < 9).

5.3.3. Let Y be b(72, 1
3 ). Approximate P (22 ≤ Y ≤ 28).

5.3.4. Compute an approximate probability that the mean of a random sample of
size 15 from a distribution having pdf f(x) = 3x2, 0 < x < 1, zero elsewhere, is
between 3

5 and 4
5 .

5.3.5. Let Y denote the sum of the observations of a random sample of size 12 from
a distribution having pmf p(x) = 1

6 , x = 1, 2, 3, 4, 5, 6, zero elsewhere. Compute an
approximate value of P (36 ≤ Y ≤ 48).
Hint: Since the event of interest is Y = 36, 37, . . . , 48, rewrite the probability as
P (35.5 < Y < 48.5).

5.3.6. Let Y be b(400, 1
5 ). Compute an approximate value of P (0.25 < Y/400).

5.3.7. If Y is b(100, 1
2 ), approximate the value of P (Y = 50).

5.3.8. Let Y be b(n, 0.55). Find the smallest value of n such that (approximately)
P (Y/n > 1

2 ) ≥ 0.95.
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5.3.9. Let f(x) = 1/x2, 1 < x < ∞, zero elsewhere, be the pdf of a random
variable X . Consider a random sample of size 72 from the distribution having this
pdf. Compute approximately the probability that more than 50 of the observations
of the random sample are less than 3.

5.3.10. Forty-eight measurements are recorded to several decimal places. Each of
these 48 numbers is rounded off to the nearest integer. The sum of the original 48
numbers is approximated by the sum of these integers. If we assume that the errors
made by rounding off are iid and have a uniform distribution over the interval
(− 1

2 , 1
2 ), compute approximately the probability that the sum of the integers is

within two units of the true sum.

5.3.11. We know that X is approximately N(μ, σ2/n) for large n. Find the ap-

proximate distribution of u(X) = X
3
, provided that μ 
= 0.

5.3.12. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
mean μ. Thus, Y =

∑n
i=1 Xi has a Poisson distribution with mean nμ. Moreover,

X = Y/n is approximately N(μ, μ/n) for large n. Show that u(Y/n) =
√

Y/n is a
function of Y/n whose variance is essentially free of μ.

5.3.13. Using the notation of Example 5.3.5, show that equation (5.3.4) is true.

5.3.14. Assume that X1, . . . , Xn is a random sample from a Γ(1, β) distribution.
Determine the asymptotic distribution of

√
n(X − β). Then find a transformation

g(X) whose asymptotic variance is free of β.

5.4 ∗Extensions to Multivariate Distributions

In this section, we briefly discuss asymptotic concepts for sequences of random
vectors. The concepts introduced for univariate random variables generalize in a
straightforward manner to the multivariate case. Our development is brief, and
the interested reader can consult more advanced texts for more depth; see Serfling
(1980).

We need some notation. For a vector v ∈ Rp, recall the Euclidean norm of v is
defined to be

‖v‖ =

√√√√ p∑
i=1

v2
i . (5.4.1)

This norm satisfies the usual three properties given by

(a) For all v ∈ Rp, ‖v‖ ≥ 0, and ‖v‖ = 0 if and only if v = 0.
(b) For all v ∈ Rp and a ∈ R, ‖av‖ = |a|‖v‖.
(c) For all v,u ∈ Rp, ‖u + v‖ ≤ ‖u‖+ ‖v‖.

(5.4.2)

Denote the standard basis of Rp by the vectors e1, . . . , ep, where all the components
of ei are 0 except for the ith component, which is 1. Then we can write any vector
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v′ = (v1, . . . , vp) as

v =

p∑
i=1

viei.

The following lemma will be useful:

Lemma 5.4.1. Let v′ = (v1, . . . , vp) be any vector in Rp. Then

|vj | ≤ ‖v‖ ≤
n∑

i=1

|vi|, for all j = 1, . . . , p . (5.4.3)

Proof: Note that for all j,

v2
j ≤

p∑
i=1

v2
i = ‖v‖2;

hence, taking the square root of this equality leads to the first part of the desired
inequality. The second part is

‖v‖ =

∥∥∥∥∥
p∑

i=1

viei

∥∥∥∥∥ ≤
p∑

i=1

|vi|‖ei‖ =

p∑
i=1

|vi|.

Let {Xn} denote a sequence of p-dimensional vectors. Because the absolute
value is the Euclidean norm in R1, the definition of convergence in probability for
random vectors is an immediate generalization:

Definition 5.4.1. Let {Xn} be a sequence of p-dimensional vectors and let X be a
random vector, all defined on the same sample space. We say that {Xn} converges
in probability to X if

lim
n→∞P [‖Xn −X‖ ≥ ε] = 0, (5.4.4)

for all ε > 0. As in the univariate case, we write Xn
P→ X.

As the next theorem shows, convergence in probability of vectors is equivalent
to componentwise convergence in probability.

Theorem 5.4.1. Let {Xn} be a sequence of p-dimensional vectors and let X be a
random vector, all defined on the same sample space. Then

Xn
P→ X if and only if Xnj

P→ Xj for all j = 1, . . . , p.

Proof: This follows immediately from Lemma 5.4.1. Suppose Xn
P→ X. For any j,

from the first part of the inequality (5.4.3), we have, for ε > 0,

ε ≤ |Xnj −Xj| ≤ ‖Xn −X‖.

Hence
limn→∞P [|Xnj −Xj | ≥ ε] ≤ limn→∞P [‖Xn −X‖ ≥ ε] = 0,
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which is the desired result.
Conversely, if Xnj

P→ Xj for all j = 1, . . . , p, then by the second part of the
inequality (5.4.3),

ε ≤ ‖Xn −X‖ ≤
p∑

i=1

|Xnj −Xj |,

for any ε > 0. Hence

limn→∞P [‖Xn −X‖ ≥ ε] ≤ limn→∞P [

p∑
j=1

|Xnj −Xj | ≥ ε]

≤
p∑

j=1

limn→∞P [|Xnj −Xj | ≥ ε/p] = 0.

Based on this result, many of the theorems involving convergence in probability
can easily be extended to the multivariate setting. Some of these results are given
in the exercises. This is true of statistical results, too. For example, in Section
5.2, we showed that if X1, . . . , Xn is a random sample from the distribution of a
random variable X with mean, μ, and variance, σ2, then Xn and S2

n are consistent
estimates of μ and σ2. By the last theorem, we have that (Xn, S2

n) is a consistent
estimate of (μ, σ2).

As another simple application, consider the multivariate analog of the sample
mean and sample variance. Let {Xn} be a sequence of iid random vectors with
common mean vector μ and variance-covariance matrix Σ. Denote the vector of
means by

Xn =
1

n

n∑
i=1

Xi. (5.4.5)

Of course, Xn is just the vector of sample means, (X1, . . . ,Xp)
′. By the Weak Law

of Large Numbers, Theorem 5.1.1, Xj → μj , in probability, for each j. Hence, by
Theorem 5.4.1, Xn → μ, in probability.

How about the analog of the sample variances? Let Xi = (Xi1, . . . , Xip)
′. Define

the sample variances and covariances by

S2
n,j =

1

n− 1

n∑
i=1

(Xij −Xj)
2, for j = 1, . . . , p, (5.4.6)

Sn,jk =
1

n− 1

n∑
i=1

(Xij −Xj)(Xik −Xk), for j 
= k = 1, . . . , p. (5.4.7)

Assuming finite fourth moments, the Weak Law of Large Numbers shows that all
these componentwise sample variances and sample covariances converge in proba-
bility to distribution variances and covariances, respectively. As in our discussion
after the Weak Law of Large Numbers, the Strong Law of Large Numbers implies
that this convergence is true under the weaker assumption of the existence of finite
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second moments. If we define the p × p matrix S to be the matrix with the jth
diagonal entry S2

n,j and (j, k)th entry Sn,jk, then S→ Σ, in probability.
The definition of convergence in distribution remains the same. We state it here

in terms of vector notation.

Definition 5.4.2. Let {Xn} be a sequence of random vectors with Xn having dis-
tribution function Fn(x) and X be a random vector with distribution function F (x).
Then {Xn} converges in distribution to X if

lim
n→∞

Fn(x) = F (x), (5.4.8)

for all points x at which F (x) is continuous. We write Xn
D→ X.

In the multivariate case, there are analogs to many of the theorems in Section
5.2. We state two important theorems without proof.

Theorem 5.4.2. Let {Xn} be a sequence of random vectors that converges in dis-
tribution to a random vector X and let g(x) be a function that is continuous on the
support of X. Then g(Xn) converges in distribution to g(X).

We can apply this theorem to show that convergence in distribution implies
marginal convergence. Simply take g(x) = xj , where x = (x1, . . . , xp)

′. Since g is
continuous, the desired result follows.

It is often difficult to determine convergence in distribution by using the defini-
tion. As in the univariate case, convergence in distribution is equivalent to conver-
gence of moment generating functions, which we state in the following theorem.

Theorem 5.4.3. Let {Xn} be a sequence of random vectors with Xn having distri-
bution function Fn(x) and moment generating function Mn(t). Let X be a random
vector with distribution function F (x) and moment generating function M(t). Then
{Xn} converges in distribution to X if and only if, for some h > 0,

lim
n→∞

Mn(t) = M(t), (5.4.9)

for all t such that ‖t‖ < h.

The proof of this theorem can be found in more advanced books; see, for instance,
Tucker (1967). Also, the usual proof is for characteristic functions instead of moment
generating functions. As we mentioned previously, characteristic functions always
exist, so convergence in distribution is completely characterized by convergence of
corresponding characteristic functions.

The moment generating function of Xn is E[exp{t′Xn}]. Note that t′Xn is a
random variable. We can frequently use this and univariate theory to derive results
in the multivariate case. A perfect example of this is the multivariate central limit
theorem.

Theorem 5.4.4 (Multivariate Central Limit Theorem). Let {Xn} be a sequence
of iid random vectors with common mean vector μ and variance-covariance matrix
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Σ which is positive definite. Assume that the common moment generating function
M(t) exists in an open neighborhood of 0. Let

Yn =
1√
n

n∑
i=1

(Xi − μ) =
√

n(X− μ).

Then Yn converges in distribution to a Np(0,Σ) distribution.

Proof: Let t ∈ Rp be a vector in the stipulated neighborhood of 0. The moment
generating function of Yn is

Mn(t) = E

[
exp

{
t′

1√
n

n∑
i=1

(Xi − μ)

}]

= E

[
exp

{
1√
n

n∑
i=1

t′(Xi − μ)

}]

= E

[
exp

{
1√
n

n∑
i=1

Wi

}]
, (5.4.10)

where Wi = t′(Xi − μ). Note that W1, . . . , Wn are iid with mean 0 and variance
Var(Wi) = t′Σt. Hence, by the simple Central Limit Theorem,

1√
n

n∑
i=1

Wi
D→ N(0, t′Σt). (5.4.11)

Expression (5.4.10), though, is the mgf of (1/
√

n)
∑n

i=1 Wi evaluated at 1. There-
fore, by (5.4.11), we must have

Mn(t) = E

[
exp

{
(1)

1√
n

n∑
i=1

Wi

}]
→ e12

t
′
Σt/2 = et

′
Σt/2.

Because the last quantity is the moment generating function of a Np(0,Σ) distri-
bution, we have the desired result.

Suppose X1,X2, . . . ,Xn is a random sample from a distribution with mean
vector μ and variance-covariance matrix Σ. Let Xn be the vector of sample means.
Then, from the Central Limit Theorem, we say that

Xn has an approximate Np

(
μ, 1

nΣ
)

distribution. (5.4.12)

A result that we use frequently concerns linear transformations. Its proof is
obtained by using moment generating functions and is left as an exercise.

Theorem 5.4.5. Let {Xn} be a sequence of p-dimensional random vectors. Suppose

Xn
D→ N(μ,Σ). Let A be an m × p matrix of constants and let b be an m-

dimensional vector of constants. Then AXn + b
D→ N(Aμ + b,AΣA′).
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A result that will prove to be quite useful is the extension of the Δ-method; see
Theorem 5.2.9. A proof can be found in Chapter 3 of Serfling (1980).

Theorem 5.4.6. Let {Xn} be a sequence of p-dimensional random vectors. Suppose

√
n(Xn − μ0)

D→ Np(0,Σ).

Let g be a transformation g(x) = (g1(x), . . . , gk(x))′ such that 1 ≤ k ≤ p and the
k × p matrix of partial derivatives,

B =

[
∂gi

∂μj

]
, i = 1, . . . k; j = 1, . . . , p ,

are continuous and do not vanish in a neighborhood of μ0. Let B0 = B at μ0. Then

√
n(g(Xn)− g(μ0))

D→ Nk(0,B0ΣB′
0). (5.4.13)

EXERCISES

5.4.1. Let {Xn} be a sequence of p-dimensional random vectors. Show that

Xn
D→ Np(μ,Σ) if and only if a′Xn

D→ N1(a
′μ, a′Σa),

for all vectors a ∈ Rp.

5.4.2. Let X1, . . . , Xn be a random sample from a uniform(a, b) distribution. Let
Y1 = min Xi and let Y2 = max Xi. Show that (Y1, Y2)

′ converges in probability to
the vector (a, b)′.

5.4.3. Let Xn and Yn be p-dimensional random vectors. Show that if

Xn −Yn
P→ 0 and Xn

D→ X,

where X is a p-dimensional random vector, then Yn
D→ X.

5.4.4. Let Xn and Yn be p-dimensional random vectors such that Xn and Yn are
independent for each n and their mgfs exist. Show that if

Xn
D→ X and Yn

D→ Y,

where X and Y are p-dimensional random vectors, then (Xn,Yn)
D→ (X,Y).

5.4.5. Suppose Xn has a Np(μn,Σn) distribution. Show that

Xn
D→ Np(μ,Σ) iff μn → μ and Σn → Σ.
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Chapter 6

Maximum Likelihood

Methods

6.1 Maximum Likelihood Estimation

Recall in Chapter 4 that as a point estimation procedure, we introduced maximum
likelihood estimates (mle). In this chapter, we continue this development showing
that these likelihood procedures give rise to a formal theory of statistical inference
(confidence and testing procedures). Under certain conditions (regularity condi-
tions), these procedures are asymptotically optimal.

As in Section 4.1, consider a random variable X whose pdf f(x; θ) depends on
an unknown parameter θ which is in a set Ω. Our general discussion is for the
continuous case, but the results extend to the discrete case also. For information,
suppose that we have a random sample X1, . . . , Xn on X ; i.e., X1, . . . , Xn are iid
random variables with common pdf f(x; θ), θ ∈ Ω. For now, we assume that θ
is a scalar, but we do extend the results to vectors in Sections 6.4 and 6.5. The
parameter θ is unknown. The basis of our inferential procedures is the likelihood
function given by

L(θ;x) =

n∏
i=1

f(xi; θ), θ ∈ Ω, (6.1.1)

where x = (x1, . . . , xn)′. Because we treat L as a function of θ in this chapter, we
have transposed the xi and θ in the argument of the likelihood function. In fact, we
often write it as L(θ). Actually, the log of this function is usually more convenient
to use and we denote it by

l(θ) = log L(θ) =

n∑
i=1

log f(xi; θ), θ ∈ Ω. (6.1.2)

Note that there is no loss of information in using l(θ) because the log is a one-to-one
function. Most of our discussion in this chapter remains the same if X is a random
vector.

355
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As in Chapter 4, our point estimator of θ is θ̂ = θ̂(X1, . . . , Xn), where θ̂ max-

imizes the function L(θ). We call θ̂ the maximum likelihood estimator (mle) of θ.
In Section 4.1, several motivating examples were given, including the binomial and
normal probability models. Later we give several more examples, but first we offer
a theoretical justification for considering the mle. Let θ0 denote the true value of θ.
Theorem 6.1.1 shows that the maximum of L(θ) asymptotically separates the true
model at θ0 from models at θ 
= θ0. To prove this theorem, certain assumptions,
regularity conditions, are required.

Assumptions 6.1.1 (Regularity Conditions). Regularity conditions (R0)–(R2) are

(R0) The cdfs are distinct; i.e., θ 
= θ′ ⇒ F (xi; θ) 
= F (xi; θ
′).

(R1) The pdfs have common support for all θ.

(R2) The point θ0 is an interior point in Ω.

The first assumption states that the parameter identifies the pdf. The second as-
sumption implies that the support of Xi does not depend on θ. This is restrictive,
and some examples and exercises cover models in which (R1) is not true.

Theorem 6.1.1. Assume that θ0 is the true parameter and that Eθ0 [f(Xi; θ)/f(Xi; θ0)]
exists. Under assumptions (R0) and (R1),

lim
n→∞

Pθ0 [L(θ0,X) > L(θ,X)] = 1, for all θ 
= θ0. (6.1.3)

Proof: By taking logs, the inequality L(θ0,X) > L(θ,X) is equivalent to

1

n

n∑
i=1

log

[
f(Xi; θ)

f(Xi; θ0)

]
< 0.

Since the summands are iid with finite expectation and the function φ(x) = − log(x)
is strictly convex, it follows from the Law of Large Numbers (Theorem 5.1.1) and
Jensen’s inequality (Theorem 1.10.5) that, when θ0 is the true parameter,

1

n

n∑
i=1

log

[
f(Xi; θ)

f(Xi; θ0)

]
P→ Eθ0

[
log

f(X1; θ)

f(X1; θ0)

]
< log Eθ0

[
f(X1; θ)

f(X1; θ0)

]
.

But

Eθ0

[
f(X1; θ)

f(X1; θ0)

]
=

∫
f(x; θ)

f(x; θ0)
f(x; θ0) dx = 1.

Because log 1 = 0, the theorem follows. Note that common support is needed to
obtain the last equalities.

Theorem 6.1.1 says that asymptotically the likelihood function is maximized at
the true value θ0. So in considering estimates of θ0, it seems natural to consider the
value of θ that maximizes the likelihood.
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Definition 6.1.1 (Maximum Likelihood Estimator). We say that θ̂ = θ̂(X) is a
maximum likelihood estimator (mle) of θ if

θ̂ = ArgmaxL(θ;X). (6.1.4)

The notation Argmax means that L(θ;X) achieves its maximum value at θ̂.

As in Chapter 4, to determine the mle, we often take the log of the likelihood
and determine its critical value; that is, letting l(θ) = log L(θ), the mle solves the
equation

∂l(θ)

∂θ
= 0. (6.1.5)

This is an example of an estimating equation, which we often label as an EE.
This is the first of several EEs in the text.

Example 6.1.1 (Laplace Distribution). Let X1, . . . , Xn be iid with density

f(x; θ) =
1

2
e−|x−θ|, −∞ < x < ∞,−∞ < θ < ∞. (6.1.6)

This pdf is referred to as either the Laplace or the double exponential distribution.
The log of the likelihood simplifies to

l(θ) = −n log 2−
n∑

i=1

|xi − θ|.

The first partial derivative is

l′(θ) =
n∑

i=1

sgn(xi − θ), (6.1.7)

where sgn(t) = 1, 0, or − 1 depending on whether t > 0, t = 0, or t < 0. Note that
we have used d

dt |t| = sgn(t), which is true unless t = 0. Setting equation (6.1.7) to 0,
the solution for θ is med{x1, x2, . . . , xn}, because the median makes half the terms
of the sum in expression (6.1.7) nonpositive and half nonnegative. Recall that we
defined the sample median in expression (4.4.4) and that we denote it by Q2 (the

second quartile of the sample). Hence, θ̂ = Q2 is the mle of θ for the Laplace pdf
(6.1.6).

There is no guarantee that the mle exists or, if it does, it is unique. This is often
clear from the application as in the next two examples. Other examples are given
in the exercises.

Example 6.1.2 (Logistic Distribution). Let X1, . . . , Xn be iid with density

f(x; θ) =
exp{−(x− θ)}

(1 + exp{−(x− θ)})2 , −∞ < x <∞, −∞ < θ < ∞. (6.1.8)
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The log of the likelihood simplifies to

l(θ) =

n∑
i=1

log f(xi; θ) = nθ − nx− 2

n∑
i=1

log(1 + exp{−(xi − θ)}).

Using this, the first partial derivative is

l′(θ) = n− 2

n∑
i=1

exp{−(xi − θ)}
1 + exp{−(xi − θ)} . (6.1.9)

Setting this equation to 0 and rearranging terms results in the equation

n∑
i=1

exp{−(xi − θ)}
1 + exp{−(xi − θ)} =

n

2
. (6.1.10)

Although this does not simplify, we can show that equation (6.1.10) has a unique
solution. The derivative of the left side of equation (6.1.10) simplifies to

(∂/∂θ)

n∑
i=1

exp{−(xi − θ)}
1 + exp{−(xi − θ)} =

n∑
i=1

exp{−(xi − θ)}
(1 + exp{−(xi − θ)})2 > 0.

Thus the left side of equation (6.1.10) is a strictly increasing function of θ. Finally,
the left side of (6.1.10) approaches 0 as θ → −∞ and approaches n as θ → ∞.
Thus equation (6.1.10) has a unique solution. Also, the second derivative of l(θ) is
strictly negative for all θ; hence, the solution is a maximum.

Having shown that the mle exists and is unique, we can use a numerical method
to obtain the solution. In this case, Newton’s procedure is useful. We discuss this
in general in the next section, at which time we reconsider this example.

Example 6.1.3. In Example 4.1.2, we discussed the mle of the probability of
success θ for a random sample X1, X2, . . . , Xn from the Bernoulli distribution with
pmf

p(x) =

{
θx(1 − θ)1−x x = 0, 1
0 elsewhere,

where 0 ≤ θ ≤ 1. Recall that the mle is X, the proportion of sample successes.
Now suppose that we know in advance that, instead of 0 ≤ θ ≤ 1, θ is restricted
by the inequalities 0 ≤ θ ≤ 1/3. If the observations were such that x > 1/3, then

x would not be a satisfactory estimate. Since ∂l(θ)
∂θ > 0, provided θ < x, under the

restriction 0 ≤ θ ≤ 1/3, we can maximize l(θ) by taking θ̂ = min
{
x, 1

3

}
.

The following is an appealing property of maximum likelihood estimates.

Theorem 6.1.2. Let X1, . . . , Xn be iid with the pdf f(x; θ), θ ∈ Ω. For a specified

function g, let η = g(θ) be a parameter of interest. Suppose θ̂ is the mle of θ. Then

g(θ̂) is the mle of η = g(θ).



6.1. Maximum Likelihood Estimation 359

Proof: First suppose g is a one-to-one function. The likelihood of interest is L(g(θ)),
but because g is one-to-one,

maxL(g(θ)) = max
η=g(θ)

L(η) = max
η

L(g−1(η)).

But the maximum occurs when g−1(η) = θ̂; i.e., take η̂ = g(θ̂).
Suppose g is not one-to-one. For each η in the range of g, define the set (preim-

age)
g−1(η) = {θ : g(θ) = η}.

The maximum occurs at θ̂ and the domain of g is Ω, which covers θ̂. Hence, θ̂ is
in one of these preimages and, in fact, it can only be in one preimage. Hence to
maximize L(η), choose η̂ so that g−1(η̂) is that unique preimage containing θ̂. Then

η̂ = g(θ̂).

Consider Example 4.1.2, where X1, . . . , Xn are iid Bernoulli random variables
with probability of success p. As shown in this example, p̂ = X is the mle of p.
Recall that in the large sample confidence interval for p, (4.2.7), an estimate of√

p(1− p) is required. By Theorem 6.1.2, the mle of this quantity is
√

p̂(1− p̂).
We close this section by showing that maximum likelihood estimators, under

regularity conditions, are consistent estimators. Recall that X′ = (X1, . . . , Xn).

Theorem 6.1.3. Assume that X1, . . . , Xn satisfy the regularity conditions (R0)
through (R2), where θ0 is the true parameter, and further that f(x; θ) is differen-
tiable with respect to θ in Ω. Then the likelihood equation,

∂

∂θ
L(θ) = 0,

or equivalently
∂

∂θ
l(θ) = 0,

has a solution θ̂n such that θ̂n
P→ θ0.

Proof: Because θ0 is an interior point in Ω, (θ0 − a, θ0 + a) ⊂ Ω, for some a > 0.
Define Sn to be the event

Sn = {X : l(θ0;X) > l(θ0 − a;X)} ∩ {X : l(θ0;X) > l(θ0 + a;X)} .

By Theorem 6.1.1, P (Sn) → 1. So we can restrict attention to the event Sn. But

on Sn, l(θ) has a local maximum, say, θ̂n, such that θ0 − a < θ̂n < θ0 + a and

l′(θ̂n) = 0. That is,

Sn ⊂
{
X : |θ̂n(X) − θ0| < a

}
∩

{
X : l′(θ̂n(X)) = 0

}
.

Therefore,

1 = lim
n→∞

P (Sn) ≤ lim
n→∞

P
[{

X : |θ̂n(X)− θ0| < a
}
∩

{
X : l′(θ̂n(X)) = 0

}]
≤ 1;
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see Remark 5.2.3 for discussion on lim. It follows that for the sequence of solutions
θ̂n, P [|θ̂n − θ0| < a]→ 1.

The only contentious point in the proof is that the sequence of solutions might
depend on a. But we can always choose a solution “closest” to θ0 in the following
way. For each n, the set of all solutions in the interval is bounded; hence, the
infimum over solutions closest to θ0 exists.

Note that this theorem is vague in that it discusses solutions of the equation.
If, however, we know that the mle is the unique solution of the equation l′(θ) = 0,
then it is consistent. We state this as a corollary:

Corollary 6.1.1. Assume that X1, . . . , Xn satisfy the regularity conditions (R0)
through (R2), where θ0 is the true parameter, and that f(x; θ) is differentiable with

respect to θ in Ω. Suppose the likelihood equation has the unique solution θ̂n. Then
θ̂n is a consistent estimator of θ0.

EXERCISES

6.1.1. Let X1, X2, . . . , Xn be a random sample on X that has a Γ(α = 4, β = θ)
distribution, 0 < θ <∞.

(a) Determine the mle of θ.

(b) Suppose the following data is a realization (rounded) of a random sample on
X . Obtain a histogram with the argument pr=T (data are in ex6111.rda).

9 39 38 23 8 47 21 22 18 10 17 22 14

9 5 26 11 31 15 25 9 29 28 19 8

(c) For this sample, obtain θ̂ the realized value of the mle and locate 4θ̂ on the

histogram. Overlay the Γ(α = 4, β = θ̂) pdf on the histogram. Does the data
agree with this pdf? Code for overlay:

xs=sort(x);y=dgamma(xs,4,1/betahat);hist(x,pr=T);lines(y~xs).

6.1.2. Let X1, X2, . . . , Xn represent a random sample from each of the distributions
having the following pdfs:

(a) f(x; θ) = θxθ−1, 0 < x < 1, 0 < θ <∞, zero elsewhere.

(b) f(x; θ) = e−(x−θ), θ ≤ x < ∞, −∞ < θ < ∞, zero elsewhere. Note that this
is a nonregular case.

In each case find the mle θ̂ of θ.

6.1.3. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a
distribution with pdf f(x; θ) = 1, θ− 1

2 ≤ x ≤ θ + 1
2 , −∞ < θ < ∞, zero elsewhere.

This is a nonregular case. Show that every statistic u(X1, X2, . . . , Xn) such that

Yn − 1
2 ≤ u(X1, X2, . . . , Xn) ≤ Y1 + 1

2
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is a mle of θ. In particular, (4Y1 + 2Yn + 1)/6, (Y1 + Yn)/2, and (2Y1 + 4Yn − 1)/6
are three such statistics. Thus, uniqueness is not, in general, a property of mles.

6.1.4. Suppose X1, . . . , Xn are iid with pdf f(x; θ) = 2x/θ2, 0 < x ≤ θ, zero
elsewhere. Note this is a nonregular case. Find:

(a) The mle θ̂ for θ.

(b) The constant c so that E(cθ̂) = θ.

(c) The mle for the median of the distribution. Show that it is a consistent
estimator.

6.1.5. Consider the pdf in Exercise 6.1.4.

(a) Using Theorem 4.8.1, show how to generate observations from this pdf.

(b) The following data were generated from this pdf. Find the mles of θ and the
median.

1.2 7.7 4.3 4.1 7.1 6.3 5.3 6.3 5.3 2.8

3.8 7.0 4.5 5.0 6.3 6.7 5.0 7.4 7.5 7.5

6.1.6. Suppose X1, X2, . . . , Xn are iid with pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞,
zero elsewhere. Find the mle of P (X ≤ 2) and show that it is consistent.

6.1.7. Let the table

x 0 1 2 3 4 5
Frequency 6 10 14 13 6 1

represent a summary of a sample of size 50 from a binomial distribution having
n = 5. Find the mle of P (X ≥ 3). For the data in the table, using the R function
pbinom determine the realization of the mle.

6.1.8. Let X1, X2, X3, X4, X5 be a random sample from a Cauchy distribution with
median θ, that is, with pdf

f(x; θ) =
1

π

1

1 + (x− θ)2
, −∞ < x < ∞,

where −∞ < θ < ∞. Suppose x1 = −1.94, x2 = 0.59, x3 = −5.98, x4 = −0.08,
and x5 = −0.77.

(a) Show that the mle can be obtained by minimizing

5∑
i=1

log[1 + (xi − θ)2].
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(b) Approximate the mle by plotting the function in Part (a). Make use of the
following R code which assumes that the data are in the R vector x:

theta=seq(-6,6,.001);lfs<-c()

for(th in theta){lfs=c(lfs,sum(log((x-th)^2+1)))}

plot(lfs~theta)

6.1.9. Let the table

x 0 1 2 3 4 5
Frequency 7 14 12 13 6 3

represent a summary of a random sample of size 55 from a Poisson distribution.
Find the maximum likelihood estimator of P (X = 2). Use the R function dpois to
find the estimator’s realization for the data in the table.

6.1.10. Let X1, X2, . . . , Xn be a random sample from a Bernoulli distribution with
parameter p. If p is restricted so that we know that 1

2 ≤ p ≤ 1, find the mle of this
parameter.

6.1.11. Let X1, X2, . . . , Xn be a random sample from a N(θ, σ2) distribution, where
σ2 is fixed but −∞ < θ <∞.

(a) Show that the mle of θ is X .

(b) If θ is restricted by 0 ≤ θ < ∞, show that the mle of θ is θ̂ = max{0, X}.

6.1.12. Let X1, X2, . . . , Xn be a random sample from the Poisson distribution with
0 < θ ≤ 2. Show that the mle of θ is θ̂ = min{X, 2}.

6.1.13. Let X1, X2, . . . , Xn be a random sample from a distribution with one of
two pdfs. If θ = 1, then f(x; θ = 1) = 1√

2π
e−x2/2, −∞ < x < ∞. If θ = 2, then

f(x; θ = 2) = 1/[π(1 + x2)], −∞ < x <∞. Find the mle of θ.

6.2 Rao–Cramér Lower Bound and Efficiency

In this section, we establish a remarkable inequality called the Rao–Cramér lower
bound, which gives a lower bound on the variance of any unbiased estimate. We then
show that, under regularity conditions, the variances of the maximum likelihood
estimates achieve this lower bound asymptotically.

As in the last section, let X be a random variable with pdf f(x; θ), θ ∈ Ω, where
the parameter space Ω is an open interval. In addition to the regularity conditions
(6.1.1) of Section 6.1, for the following derivations, we require two more regularity
conditions, namely,

Assumptions 6.2.1 (Additional Regularity Conditions). Regularity conditions
(R3) and (R4) are given by

(R3) The pdf f(x; θ) is twice differentiable as a function of θ.
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(R4) The integral
∫

f(x; θ) dx can be differentiated twice under the integral sign as
a function of θ.

Note that conditions (R1)–(R4) mean that the parameter θ does not appear
in the endpoints of the interval in which f(x; θ) > 0 and that we can interchange
integration and differentiation with respect to θ. Our derivation is for the continuous
case, but the discrete case can be handled in a similar manner. We begin with the
identity

1 =

∫ ∞

−∞
f(x; θ) dx.

Taking the derivative with respect to θ results in

0 =

∫ ∞

−∞

∂f(x; θ)

∂θ
dx.

The latter expression can be rewritten as

0 =

∫ ∞

−∞

∂f(x; θ)/∂θ

f(x; θ)
f(x; θ) dx,

or, equivalently,

0 =

∫ ∞

−∞

∂ log f(x; θ)

∂θ
f(x; θ) dx. (6.2.1)

Writing this last equation as an expectation, we have established

E

[
∂ log f(X ; θ)

∂θ

]
= 0; (6.2.2)

that is, the mean of the random variable ∂ log f(X;θ)
∂θ is 0. If we differentiate (6.2.1)

again, it follows that

0 =

∫ ∞

−∞

∂2 log f(x; θ)

∂θ2
f(x; θ) dx+

∫ ∞

−∞

∂ log f(x; θ)

∂θ

∂ log f(x; θ)

∂θ
f(x; θ) dx. (6.2.3)

The second term of the right side of this equation can be written as an expectation,
which we call Fisher information and we denote it by I(θ); that is,

I(θ) =

∫ ∞

−∞

∂ log f(x; θ)

∂θ

∂ log f(x; θ)

∂θ
f(x; θ) dx = E

[(
∂ log f(X ; θ)

∂θ

)2
]

. (6.2.4)

From equation (6.2.3), we see that I(θ) can be computed from

I(θ) = −
∫ ∞

−∞

∂2 log f(x; θ)

∂θ2
f(x; θ) dx = −E

[
∂2 log f(X ; θ)

∂θ2

]
. (6.2.5)

Using equation (6.2.2), Fisher information is the variance of the random variable
∂ log f(X;θ)

∂θ ; i.e.,

I(θ) = Var

(
∂ log f(X ; θ)

∂θ

)
. (6.2.6)

Usually, expression (6.2.5) is easier to compute than expression (6.2.4).
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Remark 6.2.1. Note that the information is the weighted mean of either[
∂ log f(x; θ)

∂θ

]2

or − ∂2 log f(x; θ)

∂θ2
,

where the weights are given by the pdf f(x; θ). That is, the greater these derivatives
are on the average, the more information that we get about θ. Clearly, if they were
equal to zero [so that θ would not be in log f(x; θ)], there would be zero information
about θ. The important function

∂ log f(x; θ)

∂θ

is called the score function. Recall that it determines the estimating equations
for the mle; that is, the mle θ̂ solves

n∑
i=1

∂ log f(xi; θ)

∂θ
= 0

for θ.

Example 6.2.1 (Information for a Bernoulli Random Variable). Let X be Bernoulli
b(1, θ). Thus

log f(x; θ) = x log θ + (1− x) log(1− θ)

∂ log f(x; θ)

∂θ
=

x

θ
− 1− x

1− θ

∂2 log f(x; θ)

∂θ2
= − x

θ2
− 1− x

(1− θ)2
.

Clearly,

I(θ) = −E

[−X

θ2
− 1−X

(1− θ)2

]
=

θ

θ2
+

1− θ

(1− θ)2
=

1

θ
+

1

(1− θ)
=

1

θ(1− θ)
,

which is larger for θ values close to zero or one.

Example 6.2.2 (Information for a Location Family). Consider a random sample
X1, . . . , Xn such that

Xi = θ + ei, i = 1, . . . , n, (6.2.7)

where e1, e2, . . . , en are iid with common pdf f(x) and with support (−∞,∞). Then
the common pdf of Xi is fX(x; θ) = f(x − θ). We call model (6.2.7) a location
model. Assume that f(x) satisfies the regularity conditions. Then the information
is

I(θ) =

∫ ∞

−∞

(
f ′(x− θ)

f(x− θ)

)2

f(x− θ) dx

=

∫ ∞

−∞

(
f ′(z)

f(z)

)2

f(z) dz, (6.2.8)
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where the last equality follows from the transformation z = x − θ. Hence, in the
location model, the information does not depend on θ.

As an illustration, reconsider Example 6.1.1 concerning the Laplace distribution.
Let X1, X2, . . . , Xn be a random sample from this distribution. Then it follows that
Xi can be expressed as

Xi = θ + ei, (6.2.9)

where e1, . . . , en are iid with common pdf f(z) = 2−1 exp{−|z|}, for −∞ < z < ∞.
As we did in Example 6.1.1, use d

dz |z| = sgn(z). Then f ′(z) = −2−1sgn(z) exp{−|z|}
and, hence, [f ′(z)/f(z)]2 = [−sgn(z)]2 = 1, so that

I(θ) =

∫ ∞

−∞

(
f ′(z)

f(z)

)2

f(z) dz =

∫ ∞

−∞
f(z) dz = 1. (6.2.10)

Note that the Laplace pdf does not satisfy the regularity conditions, but this argu-
ment can be made rigorous; see Huber (1981) and also Chapter 10.

From (6.2.6), for a sample of size 1, say X1, Fisher information is the vari-

ance of the random variable ∂ log f(X1;θ)
∂θ . What about a sample of size n? Let

X1, X2, . . . , Xn be a random sample from a distribution having pdf f(x; θ). The
likelihood L(θ) is the pdf of the random sample, and the random variable whose
variance is the information in the sample is given by

∂ log L(θ,X)

∂θ
=

n∑
i=1

∂ log f(Xi; θ)

∂θ
.

The summands are iid with common variance I(θ). Hence the information in the
sample is

Var

(
∂ log L(θ,X)

∂θ

)
= nI(θ). (6.2.11)

Thus the information in a random sample of size n is n times the information in a
sample of size 1. So, in Example 6.2.1, the Fisher information in a random sample
of size n from a Bernoulli b(1, θ) distribution is n/[θ(1− θ)].

We are now ready to obtain the Rao–Cramér lower bound, which we state as a
theorem.

Theorem 6.2.1 (Rao–Cramér Lower Bound). Let X1, . . . , Xn be iid with common
pdf f(x; θ) for θ ∈ Ω. Assume that the regularity conditions (R0)–(R4) hold. Let
Y = u(X1, X2, . . . , Xn) be a statistic with mean E(Y ) = E[u(X1, X2, . . . , Xn)] =
k(θ). Then

Var(Y ) ≥ [k′(θ)]2

nI(θ)
. (6.2.12)

Proof: The proof is for the continuous case, but the proof for the discrete case is
quite similar. Write the mean of Y as

k(θ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x1, . . . , xn)f(x1; θ) · · · f(xn; θ) dx1 · · · dxn.
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Differentiating with respect to θ, we obtain

k′(θ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x1, x2, . . . , xn)

[
n∑
1

1

f(xi; θ)

∂f(xi; θ)

∂θ

]

× f(x1; θ) · · · f(xn; θ) dx1 · · · dxn

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
u(x1, x2, . . . , xn)

[
n∑
1

∂ log f(xi; θ)

∂θ

]

× f(x1; θ) · · · f(xn; θ) dx1 · · · dxn. (6.2.13)

Define the random variable Z by Z =
∑n

1 [∂ log f(Xi; θ)/∂θ]. We know from (6.2.2)
and (6.2.11) that E(Z) = 0 and Var(Z) = nI(θ), respectively. Also, equation
(6.2.13) can be expressed in terms of expectation as k′(θ) = E(Y Z). Hence we have

k′(θ) = E(Y Z) = E(Y )E(Z) + ρσY

√
nI(θ),

where ρ is the correlation coefficient between Y and Z. Using E(Z) = 0, this
simplifies to

ρ =
k′(θ)

σY

√
nI(θ)

.

Because ρ2 ≤ 1, we have
[k′(θ)]2

σ2
Y nI(θ)

≤ 1,

which, upon rearrangement, is the desired result.

Corollary 6.2.1. Under the assumptions of Theorem 6.2.1, if Y = u(X1, . . . , Xn)
is an unbiased estimator of θ, so that k(θ) = θ, then the Rao–Cramér inequality
becomes

Var(Y ) ≥ 1

nI(θ)
.

Consider the Bernoulli model with probability of success θ which was treated in
Example 6.2.1. In the example we showed that 1/nI(θ) = θ(1−θ)/n. From Example
4.1.2 of Section 4.1, the mle of θ is X. The mean and variance of a Bernoulli (θ)
distribution are θ and θ(1 − θ), respectively. Hence the mean and variance of X
are θ and θ(1− θ)/n, respectively. That is, in this case the variance of the mle has
attained the Rao–Cramér lower bound.

We now make the following definitions.

Definition 6.2.1 (Efficient Estimator). Let Y be an unbiased estimator of a pa-
rameter θ in the case of point estimation. The statistic Y is called an efficient
estimator of θ if and only if the variance of Y attains the Rao–Cramér lower
bound.
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Definition 6.2.2 (Efficiency). In cases in which we can differentiate with respect
to a parameter under an integral or summation symbol, the ratio of the Rao–Cramér
lower bound to the actual variance of any unbiased estimator of a parameter is called
the efficiency of that estimator.

Example 6.2.3 (Poisson(θ) Distribution). Let X1, X2, . . . , Xn denote a random
sample from a Poisson distribution that has the mean θ > 0. It is known that X is
an mle of θ; we shall show that it is also an efficient estimator of θ. We have

∂ log f(x; θ)

∂θ
=

∂

∂θ
(x log θ − θ − log x!)

=
x

θ
− 1 =

x− θ

θ
.

Accordingly,

E

[(
∂ log f(X ; θ)

∂θ

)2
]

=
E(X − θ)2

θ2
=

σ2

θ2
=

θ

θ2
=

1

θ
.

The Rao–Cramér lower bound in this case is 1/[n(1/θ)] = θ/n. But θ/n is the
variance of X. Hence X is an efficient estimator of θ.

Example 6.2.4 (Beta(θ, 1) Distribution). Let X1, X2, . . . , Xn denote a random
sample of size n > 2 from a distribution with pdf

f(x; θ) =

{
θxθ−1 for 0 < x < 1
0 elsewhere,

(6.2.14)

where the parameter space is Ω = (0,∞). This is the beta distribution, (3.3.9),
with parameters θ and 1, which we denote by beta(θ, 1). The derivative of the log
of f is

∂ log f

∂θ
= log x +

1

θ
. (6.2.15)

From this we have ∂2 log f/∂θ2 = −θ−2. Hence the information is I(θ) = θ−2.
Next, we find the mle of θ and investigate its efficiency. The log of the likelihood

function is

l(θ) = θ

n∑
i=1

log xi −
n∑

i=1

log xi + n log θ.

The first partial of l(θ) is

∂l(θ)

∂θ
=

n∑
i=1

log xi +
n

θ
. (6.2.16)

Setting this to 0 and solving for θ, the mle is θ̂ = −n/
∑n

i=1 log Xi. To obtain

the distribution of θ̂, let Yi = − log Xi. A straight transformation argument shows
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that the distribution is Γ(1, 1/θ). Because the Xis are independent, Theorem 3.3.1
shows that W =

∑n
i=1 Yi is Γ(n, 1/θ). Theorem 3.3.2 shows that

E[W k] =
(n + k − 1)!

θk(n− 1)!
, (6.2.17)

for k > −n. So, in particular for k = −1, we get

E[θ̂] = nE[W−1] = θ
n

n− 1
.

Hence, θ̂ is biased, but the bias vanishes as n → ∞. Also, note that the estimator
[(n− 1)/n]θ̂ is unbiased. For k = −2, we get

E[θ̂2] = n2E[W−2] = θ2 n2

(n− 1)(n− 2)
,

and, hence, after simplifying E(θ̂2)− [E(θ̂)]2, we obtain

Var(θ̂) = θ2 n2

(n− 1)2(n− 2)
.

From this, we can obtain the variance of the unbiased estimator [(n− 1)/n]θ̂, i.e.,

Var

(
n− 1

n
θ̂

)
=

θ2

n− 2
.

From above, the information is I(θ) = θ−2 and, hence, the variance of an unbiased

efficient estimator is θ2/n. Because θ2

n−2 > θ2

n , the unbiased estimator [(n− 1)/n]θ̂
is not efficient. Notice, though, that its efficiency (as in Definition 6.2.2) converges

to 1 as n → ∞. Later in this section, we say that [(n − 1)/n]θ̂ is asymptotically
efficient.

In the above examples, we were able to obtain the mles in closed form along
with their distributions and, hence, moments. This is often not the case. Maximum
likelihood estimators, however, have an asymptotic normal distribution. In fact,
mles are asymptotically efficient. To prove these assertions, we need the additional
regularity condition given by

Assumptions 6.2.2 (Additional Regularity Condition). Regularity condition (R5)
is

(R5) The pdf f(x; θ) is three times differentiable as a function of θ. Further, for
all θ ∈ Ω, there exist a constant c and a function M(x) such that∣∣∣∣ ∂3

∂θ3
log f(x; θ)

∣∣∣∣ ≤M(x),

with Eθ0 [M(X)] < ∞, for all θ0 − c < θ < θ0 + c and all x in the support of
X.
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Theorem 6.2.2. Assume X1, . . . , Xn are iid with pdf f(x; θ0) for θ0 ∈ Ω such that
the regularity conditions (R0)–(R5) are satisfied. Suppose further that the Fisher
information satisfies 0 < I(θ0) < ∞. Then any consistent sequence of solutions of
the mle equations satisfies

√
n(θ̂ − θ0)

D→ N

(
0,

1

I(θ0)

)
. (6.2.18)

Proof: Expanding the function l′(θ) into a Taylor series of order 2 about θ0 and

evaluating it at θ̂n, we get

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l
′′(θ0) +

1

2
(θ̂n − θ0)

2l′′′(θ∗n), (6.2.19)

where θ∗n is between θ0 and θ̂n. But l′(θ̂n) = 0. Hence, rearranging terms, we obtain

√
n(θ̂n − θ0) =

n−1/2l′(θ0)

−n−1l′′(θ0)− (2n)−1(θ̂n − θ0)l′′′(θ∗n)
. (6.2.20)

By the Central Limit Theorem,

1√
n

l′(θ0) =
1√
n

n∑
i=1

∂ log f(Xi; θ0)

∂θ

D→ N(0, I(θ0)), (6.2.21)

because the summands are iid with Var(∂ log f(Xi; θ0)/∂θ) = I(θ0) < ∞. Also, by
the Law of Large Numbers,

− 1

n
l′′(θ0) = − 1

n

n∑
i=1

∂2 log f(Xi; θ0)

∂θ2

P→ I(θ0). (6.2.22)

To complete the proof then, we need only show that the second term in the

denominator of expression (6.2.20) goes to zero in probability. Because θ̂n− θ0
P→ 0

by Theorem 5.2.7, this follows provided that n−1l′′′(θ∗n) is bounded in probability.

Let c0 be the constant defined in condition (R5). Note that |θ̂n − θ0| < c0 implies
that |θ∗n − θ0| < c0, which in turn by condition (R5) implies the following string of
inequalities:∣∣∣∣− 1

n
l′′′(θ∗n)

∣∣∣∣ ≤ 1

n

n∑
i=1

∣∣∣∣∂3 log f(Xi; θ)

∂θ3

∣∣∣∣ ≤ 1

n

n∑
i=1

M(Xi). (6.2.23)

By condition (R5), Eθ0 [M(X)] < ∞; hence, 1
n

∑n
i=1 M(Xi)

P→ Eθ0 [M(X)], by the
Law of Large Numbers. For the bound, we select 1 + Eθ0 [M(X)]. Let ε > 0 be
given. Choose N1 and N2 so that

n ≥ N1 ⇒ P [|θ̂n − θ0| < c0] ≥ 1− ε

2
(6.2.24)

n ≥ N2 ⇒ P

[∣∣∣∣∣ 1n
n∑

i=1

M(Xi)− Eθ0 [M(X)]

∣∣∣∣∣ < 1

]
≥ 1− ε

2
. (6.2.25)



370 Maximum Likelihood Methods

It follows from (6.2.23)–(6.2.25) that

n ≥ max{N1, N2} ⇒ P

[∣∣∣∣− 1

n
l′′′(θ∗n)

∣∣∣∣ ≤ 1 + Eθ0 [M(X)]

]
≥ 1− ε

2
;

hence, n−1l′′′(θ∗n) is bounded in probability.

We next generalize Definitions 6.2.1 and 6.2.2 concerning efficiency to the asymp-
totic case.

Definition 6.2.3. Let X1, . . . , Xn be independent and identically distributed with
probability density function f(x; θ). Suppose θ̂1n = θ̂1n(X1, . . . , Xn) is an estimator

of θ0 such that
√

n(θ̂1n − θ0)
D→ N

(
0, σ2

θ̂1n

)
. Then

(a) The asymptotic efficiency of θ̂1n is defined to be

e(θ̂1n) =
1/I(θ0)

σ2
θ̂1n

. (6.2.26)

(b) The estimator θ̂1n is said to be asymptotically efficient if the ratio in part
(a) is 1.

(c) Let θ̂2n be another estimator such that
√

n(θ̂2n − θ0)
D→ N

(
0, σ2

θ̂2n

)
. Then the

asymptotic relative efficiency (ARE) of θ̂1n to θ̂2n is the reciprocal of the
ratio of their respective asymptotic variances; i.e.,

e(θ̂1n, θ̂2n) =
σ2

θ̂2n

σ2
θ̂1n

. (6.2.27)

Hence, by Theorem 6.2.2, under regularity conditions, maximum likelihood es-
timators are asymptotically efficient estimators. This is a nice optimality result.
Also, if two estimators are asymptotically normal with the same asymptotic mean,
then intuitively the estimator with the smaller asymptotic variance would be se-
lected over the other as a better estimator. In this case, the ARE of the selected
estimator to the nonselected one is greater than 1.

Example 6.2.5 (ARE of the Sample Median to the Sample Mean). We obtain
this ARE under the Laplace and normal distributions. Consider first the Laplace
location model as given in expression (6.2.9); i.e.,

Xi = θ + ei, i = 1, . . . , n. (6.2.28)

By Example 6.1.1, we know that the mle of θ is the sample median, Q2. By (6.2.10),
the information I(θ0) = 1 for this distribution; hence, Q2 is asymptotically normal
with mean θ and variance 1/n. On the other hand, by the Central Limit Theorem,
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the sample mean X is asymptotically normal with mean θ and variance σ2/n, where
σ2 = Var(Xi) = Var(ei + θ) = Var(ei) = E(e2

i ). But

E(e2
i ) =

∫ ∞

−∞
z22−1 exp{−|z|} dz =

∫ ∞

0

z3−1 exp{−z} dz = Γ(3) = 2.

Therefore, the ARE(Q2, X) = 2
1 = 2. Thus, if the sample comes from a Laplace

distribution, then asymptotically the sample median is twice as efficient as the
sample mean.

Next suppose the location model (6.2.28) holds, except now the pdf of ei is
N(0, 1). Under this model, by Theorem 10.2.3, Q2 is asymptotically normal with
mean θ and variance (π/2)/n. Because the variance of X is 1/n, in this case, the
ARE(Q2, X) = 1

π/2 = 2/π = 0.636. Since π/2 = 1.57, asymptotically, X is 1.57

times more efficient than Q2 if the sample arises from the normal distribution.

Theorem 6.2.2 is also a practical result in that it gives us a way of doing inference.
The asymptotic standard deviation of the mle θ̂ is [nI(θ0)]

−1/2. Because I(θ) is a
continuous function of θ, it follows from Theorems 5.1.4 and 6.1.2 that

I(θ̂n)
P→ I(θ0).

Thus we have a consistent estimate of the asymptotic standard deviation of the mle.
Based on this result and the discussion of confidence intervals in Chapter 4, for a
specified 0 < α < 1, the following interval is an approximate (1−α)100% confidence
interval for θ, ⎛⎝θ̂n − zα/2

1√
nI(θ̂n)

, θ̂n + zα/2
1√

nI(θ̂n)

⎞⎠ . (6.2.29)

Remark 6.2.2. If we use the asymptotic distributions to construct confidence
intervals for θ, the fact that the ARE(Q2, X) = 2 when the underlying distribution
is the Laplace means that n would need to be twice as large for X to get the same
length confidence interval as we would if we used Q2.

A simple corollary to Theorem 6.2.2 yields the asymptotic distribution of a
function g(θ̂n) of the mle.

Corollary 6.2.2. Under the assumptions of Theorem 6.2.2, suppose g(x) is a con-
tinuous function of x that is differentiable at θ0 such that g′(θ0) 
= 0. Then

√
n(g(θ̂n)− g(θ0))

D→ N

(
0,

g′(θ0)
2

I(θ0)

)
. (6.2.30)

The proof of this corollary follows immediately from the Δ-method, Theorem
5.2.9, and Theorem 6.2.2.

The proof of Theorem 6.2.2 contains an asymptotic representation of θ̂ which
proves useful; hence, we state it as another corollary.
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Corollary 6.2.3. Under the assumptions of Theorem 6.2.2,

√
n(θ̂n − θ0) =

1

I(θ0)

1√
n

n∑
i=1

∂ log f(Xi; θ0)

∂θ
+ Rn, (6.2.31)

where Rn
P→ 0.

The proof is just a rearrangement of equation (6.2.20) and the ensuing results in
the proof of Theorem 6.2.2.

Example 6.2.6 (Example 6.2.4, Continued). Let X1, . . . , Xn be a random sample
having the common pdf (6.2.14). Recall that I(θ) = θ−2 and that the mle is

θ̂ = −n/
∑n

i=1 log Xi. Hence, θ̂ is approximately normally distributed with mean θ
and variance θ2/n. Based on this, an approximate (1− α)100% confidence interval
for θ is

θ̂ ± zα/2
θ̂√
n

.

Recall that we were able to obtain the exact distribution of θ̂ in this case. As
Exercise 6.2.12 shows, based on this distribution of θ̂, an exact confidence interval
for θ can be constructed.

In obtaining the mle of θ, we are often in the situation of Example 6.1.2; that
is, we can verify the existence of the mle, but the solution of the equation l′(θ̂) =
0 cannot be obtained in closed form. In such situations, numerical methods are
used. One iterative method that exhibits rapid (quadratic) convergence is Newton’s

method. The sketch in Figure 6.2.1 helps recall this method. Suppose θ̂(0) is an
initial guess at the solution. The next guess (one-step estimate) is the point θ̂(1),
which is the horizontal intercept of the tangent line to the curve l′(θ) at the point

(θ̂(0), l′(θ̂(0))). A little algebra finds

θ̂(1) = θ̂(0) − l′(θ̂(0))

l′′(θ̂(0))
. (6.2.32)

We then substitute θ̂(1) for θ̂(0) and repeat the process. On the figure, trace the
second step estimate θ̂(2); the process is continued until convergence.

Example 6.2.7 (Example 6.1.2, continued). Recall Example 6.1.2, where the ran-
dom sample X1, . . . , Xn has the common logistic density

f(x; θ) =
exp{−(x− θ)}

(1 + exp{−(x− θ)})2 , −∞ < x < ∞, −∞ < θ < ∞. (6.2.33)

We showed that the likelihood equation has a unique solution, though it cannot be
be obtained in closed form. To use formula (6.2.32), we need the first and second
partial derivatives of l(θ) and an initial guess. Expression (6.1.9) of Example 6.1.2
gives the first partial derivative, from which the second partial is

l′′(θ) = −2

n∑
i=1

exp{−(xi − θ)}
(1 + exp{−(xi − θ)})2 .
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y

dl(  (1))

dl(  (0))

(1) (0)

Figure 6.2.1: Beginning with the starting value θ̂(0), the one-step estimate is
θ̂(1), which is the intersection of the tangent line to the curve l′(θ) at θ̂(0) and the
horizontal axis. In the figure, dl(θ) = l′(θ).

The logistic distribution is similar to the normal distribution; hence, we can use
X as our initial guess of θ. The R function mlelogistic, at the site listed in the
preface, computes the k-step estimates.

We close this section with a remarkable fact. The estimate θ̂(1) in equation
(6.2.32) is called the one-step estimator. As Exercise 6.2.15 shows, this estimator
has the same asymptotic distribution as the mle [i.e., (6.2.18)], provided that the

initial guess θ̂(0) is a consistent estimator of θ. That is, the one-step estimate is an
asymptotically efficient estimate of θ. This is also true of the other iterative steps.

EXERCISES

6.2.1. Prove that X, the mean of a random sample of size n from a distribution
that is N(θ, σ2), −∞ < θ < ∞, is, for every known σ2 > 0, an efficient estimator
of θ.

6.2.2. Given f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere, with θ > 0, formally
compute the reciprocal of

nE

{[
∂ log f(X : θ)

∂θ

]2
}

.
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Compare this with the variance of (n + 1)Yn/n, where Yn is the largest observation
of a random sample of size n from this distribution. Comment.

6.2.3. Given the pdf

f(x; θ) =
1

π[1 + (x − θ)2]
, −∞ < x < ∞, −∞ < θ <∞,

show that the Rao–Cramér lower bound is 2/n, where n is the size of a random sam-

ple from this Cauchy distribution. What is the asymptotic distribution of
√

n(θ̂−θ)

if θ̂ is the mle of θ?

6.2.4. Consider Example 6.2.2, where we discussed the location model.

(a) Write the location model when ei has the logistic pdf given in expression
(4.4.11).

(b) Using expression (6.2.8), show that the information I(θ) = 1/3 for the model
in part (a). Hint: In the integral of expression (6.2.8), use the substitution
u = (1 + e−z)−1. Then du = f(z)dz, where f(z) is the pdf (4.4.11).

6.2.5. Using the same location model as in part (a) of Exercise 6.2.4, obtain the
ARE of the sample median to mle of the model.
Hint: The mle of θ for this model is discussed in Example 6.2.7. Furthermore, as
shown in Theorem 10.2.3 of Chapter 10, Q2 is asymptotically normal with asymp-
totic mean θ and asymptotic variance 1/(4f2(0)n).

6.2.6. Consider a location model (Example 6.2.2) when the error pdf is the con-
taminated normal (3.4.17) with ε as the proportion of contamination and with σ2

c

as the variance of the contaminated part. Show that the ARE of the sample median
to the sample mean is given by

e(Q2, X) =
2[1 + ε(σ2

c − 1)][1− ε + (ε/σc)]
2

π
. (6.2.34)

Use the hint in Exercise 6.2.5 for the median.

(a) If σ2
c = 9, use (6.2.34) to fill in the following table:

ε 0 0.05 0.10 0.15

e(Q2, X)

(b) Notice from the table that the sample median becomes the “better” estimator
when ε increases from 0.10 to 0.15. Determine the value for ε where this occurs
[this involves a third-degree polynomial in ε, so one way of obtaining the root
is to use the Newton algorithm discussed around expression (6.2.32)].

6.2.7. Recall Exercise 6.1.1 where X1, X2, . . . , Xn is a random sample on X that
has a Γ(α = 4, β = θ) distribution, 0 < θ <∞.
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(a) Find the Fisher information I(θ).

(b) Show that the mle of θ, which was derived in Exercise 6.1.1, is an efficient
estimator of θ.

(c) Using Theorem 6.2.2, obtain the asymptotic distribution of
√

n(θ̂ − θ).

(d) For the data of Example 6.1.1, find the asymptotic 95% confidence interval
for θ.

6.2.8. Let X be N(0, θ), 0 < θ <∞.

(a) Find the Fisher information I(θ).

(b) If X1, X2, . . . , Xn is a random sample from this distribution, show that the
mle of θ is an efficient estimator of θ.

(c) What is the asymptotic distribution of
√

n(θ̂ − θ)?

6.2.9. If X1, X2, . . . , Xn is a random sample from a distribution with pdf

f(x; θ) =

{
3θ3

(x+θ)4 0 < x < ∞, 0 < θ < ∞
0 elsewhere,

show that Y = 2X is an unbiased estimator of θ and determine its efficiency.

6.2.10. Let X1, X2, . . . , Xn be a random sample from a N(0, θ) distribution. We
want to estimate the standard deviation

√
θ. Find the constant c so that Y =

c
∑n

i=1 |Xi| is an unbiased estimator of
√

θ and determine its efficiency.

6.2.11. Let X be the mean of a random sample of size n from a N(θ, σ2) distribu-

tion, −∞ < θ < ∞, σ2 > 0. Assume that σ2 is known. Show that X
2 − σ2

n is an
unbiased estimator of θ2 and find its efficiency.

6.2.12. Recall that θ̂ = −n/
∑n

i=1 log Xi is the mle of θ for a beta(θ, 1) distribution.
Also, W = −∑n

i=1 log Xi has the gamma distribution Γ(n, 1/θ).

(a) Show that 2θW has a χ2(2n) distribution.

(b) Using part (a), find c1 and c2 so that

P

(
c1 <

2θn

θ̂
< c2

)
= 1− α, (6.2.35)

for 0 < α < 1. Next, obtain a (1− α)100% confidence interval for θ.

(c) For α = 0.05 and n = 10, compare the length of this interval with the length
of the interval found in Example 6.2.6.

6.2.13. The data file beta30.rda contains 30 observations generated from a beta(θ, 1)
distribution, where θ = 4. The file can be downloaded at the site discussed in the
Preface.
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(a) Obtain a histogram of the data using the argument pr=T. Overlay the pdf of
a β(4, 1) pdf. Comment.

(b) Using the results of Exercise 6.2.12, compute the maximum likelihood estimate
based on the data.

(c) Using the confidence interval found in Part (c) of Exercise 6.2.12, compute
the 95% confidence interval for θ based on the data. Is the confidence interval
successful?

6.2.14. Consider sampling on the random variable X with the pdf given in Exercise
6.2.9.

(a) Obtain the corresponding cdf and its inverse. Show how to generate observa-
tions from this distribution.

(b) Write an R function that generates a sample on X .

(c) Generate a sample of size 50 and compute the unbiased estimate of θ discussed
in Exercise 6.2.9. Use it and the Central Limit Theorem to compute a 95%
confidence interval for θ.

6.2.15. By using expressions (6.2.21) and (6.2.22), obtain the result for the one-step
estimate discussed at the end of this section.

6.2.16. Let S2 be the sample variance of a random sample of size n > 1 from
N(μ, θ), 0 < θ <∞, where μ is known. We know E(S2) = θ.

(a) What is the efficiency of S2?

(b) Under these conditions, what is the mle θ̂ of θ?

(c) What is the asymptotic distribution of
√

n(θ̂ − θ)?

6.3 Maximum Likelihood Tests

In the last section, we presented an inference for pointwise estimation and confidence
intervals based on likelihood theory. In this section, we present a corresponding
inference for testing hypotheses.

As in the last section, let X1, . . . , Xn be iid with pdf f(x; θ) for θ ∈ Ω. In this
section, θ is a scalar, but in Sections 6.4 and 6.5 extensions to the vector-valued
case are discussed. Consider the two-sided hypotheses

H0 : θ = θ0 versus H1 : θ 
= θ0, (6.3.1)

where θ0 is a specified value.
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Recall that the likelihood function and its log are given by

L(θ) =

n∏
i=1

f(Xi; θ)

l(θ) =
n∑

i=1

log f(Xi; θ).

Let θ̂ denote the maximum likelihood estimate of θ.
To motivate the test, consider Theorem 6.1.1, which says that if θ0 is the true

value of θ, then, asymptotically, L(θ0) is the maximum value of L(θ). Consider the
ratio of two likelihood functions, namely,

Λ =
L(θ0)

L(θ̂)
. (6.3.2)

Note that Λ ≤ 1, but if H0 is true, Λ should be large (close to 1), while if H1 is true,
Λ should be smaller. For a specified significance level α, this leads to the intuitive
decision rule

Reject H0 in favor of H1 if Λ ≤ c, (6.3.3)

where c is such that α = Pθ0 [Λ ≤ c]. We call it the likelihood ratio test (LRT).
Theorem 6.3.1 derives the asymptotic distribution of Λ under H0, but first we look
at two examples.

Example 6.3.1 (Likelihood Ratio Test for the Exponential Distribution). Sup-
pose X1, . . . , Xn are iid with pdf f(x; θ) = θ−1 exp {−x/θ}, for x, θ > 0. Let the
hypotheses be given by (6.3.1). The likelihood function simplifies to

L(θ) = θ−n exp {−(n/θ)X}.

From Example 4.1.1, the mle of θ is X. After some simplification, the likelihood
ratio test statistic simplifies to

Λ = en

(
X

θ0

)n

exp {−nX/θ0}. (6.3.4)

The decision rule is to reject H0 if Λ ≤ c. But further simplification of the test is
possible. Other than the constant en, the test statistic is of the form

g(t) = tn exp {−nt}, t > 0,

where t = x/θ0. Using differentiable calculus, it is easy to show that g(t) has
a unique critical value at 1, i.e., g′(1) = 0, and further that t = 1 provides a
maximum, because g′′(1) < 0. As Figure 6.3.1 depicts, g(t) ≤ c if and only if
t ≤ c1 or t ≥ c2. This leads to

Λ ≤ c, if and only if, X
θ0
≤ c1 or X

θ0
≥ c2.
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Note that under the null hypothesis, H0, the statistic (2/θ0)
∑n

i=1 Xi has a χ2

distribution with 2n degrees of freedom. Based on this, the following decision rule
results in a level α test:

Reject H0 if (2/θ0)
∑n

i=1 Xi ≤ χ2
1−α/2(2n) or (2/θ0)

∑n
i=1 Xi ≥ χ2

α/2(2n), (6.3.5)

where χ2
1−α/2(2n) is the lower α/2 quantile of a χ2 distribution with 2n degrees

of freedom and χ2
α/2(2n) is the upper α/2 quantile of a χ2 distribution with 2n

degrees of freedom. Other choices of c1 and c2 can be made, but these are usually
the choices used in practice. Exercise 6.3.2 investigates the power curve for this
test.

g(t)

t
c1 c2

c

Figure 6.3.1: Plot for Example 6.3.1, showing that the function g(t) ≤ c if and
only if t ≤ c1 or t ≥ c2.

Example 6.3.2 (Likelihood Ratio Test for the Mean of a Normal pdf). Consider
a random sample X1, X2, . . . , Xn from a N(θ, σ2) distribution where −∞ < θ < ∞
and σ2 > 0 is known. Consider the hypotheses

H0 : θ = θ0 versus H1 : θ 
= θ0,

where θ0 is specified. The likelihood function is

L(θ) =

(
1

2πσ2

)n/2

exp

{
−(2σ2)−1

n∑
i=1

(xi − θ)2

}

=

(
1

2πσ2

)n/2

exp

{
−(2σ2)−1

n∑
i=1

(xi − x)2

}
exp{−(2σ2)−1n(x− θ)2}.

Of course, in Ω = {θ : −∞ < θ <∞}, the mle is θ̂ = X and thus

Λ =
L(θ0)

L(θ̂)
= exp{−(2σ2)−1n(X − θ0)

2}.
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Then Λ ≤ c is equivalent to −2 log Λ ≥ −2 log c. However,

−2 log Λ =

(
X − θ0

σ/
√

n

)2

,

which has a χ2(1) distribution under H0. Thus, the likelihood ratio test with
significance level α states that we reject H0 and accept H1 when

−2 log Λ =

(
X − θ0

σ/
√

n

)2

≥ χ2
α(1). (6.3.6)

Note that this test is the same as the z-test for a normal mean discussed in Chapter
4 with s replaced by σ. Hence, the power function for this test is given in expression
(4.6.5).

Other examples are given in the exercises. In these examples the likelihood ratio
tests simplify and we are able to get the test in closed form. Often, though, this
is impossible. In such cases, similarly to Example 6.2.7, we can obtain the mle by
iterative routines and, hence, also the test statistic Λ. In Example 6.3.2, −2 log Λ
had an exact χ2(1) null distribution. While not true in general, as the following
theorem shows, under regularity conditions, the asymptotic null distribution of
−2 logΛ is χ2 with one degree of freedom. Hence in all cases an asymptotic test
can be constructed.

Theorem 6.3.1. Assume the same regularity conditions as for Theorem 6.2.2.
Under the null hypothesis, H0 : θ = θ0,

−2 logΛ
D→ χ2(1). (6.3.7)

Proof: Expand the function l(θ) into a Taylor series about θ0 of order 1 and evaluate

it at the mle, θ̂. This results in

l(θ̂) = l(θ0) + (θ̂ − θ0)l
′(θ0) +

1

2
(θ̂ − θ0)

2l′′(θ∗n), (6.3.8)

where θ∗n is between θ̂ and θ0. Because θ̂
P→ θ0, it follows that θ∗n

P→ θ0. This, in
addition to the fact that the function l′′(θ) is continuous, and equation (6.2.22) of
Theorem 6.2.2 imply that

− 1

n
l′′(θ∗n)

P→ I(θ0). (6.3.9)

By Corollary 6.2.3,
1√
n

l′(θ0) =
√

n(θ̂ − θ0)I(θ0) + Rn, (6.3.10)

where Rn → 0, in probability. If we substitute (6.3.9) and (6.3.10) into expression
(6.3.8) and do some simplification, we have

−2 logΛ = 2(l(θ̂)− l(θ0)) = {
√

nI(θ0)(θ̂ − θ0)}2 + R∗
n, (6.3.11)
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where R∗
n → 0, in probability. By Theorems 5.2.4 and 6.2.2, the first term on the

right side of the above equation converges in distribution to a χ2-distribution with
one degree of freedom.

Define the test statistic χ2
L = −2 logΛ. For the hypotheses (6.3.1), this theorem

suggests the decision rule

Reject H0 in favor of H1 if χ2
L ≥ χ2

α(1). (6.3.12)

By the last theorem, this test has asymptotic level α. If we cannot obtain the test
statistic or its distribution in closed form, we can use this asymptotic test.

Besides the likelihood ratio test, in practice two other likelihood-related tests
are employed. A natural test statistic is based on the asymptotic distribution of θ̂.
Consider the statistic

χ2
W =

{√
nI(θ̂)(θ̂ − θ0)

}2

. (6.3.13)

Because I(θ) is a continuous function, I(θ̂) → I(θ0) in probability under the null
hypothesis, (6.3.1). It follows, under H0, that χ2

W has an asymptotic χ2-distribution
with one degree of freedom. This suggests the decision rule

Reject H0 in favor of H1 if χ2
W ≥ χ2

α(1). (6.3.14)

As with the test based on χ2
L, this test has asymptotic level α. Actually, the

relationship between the two test statistics is strong, because as equation (6.3.11)
shows, under H0,

χ2
W − χ2

L
P→ 0. (6.3.15)

The test (6.3.14) is often referred to as a Wald-type test, after Abraham Wald,
who was a prominent statistician of the 20th century.

The third test is called a scores-type test, which is often referred to as Rao’s
score test, after another prominent statistician, C. R. Rao. The scores are the
components of the vector

S(θ) =

(
∂ log f(X1; θ)

∂θ
, . . . ,

∂ log f(Xn; θ)

∂θ

)′
. (6.3.16)

In our notation, we have

1√
n

l′(θ0) =
1√
n

n∑
i=1

∂ log f(Xi; θ0)

∂θ
. (6.3.17)

Define the statistic

χ2
R =

(
l′(θ0)√
nI(θ0)

)2

. (6.3.18)

Under H0, it follows from expression (6.3.10) that

χ2
R = χ2

W + R0n, (6.3.19)
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where R0n converges to 0 in probability. Hence the following decision rule defines
an asymptotic level α test under H0:

Reject H0 in favor of H1 if χ2
R ≥ χ2

α(1). (6.3.20)

Example 6.3.3 (Example 6.2.6, Continued). As in Example 6.2.6, let X1, . . . , Xn

be a random sample having the common beta(θ, 1) pdf (6.2.14). We use this pdf to
illustrate the three test statistics discussed above for the hypotheses

H0 : θ = 1 versus H1 : θ 
= 1. (6.3.21)

Under H0, f(x; θ) is the uniform(0, 1) pdf. Recall that θ̂ = −n/
∑n

i=1 log Xi is the
mle of θ. After some simplification, the value of the likelihood function at the mle
is

L(θ̂) =

(
−

n∑
i=1

log Xi

)−n

exp

{
−

n∑
i=1

log Xi

}
exp {n(logn− 1)}.

Also, L(1) = 1. Hence the likelihood ratio test statistic is Λ = 1/L(θ̂), so that

χ2
L = −2 logΛ = 2

{
−

n∑
i=1

log Xi − n log

(
−

n∑
i=1

log Xi

)
− n + n logn

}
.

Recall that the information for this pdf is I(θ) = θ−2. For the Wald-type test, we

would estimate this consistently by θ̂−2. The Wald-type test simplifies to

χ2
W =

(√
n

θ̂2
(θ̂ − 1)

)2

= n

{
1− 1

θ̂

}2

. (6.3.22)

Finally, for the scores-type course, recall from (6.2.15) that the l′(1) is

l′(1) =
n∑

i=1

log Xi + n.

Hence the scores-type test statistic is

χ2
R =

{∑n
i=1 log Xi + n√

n

}2

. (6.3.23)

It is easy to show that expressions (6.3.22) and (6.3.23) are the same. From Example
6.2.4, we know the exact distribution of the maximum likelihood estimate. Exercise
6.3.8 uses this distribution to obtain an exact test.

Example 6.3.4 (Likelihood Tests for the Laplace Location Model). Consider the
location model

Xi = θ + ei, i = 1, . . . , n,

where −∞ < θ <∞ and the random errors eis are iid each having the Laplace pdf,
(2.2.4). Technically, the Laplace distribution does not satisfy all of the regularity



382 Maximum Likelihood Methods

conditions (R0)–(R5), but the results below can be derived rigorously; see, for
example, Hettmansperger and McKean (2011). Consider testing the hypotheses

H0 : θ = θ0 versus H1 : θ 
= θ0,

where θ0 is specified. Here Ω = (−∞,∞) and ω = {θ0}. By Example 6.1.1, we
know that the mle of θ under Ω is Q2 = med{X, . . . , Xn}, the sample median. It
follows that

L(Ω̂) = 2−n exp

{
−

n∑
i=1

|xi −Q2|
}

,

while

L(ω̂) = 2−n exp

{
−

n∑
i=1

|xi − θ0|
}

.

Hence the negative of twice the log of the likelihood ratio test statistic is

−2 log Λ = 2

[
n∑

i=1

|xi − θ0| −
n∑

i=1

|xi −Q2|
]

. (6.3.24)

Thus the size α asymptotic likelihood ratio test for H0 versus H1 rejects H0 in favor
of H1 if

2

[
n∑

i=1

|xi − θ0| −
n∑

i=1

|xi −Q2|
]
≥ χ2

α(1).

By (6.2.10), the Fisher information for this model is I(θ) = 1. Thus, the Wald-type
test statistic simplifies to

χ2
W = [

√
n(Q2 − θ0)]

2.

For the scores test, we have

∂ log f(xi − θ)

∂θ
=

∂

∂θ

[
log

1

2
− |xi − θ|

]
= sgn(xi − θ).

Hence the score vector for this model is S(θ) = (sgn(X1 − θ), . . . , sgn(Xn − θ))′.
From the above discussion [see equation (6.3.17)], the scores test statistic can be
written as

χ2
R = (S∗)2/n,

where

S∗ =

n∑
i=1

sgn(Xi − θ0).

As Exercise 6.3.5 shows, under H0, S∗ is a linear function of a random variable with
a b(n, 1/2) distribution.

Which of the three tests should we use? Based on the above discussion, all three
tests are asymptotically equivalent under the null hypothesis. Similarly to the con-
cept of asymptotic relative efficiency (ARE), we can derive an equivalent concept
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of efficiency for tests; see Chapter 10 and more advanced books such as Hettman-
sperger and McKean (2011). However, all three tests have the same asymptotic
efficiency. Hence, asymptotic theory offers little help in separating the tests. Finite
sample comparisons have not shown that any of these tests are “best” overall; see
Chapter 7 of Lehmann (1999) for more discussion.

EXERCISES

6.3.1. The following data were generated from an exponential distribution with pdf
f(x; θ) = (1/θ)e−x/θ, for x > 0, where θ = 40.

(a) Histogram the data and locate θ0 = 50 on the plot.

(b) Use the test described in Example 6.3.1 to test H0 : θ = 50 versus H1 : θ 
= 50.
Determine the decision at level α = 0.10.

19 15 76 23 24 66 27 12 25 7 6 16 51 26 39

6.3.2. Consider the decision rule (6.3.5) derived in Example 6.3.1. Obtain the
distribution of the test statistic under a general alternative and use it to obtain
the power function of the test. Using R, sketch this power curve for the case when
θ0 = 1, n = 10, and α = 0.05.

6.3.3. Show that the test with decision rule (6.3.6) is like that of Example 4.6.1
except that here σ2 is known.

6.3.4. Obtain an R function that plots the power function discussed at the end of
Example 6.3.2. Run your function for the case when θ0 = 0, n = 10, σ2 = 1, and
α = 0.05.

6.3.5. Consider Example 6.3.4.

(a) Show that we can write S∗ = 2T − n, where T = #{Xi > θ0}.

(b) Show that the scores test for this model is equivalent to rejecting H0 if T < c1

or T > c2.

(c) Show that under H0, T has the binomial distribution b(n, 1/2); hence, deter-
mine c1 and c2 so that the test has size α.

(d) Determine the power function for the test based on T as a function of θ.

6.3.6. Let X1, X2, . . . , Xn be a random sample from a N(μ0, σ
2 = θ) distribution,

where 0 < θ <∞ and μ0 is known. Show that the likelihood ratio test of H0 : θ = θ0

versus H1 : θ 
= θ0 can be based upon the statistic W =
∑n

i=1(Xi − μ0)
2/θ0.

Determine the null distribution of W and give, explicitly, the rejection rule for a
level α test.

6.3.7. For the test described in Exercise 6.3.6, obtain the distribution of the test
statistic under general alternatives. If computational facilities are available, sketch
this power curve for the case when θ0 = 1, n = 10, μ = 0, and α = 0.05.
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6.3.8. Using the results of Example 6.2.4, find an exact size α test for the hypotheses
(6.3.21).

6.3.9. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
mean θ > 0.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ 
= θ0 is based
upon the statistic Y =

∑n
i=1 Xi. Obtain the null distribution of Y .

(b) For θ0 = 2 and n = 5, find the significance level of the test that rejects H0 if
Y ≤ 4 or Y ≥ 17.

6.3.10. Let X1, X2, . . . , Xn be a random sample from a Bernoulli b(1, θ) distribu-
tion, where 0 < θ < 1.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ 
= θ0 is based
upon the statistic Y =

∑n
i=1 Xi. Obtain the null distribution of Y .

(b) For n = 100 and θ0 = 1/2, find c1 so that the test rejects H0 when Y ≤ c1 or
Y ≥ c2 = 100− c1 has the approximate significance level of α = 0.05. Hint:
Use the Central Limit Theorem.

6.3.11. Let X1, X2, . . . , Xn be a random sample from a Γ(α = 4, β = θ) distribu-
tion, where 0 < θ <∞.

(a) Show that the likelihood ratio test of H0 : θ = θ0 versus H1 : θ 
= θ0 is based
upon the statistic W =

∑n
i=1 Xi. Obtain the null distribution of 2W/θ0.

(b) For θ0 = 3 and n = 5, find c1 and c2 so that the test that rejects H0 when
W ≤ c1 or W ≥ c2 has significance level 0.05.

6.3.12. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf
f(x; θ) = θ exp

{
−|x|θ

}
/2Γ(1/θ), −∞ < x < ∞, where θ > 0. Suppose Ω =

{θ : θ = 1, 2}. Consider the hypotheses H0 : θ = 2 (a normal distribution) versus
H1 : θ = 1 (a double exponential distribution). Show that the likelihood ratio test
can be based on the statistic W =

∑n
i=1(X

2
i − |Xi|).

6.3.13. Let X1, X2, . . . , Xn be a random sample from the beta distribution with
α = β = θ and Ω = {θ : θ = 1, 2}. Show that the likelihood ratio test statistic
Λ for testing H0 : θ = 1 versus H1 : θ = 2 is a function of the statistic W =∑n

i=1 log Xi +
∑n

i=1 log (1−Xi).

6.3.14. Consider a location model

Xi = θ + ei, i = 1, . . . , n, (6.3.25)

where e1, e2, . . . , en are iid with pdf f(z). There is a nice geometric interpretation
for estimating θ. Let X = (X1, . . . , Xn)′ and e = (e1, . . . , en)′ be the vectors of
observations and random error, respectively, and let μ = θ1, where 1 is a vector
with all components equal to 1. Let V be the subspace of vectors of the form μ;
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i.e., V = {v : v = a1, for some a ∈ R}. Then in vector notation we can write the
model as

X = μ + e, μ ∈ V. (6.3.26)

Then we can summarize the model by saying, “Except for the random error vector
e, X would reside in V .” Hence, it makes sense intuitively to estimate μ by a vector
in V that is “closest” to X. That is, given a norm ‖ · ‖ in Rn, choose

μ̂ = Argmin‖X− v‖, v ∈ V. (6.3.27)

(a) If the error pdf is the Laplace, (2.2.4), show that the minimization in (6.3.27)
is equivalent to maximizing the likelihood when the norm is the l1 norm given
by

‖v‖1 =

n∑
i=1

|vi|. (6.3.28)

(b) If the error pdf is the N(0, 1), show that the minimization in (6.3.27) is equiv-
alent to maximizing the likelihood when the norm is given by the square of
the l2 norm

‖v‖22 =

n∑
i=1

v2
i . (6.3.29)

6.3.15. Continuing with Exercise 6.3.14, besides estimation there is also a nice
geometric interpretation for testing. For the model (6.3.26), consider the hypotheses

H0 : θ = θ0 versus H1 : θ 
= θ0, (6.3.30)

where θ0 is specified. Given a norm ‖ · ‖ on Rn, denote by d(X, V ) the distance
between X and the subspace V ; i.e., d(X, V ) = ‖X − μ̂‖, where μ̂ is defined in
equation (6.3.27). If H0 is true, then μ̂ should be close to μ = θ01 and, hence,
‖X− θ01‖ should be close to d(X, V ). Denote the difference by

RD = ‖X− θ01‖ − ‖X− μ̂‖. (6.3.31)

Small values of RD indicate that the null hypothesis is true, while large values
indicate H1. So our rejection rule when using RD is

Reject H0 in favor of H1 if RD > c. (6.3.32)

(a) If the error pdf is the Laplace, (6.1.6), show that expression (6.3.31) is equiv-
alent to the likelihood ratio test when the norm is given by (6.3.28).

(b) If the error pdf is the N(0, 1), show that expression (6.3.31) is equivalent to
the likelihood ratio test when the norm is given by the square of the l2 norm,
(6.3.29).

6.3.16. Let X1, X2, . . . , Xn be a random sample from a distribution with pmf
p(x; θ) = θx(1 − θ)1−x, x = 0, 1, where 0 < θ < 1. We wish to test H0 : θ = 1/3
versus H1 : θ 
= 1/3.



386 Maximum Likelihood Methods

(a) Find Λ and −2 logΛ.

(b) Determine the Wald-type test.

(c) What is Rao’s score statistic?

6.3.17. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
mean θ > 0. Consider testing H0 : θ = θ0 against H1 : θ 
= θ0.

(a) Obtain the Wald type test of expression (6.3.13).

(b) Write an R function to compute this test statistic.

(c) For θ0 = 23, compute the test statistic and determine the p-value for the
following data.

27 13 21 24 22 14 17 26 14 22

21 24 19 25 15 25 23 16 20 19

6.3.18. Let X1, X2, . . . , Xn be a random sample from a Γ(α, β) distribution where
α is known and β > 0. Determine the likelihood ratio test for H0 : β = β0 against
H1 : β 
= β0.

6.3.19. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a
uniform distribution on (0, θ), where θ > 0.

(a) Show that Λ for testing H0 : θ = θ0 against H1 : θ 
= θ0 is Λ = (Yn/θ0)
n,

Yn ≤ θ0, and Λ = 0 if Yn > θ0.

(b) When H0 is true, show that −2 logΛ has an exact χ2(2) distribution, not
χ2(1). Note that the regularity conditions are not satisfied.

6.4 Multiparameter Case: Estimation

In this section, we discuss the case where θ is a vector of p parameters. There
are analogs to the theorems in the previous sections in which θ is a scalar, and we
present their results but, for the most part, without proofs. The interested reader
can find additional information in more advanced books; see, for instance, Lehmann
and Casella (1998) and Rao (1973).

Let X1, . . . , Xn be iid with common pdf f(x; θ), where θ ∈ Ω ⊂ Rp. As before,
the likelihood function and its log are given by

L(θ) =

n∏
i=1

f(xi; θ)

l(θ) = log L(θ) =

n∑
i=1

log f(xi; θ), (6.4.1)

for θ ∈ Ω. The theory requires additional regularity conditions, which are listed in
Appendix A, (A.1.1). In keeping with our number scheme in the last three sections,
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we have labeled these (R6)–(R9). In this section, when we say “under regularity
conditions,” we mean all of the conditions of (6.1.1), (6.2.1), (6.2.2), and (A.1.1)
that are relevant to the argument. The discrete case follows in the same way as the
continuous case, so in general we state material in terms of the continuous case.

Note that the proof of Theorem 6.1.1 does not depend on whether the parameter
is a scalar or a vector. Therefore, with probability going to 1, L(θ) is maximized at
the true value of θ. Hence, as an estimate of θ we consider the value that maximizes
L(θ) or equivalently solves the vector equation (∂/∂θ)l(θ) = 0. If it exists, this

value is called the maximum likelihood estimator (mle) and we denote it by θ̂.
Often we are interested in a function of θ, say, the parameter η = g(θ). Because the

second part of the proof of Theorem 6.1.2 remains true for θ as a vector, η̂ = g(θ̂)
is the mle of η.

Example 6.4.1 (Maximum Likelihood Estimates Under the Normal Model). Sup-
pose X1, . . . , Xn are iid N(μ, σ2). In this case, θ = (μ, σ2)′ and Ω is the product
space (−∞,∞)× (0,∞). The log of the likelihood simplifies to

l(μ, σ2) = −n

2
log 2π − n log σ − 1

2σ2

n∑
i=1

(xi − μ)2. (6.4.2)

Taking partial derivatives of (6.4.2) with respect to μ and σ and setting them to 0,
we get the simultaneous equations

∂l

∂μ
=

1

σ2

n∑
i=1

(xi − μ) = 0

∂l

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(xi − μ)2 = 0.

Solving these equations, we obtain μ̂ = X and σ̂ =
√

(1/n)
∑n

i=1(Xi −X)2 as

solutions. A check of the second partials shows that these maximize l(μ, σ2), so
these are the mles. Also, by Theorem 6.1.2, (1/n)

∑n
i=1(Xi −X)2 is the mle of σ2.

We know from our discussion in Section 5.1 that these are consistent estimates of
μ and σ2, respectively, that μ̂ is an unbiased estimate of μ, and that σ̂2 is a biased
estimate of σ2 whose bias vanishes as n →∞.

Example 6.4.2 (General Laplace pdf). Let X1, X2, . . . , Xn be a random sample
from the Laplace pdf fX(x) = (2b)−1 exp{−|x − a|/b}, −∞ < x < ∞, where the
parameters (a, b) are in the space Ω = {(a, b) : −∞ < a < ∞, b > 0}. Recall in
Section 6.1 that we looked at the special case where b = 1. As we now show, the
mle of a is the sample median, regardless of the value of b. The log of the likelihood
function is

l(a, b) = −n log 2− n log b−
n∑

i=1

∣∣∣∣xi − a

b

∣∣∣∣ .
The partial of l(a, b) with respect to a is

∂l(a, b)

∂a
=

1

b

n∑
i=1

sgn

{
xi − a

b

}
=

1

b

n∑
i=1

sgn{xi − a},
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where the second equality follows because b > 0. Setting this partial to 0, we obtain
the mle of a to be Q2 = med{X1, X2, . . . , Xn}, just as in Example 6.1.1. Hence the
mle of a is invariant to the parameter b. Taking the partial of l(a, b) with respect
to b, we obtain

∂l(a, b)

∂b
= −n

b
+

1

b2

n∑
i=1

|xi − a|.

Setting to 0 and solving the two equations simultaneously, we obtain, as the mle of
b, the statistic

b̂ =
1

n

n∑
i=1

|Xi −Q2|.

Recall that the Fisher information in the scalar case was the variance of the
random variable (∂/∂θ) log f(X ; θ). The analog in the multiparameter case is the
variance-covariance matrix of the gradient of log f(X ; θ), that is, the variance-
covariance matrix of the random vector given by

� log f(X ; θ) =

(
∂ log f(X ; θ)

∂θ1
, . . . ,

∂ log f(X ; θ)

∂θp

)′
. (6.4.3)

Fisher information is then defined by the p× p matrix

I(θ) = Cov (� log f(X ; θ)) . (6.4.4)

The (j, k)th entry of I(θ) is given by

Ijk = cov

(
∂

∂θj
log f(X ; θ),

∂

∂θk
log f(X ; θ)

)
; j, k = 1, . . . , p. (6.4.5)

As in the scalar case, we can simplify this by using the identity 1 =
∫

f(x; θ) dx.
Under the regularity conditions, as discussed in the second paragraph of this section,
the partial derivative of this identity with respect to θj results in

0 =

∫
∂

∂θj
f(x; θ) dx =

∫ [
∂

∂θj
log f(x; θ)

]
f(x; θ) dx

= E

[
∂

∂θj
log f(X ; θ)

]
. (6.4.6)

Next, on both sides of the first equality above, take the partial derivative with
respect to θk. After simplification, this results in

0 =

∫ (
∂2

∂θj∂θk
log f(x; θ)

)
f(x; θ) dx

+

∫ (
∂

∂θj
log f(x; θ)

∂

∂θk
log f(x; θ)

)
f(x; θ) dx;

that is,

E

[
∂

∂θj
log f(X ; θ)

∂

∂θk
log f(X ; θ)

]
= −E

[
∂2

∂θj∂θk
log f(X ; θ)

]
. (6.4.7)
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Using (6.4.6) and (6.4.7) together, we obtain

Ijk = −E

[
∂2

∂θj∂θk
log f(X ; θ)

]
. (6.4.8)

Information for a random sample follows in the same way as the scalar case. The
pdf of the sample is the likelihood function L(θ;X). Replace f(X ; θ) by L(θ;X)
in the vector given in expression (6.4.3). Because log L is a sum, this results in the
random vector

� log L(θ;X) =

n∑
i=1

� log f(Xi; θ). (6.4.9)

Because the summands are iid with common covariance matrix I(θ), we have

Cov(� log L(θ;X)) = nI(θ). (6.4.10)

As in the scalar case, the information in a random sample of size n is n times the
information in a sample of size 1.

The diagonal entries of I(θ) are

Iii(θ) = Var

[
∂ log f(X ; θ)

∂θi

]
= −E

[
∂2

∂θ2
i

log f(Xi; θ)

]
.

This is similar to the case when θ is a scalar, except now Iii(θ) is a function of the
vector θ. Recall in the scalar case that (nI(θ))−1 was the Rao-Cramér lower bound
for an unbiased estimate of θ. There is an analog to this in the multiparameter case.
In particular, if Yj = uj(X1, . . . , Xn) is an unbiased estimate of θj , then it can be
shown that

Var(Yj) ≥
1

n

[
I−1(θ)

]
jj

; (6.4.11)

see, for example, Lehmann (1983). As in the scalar case, we shall call an unbiased
estimate efficient if its variance attains this lower bound.

Example 6.4.3 (Information Matrix for the Normal pdf). The log of a N(μ, σ2)
pdf is given by

log f(x; μ, σ2) = −1

2
log 2π − log σ − 1

2σ2
(x− μ)2. (6.4.12)

The first and second partial derivatives are

∂ log f

∂μ
=

1

σ2
(x− μ)

∂2 log f

∂μ2
= − 1

σ2

∂ log f

∂σ
= − 1

σ
+

1

σ3
(x− μ)2

∂2 log f

∂σ2
=

1

σ2
− 3

σ4
(x− μ)2

∂2 log f

∂μ∂σ
= − 2

σ3
(x− μ).
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Upon taking the negative of the expectations of the second partial derivatives, the
information matrix for a normal density is

I(μ, σ) =

[
1
σ2 0
0 2

σ2

]
. (6.4.13)

We may want the information matrix for (μ, σ2). This can be obtained by taking
partial derivatives with respect to σ2 instead of σ; however, in Example 6.4.6,
we obtain it via a transformation. From Example 6.4.1, the maximum likelihood
estimates of μ and σ2 are μ̂ = X and σ̂2 = (1/n)

∑n
i=1(Xi − X)2, respectively.

Based on the information matrix, we note that X is an efficient estimate of μ for
finite samples. In Example 6.4.6, we consider the sample variance.

Example 6.4.4 (Information Matrix for a Location and Scale Family). Suppose
X1, X2, . . . , Xn is a random sample with common pdf fX(x) = b−1f

(
x−a

b

)
, −∞ <

x <∞, where (a, b) is in the space Ω = {(a, b) : −∞ < a < ∞, b > 0} and f(z) is a
pdf such that f(z) > 0 for −∞ < z < ∞. As Exercise 6.4.10 shows, we can model
Xi as

Xi = a + bei, (6.4.14)

where the eis are iid with pdf f(z). This is called a location and scale model (LASP).
Example 6.4.2 illustrated this model when f(z) had the Laplace pdf. In Exercise
6.4.11, the reader is asked to show that the partial derivatives are

∂

∂a

{
log

[
1

b
f

(
x− a

b

)]}
= −1

b

f ′ (x−a
b

)
f
(

x−a
b

)
∂

∂b

{
log

[
1

b
f

(
x− a

b

)]}
= −1

b

[
1 +

x−a
b f ′ (x−a

b

)
f
(

x−a
b

) ]
.

Using (6.4.5) and (6.4.6), we then obtain

I11 =

∫ ∞

−∞

1

b2

[
f ′ (x−a

b

)
f
(

x−a
b

) ]2
1

b
f

(
x− a

b

)
dx.

Now make the substitution z = (x− a)/b, dz = (1/b)dx. Then we have

I11 =
1

b2

∫ ∞

−∞

[
f ′(z)

f(z)

]2

f(z) dz; (6.4.15)

hence, information on the location parameter a does not depend on a. As Exercise
6.4.11 shows, upon making this substitution, the other entries in the information
matrix are

I22 =
1

b2

∫ ∞

−∞

[
1 +

zf ′(z)

f(z)

]2

f(z) dz (6.4.16)

I12 =
1

b2

∫ ∞

−∞
z

[
f ′(z)

f(z)

]2

f(z) dz. (6.4.17)
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Thus, the information matrix can be written as (1/b)2 times a matrix whose entries
are free of the parameters a and b. As Exercise 6.4.12 shows, the off-diagonal entries
of the information matrix are 0 if the pdf f(z) is symmetric about 0.

Example 6.4.5 (Multinomial Distribution). Consider a random trial which can re-
sult in one, and only one, of k outcomes or categories. Let Xj be 1 or 0 depending
on whether the jth outcome occurs or does not, for j = 1, . . . , k. Suppose the prob-
ability that outcome j occurs is pj ; hence,

∑k
j=1 pj = 1. Let X = (X1, . . . , Xk−1)

′

and p = (p1, . . . , pk−1)
′. The distribution of X is multinomial; see Section 3.1.

Recall that the pmf is given by

f(x,p) =

⎛⎝k−1∏
j=1

p
xj

j

⎞⎠⎛⎝1−
k−1∑
j=1

pj

⎞⎠1−Pk−1
j=1 xj

, (6.4.18)

where the parameter space is Ω = {p : 0 < pj < 1, j = 1, . . . , k − 1;
∑k−1

j=1 pj < 1}.
We first obtain the information matrix. The first partial of the log of f with

respect to pi simplifies to

∂ log f

∂pi
=

xi

pi
−

1−∑k−1
j=1 xj

1−
∑k−1

j=1 pj

.

The second partial derivatives are given by

∂2 log f

∂p2
i

= −xi

p2
i

−
1−∑k−1

j=1 xj

(1 −∑k−1
j=1 pj)2

∂2 log f

∂pi∂ph
= −

1−∑k−1
j=1 xj

(1−∑k−1
j=1 pj)2

, i 
= h < k.

Recall that for this distribution the marginal distribution of Xj is Bernoulli with
mean pj . Recalling that pk = 1− (p1+ · · ·+pk−1), the expectations of the negatives
of the second partial derivatives are straightforward and result in the information
matrix

I(p) =

⎡⎢⎢⎢⎣
1
p1

+ 1
pk

1
pk

· · · 1
pk

1
pk

1
p2

+ 1
pk

· · · 1
pk

...
...

...
1
pk

1
pk

· · · 1
pk−1

+ 1
pk

⎤⎥⎥⎥⎦ . (6.4.19)

This is a patterned matrix with inverse [see page 170 of Graybill (1969)],

I−1(p) =

⎡⎢⎢⎢⎣
p1(1 − p1) −p1p2 · · · −p1pk−1

−p1p2 p2(1− p2) · · · −p2pk−1

...
...

...
−p1pk−1 −p2pk−1 · · · pk−1(1− pk−1)

⎤⎥⎥⎥⎦ . (6.4.20)



392 Maximum Likelihood Methods

Next, we obtain the mles for a random sample X1,X2, . . . ,Xn. The likelihood
function is given by

L(p) =

n∏
i=1

k−1∏
j=1

p
xji

j

⎛⎝1−
k−1∑
j=1

pj

⎞⎠1−Pk−1
j=1 xji

. (6.4.21)

Let tj =
∑n

i=1 xji, for j = 1, . . . , k− 1. With simplification, the log of L reduces to

l(p) =
k−1∑
j=1

tj log pj +

⎛⎝n−
k−1∑
j=1

tj

⎞⎠ log

⎛⎝1−
k−1∑
j=1

pj

⎞⎠ .

The first partial of l(p) with respect to ph leads to the system of equations

∂l(p)

∂ph
=

th
ph
−

n−∑k−1
j=1 tj

1−
∑k−1

j=1 pj

= 0, h = 1, . . . , k − 1.

It is easily seen that ph = th/n satisfies these equations. Hence the maximum
likelihood estimates are

p̂h =

∑n
i=1 Xih

n
, h = 1, . . . , k − 1. (6.4.22)

Each random variable
∑n

i=1 Xih is binomial(n, ph) with variance nph(1−ph). There-
fore, the maximum likelihood estimates are efficient estimates.

As a final note on information, suppose the information matrix is diagonal. Then
the lower bound of the variance of the jth estimator (6.4.11) is 1/(nIjj(θ)). Because
Ijj(θ) is defined in terms of partial derivatives [see (6.4.5)] this is the information in
treating all θi, except θj , as known. For instance, in Example 6.4.3, for the normal
pdf the information matrix is diagonal; hence, the information for μ could have
been obtained by treating σ2 as known. Example 6.4.4 discusses the information
for a general location and scale family. For this general family, of which the normal
is a member, the information matrix is a diagonal matrix if the underlying pdf is
symmetric.

In the next theorem, we summarize the asymptotic behavior of the maximum
likelihood estimator of the vector θ. It shows that the mles are asymptotically
efficient estimates.

Theorem 6.4.1. Let X1, . . . , Xn be iid with pdf f(x; θ) for θ ∈ Ω. Assume the
regularity conditions hold. Then

1. The likelihood equation,
∂

∂θ
l(θ) = 0,

has a solution θ̂n such that θ̂n
P→ θ.



6.4. Multiparameter Case: Estimation 393

2. For any sequence that satisfies (1),

√
n(θ̂n − θ)

D→ Np(0, I−1(θ)).

The proof of this theorem can be found in more advanced books; see, for example,
Lehmann and Casella (1998). As in the scalar case, the theorem does not assure that
the maximum likelihood estimates are unique. But if the sequence of solutions are
unique, then they are both consistent and asymptotically normal. In applications,
we can often verify uniqueness.

We immediately have the following corollary,

Corollary 6.4.1. Let X1, . . . , Xn be iid with pdf f(x; θ) for θ ∈ Ω. Assume the reg-

ularity conditions hold. Let θ̂n be a sequence of consistent solutions of the likelihood
equation. Then θ̂n are asymptotically efficient estimates; that is, for j = 1, . . . , p,

√
n(θ̂n,j − θj)

D→ N(0, [I−1(θ)]jj).

Let g be a transformation g(θ) = (g1(θ), . . . , gk(θ))′ such that 1 ≤ k ≤ p and
that the k × p matrix of partial derivatives

B =

[
∂gi

∂θj

]
, i = 1, . . . k, j = 1, . . . , p,

has continuous elements and does not vanish in a neighborhood of θ. Let η̂ = g(θ̂).
Then η̂ is the mle of η = g(θ). By Theorem 5.4.6,

√
n(η̂ − η)

D→ Nk(0,BI−1(θ)B′). (6.4.23)

Hence the information matrix for
√

n(η̂ − η) is

I(η) =
[
BI−1(θ)B′]−1

, (6.4.24)

provided that the inverse exists.
For a simple example of this result, reconsider Example 6.4.3.

Example 6.4.6 (Information for the Variance of a Normal Distribution). Suppose
X1, . . . , Xn are iid N(μ, σ2). Recall from Example 6.4.3 that the information matrix
was I(μ, σ) = diag{σ−2, 2σ−2} . Consider the transformation g(μ, σ) = σ2. Hence
the matrix of partials B is the row vector [0 2σ]. Thus the information for σ2 is

I(σ2) =

{
[ 0 2σ ]

[
1

σ2 0
0 2

σ2

]−1 [
0
2σ

]}−1

=
1

2σ4
.

The Rao-Cramér lower bound for the variance of an estimator of σ2 is (2σ4)/n.
Recall that the sample variance is unbiased for σ2, but its variance is (2σ4)/(n−1).
Hence, it is not efficient for finite samples, but it is asymptotically efficient.
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EXERCISES

6.4.1. A survey is taken of the citizens in a city as to whether or not they sup-
port the zoning plan that the city council is considering. The responses are: Yes,
No, Indifferent, and Otherwise. Let p1, p2, p3, and p4 denote the respective true
probabilities of these responses. The results of the survey are:

Yes No Indifferent Otherwise

60 45 70 25

(a) Obtain the mles of pi, i = 1, . . . , 4.

(b) Obtain 95% confidence intervals, (4.2.7), for pi, i = 1, . . . , 4.

6.4.2. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be independent random samples from
N(θ1, θ3) and N(θ2, θ4) distributions, respectively.

(a) If Ω ⊂ R3 is defined by

Ω = {(θ1, θ2, θ3) : −∞ < θi < ∞, i = 1, 2; 0 < θ3 = θ4 < ∞},

find the mles of θ1, θ2, and θ3.

(b) If Ω ⊂ R2 is defined by

Ω = {(θ1, θ3) : −∞ < θ1 = θ2 < ∞; 0 < θ3 = θ4 < ∞},

find the mles of θ1 and θ3.

6.4.3. Let X1, X2, . . . , Xn be iid, each with the distribution having pdf f(x; θ1, θ2) =
(1/θ2)e

−(x−θ1)/θ2 , θ1 ≤ x < ∞, −∞ < θ2 <∞, zero elsewhere. Find the maximum
likelihood estimators of θ1 and θ2.

6.4.4. The Pareto distribution is a frequently used model in the study of incomes
and has the distribution function

F (x; θ1, θ2) =

{
1− (θ1/x)θ2 θ1 ≤ x
0 elsewhere,

where θ1 > 0 and θ2 > 0. If X1, X2, . . . , Xn is a random sample from this distri-
bution, find the maximum likelihood estimators of θ1 and θ2. (Hint: This exercise
deals with a nonregular case.)

6.4.5. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of
size n from the uniform distribution of the continuous type over the closed interval
[θ − ρ, θ + ρ]. Find the maximum likelihood estimators for θ and ρ. Are these two
unbiased estimators?

6.4.6. Let X1, X2, . . . , Xn be a random sample from N(μ, σ2).
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(a) If the constant b is defined by the equation P (X ≤ b) = 0.90, find the mle of
b.

(b) If c is given constant, find the mle of P (X ≤ c).

6.4.7. The data file normal50.rda contains a random sample of size n = 50 for
the situation described in Exercise 6.4.6. Download this data in R and obtain a
histogram of the observations.

(a) In Part (b) of Exercise 6.4.6, let c = 58 and let ξ = P (X ≤ c). Based on the
data, compute the estimated value of the mle for ξ. Compare this estimate
with the sample proportion, p̂, of the data less than or equal to 58.

(b) The R function bootstrapcis64.R computes a bootstrap confidence interval
for the mle. Use this function to compute a 95% confidence interval for ξ.
Compare your interval with that of expression (4.2.7) based on p̂.

6.4.8. Consider Part (a) of Exercise 6.4.6.

(a) Using the data of Exercise 6.4.7, compute the mle of b. Also obtain the
estimate based on 90th percentile of the data.

(b) Edit the R function bootstrapcis64.R to compute a bootstrap confidence
interval for b. Then run your R function on the data of Exercise 6.4.7 to
compute a 95% confidence interval for b.

6.4.9. Consider two Bernoulli distributions with unknown parameters p1 and p2. If
Y and Z equal the numbers of successes in two independent random samples, each
of size n, from the respective distributions, determine the mles of p1 and p2 if we
know that 0 ≤ p1 ≤ p2 ≤ 1.

6.4.10. Show that if Xi follows the model (6.4.14), then its pdf is b−1f((x− a)/b).

6.4.11. Verify the partial derivatives and the entries of the information matrix for
the location and scale family as given in Example 6.4.4.

6.4.12. Suppose the pdf of X is of a location and scale family as defined in Example
6.4.4. Show that if f(z) = f(−z), then the entry I12 of the information matrix is 0.
Then argue that in this case the mles of a and b are asymptotically independent.

6.4.13. Suppose X1, X2, . . . , Xn are iid N(μ, σ2). Show that Xi follows a location
and scale family as given in Example 6.4.4. Obtain the entries of the information
matrix as given in this example and show that they agree with the information
matrix determined in Example 6.4.3.

6.5 Multiparameter Case: Testing

In the multiparameter case, hypotheses of interest often specify θ to be in a sub-
region of the space. For example, suppose X has a N(μ, σ2) distribution. The full
space is Ω = {(μ, σ2) : σ2 > 0,−∞ < μ < ∞}. This is a two-dimensional space.
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We may be interested though in testing that μ = μ0, where μ0 is a specified value.
Here we are not concerned about the parameter σ2. Under H0, the parameter space
is the one-dimensional space ω = {(μ0, σ

2) : σ2 > 0} . We say that H0 is defined
in terms of one constraint on the space Ω.

In general, let X1, . . . , Xn be iid with pdf f(x; θ) for θ ∈ Ω ⊂ Rp. As in the last
section, we assume that the regularity conditions listed in (6.1.1), (6.2.1), (6.2.2),
and (A.1.1) are satisfied. In this section, we invoke these by the phrase under
regularity conditions. The hypotheses of interest are

H0 : θ ∈ ω versus H1 : θ ∈ Ω ∩ ωc, (6.5.1)

where ω ⊂ Ω is defined in terms of q, 0 < q ≤ p, independent constraints of
the form g1(θ) = a1, . . . , gq(θ) = aq. The functions g1, . . . , gq must be continuously
differentiable. This implies that ω is a (p−q)-dimensional space. Based on Theorem
6.1.1, the true parameter maximizes the likelihood function, so an intuitive test
statistic is given by the likelihood ratio

Λ =
maxθ∈ω L(θ)

maxθ∈Ω L(θ)
. (6.5.2)

Large values (close to 1) of Λ suggest that H0 is true, while small values indicate
H1 is true. For a specified level α, 0 < α < 1, this suggests the decision rule

Reject H0 in favor of H1 if Λ ≤ c, (6.5.3)

where c is such that α = maxθ∈ω Pθ [Λ ≤ c]. As in the scalar case, this test often
has optimal properties; see Section 6.3. To determine c, we need to determine the
distribution of Λ or a function of Λ when H0 is true.

Let θ̂ denote the maximum likelihood estimator when the parameter space is
the full space Ω and let θ̂0 denote the maximum likelihood estimator when the

parameter space is the reduced space ω. For convenience, define L(Ω̂) = L
(
θ̂
)

and

L(ω̂) = L
(
θ̂0

)
. Then we can write the likelihood ratio test (LRT) statistic as

Λ =
L(ω̂)

L(Ω̂)
. (6.5.4)

Example 6.5.1 (LRT for the Mean of a Normal pdf). Let X1, . . . , Xn be a random
sample from a normal distribution with mean μ and variance σ2. Suppose we are
interested in testing

H0 : μ = μ0 versus H1 : μ 
= μ0, (6.5.5)

where μ0 is specified. Let Ω = {(μ, σ2) : −∞ < μ < ∞, σ2 > 0} denote the full
model parameter space. The reduced model parameter space is the one-dimensional
subspace ω = {(μ0, σ

2) : σ2 > 0} . By Example 6.4.1, the mles of μ and σ2 under
Ω are μ̂ = X and σ̂2 = (1/n)

∑n
i=1(Xi−X)2, respectively. Under Ω, the maximum

value of the likelihood function is

L(Ω̂) =
1

(2π)n/2

1

(σ̂2)n/2
exp{−(n/2)}. (6.5.6)
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Following Example 6.4.1, it is easy to show that under the reduced parameter space
ω, σ̂2

0 = (1/n)
∑n

i=1(Xi−μ0)
2. Thus the maximum value of the likelihood function

under ω is

L(ω̂) =
1

(2π)n/2

1

(σ̂2
0)n/2

exp{−(n/2)}. (6.5.7)

The likelihood ratio test statistic is the ratio of L(ω̂) to L(Ω̂); i.e,

Λ =

(∑n
i=1(Xi −X)2∑n
i=1(Xi − μ0)2

)n/2

. (6.5.8)

The likelihood ratio test rejects H0 if Λ ≤ c, but this is equivalent to rejecting H0

if Λ−2/n ≥ c′. Next, consider the identity

n∑
i=1

(Xi − μ0)
2 =

n∑
i=1

(Xi −X)2 + n(X − μ0)
2. (6.5.9)

Substituting (6.5.9) for
∑n

i=1(Xi−μ0)
2, after simplification, the test becomes reject

H0 if

1 +
n(X − μ0)

2∑n
i=1(Xi −X)2

≥ c′,

or equivalently, reject H0 if⎧⎨⎩
√

n(X − μ0)√∑n
i=1(Xi −X)2/(n− 1)

⎫⎬⎭
2

≥ c′′ = (c′ − 1)(n− 1).

Let T denote the expression within braces on the left side of this inequality. Then
the decision rule is equivalent to

Reject H0 in favor of H1 if |T | ≥ c∗, (6.5.10)

where α = PH0 [|T | ≥ c∗]. Of course, this is the two-sided version of the t-test
presented in Example 4.5.4. If we take c to be tα/2,n−1, the upper α/2-critical value
of a t-distribution with n − 1 degrees of freedom, then our test has exact level α.
The power function for this test is discussed in Section 8.3.

As discussed in Example 4.2.1, the R call to compute t is t.test(x,mu=mu0),
where the vector x contains the sample and the scalar mu0 is μ0. It also computes
the t-confidence interval for μ.

Other examples of likelihood ratio tests for normal distributions can be found
in the exercises.

We are not always as fortunate as in Example 6.5.1 to obtain the likelihood
ratio test in a simple form. Often it is difficult or perhaps impossible to obtain its
finite sample distribution. But, as the next theorem shows, we can always obtain
an asymptotic test based on it.
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Theorem 6.5.1. Let X1, . . . , Xn be iid with pdf f(x; θ) for θ ∈ Ω ⊂ Rp. Assume

the regularity conditions hold. Let θ̂n be a sequence of consistent solutions of the
likelihood equation when the parameter space is the full space Ω. Let θ̂0,n be a
sequence of consistent solutions of the likelihood equation when the parameter space
is the reduced space ω, which has dimension p− q. Let Λ denote the likelihood ratio
test statistic given in (6.5.4). Under H0, (6.5.1),

−2 logΛ
D→ χ2(q). (6.5.11)

A proof of this theorem can be found in Rao (1973).
There are analogs of the Wald-type and scores-type tests, also. The Wald-type

test statistic is formulated in terms of the constraints, which define H0, evaluated
at the mle under Ω. We do not formally state it here, but as the following example
shows, it is often a straightforward formulation. The interested reader can find a
discussion of these tests in Lehmann (1999).

A careful reading of the development of this chapter shows that much of it
remains the same if X is a random vector. The next example demonstrates this.

Example 6.5.2 (Application of a Multinomial Distribution). As an example, con-
sider a poll for a presidential race with k candidates. Those polled are asked to
select the person for which they would vote if the election were held tomorrow. As-
suming that those polled are selected independently of one another and that each
can select one and only one candidate, the multinomial model seems appropriate.
In this problem, suppose we are interested in comparing how the two “leaders” are
doing. In fact, say the null hypothesis of interest is that they are equally favorable.
This can be modeled with a multinomial model that has three categories: (1) and
(2) for the two leading candidates and (3) for all other candidates. Our observa-
tion is a vector (X1, X2), where Xi is 1 or 0 depending on whether category i is
selected or not. If both are 0, then category (3) has been selected. Let pi denote the
probability that category i is selected. Then the pmf of (X1, X2) is the trinomial
density,

f(x1, x2; p1, p2) = px1
1 px2

2 (1− p1 − p2)
1−x1−x2 , (6.5.12)

for xi = 0, 1, i = 1, 2; x1 + x2 ≤ 1, where the parameter space is Ω = {(p1, p2) : 0 <
pi < 1, p1 + p2 < 1}. Suppose (X11, X21), . . . , (X1n, X2n) is a random sample from
this distribution. We shall consider the hypotheses

H0 : p1 = p2 versus H1 : p1 
= p2. (6.5.13)

We first derive the likelihood ratio test. Let Tj =
∑n

i=1 Xji for j = 1, 2. From
Example 6.4.5, we know that the maximum likelihood estimates are p̂j = Tj/n, for
j = 1, 2. The value of the likelihood function (6.4.21) at the mles under Ω is

L
(
Ω̂
)

= p̂np̂1

1 p̂np̂2

2 (1− p̂1 − p̂2)
n(1−p̂1−p̂2).

Under the null hypothesis, let p be the common value of p1 and p2. The pmf of
(X1, X2) is

f(x1, x2; p) = px1+x2(1− 2p)1−x1−x2 ; x1, x2 = 0, 1; x1 + x2 ≤ 1, (6.5.14)
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where the parameter space is ω = {p : 0 < p < 1/2}. The likelihood under ω is

L(p) = pt1+t2(1− 2p)n−t1−t2 . (6.5.15)

Differentiating log L(p) with respect to p and setting the derivative to 0 results in
the following maximum likelihood estimate, under ω:

p̂0 =
t1 + t2

2n
=

p̂1 + p̂2

2
, (6.5.16)

where p̂1 and p̂2 are the mles under Ω. The likelihood function evaluated at the mle
under ω simplifies to

L (ω̂) =

(
p̂1 + p̂2

2

)n(p̂1+p̂2)

(1− p̂1 − p̂2)
n(1−p̂1−p̂2). (6.5.17)

The reciprocal of the likelihood ratio test statistic then simplifies to

Λ−1 =

(
2p̂1

p̂1 + p̂2

)nbp1
(

2p̂2

p̂1 + p̂2

)nbp2

. (6.5.18)

Based on Theorem 6.5.11, an asymptotic level α test rejects H0 if 2 logΛ−1 > χ2
α(1).

This is an example where the Wald’s test can easily be formulated. The con-
straint under H0 is p1 − p2 = 0. Hence, the Wald-type statistic is W = p̂1 − p̂2,
which can be expressed as W = [1,−1][p̂1 ; p̂2]

′. Recall that the information matrix
and its inverse were found for k categories in Example 6.4.5. From Theorem 6.4.1,
we then have[

p̂1

p̂2

]
is approximately N2

((
p1

p2

)
, 1

n

[
p1(1 − p1) −p1p2

−p1p2 p2(1− p2)

])
. (6.5.19)

As shown in Example 6.4.5, the finite sample moments are the same as the asymp-
totic moments. Hence the variance of W is

Var(W ) = [1,−1]
1

n

[
p1(1− p1) −p1p2

−p1p2 p2(1− p2)

] [
1
−1

]
=

p1 + p2 − (p1 − p2)
2

n
.

Because W is asymptotically normal, an asymptotic level α test for the hypotheses
(6.5.13) is to reject H0 if χ2

W ≥ χ2
α(1), where

χ2
W =

(p̂1 − p̂2)
2

(p̂1 + p̂2 − (p̂1 − p̂2)2)/n
. (6.5.20)

It also follows that an asymptotic (1−α)100% confidence interval for the difference
p1 − p2 is

p̂1 − p̂2 ± zα/2

(
p̂1 + p̂2 − (p̂1 − p̂2)

2

n

)1/2

. (6.5.21)
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Returning to the polling situation discussed at the beginning of this example, we
would say the race is too close to call if 0 is in this confidence interval.

Equivalently, the test can be based on the test statistic z =
√

χ2
W , which has

an asymptotic N(0, 1) distribution under H0. This form of the test and the confi-
dence interval for p1 − p2 are computed by the R function p2pair.R, which can be
downloaded at the site mentioned in the Preface.

Example 6.5.3 (Two-Sample Binomial Proportions). In Example 6.5.2, we devel-
oped tests for p1 = p2 based on a single sample from a multinomial distribution.
Now consider the situation where X1, X2, . . . , Xn1 is a random sample from a b(1, p1)
distribution, Y1, Y2, . . . , Yn2 is a random sample from a b(1, p2) distribution, and the
Xis and Yjs are mutually independent. The hypotheses of interest are

H0 : p1 = p2 versus H1 : p1 
= p2. (6.5.22)

This situation occurs in practice when, for instance, we are comparing the pres-
ident’s rating from one month to the next. The full and reduced model param-
eter spaces are given respectively by Ω = {(p1, p2) : 0 < pi < 1, i = 1, 2} and
ω = {(p, p) : 0 < p < 1}. The likelihood function for the full model simplifies to

L(p1, p2) = pn1x
1 (1− p1)

n1−n1xpn2y
2 (1− p2)

n2−n2y. (6.5.23)

It follows immediately that the mles of p1 and p2 are x and y, respectively. Note,
for the reduced model, that we can combine the samples into one large sample from
a b(n, p) distribution, where n = n1 + n2 is the combined sample size. Hence, for
the reduced model, the mle of p is

p̂ =

∑n1

i=1 xi +
∑n2

i=1 yi

n1 + n2
=

n1x + n2y

n
, (6.5.24)

i.e., a weighted average of the individual sample proportions. Using this, the reader
is asked to derive the LRT for the hypotheses (6.5.22) in Exercise 6.5.12. We next
derive the Wald-type test. Let p̂1 = x and p̂2 = y. From the Central Limit Theorem,
we have √

ni(p̂i − pi)√
pi(1− pi)

D→ Zi, i = 1, 2,

where Z1 and Z2 are iid N(0, 1) random variables. Assume for i = 1, 2 that, as
n →∞, ni/n → λi, where 0 < λi < 1 and λ1 + λ2 = 1. As Exercise 6.5.13 shows,

√
n[(p̂1 − p̂2)− (p1 − p2)]

D→ N

(
0,

1

λ1
p1(1− p1) +

1

λ2
p2(1− p2)

)
. (6.5.25)

It follows that the random variable

Z =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
n1

+ p2(1−p2)
n2

(6.5.26)

has an approximate N(0, 1) distribution. Under H0, p1 − p2 = 0. We could use Z
as a test statistic, provided we replace the parameters p1(1 − p1) and p2(1 − p2)
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in its denominator with a consistent estimate. Recall that p̂i → pi, i = 1, 2, in
probability. Thus under H0, the statistic

Z∗ =
p̂1 − p̂2√ bp1(1−bp1)

n1
+ bp2(1−bp2)

n2

(6.5.27)

has an approximate N(0, 1) distribution. Hence an approximate level α test is
to reject H0 if |z∗| ≥ zα/2. Another consistent estimator of the denominator is
discussed in Exercise 6.5.14.

EXERCISES

6.5.1. On page 80 of their test, Hollander and Wolfe (1999) present measurements
of the ratio of the earth’s mass to that of its moon that were made by 7 different
spacecraft (5 of the Mariner type and 2 of the Pioneer type). These measurements
are presented below (also in the file earthmoon.rda). Based on earlier Ranger
voyages, scientists had set this ratio at 81.3035. Assuming a normal distribution,
test the hypotheses H0 : μ = 81.3035 versus H1 : μ 
= 81.3035, where μ is the
true mean ratio of these later voyages. Using the p-value, conclude in terms of the
problem at the nominal α-level of 0.05.

Earth to Moon Mass Ratios
81.3001 81.3015 81.3006 81.3011 81.2997 81.3005 81.3021

6.5.2. Obtain the boxplot of the data in Exercise 6.5.1. Mark the value 81.3035 on
the plot. Compute the 95% confidence interval for μ, (4.2.3), and mark its endpoints
on the plot. Comment.

6.5.3. Consider the survey of citizens discussed in Exercise 6.4.1. Suppose that the
hypotheses of interest are H0 : p1 = p2 versus H1 : p1 
= p2. Note that computation
can be carried out using the R function p2pair.R, which can be downloaded at the
site mentioned in the Preface.

(a) Test these hypotheses at level α = 0.05 using the test (6.5.20). Conclude in
terms of the problem.

(b) Obtain the 95% confidence interval, (6.5.21), for p1 − p2. What does the
confidence interval mean in terms of the problem?

6.5.4. Let X1, X2, . . . , Xn be a random sample from the distribution N(θ1, θ2).
Show that the likelihood ratio principle for testing H0 : θ2 = θ′2 specified, and θ1

unspecified against H1 : θ2 
= θ′2, θ1 unspecified, leads to a test that rejects when∑n
1 (xi − x)2 ≤ c1 or

∑n
1 (xi − x)2 ≥ c2, where c1 < c2 are selected appropriately.

6.5.5. Let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from the
distributions N(θ1, θ3) and N(θ2, θ4), respectively.
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(a) Show that the likelihood ratio for testing H0 : θ1 = θ2, θ3 = θ4 against all
alternatives is given by[

n∑
1

(xi − x)2/n

]n/2 [
m∑
1

(yi − y)2/m

]m/2

{[
n∑
1

(xi − u)2 +

m∑
1

(yi − u)2

]/
(m + n)

}(n+m)/2
,

where u = (nx + my)/(n + m).

(b) Show that the likelihood ratio test for testing H0 : θ3 = θ4, θ1 and θ2 unspec-
ified, against H1 : θ3 
= θ4, θ1 and θ2 unspecified, can be based on the random
variable

F =

n∑
1

(Xi −X)2/(n− 1)

m∑
1

(Yi − Y )2/(m− 1)

.

6.5.6. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be independent random samples from
the two normal distributions N(0, θ1) and N(0, θ2).

(a) Find the likelihood ratio Λ for testing the composite hypothesis H0 : θ1 = θ2

against the composite alternative H1 : θ1 
= θ2.

(b) This Λ is a function of what F -statistic that would actually be used in this
test?

6.5.7. Let X and Y be two independent random variables with respective pdfs

f(x; θi) =

{ (
1
θi

)
e−x/θi 0 < x <∞, 0 < θi < ∞

0 elsewhere,

for i = 1, 2. To test H0 : θ1 = θ2 against H1 : θ1 
= θ2, two independent samples
of sizes n1 and n2, respectively, were taken from these distributions. Find the
likelihood ratio Λ and show that Λ can be written as a function of a statistic having
an F -distribution, under H0.

6.5.8. For a numerical example of the F -test derived in Exercise 6.5.7, here are
two generated data sets. The first was generated by the R call rexp(10,1/20),
i.e., 10 observations from a Γ(1, 20)-distribution. The second was generated by
rexp(12,1/40). The data are rounded and can also be found in the file genexpd.rda.

(a) Obtain comparison boxplots of the data sets. Comment.

(b) Carry out the F -test of Exercise 6.5.7. Conclude in terms of the problem at
level 0.05.

x: 11.1 11.7 12.7 9.6 14.7 1.6 1.7 56.1 3.3 2.6

y: 55.6 40.5 32.7 25.6 70.6 1.4 51.5 12.6 16.9 63.3 5.6 66.7
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6.5.9. Consider the two uniform distributions with respective pdfs

f(x; θi) =

{
1

2θi
−θi < x < θi,−∞ < θi < ∞

0 elsewhere,

for i = 1, 2. The null hypothesis is H0 : θ1 = θ2, while the alternative is H1 : θ1 
= θ2.
Let X1 < X2 < · · · < Xn1 and Y1 < Y2 < · · · < Yn2 be the order statistics of two
independent random samples from the respective distributions. Using the likelihood
ratio Λ, find the statistic used to test H0 against H1. Find the distribution of
−2 logΛ when H0 is true. Note that in this nonregular case, the number of degrees
of freedom is two times the difference of the dimensions of Ω and ω.

6.5.10. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample from a bivariate
normal distribution with μ1, μ2, σ

2
1 = σ2

2 = σ2, ρ = 1
2 , where μ1, μ2, and σ2 > 0 are

unknown real numbers. Find the likelihood ratio Λ for testing H0 : μ1 = μ2 = 0, σ2

unknown against all alternatives. The likelihood ratio Λ is a function of what
statistic that has a well-known distribution?

6.5.11. Let n independent trials of an experiment be such that x1, x2, . . . , xk are
the respective numbers of times that the experiment ends in the mutually exclusive
and exhaustive events C1, C2, . . . , Ck. If pi = P (Ci) is constant throughout the n
trials, then the probability of that particular sequence of trials is L = px1

1 px2
2 · · · pxk

k .

(a) Recalling that p1 +p2 + · · ·+pk = 1, show that the likelihood ratio for testing
H0 : pi = pi0 > 0, i = 1, 2, . . . , k, against all alternatives is given by

Λ =

k∏
i=1

(
(pi0)

xi

(xi/n)xi

)
.

(b) Show that

−2 logΛ =

k∑
i=1

xi(xi − npi0)
2

(np′i)2
,

where p′i is between pi0 and xi/n.
Hint: Expand log pi0 in a Taylor’s series with the remainder in the term
involving (pi0 − xi/n)2.

(c) For large n, argue that xi/(np′i)
2 is approximated by 1/(npi0) and hence

−2 logΛ ≈
k∑

i=1

(xi − npi0)
2

npi0
when H0 is true.

Theorem 6.5.1 says that the right-hand member of this last equation defines
a statistic that has an approximate chi-square distribution with k− 1 degrees
of freedom. Note that

dimension of Ω – dimension of ω = (k − 1)− 0 = k − 1.
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6.5.12. Finish the derivation of the LRT found in Example 6.5.3. Simplify as much
as possible.

6.5.13. Show that expression (6.5.25) of Example 6.5.3 is true.

6.5.14. As discussed in Example 6.5.3, Z, (6.5.27), can be used as a test statistic
provided that we have consistent estimators of p1(1 − p1) and p2(1 − p2) when H0

is true. In the example, we discussed an estimator that is consistent under both H0

and H1. Under H0, though, p1(1− p1) = p2(1− p2) = p(1− p), where p = p1 = p2.
Show that the statistic (6.5.24) is a consistent estimator of p, under H0. Thus
determine another test of H0.

6.5.15. A machine shop that manufactures toggle levers has both a day and a night
shift. A toggle lever is defective if a standard nut cannot be screwed onto the threads.
Let p1 and p2 be the proportion of defective levers among those manufactured by the
day and night shifts, respectively. We shall test the null hypothesis, H0 : p1 = p2,
against a two-sided alternative hypothesis based on two random samples, each of
1000 levers taken from the production of the respective shifts. Use the test statistic
Z∗ given in Example 6.5.3.

(a) Sketch a standard normal pdf illustrating the critical region having α = 0.05.

(b) If y1 = 37 and y2 = 53 defectives were observed for the day and night shifts,
respectively, calculate the value of the test statistic and the approximate p-
value (note that this is a two-sided test). Locate the calculated test statistic
on your figure in part (a) and state your conclusion. Obtain the approximate
p-value of the test.

6.5.16. For the situation given in part (b) of Exercise 6.5.15, calculate the tests
defined in Exercises 6.5.12 and 6.5.14. Obtain the approximate p-values of all three
tests. Discuss the results.

6.6 The EM Algorithm

In practice, we are often in the situation where part of the data is missing. For
example, we may be observing lifetimes of mechanical parts that have been put
on test and some of these parts are still functioning when the statistical analysis is
carried out. In this section, we introduce the EM algorithm, which frequently can be
used in these situations to obtain maximum likelihood estimates. Our presentation
is brief. For further information, the interested reader can consult the literature in
this area, including the monograph by McLachlan and Krishnan (1997). Although,
for convenience, we write in terms of continuous random variables, the theory in
this section holds for the discrete case as well.

Suppose we consider a sample of n items, where n1 of the items are observed,
while n2 = n − n1 items are not observable. Denote the observed items by X′ =
(X1, X2, . . . , Xn1) and unobserved items by Z′ = (Z1, Z2, . . . , Zn2). Assume that
the Xis are iid with pdf f(x|θ), where θ ∈ Ω. Assume that the Zjs and the Xis are
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mutually independent. The conditional notation will prove useful here. Let g(x|θ)
denote the joint pdf of X. Let h(x, z|θ) denote the joint pdf of the observed and
unobserved items. Let k(z|θ,x) denote the conditional pdf of the missing data given
the observed data. By the definition of a conditional pdf, we have the identity

k(z|θ,x) =
h(x, z|θ)
g(x|θ) . (6.6.1)

The observed likelihood function is L(θ|x) = g(x|θ). The complete likelihood
function is defined by

Lc(θ|x, z) = h(x, z|θ). (6.6.2)

Our goal is maximize the likelihood function L(θ|x) by using the complete likelihood
Lc(θ|x, z) in this process.

Using (6.6.1), we derive the following basic identity for an arbitrary but fixed
θ0 ∈ Ω:

log L(θ|x) =

∫
log L(θ|x)k(z|θ0,x) dz

=

∫
log g(x|θ)k(z|θ0,x) dz

=

∫
[log h(x, z|θ) − log k(z|θ,x)]k(z|θ0,x) dz

=

∫
log[h(x, z|θ)]k(z|θ0,x) dz−

∫
log[k(z|θ,x)]k(z|θ0,x) dz

= Eθ0 [log Lc(θ|x,Z)|θ0,x]− Eθ0 [log k(Z|θ,x)|θ0,x], (6.6.3)

where the expectations are taken under the conditional pdf k(z|θ0,x). Define the
first term on the right side of (6.6.3) to be the function

Q(θ|θ0,x) = Eθ0 [log Lc(θ|x,Z)|θ0,x]. (6.6.4)

The expectation that defines the function Q is called the E step of the EM algorithm.
Recall that we want to maximize log L(θ|x). As discussed below, we need only
maximize Q(θ|θ0,x). This maximization is called the M step of the EM algorithm.

Denote by θ̂(0) an initial estimate of θ, perhaps based on the observed likelihood.
Let θ̂(1) be the argument that maximizes Q(θ|θ̂(0),x). This is the first-step estimate

of θ. Proceeding this way, we obtain a sequence of estimates θ̂(m). We formally
define this algorithm as follows:

Algorithm 6.6.1 (EM Algorithm). Let θ̂(m) denote the estimate on the mth step.
To compute the estimate on the (m + 1)st step, do

1. Expectation Step: Compute

Q(θ|θ̂(m),x) = Ebθ(m) [log Lc(θ|x,Z)|θ̂m,x], (6.6.5)

where the expectation is taken under the conditional pdf k(z|θ̂(m),x).
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2. Maximization Step: Let

θ̂(m+1) = ArgmaxQ(θ|θ̂(m),x). (6.6.6)

Under strong assumptions, it can be shown that θ̂(m) converges in probability
to the maximum likelihood estimate, as m → ∞. We will not show these results,
but as the next theorem shows, θ̂(m+1) always increases the likelihood over θ̂(m).

Theorem 6.6.1. The sequence of estimates θ̂(m), defined by Algorithm 6.6.1, sat-
isfies

L(θ̂(m+1)|x) ≥ L(θ̂(m)|x). (6.6.7)

Proof: Because θ̂(m+1) maximizes Q(θ|θ̂(m),x), we have

Q(θ̂(m+1)|θ̂(m),x) ≥ Q(θ̂(m)|θ̂(m),x);

that is,

Ebθ(m) [log Lc(θ̂(m+1)|x,Z)] ≥ Ebθ(m) [log Lc(θ̂(m)|x,Z)], (6.6.8)

where the expectation is taken under the pdf k(z|θ̂(m),x). By expression (6.6.3),
we can complete the proof by showing that

Ebθ(m) [log k(Z|θ̂(m+1),x)] ≤ Ebθ(m) [log k(Z|θ̂(m),x)]. (6.6.9)

Keep in mind that these expectations are taken under the conditional pdf of Z given
θ̂(m) and x. An application of Jensen’s inequality, (1.10.5), yields

Ebθ(m)

{
log

[
k(Z|θ̂(m+1),x)

k(Z|θ̂(m),x)

]}
≤ log Ebθ(m)

[
k(Z|θ̂(m+1),x)

k(Z|θ̂(m),x)

]

= log

∫
k(z|θ̂(m+1),x)

k(z|θ̂(m),x)
k(z|θ̂(m),x) dz

= log(1) = 0. (6.6.10)

This last result establishes (6.6.9) and, hence, finishes the proof.

As an example, suppose X1, X2, . . . , Xn1 are iid with pdf f(x − θ), for −∞ <
x <∞, where −∞ < θ < ∞. Denote the cdf of Xi by F (x−θ). Let Z1, Z2, . . . , Zn2

denote the censored observations. For these observations, we only know that Zj > a,
for some a that is known, and that the Zjs are independent of the Xis. Then the
observed and complete likelihoods are given by

L(θ|x) = [1− F (a− θ)]n2

n1∏
i=1

f(xi − θ) (6.6.11)

Lc(θ|x, z) =

n1∏
i=1

f(xi − θ)

n2∏
i=1

f(zi − θ). (6.6.12)
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By expression (6.6.1), the conditional distribution Z given X is the ratio of (6.6.12)
to (6.6.11); that is,

k(z|θ,x) =

∏n1

i=1 f(xi − θ)
∏n2

i=1 f(zi − θ)

[1− F (a− θ)]n2
∏n1

i=1 f(xi − θ)

= [1− F (a− θ)]−n2

n2∏
i=1

f(zi − θ), a < zi, i = 1, . . . , n2.(6.6.13)

Thus, Z and X are independent, and Z1, . . . , Zn2 are iid with the common pdf
f(z − θ)/[1 − F (a − θ)], for z > a. Based on these observations and expression
(6.6.13), we have the following derivation:

Q(θ|θ0,x) = Eθ0 [log Lc(θ|x,Z)]

= Eθ0

[
n1∑
i=1

log f(xi − θ) +

n2∑
i=1

log f(Zi − θ)

]

=

n1∑
i=1

log f(xi − θ) + n2Eθ0 [log f(Z − θ)]

=

n1∑
i=1

log f(xi − θ)

+ n2

∫ ∞

a

log f(z − θ)
f(z − θ0)

1 − F (a− θ0)
dz. (6.6.14)

This last result is the E step of the EM algorithm. For the M step, we need the
partial derivative of Q(θ|θ0,x) with respect to θ. This is easily found to be

∂Q

∂θ
= −

{
n1∑
i=1

f ′(xi − θ)

f(xi − θ)
+ n2

∫ ∞

a

f ′(z − θ)

f(z − θ)

f(z − θ0)

1− F (a− θ0)
dz

}
. (6.6.15)

Assuming that θ0 = θ̂0, the first-step EM estimate would be the value of θ, say θ̂(1),
which solves ∂Q

∂θ = 0. In the next example, we obtain the solution for a normal
model.

Example 6.6.1. Assume the censoring model given above, but now assume that
X has a N(θ, 1) distribution. Then f(x) = φ(x) = (2π)−1/2 exp{−x2/2}. It is easy
to show that f ′(x)/f(x) = −x. Letting Φ(z) denote, as usual, the cdf of a standard
normal random variable, by (6.6.15) the partial derivative of Q(θ|θ0,x) with respect
to θ for this model simplifies to

∂Q

∂θ
=

n1∑
i=1

(xi − θ) + n2

∫ ∞

a

(z − θ)
1√
2π

exp{−(z − θ0)
2/2}

1− Φ(a− θ0)
dz

= n1(x− θ) + n2

∫ ∞

a

(z − θ0)
1√
2π

exp{−(z − θ0)
2/2}

1− Φ(a− θ0)
dz − n2(θ − θ0)

= n1(x− θ) +
n2

1− Φ(a− θ0)
φ(a− θ0)− n2(θ − θ0).
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Solving ∂Q/∂θ = 0 for θ determines the EM step estimates. In particular, given

that θ̂(m) is the EM estimate on the mth step, the (m + 1)st step estimate is

θ̂(m+1) =
n1

n
x +

n2

n
θ̂(m) +

n2

n

φ(a− θ̂(m))

1− Φ(a− θ̂(m))
, (6.6.16)

where n = n1 + n2.

For our second example, consider a mixture problem involving normal distribu-
tions. Suppose Y1 has a N(μ1, σ

2
1) distribution and Y2 has a N(μ2, σ

2
2) distribu-

tion. Let W be a Bernoulli random variable independent of Y1 and Y2 and with
probability of success ε = P (W = 1). Suppose the random variable we observe
is X = (1 − W )Y1 + WY2. In this case, the vector of parameters is given by
θ′ = (μ1, μ2, σ1, σ2, ε). As shown in Section 3.4, the pdf of the mixture random
variable X is

f(x) = (1− ε)f1(x) + εf2(x), −∞ < x <∞, (6.6.17)

where fj(x) = σ−1
j φ[(x−μj)/σj ], j = 1, 2, and φ(z) is the pdf of a standard normal

random variable. Suppose we observe a random sample X′ = (X1, X2, . . . , Xn) from
this mixture distribution with pdf f(x). Then the log of the likelihood function is

l(θ|x) =
n∑

i=1

log[(1− ε)f1(xi) + εf2(xi)]. (6.6.18)

In this mixture problem, the unobserved data are the random variables that
identify the distribution membership. For i = 1, 2, . . . , n, define the random vari-
ables

Wi =

{
0 if Xi has pdf f1(x)
1 if Xi has pdf f2(x).

These variables, of course, constitute the random sample on the Bernoulli random
variable W . Accordingly, assume that W1, W2, . . . , Wn are iid Bernoulli random
variables with probability of success ε. The complete likelihood function is

Lc(θ|x,w) =
∏

Wi=0

f1(xi)
∏

Wi=1

f2(xi).

Hence the log of the complete likelihood function is

lc(θ|x,w) =
∑

Wi=0

log f1(xi) +
∑

Wi=1

log f2(xi)

=

n∑
i=1

[(1− wi) log f1(xi) + wi log f2(xi)]. (6.6.19)

For the E step of the algorithm, we need the conditional expectation of Wi given x
under θ0; that is,

Eθ0
[Wi|θ0,x] = P [Wi = 1|θ0,x].
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An estimate of this expectation is the likelihood of xi being drawn from distribution
f2(x), which is given by

γi =
ε̂f2,0(xi)

(1− ε̂)f1,0(xi) + ε̂f2,0(xi)
, (6.6.20)

where the subscript 0 signifies that the parameters at θ0 are being used. Expression
(6.6.20) is intuitively evident; see McLachlan and Krishnan (1997) for more discus-
sion. Replacing wi by γi in expression (6.6.19), the M step of the algorithm is to
maximize

Q(θ|θ0,x) =

n∑
i=1

[(1 − γi) log f1(xi) + γi log f2(xi)]. (6.6.21)

This maximization is easy to obtain by taking partial derivatives of Q(θ|θ0,x) with
respect to the parameters. For example,

∂Q

∂μ1
=

n∑
i=1

(1 − γi)(−1/2σ2
1)(−2)(xi − μ1).

Setting this to 0 and solving for μ1 yields the estimate of μ1. The estimates of the
other mean and the variances can be obtained similarly. These estimates are

μ̂1 =

∑n
i=1(1− γi)xi∑n
i=1(1 − γi)

σ̂2
1 =

∑n
i=1(1− γi)(xi − μ̂1)

2∑n
i=1(1− γi)

μ̂2 =

∑n
i=1 γixi∑n
i=1 γi

σ̂2
2 =

∑n
i=1 γi(xi − μ̂2)

2∑n
i=1 γi

.

Since γi is an estimate of P [Wi = 1|θ0,x], the average n−1
∑n

i=1 γi is an estimate
of ε = P [Wi = 1]. This average is our estimate of ε̂.

EXERCISES

6.6.1. Rao (page 368, 1973) considers a problem in the estimation of linkages in
genetics. McLachlan and Krishnan (1997) also discuss this problem and we present
their model. For our purposes, it can be described as a multinomial model with the
four categories C1, C2, C3, and C4. For a sample of size n, let X = (X1, X2, X3, X4)

′

denote the observed frequencies of the four categories. Hence, n =
∑4

i=1 Xi. The
probability model is

C1 C2 C3 C4

1
2 + 1

4θ 1
4 − 1

4θ 1
4 − 1

4θ 1
4θ
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where the parameter θ satisfies 0 ≤ θ ≤ 1. In this exercise, we obtain the mle of θ.

(a) Show that likelihood function is given by

L(θ|x) =
n!

x1!x2!x3!x4!

[
1

2
+

1

4
θ

]x1
[
1

4
− 1

4
θ

]x2+x3
[
1

4
θ

]x4

. (6.6.22)

(b) Show that the log of the likelihood function can be expressed as a constant
(not involving parameters) plus the term

x1 log[2 + θ] + [x2 + x3] log[1− θ] + x4 log θ.

(c) Obtain the partial derivative with respect to θ of the last expression, set the
result to 0, and solve for the mle. (This will result in a quadratic equation
that has one positive and one negative root.)

6.6.2. In this exercise, we set up an EM algorithm to determine the mle for the
situation described in Exercise 6.6.1. Split category C1 into the two subcategories
C11 and C12 with probabilities 1/2 and θ/4, respectively. Let Z11 and Z12 denote
the respective “frequencies.” Then X1 = Z11 + Z12. Of course, we cannot observe
Z11 and Z12. Let Z = (Z11, Z12)

′.

(a) Obtain the complete likelihood Lc(θ|x, z).

(b) Using the last result and (6.6.22), show that the conditional pmf k(z|θ,x) is
binomial with parameters x1 and probability of success θ/(2 + θ).

(c) Obtain the E step of the EM algorithm given an initial estimate θ̂(0) of θ.
That is, obtain

Q(θ|θ̂(0),x) = Ebθ(0) [log Lc(θ|x,Z)|θ̂(0),x].

Recall that this expectation is taken using the conditional pmf k(z|θ̂(0),x).
Keep in mind the next step; i.e., we need only terms that involve θ.

(d) For the M step of the EM algorithm, solve the equation ∂Q(θ|θ̂(0),x)/∂θ = 0.
Show that the solution is

θ̂(1) =
x1θ̂

(0) + 2x4 + x4θ̂
(0)

nθ̂(0) + 2(x2 + x3 + x4)
. (6.6.23)

6.6.3. For the setup of Exercise 6.6.2, show that the following estimator of θ is
unbiased:

θ̃ = n−1(X1 −X2 −X3 + X4). (6.6.24)

6.6.4. Rao (page 368, 1973) presents data for the situation described in Exercise
6.6.1. The observed frequencies are x = (125, 18, 20, 34)′.

(a) Using computational packages (for example, R), with (6.6.24) as the initial

estimate, write a program that obtains the stepwise EM estimates θ̂(k).
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(b) Using the data from Rao, compute the EM estimate of θ with your program.

List the sequence of EM estimates, {θ̂k}, that you obtained. Did your sequence
of estimates converge?

(c) Show that the mle using the likelihood approach in Exercise 6.6.1 is the pos-
itive root of the equation 197θ2 − 15θ − 68 = 0. Compare it with your EM
solution. They should be the same within roundoff error.

6.6.5. Suppose X1, X2, . . . , Xn1 is a random sample from a N(θ, 1) distribution.
Besides these n1 observable items, suppose there are n2 missing items, which we
denote by Z1, Z2, . . . , Zn2 . Show that the first-step EM estimate is

θ̂(1) =
n1x + n2θ̂

(0)

n
,

where θ̂(0) is an initial estimate of θ and n = n1 + n2. Note that if θ̂(0) = x, then
θ̂(k) = x for all k.

6.6.6. Consider the situation described in Example 6.6.1. But suppose we have left
censoring. That is, if Z1, Z2, . . . , Zn2 are the censored items, then all we know is
that each Zj < a. Obtain the EM algorithm estimate of θ.

6.6.7. Suppose these data follow the model of Example 6.6.1:

2.01 0.74 0.68 1.50+ 1.47 1.50+ 1.50+ 1.52
0.07 −0.04 −0.21 0.05 −0.09 0.67 0.14

where the superscript + denotes that the observation was censored at 1.50. Write
a computer program to obtain the EM algorithm estimate of θ.

6.6.8. The following data are observations of the random variable X = (1−W )Y1+
WY2, where W has a Bernoulli distribution with probability of success 0.70; Y1

has a N(100, 202) distribution; Y2 has a N(120, 252) distribution; W and Y1 are
independent; and W and Y2 are independent. Data are in the file mix668.rda.

119.0 96.0 146.2 138.6 143.4 98.2 124.5
114.1 136.2 136.4 184.8 79.8 151.9 114.2
145.7 95.9 97.3 136.4 109.2 103.2

Program the EM algorithm for this mixing problem as discussed at the end of the
section. Use a dotplot to obtain initial estimates of the parameters. Compute the es-
timates. How close are they to the true parameters? Note: assuming the R vector x
contains the sample on X , a quick dotplot in R is computed by plot(rep(1,20)~x).
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Chapter 7

Sufficiency

7.1 Measures of Quality of Estimators

In Chapters 4 and 6 we presented procedures for finding point estimates, interval
estimates, and tests of statistical hypotheses based on likelihood theory. In this
and the next chapter, we present some optimal point estimates and tests for certain
situations. We first consider point estimation.

In this chapter, as in Chapters 4 and 6, we find it convenient to use the letter
f to denote a pmf as well as a pdf. It is clear from the context whether we are
discussing the distributions of discrete or continuous random variables.

Suppose f(x; θ) for θ ∈ Ω is the pdf (pmf) of a continuous (discrete) random
variable X . Consider a point estimator Yn = u(X1, . . . , Xn) based on a sample
X1, . . . , Xn. In Chapters 4 and 5, we discussed several properties of point estimators.
Recall that Yn is a consistent estimator (Definition 5.1.2) of θ if Yn converges to
θ in probability; i.e., Yn is close to θ for large sample sizes. This is definitely a
desirable property of a point estimator. Under suitable conditions, Theorem 6.1.3
shows that the maximum likelihood estimator is consistent. Another property was
unbiasedness (Definition 4.1.3), which says that Yn is an unbiased estimator of θ
if E(Yn) = θ. Recall that maximum likelihood estimators may not be unbiased,
although generally they are asymptotically unbiased (see Theorem 6.2.2).

If two estimators of θ are unbiased, it would seem that we would choose the one
with the smaller variance. This would be especially true if they were both approx-
imately normal because the one with the smaller asymptotic variance (and hence
asymptotic standard error) would tend to produce shorter asymptotic confidence
intervals for θ. This leads to the following definition:

Definition 7.1.1. For a given positive integer n, Y = u(X1, X2, . . . , Xn) is called
a minimum variance unbiased estimator (MVUE) of the parameter θ if Y is
unbiased, that is, E(Y ) = θ, and if the variance of Y is less than or equal to the
variance of every other unbiased estimator of θ.

Example 7.1.1. As an illustration, let X1, X2, . . . , X9 denote a random sample
from a distribution that is N(θ, σ2), where −∞ < θ < ∞. Because the statistic

413
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X = (X1+X2+· · ·+X9)/9 is N(θ, σ2

9 ), X is an unbiased estimator of θ. The statistic
X1 is N(θ, σ2), so X1 is also an unbiased estimator of θ. Although the variance
σ2

9 of X is less than the variance σ2 of X1, we cannot say, with n = 9, that X is
the minimum variance unbiased estimator (MVUE) of θ; that definition requires
that the comparison be made with every unbiased estimator of θ. To be sure, it is
quite impossible to tabulate all other unbiased estimators of this parameter θ, so
other methods must be developed for making the comparisons of the variances. A
beginning on this problem is made in this chapter.

Let us now discuss the problem of point estimation of a parameter from a slightly
different standpoint. Let X1, X2, . . . , Xn denote a random sample of size n from a
distribution that has the pdf f(x; θ), θ ∈ Ω. The distribution may be of either the
continuous or the discrete type. Let Y = u(X1, X2, . . . , Xn) be a statistic on which
we wish to base a point estimate of the parameter θ. Let δ(y) be that function of
the observed value of the statistic Y which is the point estimate of θ. Thus the
function δ decides the value of our point estimate of θ and δ is called a decision
function or a decision rule. One value of the decision function, say δ(y), is called
a decision. Thus a numerically determined point estimate of a parameter θ is a
decision. Now a decision may be correct or it may be wrong. It would be useful to
have a measure of the seriousness of the difference, if any, between the true value
of θ and the point estimate δ(y). Accordingly, with each pair, [θ, δ(y)], θ ∈ Ω, we
associate a nonnegative number L[θ, δ(y)] that reflects this seriousness. We call the
function L the loss function. The expected (mean) value of the loss function is
called the risk function. If fY (y; θ), θ ∈ Ω, is the pdf of Y , the risk function
R(θ, δ) is given by

R(θ, δ) = E{L[θ, δ(y)]} =

∫ ∞

−∞
L[θ, δ(y)]fY (y; θ) dy

if Y is a random variable of the continuous type. It would be desirable to select a
decision function that minimizes the risk R(θ, δ) for all values of θ, θ ∈ Ω. But this
is usually impossible because the decision function δ that minimizes R(θ, δ) for one
value of θ may not minimize R(θ, δ) for another value of θ. Accordingly, we need
either to restrict our decision function to a certain class or to consider methods of
ordering the risk functions. The following example, while very simple, dramatizes
these difficulties.

Example 7.1.2. Let X1, X2, . . . , X25 be a random sample from a distribution that
is N(θ, 1), for −∞ < θ < ∞. Let Y = X, the mean of the random sample, and
let L[θ, δ(y)] = [θ − δ(y)]2. We shall compare the two decision functions given by
δ1(y) = y and δ2(y) = 0 for −∞ < y < ∞. The corresponding risk functions are

R(θ, δ1) = E[(θ − Y )2] = 1
25

and

R(θ, δ2) = E[(θ − 0)2] = θ2.
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If, in fact, θ = 0, then δ2(y) = 0 is an excellent decision and we have R(0, δ2) = 0.
However, if θ differs from zero by very much, it is equally clear that δ2 = 0 is a poor
decision. For example, if, in fact, θ = 2, R(2, δ2) = 4 > R(2, δ1) = 1

25 . In general,
we see that R(θ, δ2) < R(θ, δ1), provided that − 1

5 < θ < 1
5 , and that otherwise

R(θ, δ2) ≥ R(θ, δ1). That is, one of these decision functions is better than the other
for some values of θ, while the other decision function is better for other values of
θ. If, however, we had restricted our consideration to decision functions δ such that
E[δ(Y )] = θ for all values of θ, θ ∈ Ω, then the decision function δ2(y) = 0 is not
allowed. Under this restriction and with the given L[θ, δ(y)], the risk function is the
variance of the unbiased estimator δ(Y ), and we are confronted with the problem of
finding the MVUE. Later in this chapter we show that the solution is δ(y) = y = x.

Suppose, however, that we do not want to restrict ourselves to decision functions
δ, such that E[δ(Y )] = θ for all values of θ, θ ∈ Ω. Instead, let us say that
the decision function that minimizes the maximum of the risk function is the best
decision function. Because, in this example, R(θ, δ2) = θ2 is unbounded, δ2(y) = 0
is not, in accordance with this criterion, a good decision function. On the other
hand, with −∞ < θ < ∞, we have

max
θ

R(θ, δ1) = max
θ

( 1
25 ) = 1

25 .

Accordingly, δ1(y) = y = x seems to be a very good decision in accordance with
this criterion because 1

25 is small. As a matter of fact, it can be proved that δ1 is
the best decision function, as measured by the minimax criterion, when the loss
function is L[θ, δ(y)] = [θ − δ(y)]2.

In this example we illustrated the following:

1. Without some restriction on the decision function, it is difficult to find a
decision function that has a risk function which is uniformly less than the risk
function of another decision.

2. One principle of selecting a best decision function is called the minimax
principle. This principle may be stated as follows: If the decision function
given by δ0(y) is such that, for all θ ∈ Ω,

max
θ

R[θ, δ0(y)] ≤ max
θ

R[θ, δ(y)]

for every other decision function δ(y), then δ0(y) is called a minimax deci-
sion function.

With the restriction E[δ(Y )] = θ and the loss function L[θ, δ(y)] = [θ − δ(y)]2,
the decision function that minimizes the risk function yields an unbiased estimator
with minimum variance. If, however, the restriction E[δ(Y )] = θ is replaced by some
other condition, the decision function δ(Y ), if it exists, which minimizes E{[θ −
δ(Y )]2} uniformly in θ is sometimes called the minimum mean-squared-error
estimator. Exercises 7.1.6–7.1.8 provide examples of this type of estimator.

There are two additional observations about decision rules and loss functions
that should be made at this point. First, since Y is a statistic, the decision rule
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δ(Y ) is also a statistic, and we could have started directly with a decision rule based
on the observations in a random sample, say, δ1(X1, X2, . . . , Xn). The risk function
is then given by

R(θ, δ1) = E{L[θ, δ1(X1, . . . , Xn)]}

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
L[θ, δ1(x1, . . . , xn)]f(x1; θ) · · · f(xn; θ) dx1 · · · dxn

if the random sample arises from a continuous-type distribution. We do not do this,
because, as we show in this chapter, it is rather easy to find a good statistic, say
Y , upon which to base all of the statistical inferences associated with a particular
model. Thus we thought it more appropriate to start with a statistic that would
be familiar, like the mle Y = X in Example 7.1.2. The second decision rule of that
example could be written δ2(X1, X2, . . . , Xn) = 0, a constant no matter what values
of X1, X2, . . . , Xn are observed.

The second observation is that we have only used one loss function, namely,
the squared-error loss function L(θ, δ) = (θ − δ)2. The absolute-error loss
function L(θ, δ) = |θ − δ| is another popular one. The loss function defined by

L(θ, δ) = 0, |θ − δ| ≤ a,

= b, |θ − δ| > a,

where a and b are positive constants, is sometimes referred to as the goalpost loss
function. The reason for this terminology is that football fans recognize that it
is similar to kicking a field goal: There is no loss (actually a three-point gain) if
within a units of the middle but b units of loss (zero points awarded) if outside that
restriction. In addition, loss functions can be asymmetric as well as symmetric, as
the three previous ones have been. That is, for example, it might be more costly to
underestimate the value of θ than to overestimate it. (Many of us think about this
type of loss function when estimating the time it takes us to reach an airport to
catch a plane.) Some of these loss functions are considered when studying Bayesian
estimates in Chapter 11.

Let us close this section with an interesting illustration that raises a question
leading to the likelihood principle, which many statisticians believe is a quality
characteristic that estimators should enjoy. Suppose that two statisticians, A and
B, observe 10 independent trials of a random experiment ending in success or failure.
Let the probability of success on each trial be θ, where 0 < θ < 1. Let us say that
each statistician observes one success in these 10 trials. Suppose, however, that
A had decided to take n = 10 such observations in advance and found only one
success, while B had decided to take as many observations as needed to get the first
success, which happened on the 10th trial. The model of A is that Y is b(n = 10, θ)
and y = 1 is observed. On the other hand, B is considering the random variable Z
that has a geometric pmf g(z) = (1−θ)z−1θ, z = 1, 2, 3, . . ., and z = 10 is observed.
In either case, an estimate of θ could be the relative frequency of success given by

y

n
=

1

z
=

1

10
.



7.1. Measures of Quality of Estimators 417

Let us observe, however, that one of the corresponding estimators, Y/n and 1/Z,
is biased. We have

E

(
Y

10

)
=

1

10
E(Y ) =

1

10
(10θ) = θ,

while

E

(
1

Z

)
=

∞∑
z=1

1

z
(1− θ)z−1θ

= θ + 1
2 (1− θ)θ + 1

3 (1 − θ)2θ + · · · > θ.

That is, 1/Z is a biased estimator while Y/10 is unbiased. Thus A is using an
unbiased estimator while B is not. Should we adjust B’s estimator so that it, too,
is unbiased?

It is interesting to note that if we maximize the two respective likelihood func-
tions, namely,

L1(θ) =

(
10

y

)
θy(1− θ)10−y

and

L2(θ) = (1− θ)z−1θ,

with n = 10, y = 1, and z = 10, we get exactly the same answer, θ̂ = 1
10 . This

must be the case, because in each situation we are maximizing (1 − θ)9θ. Many
statisticians believe that this is the way it should be and accordingly adopt the
likelihood principle:

Suppose two different sets of data from possibly two different random experiments
lead to respective likelihood ratios, L1(θ) and L2(θ), that are proportional to each
other. These two data sets provide the same information about the parameter θ and
a statistician should obtain the same estimate of θ from either.

In our special illustration, we note that L1(θ) ∝ L2(θ), and the likelihood princi-
ple states that statisticians A and B should make the same inference. Thus believers
in the likelihood principle would not adjust the second estimator to make it unbi-
ased.

EXERCISES

7.1.1. Show that the mean X of a random sample of size n from a distribution
having pdf f(x; θ) = (1/θ)e−(x/θ), 0 < x < ∞, 0 < θ < ∞, zero elsewhere, is an
unbiased estimator of θ and has variance θ2/n.

7.1.2. Let X1, X2, . . . , Xn denote a random sample from a normal distribution
with mean zero and variance θ, 0 < θ < ∞. Show that

∑n
1 X2

i /n is an unbiased
estimator of θ and has variance 2θ2/n.
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7.1.3. Let Y1 < Y2 < Y3 be the order statistics of a random sample of size 3 from
the uniform distribution having pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞, zero
elsewhere. Show that 4Y1, 2Y2, and 4

3Y3 are all unbiased estimators of θ. Find the
variance of each of these unbiased estimators.

7.1.4. Let Y1 and Y2 be two independent unbiased estimators of θ. Assume that
the variance of Y1 is twice the variance of Y2. Find the constants k1 and k2 so that
k1Y1 + k2Y2 is an unbiased estimator with the smallest possible variance for such a
linear combination.

7.1.5. In Example 7.1.2 of this section, take L[θ, δ(y)] = |θ − δ(y)|. Show that
R(θ, δ1) = 1

5

√
2/π and R(θ, δ2) = |θ|. Of these two decision functions δ1 and δ2,

which yields the smaller maximum risk?

7.1.6. Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with
parameter θ, 0 < θ < ∞. Let Y =

∑n
1 Xi and let L[θ, δ(y)] = [θ − δ(y)]2. If we

restrict our considerations to decision functions of the form δ(y) = b+ y/n, where b
does not depend on y, show that R(θ, δ) = b2 + θ/n. What decision function of this
form yields a uniformly smaller risk than every other decision function of this form?
With this solution, say δ, and 0 < θ < ∞, determine maxθ R(θ, δ) if it exists.

7.1.7. Let X1, X2, . . . , Xn denote a random sample from a distribution that is
N(μ, θ), 0 < θ < ∞, where μ is unknown. Let Y =

∑n
1 (Xi − X)2/n and let

L[θ, δ(y)] = [θ−δ(y)]2. If we consider decision functions of the form δ(y) = by, where
b does not depend upon y, show that R(θ, δ) = (θ2/n2)[(n2−1)b2−2n(n−1)b+n2].
Show that b = n/(n+1) yields a minimum risk decision function of this form. Note
that nY/(n + 1) is not an unbiased estimator of θ. With δ(y) = ny/(n + 1) and
0 < θ <∞, determine maxθ R(θ, δ) if it exists.

7.1.8. Let X1, X2, . . . , Xn denote a random sample from a distribution that is
b(1, θ), 0 ≤ θ ≤ 1. Let Y =

∑n
1 Xi and let L[θ, δ(y)] = [θ − δ(y)]2. Consider

decision functions of the form δ(y) = by, where b does not depend upon y. Prove
that R(θ, δ) = b2nθ(1− θ) + (bn− 1)2θ2. Show that

max
θ

R(θ, δ) =
b4n2

4[b2n− (bn− 1)2]
,

provided that the value b is such that b2n > (bn− 1)2. Prove that b = 1/n does not
minimize maxθ R(θ, δ).

7.1.9. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
mean θ > 0.

(a) Statistician A observes the sample to be the values x1, x2, . . . , xn with sum
y =

∑
xi. Find the mle of θ.

(b) Statistician B loses the sample values x1, x2, . . . , xn but remembers the sum
y1 and the fact that the sample arose from a Poisson distribution. Thus
B decides to create some fake observations, which he calls z1, z2, . . . , zn (as
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he knows they will probably not equal the original x-values) as follows. He
notes that the conditional probability of independent Poisson random vari-
ables Z1, Z2, . . . , Zn being equal to z1, z2, . . . , zn, given

∑
zi = y1, is

θz1e−θ

z1!
θz2e−θ

z2!
· · · θzne−θ

zn!

(nθ)y1e−nθ

y1!

=
y1!

z1!z2! · · · zn!

(
1

n

)z1
(

1

n

)z2

· · ·
(

1

n

)zn

since Y1 =
∑

Zi has a Poisson distribution with mean nθ. The latter distri-
bution is multinomial with y1 independent trials, each terminating in one of n
mutually exclusive and exhaustive ways, each of which has the same probabil-
ity 1/n. Accordingly, B runs such a multinomial experiment y1 independent
trials and obtains z1, z2, . . . , zn. Find the likelihood function using these z-
values. Is it proportional to that of statistician A?
Hint: Here the likelihood function is the product of this conditional pdf and
the pdf of Y1 =

∑
Zi.

7.2 A Sufficient Statistic for a Parameter

Suppose that X1, X2, . . . , Xn is a random sample from a distribution that has pdf
f(x; θ), θ ∈ Ω. In Chapters 4 and 6, we constructed statistics to make statistical
inferences as illustrated by point and interval estimation and tests of statistical
hypotheses. We note that a statistic, for example, Y = u(X1, X2, . . . , Xn), is a form
of data reduction. To illustrate, instead of listing all of the individual observations
X1, X2, . . . , Xn, we might prefer to give only the sample mean X or the sample
variance S2. Thus statisticians look for ways of reducing a set of data so that these
data can be more easily understood without losing the meaning associated with the
entire set of observations.

It is interesting to note that a statistic Y = u(X1, X2, . . . , Xn) really partitions
the sample space of X1, X2, . . . , Xn. For illustration, suppose we say that the sample
was observed and x = 8.32. There are many points in the sample space which
have that same mean of 8.32, and we can consider them as belonging to the set
{(x1, x2, . . . , xn) : x = 8.32}. As a matter of fact, all points on the hyperplane

x1 + x2 + · · ·+ xn = (8.32)n

yield the mean of x = 8.32, so this hyperplane is the set. However, there are many
values that X can take, and thus there are many such sets. So, in this sense, the
sample mean X, or any statistic Y = u(X1, X2, . . . , Xn), partitions the sample
space into a collection of sets.

Often in the study of statistics the parameter θ of the model is unknown; thus,
we need to make some statistical inference about it. In this section we consider a
statistic denoted by Y1 = u1(X1, X2, . . . , Xn), which we call a sufficient statistic
and which we find is good for making those inferences. This sufficient statistic
partitions the sample space in such a way that, given

(X1, X2, . . . , Xn) ∈ {(x1, x2, . . . , xn) : u1(x1, x2, . . . , xn) = y1},
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the conditional probability of X1, X2, . . . , Xn does not depend upon θ. Intuitively,
this means that once the set determined by Y1 = y1 is fixed, the distribution of
another statistic, say Y2 = u2(X1, X2, . . . , Xn), does not depend upon the parameter
θ because the conditional distribution of X1, X2, . . . , Xn does not depend upon θ.
Hence it is impossible to use Y2, given Y1 = y1, to make a statistical inference about
θ. So, in a sense, Y1 exhausts all the information about θ that is contained in the
sample. This is why we call Y1 = u1(X1, X2, . . . , Xn) a sufficient statistic.

To understand clearly the definition of a sufficient statistic for a parameter θ,
we start with an illustration.

Example 7.2.1. Let X1, X2, . . . , Xn denote a random sample from the distribution
that has pmf

f(x; θ) =

{
θx(1− θ)1−x x = 0, 1; 0 < θ < 1
0 elsewhere.

The statistic Y1 = X1 + X2 + · · ·+ Xn has the pmf

fY1(y1; θ) =

{ (
n
y1

)
θy1(1− θ)n−y1 y1 = 0, 1, . . . , n

0 elsewhere.

What is the conditional probability

P (X1 = x1, X2 = x2, . . . , Xn = xn|Y1 = y1) = P (A|B),

say, where y1 = 0, 1, 2, . . . , n? Unless the sum of the integers x1, x2, . . . , xn (each of
which equals zero or 1) is equal to y1, the conditional probability obviously equals
zero because A ∩ B = φ. But in the case y1 =

∑
xi, we have that A ⊂ B, so that

A ∩B = A and P (A|B) = P (A)/P (B); thus, the conditional probability equals

θx1(1 − θ)1−x1θx2(1− θ)1−x2 · · · θxn(1− θ)1−xn(
n

y1

)
θy1(1 − θ)n−y1

=
θ

P
xi(1− θ)n−P

xi(
n∑
xi

)
θ

P
xi(1− θ)n−P

xi

=
1(
n∑
xi

) .

Since y1 = x1 +x2 + · · ·+xn equals the number of ones in the n independent trials,
this is the conditional probability of selecting a particular arrangement of y1 ones
and (n − y1) zeros. Note that this conditional probability does not depend upon
the value of the parameter θ.

In general, let fY1(y1; θ) be the pmf of the statistic Y1 = u1(X1, X2, . . . , Xn),
where X1, X2, . . . , Xn is a random sample arising from a distribution of the discrete
type having pmf f(x; θ), θ ∈ Ω. The conditional probability of X1 = x1, X2 =
x2, . . . , Xn = xn, given Y1 = y1, equals

f(x1; θ)f(x2; θ) · · · f(xn; θ)

fY1 [u1(x1, x2, . . . , xn); θ]
,
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provided that x1, x2, . . . , xn are such that the fixed y1 = u1(x1, x2, . . . , xn), and
equals zero otherwise. We say that Y1 = u1(X1, X2, . . . , Xn) is a sufficient statistic
for θ if and only if this ratio does not depend upon θ. While, with distributions of
the continuous type, we cannot use the same argument, we do, in this case, accept
the fact that if this ratio does not depend upon θ, then the conditional distribution
of X1, X2, . . . , Xn, given Y1 = y1, does not depend upon θ. Thus, in both cases, we
use the same definition of a sufficient statistic for θ.

Definition 7.2.1. Let X1, X2, . . . , Xn denote a random sample of size n from a
distribution that has pdf or pmf f(x; θ), θ ∈ Ω. Let Y1 = u1(X1, X2, . . . , Xn) be a
statistic whose pdf or pmf is fY1(y1; θ). Then Y1 is a sufficient statistic for θ if
and only if

f(x1; θ)f(x2; θ) · · · f(xn; θ)

fY1 [u1(x1, x2, . . . , xn); θ]
= H(x1, x2, . . . , xn),

where H(x1, x2, . . . , xn) does not depend upon θ ∈ Ω.

Remark 7.2.1. In most cases in this book, X1, X2, . . . , Xn represent the observa-
tions of a random sample; that is, they are iid. It is not necessary, however, in more
general situations, that these random variables be independent; as a matter of fact,
they do not need to be identically distributed. Thus, more generally, the definition
of sufficiency of a statistic Y1 = u1(X1, X2, . . . , Xn) would be extended to read that

f(x1, x2, . . . , xn; θ)

fY1 [u1(x1, x2, . . . , xn); θ)]
= H(x1, x2, . . . , xn)

does not depend upon θ ∈ Ω, where f(x1, x2, . . . , xn; θ) is the joint pdf or pmf of
X1, X2, . . . , Xn. There are even a few situations in which we need an extension like
this one in this book.

We now give two examples that are illustrative of the definition.

Example 7.2.2. Let X1, X2, . . . , Xn be a random sample from a gamma distribu-
tion with α = 2 and β = θ > 0. Because the mgf associated with this distribution
is given by M(t) = (1− θt)−2, t < 1/θ, the mgf of Y1 =

∑n
i=1 Xi is

E[et(X1+X2+···+Xn)] = E(etX1)E(etX2) · · ·E(etXn)

= [(1− θt)−2]n = (1− θt)−2n.

Thus Y1 has a gamma distribution with α = 2n and β = θ, so that its pdf is

fY1(y1; θ) =

{ 1
Γ(2n)θ2n y2n−1

1 e−y1/θ 0 < y1 < ∞
0 elsewhere.

Thus we have[
x2−1

1 e−x1/θ

Γ(2)θ2

] [
x2−1

2 e−x2/θ

Γ(2)θ2

]
· · ·

[
x2−1

n e−xn/θ

Γ(2)θ2

]
(x1 + x2 + · · ·+ xn)2n−1e−(x1+x2+···+xn)/θ

Γ(2n)θ2n

=
Γ(2n)

[Γ(2)]n
x1x2 · · ·xn

(x1 + x2 + · · ·+ xn)2n−1
,
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where 0 < xi < ∞, i = 1, 2, . . . , n. Since this ratio does not depend upon θ, the
sum Y1 is a sufficient statistic for θ.

Example 7.2.3. Let Y1 < Y2 < · · · < Yn denote the order statistics of a random
sample of size n from the distribution with pdf

f(x; θ) = e−(x−θ)I(θ,∞)(x).

Here we use the indicator function of a set A defined by

IA(x) =

{
1 x ∈ A
0 x 
∈ A.

This means, of course, that f(x; θ) = e−(x−θ), θ < x < ∞, zero elsewhere. The pdf
of Y1 = min(Xi) is

fY1(y1; θ) = ne−n(y1−θ)I(θ,∞)(y1).

Note that θ < min{xi} if and only if θ < xi, for all i = 1, . . . , n. Notationally this
can be expressed as I(θ,∞)(minxi) =

∏n
i=1 I(θ,∞)(xi). Thus we have that∏n

i=1 e−(xi−θ)I(θ,∞)(xi)

ne−n(min xi−θ)I(θ,∞)(min xi)
=

e−x1−x2−···−xn

ne−nmin xi
.

Since this ratio does not depend upon θ, the first order statistic Y1 is a sufficient
statistic for θ.

If we are to show by means of the definition that a certain statistic Y1 is or is not
a sufficient statistic for a parameter θ, we must first of all know the pdf of Y1, say
fY1(y1; θ). In many instances it may be quite difficult to find this pdf. Fortunately,
this problem can be avoided if we prove the following factorization theorem of
Neyman.

Theorem 7.2.1 (Neyman). Let X1, X2, . . . , Xn denote a random sample from a
distribution that has pdf or pmf f(x; θ), θ ∈ Ω. The statistic Y1 = u1(X1, . . . , Xn)
is a sufficient statistic for θ if and only if we can find two nonnegative functions,
k1 and k2, such that

f(x1; θ)f(x2; θ) · · · f(xn; θ) = k1[u1(x1, x2, . . . , xn); θ]k2(x1, x2, . . . , xn), (7.2.1)

where k2(x1, x2, . . . , xn) does not depend upon θ.

Proof. We shall prove the theorem when the random variables are of the con-
tinuous type. Assume that the factorization is as stated in the theorem. In our
proof we shall make the one-to-one transformation y1 = u1(x1, x2, . . . , xn), y2 =
u2(x1, x2, . . . , xn), . . . , yn = un(x1, x2, . . . , xn) having the inverse functions x1 =
w1(y1, y2, . . . , yn), x2 = w2(y1, y2, . . . , yn), . . . , xn = wn(y1, y2, . . . , yn) and Jaco-
bian J ; see the note after the proof. The pdf of the statistic Y1, Y2, . . . , Yn is then
given by

g(y1, y2, . . . , yn; θ) = k1(y1; θ)k2(w1, w2, . . . , wn)|J |,
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where wi = wi(y1, y2, . . . , yn), i = 1, 2, . . . , n. The pdf of Y1, say fY1(y1; θ), is given
by

fY1(y1; θ) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(y1, y2, . . . , yn; θ) dy2 · · · dyn

= k1(y1; θ)

∫ ∞

−∞
· · ·

∫ ∞

−∞
|J |k2(w1, w2, . . . , wn) dy2 · · · dyn.

Now the function k2 does not depend upon θ, nor is θ involved in either the Jacobian
J or the limits of integration. Hence the (n − 1)-fold integral in the right-hand
member of the preceding equation is a function of y1 alone, for example, m(y1).
Thus

fY1(y1; θ) = k1(y1; θ)m(y1).

If m(y1) = 0, then fY1(y1; θ) = 0. If m(y1) > 0, we can write

k1[u1(x1, x2, . . . , xn); θ] =
fY1 [u1(x1, . . . , xn); θ]

m[u1(x1, . . . , xn)]
,

and the assumed factorization becomes

f(x1; θ) · · · f(xn; θ) = fY1 [u1(x1, . . . , xn); θ]
k2(x1, . . . , xn)

m[u1(x1, . . . , xn)]
.

Since neither the function k2 nor the function m depends upon θ, then in accordance
with the definition, Y1 is a sufficient statistic for the parameter θ.

Conversely, if Y1 is a sufficient statistic for θ, the factorization can be realized by
taking the function k1 to be the pdf of Y1, namely, the function fY1 . This completes
the proof of the theorem.

Note that the assumption of a one-to-one transformation made in the proof is not
needed; see Lehmann (1986) for a more rigorous prrof. This theorem characterizes
sufficiency and, as the following examples show, is usually much easier to work with
than the definition of sufficiency.

Example 7.2.4. Let X1, X2, . . . , Xn denote a random sample from a distribution
that is N(θ, σ2), −∞ < θ < ∞, where the variance σ2 > 0 is known. If x =∑n

1 xi/n, then

n∑
i=1

(xi − θ)2 =
n∑

i=1

[(xi − x) + (x− θ)]2 =
n∑

i=1

(xi − x)2 + n(x− θ)2

because

2

n∑
i=1

(xi − x)(x− θ) = 2(x− θ)

n∑
i=1

(xi − x) = 0.
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Thus the joint pdf of X1, X2, . . . , Xn may be written(
1

σ
√

2π

)n

exp

[
−

n∑
i=1

(xi − θ)2/2σ2

]

= {exp[−n(x− θ)2/2σ2]}

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp

[
−

n∑
i=1

(xi − x)2/2σ2

]
(σ
√

2π)n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Because the first factor of the right-hand member of this equation depends upon
x1, x2, . . . , xn only through x, and the second factor does not depend upon θ, the
factorization theorem implies that the mean X of the sample is, for any particular
value of σ2, a sufficient statistic for θ, the mean of the normal distribution.

We could have used the definition in the preceding example because we know
that X is N(θ, σ2/n). Let us now consider an example in which the use of the
definition is inappropriate.

Example 7.2.5. Let X1, X2, . . . , Xn denote a random sample from a distribution
with pdf

f(x; θ) =

{
θxθ−1 0 < x < 1
0 elsewhere,

where 0 < θ. The joint pdf of X1, X2, . . . , Xn is

θn

(
n∏

i=1

xi

)θ−1

=

⎡⎣θn

(
n∏

i=1

xi

)θ
⎤⎦(

1∏n
i=1 xi

)
,

where 0 < xi < 1, i = 1, 2, . . . , n. In the factorization theorem, let

k1[u1(x1, x2, . . . , xn); θ] = θn

(
n∏

i=1

xi

)θ

and

k2(x1, x2, . . . , xn) =
1∏n

i=1 xi
.

Since k2(x1, x2, . . . , xn) does not depend upon θ, the product
∏n

i=1 Xi is a sufficient
statistic for θ.

There is a tendency for some readers to apply incorrectly the factorization theo-
rem in those instances in which the domain of positive probability density depends
upon the parameter θ. This is due to the fact that they do not give proper consid-
eration to the domain of the function k2(x1, x2, . . . , xn). This is illustrated in the
next example.
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Example 7.2.6. In Example 7.2.3 with f(x; θ) = e−(x−θ)I(θ,∞)(x), it was found
that the first order statistic Y1 is a sufficient statistic for θ. To illustrate our point
about not considering the domain of the function, take n = 3 and note that

e−(x1−θ)e−(x2−θ)e−(x3−θ) = [e−3max xi+3θ][e−x1−x2−x3+3max xi ]

or a similar expression. Certainly, in the latter formula, there is no θ in the second
factor and it might be assumed that Y3 = maxXi is a sufficient statistic for θ. Of
course, this is incorrect because we should have written the joint pdf of X1, X2, X3

as
3∏

i=1

[e−(xi−θ)I(θ,∞)(xi)] = [e3θI(θ,∞)(min xi)]

[
exp

{
−

3∑
i=1

xi

}]
because I(θ,∞)(min xi) = I(θ,∞)(x1)I(θ,∞)(x2)I(θ,∞)(x3). A similar statement can-
not be made with max xi. Thus Y1 = min Xi is the sufficient statistic for θ, not
Y3 = maxXi.

EXERCISES

7.2.1. Let X1, X2, . . . , Xn be iid N(0, θ), 0 < θ < ∞. Show that
∑n

1 X2
i is a

sufficient statistic for θ.

7.2.2. Prove that the sum of the observations of a random sample of size n from a
Poisson distribution having parameter θ, 0 < θ < ∞, is a sufficient statistic for θ.

7.2.3. Show that the nth order statistic of a random sample of size n from the
uniform distribution having pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞, zero
elsewhere, is a sufficient statistic for θ. Generalize this result by considering the pdf
f(x; θ) = Q(θ)M(x), 0 < x < θ, 0 < θ <∞, zero elsewhere. Here, of course,∫ θ

0

M(x) dx =
1

Q(θ)
.

7.2.4. Let X1, X2, . . . , Xn be a random sample of size n from a geometric distribu-
tion that has pmf f(x; θ) = (1 − θ)xθ, x = 0, 1, 2, . . . , 0 < θ < 1, zero elsewhere.
Show that

∑n
1 Xi is a sufficient statistic for θ.

7.2.5. Show that the sum of the observations of a random sample of size n from
a gamma distribution that has pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞, 0 < θ < ∞,
zero elsewhere, is a sufficient statistic for θ.

7.2.6. Let X1, X2, . . . , Xn be a random sample of size n from a beta distribution
with parameters α = θ and β = 5. Show that the product X1X2 · · ·Xn is a sufficient
statistic for θ.

7.2.7. Show that the product of the sample observations is a sufficient statistic for
θ > 0 if the random sample is taken from a gamma distribution with parameters
α = θ and β = 6.
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7.2.8. What is the sufficient statistic for θ if the sample arises from a beta distri-
bution in which α = β = θ > 0?

7.2.9. We consider a random sample X1, X2, . . . , Xn from a distribution with pdf
f(x; θ) = (1/θ) exp(−x/θ), 0 < x < ∞, zero elsewhere, where 0 < θ. Possibly, in a
life-testing situation, however, we only observe the first r order statistics Y1 < Y2 <
· · · < Yr.

(a) Record the joint pdf of these order statistics and denote it by L(θ).

(b) Under these conditions, find the mle, θ̂, by maximizing L(θ).

(c) Find the mgf and pdf of θ̂.

(d) With a slight extension of the definition of sufficiency, is θ̂ a sufficient statistic?

7.3 Properties of a Sufficient Statistic

Suppose X1, X2, . . . , Xn is a random sample on a random variable with pdf or pmf
f(x; θ), where θ ∈ Ω. In this section we discuss how sufficiency is used to determine
MVUEs. First note that a sufficient estimate is not unique in any sense. For if
Y1 = u1(X1, X2, . . . , Xn) is a sufficient statistic and Y2 = g(Y1) is a statistic, where
g(x) is a one-to-one function, then

f(x1; θ)f(x2; θ) · · · f(xn; θ) = k1[u1(y1); θ]k2(x1, x2, . . . , xn)

= k1[u1(g
−1(y2)); θ]k2(x1, x2, . . . , xn);

hence, by the factorization theorem, Y2 is also sufficient. However, as the theorem
below shows, sufficiency can lead to a best point estimate.

We first refer back to Theorem 2.3.1 of Section 2.3: If X1 and X2 are random
variables such that the variance of X2 exists, then

E[X2] = E[E(X2|X1)]

and

Var(X2) ≥ Var[E(X2|X1)].

For the adaptation in the context of sufficient statistics, we let the sufficient statistic
Y1 be X1 and Y2, an unbiased statistic of θ, be X2. Thus, with E(Y2|y1) = ϕ(y1),
we have

θ = E(Y2) = E[ϕ(Y1)]

and

Var(Y2) ≥ Var[ϕ(Y1)].



7.3. Properties of a Sufficient Statistic 427

That is, through this conditioning, the function ϕ(Y1) of the sufficient statistic Y1

is an unbiased estimator of θ having a smaller variance than that of the unbiased
estimator Y2. We summarize this discussion more formally in the following theorem,
which can be attributed to Rao and Blackwell.

Theorem 7.3.1 (Rao–Blackwell). Let X1, X2, . . . , Xn, n a fixed positive integer,
denote a random sample from a distribution (continuous or discrete) that has pdf or
pmf f(x; θ), θ ∈ Ω. Let Y1 = u1(X1, X2, . . . , Xn) be a sufficient statistic for θ, and
let Y2 = u2(X1, X2, . . . , Xn), not a function of Y1 alone, be an unbiased estimator
of θ. Then E(Y2|y1) = ϕ(y1) defines a statistic ϕ(Y1). This statistic ϕ(Y1) is a
function of the sufficient statistic for θ; it is an unbiased estimator of θ; and its
variance is less than or equal to that of Y2.

This theorem tells us that in our search for an MVUE of a parameter, we may,
if a sufficient statistic for the parameter exists, restrict that search to functions of
the sufficient statistic. For if we begin with an unbiased estimator Y2 alone, then
we can always improve on this by computing E(Y2|y1) = ϕ(y1) so that ϕ(Y1) is an
unbiased estimator with a smaller variance than that of Y2.

After Theorem 7.3.1, many students believe that it is necessary to find first
some unbiased estimator Y2 in their search for ϕ(Y1), an unbiased estimator of θ
based upon the sufficient statistic Y1. This is not the case at all, and Theorem 7.3.1
simply convinces us that we can restrict our search for a best estimator to functions
of Y1. Furthermore, there is a connection between sufficient statistics and maximum
likelihood estimates, as shown in the following theorem:

Theorem 7.3.2. Let X1, X2, . . . , Xn denote a random sample from a distribution
that has pdf or pmf f(x; θ), θ ∈ Ω. If a sufficient statistic Y1 = u1(X1, X2, . . . , Xn)

for θ exists and if a maximum likelihood estimator θ̂ of θ also exists uniquely, then
θ̂ is a function of Y1 = u1(X1, X2, . . . , Xn).

Proof. Let fY1(y1; θ) be the pdf or pmf of Y1. Then by the definition of sufficiency,
the likelihood function

L(θ; x1, x2, . . . , xn) = f(x1; θ)f(x2; θ) · · · f(xn; θ)

= fY1 [u1(x1, x2, . . . , xn); θ]H(x1, x2, . . . , xn),

where H(x1, x2, . . . , xn) does not depend upon θ. Thus L and fY1 , as functions
of θ, are maximized simultaneously. Since there is one and only one value of θ
that maximizes L and hence fY1 [u1(x1, x2, . . . , xn); θ], that value of θ must be a

function of u1(x1, x2, . . . , xn). Thus the mle θ̂ is a function of the sufficient statistic
Y1 = u1(X1, X2, . . . , Xn).

We know from Chapters 4 and 6 that, generally, mles are asymptotically unbi-
ased estimators of θ. Hence, one way to proceed is to find a sufficient statistic and
then find the mle. Based on this, we can often obtain an unbiased estimator that
is a function of the sufficient statistic. This process is illustrated in the following
example.
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Example 7.3.1. Let X1, . . . , Xn be iid with pdf

f(x; θ) =

{
θe−θx 0 < x <∞, θ > 0
0 elsewhere.

Suppose we want an MVUE of θ. The joint pdf (likelihood function) is

L(θ; x1, . . . , xn) = θne−θ
Pn

i=1 xi , for xi > 0, i = 1, . . . , n.

Hence, by the factorization theorem, the statistic Y1 =
∑n

i=1 Xi is sufficient. The
log of the likelihood function is

l(θ) = n log θ − θ

n∑
i=1

xi.

Taking the partial with respect to θ of l(θ) and setting it to 0 results in the mle of
θ, which is given by

Y2 =
1

X
.

Note that Y2 = n/Y1 is a function of the sufficient statistic Y1. Also, since Y2 is the
mle of θ, it is asymptotically unbiased. Hence, as a first step, we shall determine
its expectation. In this problem, Xi are iid Γ(1, 1/θ) random variables; hence,
Y1 =

∑n
i=1 Xi is Γ(n, 1/θ). Therefore,

E(Y2) = E

[
1

X

]
= nE

[
1∑n

i=1 Xi

]
= n

∫ ∞

0

θn

Γ(n)
t−1tn−1e−θt dt;

making the change of variable z = θt and simplifying results in

E(Y2) = E

[
1

X

]
= θ

n

(n− 1)!
Γ(n− 1) = θ

n

n− 1
.

Thus the statistic [(n− 1)Y2]/n = (n− 1)/
∑n

i=1 Xi is an MVUE of θ.

In the next two sections, we discover that, in most instances, if there is one
function ϕ(Y1) that is unbiased, ϕ(Y1) is the only unbiased estimator based on the
sufficient statistic Y1.

Remark 7.3.1. Since the unbiased estimator ϕ(Y1), where ϕ(Y1) = E(Y2|y1), has
a variance smaller than that of the unbiased estimator Y2 of θ, students sometimes
reason as follows. Let the function Υ(y3) = E[ϕ(Y1)|Y3 = y3], where Y3 is another
statistic, which is not sufficient for θ. By the Rao–Blackwell theorem, we have
E[Υ(Y3)] = θ and Υ(Y3) has a smaller variance than does ϕ(Y1). Accordingly,
Υ(Y3) must be better than ϕ(Y1) as an unbiased estimator of θ. But this is not true,
because Y3 is not sufficient; thus, θ is present in the conditional distribution of Y1,
given Y3 = y3, and the conditional mean Υ(y3). So although indeed E[Υ(Y3)] = θ,
Υ(Y3) is not even a statistic because it involves the unknown parameter θ and hence
cannot be used as an estimate.
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We illustrate this remark in the following example.

Example 7.3.2. Let X1, X2, X3 be a random sample from an exponential distri-
bution with mean θ > 0, so that the joint pdf is(

1

θ

)3

e−(x1+x2+x3)/θ, 0 < xi <∞,

i = 1, 2, 3, zero elsewhere. From the factorization theorem, we see that Y1 =
X1 + X2 + X3 is a sufficient statistic for θ. Of course,

E(Y1) = E(X1 + X2 + X3) = 3θ,

and thus Y1/3 = X is a function of the sufficient statistic that is an unbiased
estimator of θ.

In addition, let Y2 = X2 + X3 and Y3 = X3. The one-to-one transformation
defined by

x1 = y1 − y2, x2 = y2 − y3, x3 = y3

has Jacobian equal to 1 and the joint pdf of Y1, Y2, Y3 is

g(y1, y2, y3; θ) =

(
1

θ

)3

e−y1/θ, 0 < y3 < y2 < y1 <∞,

zero elsewhere. The marginal pdf of Y1 and Y3 is found by integrating out y2 to
obtain

g13(y1, y3; θ) =

(
1

θ

)3

(y1 − y3)e
−y1/θ, 0 < y3 < y1 <∞,

zero elsewhere. The pdf of Y3 alone is

g3(y3; θ) =
1

θ
e−y3/θ, 0 < y3 <∞,

zero elsewhere, since Y3 = X3 is an observation of a random sample from this
exponential distribution.

Accordingly, the conditional pdf of Y1, given Y3 = y3, is

g1|3(y1|y3) =
g13(y1, y3; θ)

g3(y3; θ)

=

(
1

θ

)2

(y1 − y3)e
−(y1−y3)/θ, 0 < y3 < y1 < ∞,

zero elsewhere. Thus

E

(
Y1

3

∣∣∣∣ y3

)
= E

(
Y1 − Y3

3

∣∣∣∣ y3

)
+ E

(
Y3

3

∣∣∣∣ y3

)
=

(
1

3

)∫ ∞

y3

(
1

θ

)2

(y1 − y3)
2e−(y1−y3)/θ dy1 +

y3

3

=

(
1

3

)
Γ(3)θ3

θ2
+

y3

3
=

2θ

3
+

y3

3
= Υ(y3).
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Of course, E[Υ(Y3)] = θ and var[Υ(Y3)] ≤ var(Y1/3), but Υ(Y3) is not a statistic, as
it involves θ and cannot be used as an estimator of θ. This illustrates the preceding
remark.

EXERCISES

7.3.1. In each of Exercises 7.2.1–7.2.4, show that the mle of θ is a function of the
sufficient statistic for θ.

7.3.2. Let Y1 < Y2 < Y3 < Y4 < Y5 be the order statistics of a random sample of size
5 from the uniform distribution having pdf f(x; θ) = 1/θ, 0 < x < θ, 0 < θ < ∞,
zero elsewhere. Show that 2Y3 is an unbiased estimator of θ. Determine the joint
pdf of Y3 and the sufficient statistic Y5 for θ. Find the conditional expectation
E(2Y3|y5) = ϕ(y5). Compare the variances of 2Y3 and ϕ(Y5).

7.3.3. If X1, X2 is a random sample of size 2 from a distribution having pdf
f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞, 0 < θ < ∞, zero elsewhere, find the joint
pdf of the sufficient statistic Y1 = X1 + X2 for θ and Y2 = X2. Show that Y2 is an
unbiased estimator of θ with variance θ2. Find E(Y2|y1) = ϕ(y1) and the variance
of ϕ(Y1).

7.3.4. Let f(x, y) = (2/θ2)e−(x+y)/θ, 0 < x < y < ∞, zero elsewhere, be the joint
pdf of the random variables X and Y .

(a) Show that the mean and the variance of Y are, respectively, 3θ/2 and 5θ2/4.

(b) Show that E(Y |x) = x+θ. In accordance with the theory, the expected value
of X + θ is that of Y , namely, 3θ/2, and the variance of X + θ is less than
that of Y . Show that the variance of X + θ is in fact θ2/4.

7.3.5. In each of Exercises 7.2.1–7.2.3, compute the expected value of the given
sufficient statistic and, in each case, determine an unbiased estimator of θ that is a
function of that sufficient statistic alone.

7.3.6. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
mean θ. Find the conditional expectation E(X1 + 2X2 + 3X3 |

∑n
1 Xi).

7.4 Completeness and Uniqueness

Let X1, X2, . . . , Xn be a random sample from the Poisson distribution that has pmf

f(x; θ) =

{
θxe−θ

x! x = 0, 1, 2, . . . ; θ > 0
0 elsewhere.

From Exercise 7.2.2, we know that Y1 =
∑n

i=1 Xi is a sufficient statistic for θ and
its pmf is

g1(y1; θ) =

{
(nθ)y1e−nθ

y1!
y1 = 0, 1, 2, . . .

0 elsewhere.
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Let us consider the family {g1(y1; θ) : θ > 0} of probability mass functions. Suppose
that the function u(Y1) of Y1 is such that E[u(Y1)] = 0 for every θ > 0. We shall
show that this requires u(y1) to be zero at every point y1 = 0, 1, 2, . . . . That is,
E[u(Y1)] = 0 for θ > 0 requires

0 = u(0) = u(1) = u(2) = u(3) = · · · .

We have for all θ > 0 that

0 = E[u(Y1)] =

∞∑
y1=0

u(y1)
(nθ)y1e−nθ

y1!

= e−nθ

[
u(0) + u(1)

nθ

1!
+ u(2)

(nθ)2

2!
+ · · ·

]
.

Since e−nθ does not equal zero, we have shown that

0 = u(0) + [nu(1)]θ +

[
n2u(2)

2

]
θ2 + · · · .

However, if such an infinite (power) series converges to zero for all θ > 0, then each
of the coefficients must equal zero. That is,

u(0) = 0, nu(1) = 0,
n2u(2)

2
= 0, . . . ,

and thus 0 = u(0) = u(1) = u(2) = · · · , as we wanted to show. Of course, the
condition E[u(Y1)] = 0 for all θ > 0 does not place any restriction on u(y1) when y1

is not a nonnegative integer. So we see that, in this illustration, E[u(Y1)] = 0 for all
θ > 0 requires that u(y1) equals zero except on a set of points that has probability
zero for each pmf g1(y1; θ), 0 < θ. From the following definition we observe that
the family {g1(y1; θ) : 0 < θ} is complete.

Definition 7.4.1. Let the random variable Z of either the continuous type or the
discrete type have a pdf or pmf that is one member of the family {h(z; θ) : θ ∈ Ω}. If
the condition E[u(Z)] = 0, for every θ ∈ Ω, requires that u(z) be zero except on a set
of points that has probability zero for each h(z; θ), θ ∈ Ω, then the family {h(z; θ) :
θ ∈ Ω} is called a complete family of probability density or mass functions.

Remark 7.4.1. In Section 1.8, it was noted that the existence of E[u(X)] implies
that the integral (or sum) converges absolutely. This absolute convergence was
tacitly assumed in our definition of completeness and it is needed to prove that
certain families of probability density functions are complete.

In order to show that certain families of probability density functions of the
continuous type are complete, we must appeal to the same type of theorem in anal-
ysis that we used when we claimed that the moment generating function uniquely
determines a distribution. This is illustrated in the next example.
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Example 7.4.1. Consider the family of pdfs {h(z; θ) : 0 < θ < ∞}. Suppose Z
has a pdf in this family given by

h(z; θ) =

{
1
θ e−z/θ 0 < z <∞
0 elsewhere.

Let us say that E[u(Z)] = 0 for every θ > 0. That is,

1

θ

∫ ∞

0

u(z)e−z/θ dz = 0, θ > 0.

Readers acquainted with the theory of transformations recognize the integral in the
left-hand member as being essentially the Laplace transform of u(z). In that theory
we learn that the only function u(z) transforming to a function of θ that is identically
equal to zero is u(z) = 0, except (in our terminology) on a set of points that has
probability zero for each h(z; θ), θ > 0. That is, the family {h(z; θ) : 0 < θ < ∞}
is complete.

Let the parameter θ in the pdf or pmf f(x; θ), θ ∈ Ω, have a sufficient statistic
Y1 = u1(X1, X2, . . . , Xn), where X1, X2, . . . , Xn is a random sample from this dis-
tribution. Let the pdf or pmf of Y1 be fY1(y1; θ), θ ∈ Ω. It has been seen that if
there is any unbiased estimator Y2 (not a function of Y1 alone) of θ, then there is at
least one function of Y1 that is an unbiased estimator of θ, and our search for a best
estimator of θ may be restricted to functions of Y1. Suppose it has been verified
that a certain function ϕ(Y1), not a function of θ, is such that E[ϕ(Y1)] = θ for all
values of θ, θ ∈ Ω. Let ψ(Y1) be another function of the sufficient statistic Y1 alone,
so that we also have E[ψ(Y1)] = θ for all values of θ, θ ∈ Ω. Hence

E[ϕ(Y1)− ψ(Y1)] = 0, θ ∈ Ω.

If the family {fY1(y1; θ) : θ ∈ Ω} is complete, the function of ϕ(y1)−ψ(y1) = 0,
except on a set of points that has probability zero. That is, for every other unbiased
estimator ψ(Y1) of θ, we have

ϕ(y1) = ψ(y1)

except possibly at certain special points. Thus, in this sense [namely ϕ(y1) = ψ(y1),
except on a set of points with probability zero], ϕ(Y1) is the unique function of Y1,
which is an unbiased estimator of θ. In accordance with the Rao–Blackwell theorem,
ϕ(Y1) has a smaller variance than every other unbiased estimator of θ. That is, the
statistic ϕ(Y1) is the MVUE of θ. This fact is stated in the following theorem of
Lehmann and Scheffé.

Theorem 7.4.1 (Lehmann and Scheffé). Let X1, X2, . . . , Xn, n a fixed positive
integer, denote a random sample from a distribution that has pdf or pmf f(x; θ), θ ∈
Ω, let Y1 = u1(X1, X2, . . . , Xn) be a sufficient statistic for θ, and let the family
{fY1(y1; θ) : θ ∈ Ω} be complete. If there is a function of Y1 that is an unbiased
estimator of θ, then this function of Y1 is the unique MVUE of θ. Here “unique” is
used in the sense described in the preceding paragraph.
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The statement that Y1 is a sufficient statistic for a parameter θ, θ ∈ Ω, and that
the family {fY1(y1; θ) : θ ∈ Ω} of probability density functions is complete is lengthy
and somewhat awkward. We shall adopt the less descriptive, but more convenient,
terminology that Y1 is a complete sufficient statistic for θ. In the next section,
we study a fairly large class of probability density functions for which a complete
sufficient statistic Y1 for θ can be determined by inspection.

Example 7.4.2 (Uniform Distribution). Let X1, X2, . . . , Xn be a random sample
from the uniform distribution with pdf f(x; θ) = 1/θ, 0 < x < θ, θ > 0, and
zero elsewhere. As Exercise 7.2.3 shows, Yn = max{X1, X2, . . . , Xn} is a sufficient
statistic for θ. It is easy to show that the pdf of Yn is

g(yn; θ) =

{
nyn−1

n

θn 0 < yn < θ
0 elsewhere.

(7.4.1)

To show that Yn is complete, suppose for any function u(t) and any θ that E[u(Yn)] =
0; i.e.,

0 =

∫ θ

0

u(t)
ntn−1

θn
dt.

Since θ > 0, this equation is equivalent to

0 =

∫ θ

0

u(t)tn−1 dt.

Taking partial derivatives of both sides with respect to θ and using the Fundamental
Theorem of Calculus, we have

0 = u(θ)θn−1.

Since θ > 0, u(θ) = 0, for all θ > 0. Thus Yn is a complete and sufficient statistic
for θ. It is easy to show that

E(Yn) =

∫ θ

0

y
nyn−1

θn
dy =

n

n + 1
θ.

Therefore, the MVUE of θ is ((n + 1)/n)Yn.

EXERCISES

7.4.1. If az2 + bz + c = 0 for more than two values of z, then a = b = c = 0. Use
this result to show that the family {b(2, θ) : 0 < θ < 1} is complete.

7.4.2. Show that each of the following families is not complete by finding at least
one nonzero function u(x) such that E[u(X)] = 0, for all θ > 0.

(a)

f(x; θ) =

{
1
2θ −θ < x < θ, where 0 < θ <∞
0 elsewhere.
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(b) N(0, θ), where 0 < θ <∞.

7.4.3. Let X1, X2, . . . , Xn represent a random sample from the discrete distribution
having the pmf

f(x; θ) =

{
θx(1− θ)1−x x = 0, 1, 0 < θ < 1
0 elsewhere.

Show that Y1 =
∑n

1 Xi is a complete sufficient statistic for θ. Find the unique
function of Y1 that is the MVUE of θ.
Hint: Display E[u(Y1)] = 0, show that the constant term u(0) is equal to zero,
divide both members of the equation by θ 
= 0, and repeat the argument.

7.4.4. Consider the family of probability density functions {h(z; θ) : θ ∈ Ω}, where
h(z; θ) = 1/θ, 0 < z < θ, zero elsewhere.

(a) Show that the family is complete provided that Ω = {θ : 0 < θ < ∞}.
Hint: For convenience, assume that u(z) is continuous and note that the
derivative of E[u(Z)] with respect to θ is equal to zero also.

(b) Show that this family is not complete if Ω = {θ : 1 < θ < ∞}.
Hint: Concentrate on the interval 0 < z < 1 and find a nonzero function
u(z) on that interval such that E[u(Z)] = 0 for all θ > 1.

7.4.5. Show that the first order statistic Y1 of a random sample of size n from
the distribution having pdf f(x; θ) = e−(x−θ), θ < x < ∞, −∞ < θ < ∞, zero
elsewhere, is a complete sufficient statistic for θ. Find the unique function of this
statistic which is the MVUE of θ.

7.4.6. Let a random sample of size n be taken from a distribution of the discrete
type with pmf f(x; θ) = 1/θ, x = 1, 2, . . . , θ, zero elsewhere, where θ is an unknown
positive integer.

(a) Show that the largest observation, say Y , of the sample is a complete sufficient
statistic for θ.

(b) Prove that
[Y n+1 − (Y − 1)n+1]/[Y n − (Y − 1)n]

is the unique MVUE of θ.

7.4.7. Let X have the pdf fX(x; θ) = 1/(2θ), for −θ < x < θ, zero elsewhere, where
θ > 0.

(a) Is the statistic Y = |X | a sufficient statistic for θ? Why?

(b) Let fY (y; θ) be the pdf of Y . Is the family {fY (y; θ) : θ > 0} complete? Why?

7.4.8. Let X have the pmf p(x; θ) = 1
2

(
n
|x|

)
θ|x|(1− θ)n−|x|, for x = ±1,±2, . . . ,±n,

p(0, θ) = (1− θ)n, and zero elsewhere, where 0 < θ < 1.

(a) Show that this family {p(x; θ) : 0 < θ < 1} is not complete.
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(b) Let Y = |X |. Show that Y is a complete and sufficient statistic for θ.

7.4.9. Let X1, . . . , Xn be iid with pdf f(x; θ) = 1/(3θ), −θ < x < 2θ, zero else-
where, where θ > 0.

(a) Find the mle θ̂ of θ.

(b) Is θ̂ a sufficient statistic for θ? Why?

(c) Is (n + 1)θ̂/n the unique MVUE of θ? Why?

7.4.10. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n
from a distribution with pdf f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere. By Example
7.4.2, the statistic Yn is a complete sufficient statistic for θ and it has pdf

g(yn; θ) =
nyn−1

n

θn
, 0 < yn < θ,

and zero elsewhere.

(a) Find the distribution function Hn(z; θ) of Z = n(θ − Yn).

(b) Find the limn→∞ Hn(z; θ) and thus the limiting distribution of Z.

7.5 The Exponential Class of Distributions

In this section we discuss an important class of distributions, called the exponential
class. As we show, this class possesses complete and sufficient statistics which are
readily determined from the distribution.

Consider a family {f(x; θ) : θ ∈ Ω} of probability density or mass functions,
where Ω is the interval set Ω = {θ : γ < θ < δ}, where γ and δ are known constants
(they may be ±∞), and where

f(x; θ) =

{
exp[p(θ)K(x) + H(x) + q(θ)] x ∈ S
0 elsewhere,

(7.5.1)

where S is the support of X . In this section we are concerned with a particular
class of the family called the regular exponential class.

Definition 7.5.1 (Regular Exponential Class). A pdf of the form (7.5.1) is said
to be a member of the regular exponential class of probability density or mass
functions if

1. S, the support of X, does not depend upon θ

2. p(θ) is a nontrivial continuous function of θ ∈ Ω

3. Finally,

(a) if X is a continuous random variable, then each of K ′(x) 
≡ 0 and H(x)
is a continuous function of x ∈ S,
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(b) if X is a discrete random variable, then K(x) is a nontrivial function of
x ∈ S.

For example, each member of the family {f(x; θ) : 0 < θ < ∞}, where f(x; θ)
is N(0, θ), represents a regular case of the exponential class of the continuous type
because

f(x; θ) =
1√
2πθ

e−x2/2θ

= exp

(
− 1

2θ
x2 − log

√
2πθ

)
, −∞ < x <∞.

On the other hand, consider the uniform density function given by

f(x; θ) =

{
exp{− log θ} x ∈ (0, θ)
0 elsewhere.

This can be written in the form (7.5.1), but the support is the interval (0, θ), which
depends on θ. Hence the uniform family is not a regular exponential family.

Let X1, X2, . . . , Xn denote a random sample from a distribution that represents
a regular case of the exponential class. The joint pdf or pmf of X1, X2, . . . , Xn is

exp

[
p(θ)

n∑
1

K(xi) +

n∑
1

H(xi) + nq(θ)

]

for xi ∈ S, i = 1, 2, . . . , n and zero elsewhere. At points in the S of X , this joint
pdf or pmf may be written as the product of the two nonnegative functions

exp

[
p(θ)

n∑
1

K(xi) + nq(θ)

]
exp

[
n∑
1

H(xi)

]
.

In accordance with the factorization theorem, Theorem 7.2.1, Y1 =
∑n

1 K(Xi) is a
sufficient statistic for the parameter θ.

Besides the fact that Y1 is a sufficient statistic, we can obtain the general form
of the distribution of Y1 and its mean and variance. We summarize these results in
a theorem. The details of the proof are given in Exercises 7.5.5 and 7.5.8. Exercise
7.5.6 obtains the mgf of Y1 in the case that p(θ) = θ.

Theorem 7.5.1. Let X1, X2, . . . , Xn denote a random sample from a distribution
that represents a regular case of the exponential class, with pdf or pmf given by
(7.5.1). Consider the statistic Y1 =

∑n
i=1 K(Xi). Then

1. The pdf or pmf of Y1 has the form

fY1(y1; θ) = R(y1) exp[p(θ)y1 + nq(θ)], (7.5.2)

for y1 ∈ SY1 and some function R(y1). Neither SY1 nor R(y1) depends on θ.

2. E(Y1) = −n q′(θ)
p′(θ) .
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3. Var(Y1) = n 1
p′(θ)3 {p′′(θ)q′(θ)− q′′(θ)p′(θ)} .

Example 7.5.1. Let X have a Poisson distribution with parameter θ ∈ (0,∞).
Then the support of X is the set S = {0, 1, 2, . . .}, which does not depend on θ.
Further, the pmf of X on its support is

f(x, θ) = e−θ θx

x!
= exp{(log θ)x + log(1/x!) + (−θ)}.

Hence the Poisson distribution is a member of the regular exponential class, with
p(θ) = log(θ), q(θ) = −θ, and K(x) = x. Therefore, if X1, X2, . . . , Xn denotes
a random sample on X , then the statistic Y1 =

∑n
i=1 Xi is sufficient. But since

p′(θ) = 1/θ and q′(θ) = −1, Theorem 7.5.1 verifies that the mean of Y1 is nθ. It
is easy to verify that the variance of Y1 is nθ also. Finally, we can show that the
function R(y1) in Theorem 7.5.1 is given by R(y1) = ny1(1/y1!).

For the regular case of the exponential class, we have shown that the statistic
Y1 =

∑n
1 K(Xi) is sufficient for θ. We now use the form of the pdf of Y1 given in

Theorem 7.5.1 to establish the completeness of Y1.

Theorem 7.5.2. Let f(x; θ), γ < θ < δ, be a pdf or pmf of a random variable X
whose distribution is a regular case of the exponential class. Then if X1, X2, . . . , Xn

(where n is a fixed positive integer) is a random sample from the distribution of X,
the statistic Y1 =

∑n
1 K(Xi) is a sufficient statistic for θ and the family {fY1(y1; θ) :

γ < θ < δ} of probability density functions of Y1 is complete. That is, Y1 is a
complete sufficient statistic for θ.

Proof: We have shown above that Y1 is sufficient. For completeness, suppose that
E[u(Y1)] = 0. Expression (7.5.2) of Theorem 7.5.1 gives the pdf of Y1. Hence we
have the equation ∫

SY1

u(y1)R(y1) exp{p(θ)y1 + nq(θ)} dy1 = 0

or equivalently since exp{nq(θ)} 
= 0,∫
SY1

u(y1)R(y1) exp{p(θ)y1} dy1 = 0

for all θ. However, p(θ) is a nontrivial continuous function of θ, and thus this
integral is essentially a type of Laplace transform of u(y1)R(y1). The only function
of y1 transforming to the 0 function is the zero function (except for a set of points
with probability zero in our context). That is,

u(y1)R(y1) ≡ 0.

However, R(y1) 
= 0 for all y1 ∈ SY1 because it is a factor in the pdf of Y1. Hence
u(y1) ≡ 0 (except for a set of points with probability zero). Therefore, Y1 is a
complete sufficient statistic for θ.
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This theorem has useful implications. In a regular case of form (7.5.1), we can
see by inspection that the sufficient statistic is Y1 =

∑n
1 K(Xi). If we can see how

to form a function of Y1, say ϕ(Y1), so that E[ϕ(Y1)] = θ, then the statistic ϕ(Y1)
is unique and is the MVUE of θ.

Example 7.5.2. Let X1, X2, . . . , Xn denote a random sample from a normal dis-
tribution that has pdf

f(x; θ) =
1

σ
√

2π
exp

[
− (x− θ)2

2σ2

]
, −∞ < x < ∞, −∞ < θ < ∞,

or

f(x; θ) = exp

(
θ

σ2
x− x2

2σ2
− log

√
2πσ2 − θ2

2σ2

)
.

Here σ2 is any fixed positive number. This is a regular case of the exponential class
with

p(θ) =
θ

σ2
, K(x) = x,

H(x) = − x2

2σ2
− log

√
2πσ2, q(θ) = − θ2

2σ2
.

Accordingly, Y1 = X1 + X2 + · · · + Xn = nX is a complete sufficient statistic for
the mean θ of a normal distribution for every fixed value of the variance σ2. Since
E(Y1) = nθ, then ϕ(Y1) = Y1/n = X is the only function of Y1 that is an unbiased
estimator of θ; and being a function of the sufficient statistic Y1, it has a minimum
variance. That is, X is the unique MVUE of θ. Incidentally, since Y1 is a one-to-one
function of X, X itself is also a complete sufficient statistic for θ.

Example 7.5.3 (Example 7.5.1, Continued). Reconsider the discussion concerning
the Poisson distribution with parameter θ found in Example 7.5.1. Based on this
discussion, the statistic Y1 =

∑n
i=1 Xi was sufficient. It follows from Theorem

7.5.2 that its family of distributions is complete. Since E(Y1) = nθ, it follows that
X = n−1Y1 is the unique MVUE of θ.

EXERCISES

7.5.1. Write the pdf

f(x; θ) =
1

6θ4
x3e−x/θ, 0 < x < ∞, 0 < θ <∞,

zero elsewhere, in the exponential form. If X1, X2, . . . , Xn is a random sample from
this distribution, find a complete sufficient statistic Y1 for θ and the unique function
ϕ(Y1) of this statistic that is the MVUE of θ. Is ϕ(Y1) itself a complete sufficient
statistic?

7.5.2. Let X1, X2, . . . , Xn denote a random sample of size n > 1 from a distribution
with pdf f(x; θ) = θe−θx, 0 < x <∞, zero elsewhere, and θ > 0. Then Y =

∑n
1 Xi

is a sufficient statistic for θ. Prove that (n− 1)/Y is the MVUE of θ.
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7.5.3. Let X1, X2, . . . , Xn denote a random sample of size n from a distribution
with pdf f(x; θ) = θxθ−1, 0 < x < 1, zero elsewhere, and θ > 0.

(a) Show that the geometric mean (X1X2 · · ·Xn)1/n of the sample is a complete
sufficient statistic for θ.

(b) Find the maximum likelihood estimator of θ, and observe that it is a function
of this geometric mean.

7.5.4. Let X denote the mean of the random sample X1, X2, . . . , Xn from a gamma-
type distribution with parameters α > 0 and β = θ > 0. Compute E[X1|x].
Hint: Can you find directly a function ψ(X) of X such that E[ψ(X)] = θ? Is
E(X1|x) = ψ(x)? Why?

7.5.5. Let X be a random variable with the pdf of a regular case of the exponential
class, given by f(x; θ) = exp[θK(x) + H(x) + q(θ)], a < x < b, γ < θ < δ. Show
that E[K(X)] = −q′(θ)/p′(θ), provided these derivatives exist, by differentiating
both members of the equality∫ b

a

exp[p(θ)K(x) + H(x) + q(θ)] dx = 1

with respect to θ. By a second differentiation, find the variance of K(X).

7.5.6. Given that f(x; θ) = exp[θK(x) + H(x) + q(θ)], a < x < b, γ < θ < δ,
represents a regular case of the exponential class, show that the moment-generating
function M(t) of Y = K(X) is M(t) = exp[q(θ) − q(θ + t)], γ < θ + t < δ.

7.5.7. In the preceding exercise, given that E(Y ) = E[K(X)] = θ, prove that Y is
N(θ, 1).
Hint: Consider M ′(0) = θ and solve the resulting differential equation.

7.5.8. If X1, X2, . . . , Xn is a random sample from a distribution that has a pdf which
is a regular case of the exponential class, show that the pdf of Y1 =

∑n
1 K(Xi) is

of the form fY1(y1; θ) = R(y1) exp[p(θ)y1 + nq(θ)].
Hint: Let Y2 = X2, . . . , Yn = Xn be n − 1 auxiliary random variables. Find the
joint pdf of Y1, Y2, . . . , Yn and then the marginal pdf of Y1.

7.5.9. Let Y denote the median and let X denote the mean of a random sample of
size n = 2k + 1 from a distribution that is N(μ, σ2). Compute E(Y |X = x).
Hint: See Exercise 7.5.4.

7.5.10. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf
f(x; θ) = θ2xe−θx, 0 < x < ∞, where θ > 0.

(a) Argue that Y =
∑n

1 Xi is a complete sufficient statistic for θ.

(b) Compute E(1/Y ) and find the function of Y that is the unique MVUE of θ.

7.5.11. Let X1, X2, . . . , Xn, n > 2, be a random sample from the binomial distri-
bution b(1, θ).



440 Sufficiency

(a) Show that Y1 = X1 + X2 + · · ·+ Xn is a complete sufficient statistic for θ.

(b) Find the function ϕ(Y1) that is the MVUE of θ.

(c) Let Y2 = (X1 + X2)/2 and compute E(Y2).

(d) Determine E(Y2|Y1 = y1).

7.5.12. Let X1, X2, . . . , Xn be a random sample from a distribution with pmf
p(x; θ) = θx(1− θ), x = 0, 1, 2, . . ., zero elsewhere, where 0 ≤ θ ≤ 1.

(a) Find the mle, θ̂, of θ.

(b) Show that
∑n

1 Xi is a complete sufficient statistic for θ.

(c) Determine the MVUE of θ.

7.6 Functions of a Parameter

Up to this point we have sought an MVUE of a parameter θ. Not always, however,
are we interested in θ but rather in a function of θ. There are several techniques
we can use to the find the MVUE. One is by inspection of the expected value of a
sufficient statistic. This is how we found the MVUEs in Examples 7.5.2 and 7.5.3
of the last section. In this section and its exercises, we offer more examples of the
inspection technique. The second technique is based on the conditional expectation
of an unbiased estimate given a sufficient statistic. The third example illustrates
this technique.

Recall that in Chapter 6 under regularity conditions, we obtained the asymptotic
distribution theory for maximum likelihood estimators (mles). This allows certain
asymptotic inferences (confidence intervals and tests) for these estimators. Such
a straightforward theory is not available for MVUEs. As Theorem 7.3.2 shows,
though, sometimes we can determine the relationship between the mle and the
MVUE. In these situations, we can often obtain the asymptotic distribution for the
MVUE based on the asymptotic distribution of the mle. Also, as we discuss in
Section 7.6.1, we can usually make use of the bootstrap to obtain standard errors
for MVUE estimates. We illustrate this for some of the following examples.

Example 7.6.1. Let X1, X2, . . . , Xn denote the observations of a random sample
of size n > 1 from a distribution that is b(1, θ), 0 < θ < 1. We know that if
Y =

∑n
1 Xi, then Y/n is the unique minimum variance unbiased estimator of θ.

Now suppose we want to estimate the variance of Y/n, which is θ(1 − θ)/n. Let
δ = θ(1−θ). Because Y is a sufficient statistic for θ, it is known that we can restrict
our search to functions of Y . The maximum likelihood estimate of δ, which is given
by δ̃ = (Y/n)(1 − Y/n), is a function of the sufficient statistic and seems to be a
reasonable starting point. The expectation of this statistic is given by

E[δ̃] = E

[
Y

n

(
1− Y

n

)]
=

1

n
E(Y )− 1

n2
E(Y 2).
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Now E(Y ) = nθ and E(Y 2) = nθ(1 − θ) + n2θ2. Hence

E

[
Y

n

(
1− Y

n

)]
= (n− 1)

θ(1− θ)

n
.

If we multiply both members of this equation by n/(n−1), we find that the statistic

δ̂ = (n/(n − 1))(Y/n)(1 − Y/n) = (n/(n − 1))δ̃ is the unique MVUE of δ. Hence

the MVUE of δ/n, the variance of Y/n, is δ̂/n.

It is interesting to compare the mle δ̃ with δ̂. Recall from Chapter 6 that the
mle δ̃ is a consistent estimate of δ and that

√
n(δ̃ − δ) is asymptotically normal.

Because

δ̂ − δ̃ = δ̃
1

n− 1

P→ δ · 0 = 0,

it follows that δ̂ is also a consistent estimator of δ. Further,

√
n(δ̂ − δ)−

√
n(δ̃ − δ) =

√
n

n− 1
δ̃

P→ 0. (7.6.1)

Hence
√

n(δ̂ − δ) has the same asymptotic distribution as
√

n(δ̃ − δ). Using the
Δ-method, Theorem 5.2.9, we can obtain the asymptotic distribution of

√
n(δ̃− δ).

Let g(θ) = θ(1− θ). Then g′(θ) = 1− 2θ. Hence, by Theorem 5.2.9 and (7.6.1), the
asymptotic distribution of

√
n(δ̃ − δ) is given by

√
n(δ̂ − δ)

D→ N(0, θ(1− θ)(1 − 2θ)2),

provided θ 
= 1/2; see Exercise 7.6.12 for the case θ = 1/2.

In the next example, we consider the uniform (0, θ) distribution and obtain the
MVUE for all differentiable functions of θ. This example was sent to us by Professor
Bradford Crain of Portland State University.

Example 7.6.2. Suppose X1, X2, . . . , Xn are iid random variables with the com-
mon uniform (0, θ) distribution. Let Yn = max{X1, X2, . . . , Xn}. In Example 7.4.2,
we showed that Yn is a complete and sufficient statistic of θ and the pdf of Yn is
given by (7.4.1). Let g(θ) be any differentiable function of θ. Then the MVUE of
g(θ) is the statistic u(Yn), which satisfies the equation

g(θ) =

∫ θ

0

u(y)
nyn−1

θn
dy, θ > 0,

or equivalently,

g(θ)θn =

∫ θ

0

u(y)nyn−1 dy, θ > 0.

Differentiating both sides of this equation with respect to θ, we obtain

nθn−1g(θ) + θng′(θ) = u(θ)nθn−1.
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Solving for u(θ), we obtain

u(θ) = g(θ) +
θg′(θ)

n
.

Therefore, the MVUE of g(θ) is

u(Yn) = g(Yn) +
Yn

n
g′(Yn). (7.6.2)

For example, if g(θ) = θ, then

u(Yn) = Yn +
Yn

n
=

n + 1

n
Yn,

which agrees with the result obtained in Example 7.4.2. Other examples are given
in Exercise 7.6.5.

A somewhat different but also very important problem in point estimation is
considered in the next example. In the example the distribution of a random variable
X is described by a pdf f(x; θ) that depends upon θ ∈ Ω. The problem is to estimate
the fractional part of the probability for this distribution, which is at, or to the left
of, a fixed point c. Thus we seek an MVUE of F (c; θ), where F (x; θ) is the cdf of
X .

Example 7.6.3. Let X1, X2, . . . , Xn be a random sample of size n > 1 from a
distribution that is N(θ, 1). Suppose that we wish to find an MVUE of the function
of θ defined by

P (X ≤ c) =

∫ c

−∞

1√
2π

e−(x−θ)2/2 dx = Φ(c− θ),

where c is a fixed constant. There are many unbiased estimators of Φ(c−θ). We first
exhibit one of these, say u(X1), a function of X1 alone. We shall then compute the
conditional expectation, E[u(X1)|X = x] = ϕ(x), of this unbiased statistic, given
the sufficient statistic X, the mean of the sample. In accordance with the theorems
of Rao–Blackwell and Lehmann–Scheffé, ϕ(X) is the unique MVUE of Φ(c− θ).

Consider the function u(x1), where

u(x1) =

{
1 x1 ≤ c
0 x1 > c.

The expected value of the random variable u(X1) is given by

E[u(X1)] = 1 · P [X1 − θ ≤ c− θ] = Φ(c− θ).

That is, u(X1) is an unbiased estimator of Φ(c− θ).
We shall next discuss the joint distribution of X1 and X and the conditional

distribution of X1, given X = x. This conditional distribution enables us to compute
the conditional expectation E[u(X1)|X = x] = ϕ(x). In accordance with Exercise
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7.6.8, the joint distribution of X1 and X is bivariate normal with mean vector (θ, θ),
variances σ2

1 = 1 and σ2
2 = 1/n, and correlation coefficient ρ = 1/

√
n. Thus the

conditional pdf of X1, given X = x, is normal with linear conditional mean

θ +
ρσ1

σ2
(x− θ) = x

and with variance

σ2
1(1− ρ2) =

n− 1

n
.

The conditional expectation of u(X1), given X = x, is then

ϕ(x) =

∫ ∞

−∞
u(x1)

√
n

n− 1

1√
2π

exp

[
−n(x1 − x)2

2(n− 1)

]
dx1

=

∫ c

−∞

√
n

n− 1

1√
2π

exp

[
−n(x1 − x)2

2(n− 1)

]
dx1.

The change of variable z =
√

n(x1 − x)/
√

n− 1 enables us to write this conditional
expectation as

ϕ(x) =

∫ c′

−∞

1√
2π

e−z2/2 dz = Φ(c′) = Φ

[√
n(c− x)√
n− 1

]
,

where c′ =
√

n(c − x)/
√

n− 1. Thus the unique MVUE of Φ(c − θ) is, for every
fixed constant c, given by ϕ(X) = Φ[

√
n(c−X)/

√
n− 1].

In this example the mle of Φ(c− θ) is Φ(c−X). These two estimators are close
because

√
n/(n− 1)→ 1, as n →∞.

Remark 7.6.1. We should like to draw the attention of the reader to a rather
important fact. This has to do with the adoption of a principle, such as the principle
of unbiasedness and minimum variance. A principle is not a theorem; and seldom
does a principle yield satisfactory results in all cases. So far, this principle has
provided quite satisfactory results. To see that this is not always the case, let X
have a Poisson distribution with parameter θ, 0 < θ <∞. We may look upon X as
a random sample of size 1 from this distribution. Thus X is a complete sufficient
statistic for θ. We seek the estimator of e−2θ that is unbiased and has minimum
variance. Consider Y = (−1)X . We have

E(Y ) = E[(−1)X ] =
∞∑

x=0

(−θ)xe−θ

x!
= e−2θ.

Accordingly, (−1)X is the MVUE of e−2θ. Here this estimator leaves much to be
desired. We are endeavoring to elicit some information about the number e−2θ,
where 0 < e−2θ < 1; yet our point estimate is either −1 or +1, each of which is a
very poor estimate of a number between 0 and 1. We do not wish to leave the reader
with the impression that an MVUE is bad. That is not the case at all. We merely
wish to point out that if one tries hard enough, one can find instances where such
a statistic is not good. Incidentally, the maximum likelihood estimator of e−2θ is,
in the case where the sample size equals 1, e−2X , which is probably a much better
estimator in practice than is the unbiased estimator (−1)X .
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7.6.1 Bootstrap Standard Errors

Section 6.3 presented the asymptotic theory of maximum likelihood estimators
(mles). In many cases, this theory also provides consistent estimators of the asymp-
totic standard deviation of mles. This allows a simple, but very useful, summary of
the estimation process; i.e., θ̂±SE(θ̂) where θ̂ is the mle of θ and SE(θ̂) is the corre-
sponding standard error. For example, these summaries can be used descriptively as
labels on plots and tables as well as in the formation of asymptotic confidence inter-
vals for inference. Section 4.9 presented percentile confidence intervals for θ based
on the bootstrap. The bootstrap, though, can also be used to obtain standard errors
for estimates including MVUE’s.

Consider a random variable X with pdf f(x; θ), where θ ∈ Ω. Let X1, . . . , Xn

be a random sample on X . Let θ̂ be an estimator of θ based on the sample.
Suppose x1, . . . , xn is a realization of the sample and let θ̂ = θ̂(x1, . . . , xn) be the
corresponding estimate of θ. Recall in Section 4.9 that the bootstrap uses the
empirical cdf F̂n of the realization. This is the discrete distribution which places
mass 1/n at each point xi. The bootstrap procedure samples, with replacement,
from F̂n.

For the bootstrap procedure, we obtain B bootstrap samples. For i = 1, . . . , B,
let the vector x∗

i = (x∗
i,1, . . . , x

∗
i,n)′ denote the ith bootstrap sample. Let θ̂∗i = θ̂(x∗

i )
denote the estimate of θ based on the ith sample. We then have the bootstrap
estimates θ̂∗1 , . . . , θ̂∗B, which we used in Section 4.9 to obtain the bootstrap percentile
confidence interval for θ. Suppose instead we consider the standard deviation of
these bootstrap estimates; that is,

SEB =

[
1

B − 1

B∑
i=1

(θ̂∗1 − θ̂∗)2,

]1/2

, (7.6.3)

where θ̂∗ = (1/B)
∑B

i=1 θ̂∗1 . This is the bootstrap estimate of the standard error of

θ̂.

Example 7.6.4. For this example, we consider a data set drawn from a normal
distribution, N(θ, σ2). In this case the MVUE of θ is the sample mean X and
its usual standard error is s/

√
n, where s is the sample standard deviation. The

rounded data1 are:
27.5 50.9 71.1 43.1 40.4 44.8 36.6 53.5 65.2 47.7

75.7 55.4 61.1 39.8 33.4 57.6 47.9 60.7 27.8 65.2

Assuming the data are in the R vector x, the mean and standard error are computed
as

mean(x); 50.27; sd(x)/sqrt(n); 3.094461

The R function bootse1.R runs the bootstrap for standard errors as described
above. Using 3,000 bootstraps, our run of this function estimated the standard error
by 3.050878. Thus, the estimate and the bootstrap standard error are summarized
as 50.27± 3.05.

1The data are in the file sect76data.rda. The true mean and sd are: 50 and 15.
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The bootstrap process described above is often called the nonparametric boot-
strap because it makes no assumptions about the pdf f(x; θ). In this chapter,
though, strong assumptions are made about the model. For instance, in the last
example, we assume that the pdf is normal. What if we make use of this information
in the bootstrap? This is called the parametric bootstrap. For the last example,
instead of sampling from the empirical cdf F̂n, we sample randomly from the nor-
mal distribution, using as mean x and as standard deviation s, the sample standard
deviation. The R function bootse2.R performs this parametric bootstrap. For our
run on the data set in the example, it computed the standard error as 3.162918.
Notice how close the three estimated standard deviations are.

Which bootstrap, nonparametric or parametric, should we use? We recommend
the nonparametric bootstrap in general. The strong model assumptions are not
needed for its validity. See pages 55–56 of Efron and Tibshirani (1993) for discussion.

EXERCISES

7.6.1. Let X1, X2, . . . , Xn denote a random sample from a distribution that is
N(θ, 1), −∞ < θ <∞. Find the MVUE of θ2.

Hint: First determine E(X
2
).

7.6.2. Let X1, X2, . . . , Xn denote a random sample from a distribution that is
N(0, θ). Then Y =

∑
X2

i is a complete sufficient statistic for θ. Find the MVUE
of θ2.

7.6.3. Consider Example 7.6.3 where the parameter of interest is P (X < c) for X
distributed N(θ, 1). Modify the R function bootse1.R so that for a specified value
of c it returns the MVUE of P (X < c) and the bootstrap standard error of the
estimate. Run your function on the data in ex763data.rda with c = 11 and 3,000
bootstraps. These data are generated from a N(10, 1) distribution. Report (a) the
true parameter, (b) the MVUE, and (c) the bootstrap standard error.

7.6.4. For Example 7.6.4, modify the R function bootse1.R so that the estimate
is the median not the mean. Using 3,000 bootstraps, run your function on the data
set discussed in the example and report (a) the estimate and (b) the bootstrap
standard error.

7.6.5. Let X1, X2, . . . , Xn be a random sample from a uniform (0, θ) distribution.
Continuing with Example 7.6.2, find the MVUEs for the following functions of θ.

(a) g(θ) = θ2

12 , i.e., the variance of the distribution.

(b) g(θ) = 1
θ , i.e., the pdf of the distribution.

(c) For t real, g(θ) = etθ−1
tθ , i.e., the mgf of the distribution.

7.6.6. Let X1, X2, . . . , Xn be a random sample from a Poisson distribution with
parameter θ > 0.
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(a) Find the MVUE of P (X ≤ 1) = (1 + θ)e−θ.

Hint: Let u(x1) = 1, x1 ≤ 1, zero elsewhere, and find E[u(X1)|Y = y],
where Y =

∑n
1 Xi.

(b) Express the MVUE as a function of the mle of θ.

(c) Determine the asymptotic distribution of the mle of θ.

(d) Obtain the mle of P (X ≤ 1). Then use Theorem 5.2.9 to determine its
asymptotic distribution.

7.6.7. Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution
with parameter θ > 0. From Remark 7.6.1, we know that E[(−1)X1 ] = e−2θ.

(a) Show that E[(−1)X1 |Y1 = y1] = (1− 2/n)y1 , where Y1 = X1 + X2 + · · ·+ Xn.
Hint: First show that the conditional pdf of X1, X2, . . . , Xn−1, given Y1 = y1,
is multinomial, and hence that of X1, given Y1 = y1, is b(y1, 1/n).

(b) Show that the mle of e−2θ is e−2X .

(c) Since y1 = nx, show that (1− 2/n)y1 is approximately equal to e−2x when n
is large.

7.6.8. As in Example 7.6.3, let X1, X2, . . . , Xn be a random sample of size n > 1
from a distribution that is N(θ, 1). Show that the joint distribution of X1 and X
is bivariate normal with mean vector (θ, θ), variances σ2

1 = 1 and σ2
2 = 1/n, and

correlation coefficient ρ = 1/
√

n.

7.6.9. Let a random sample of size n be taken from a distribution that has the pdf
f(x; θ) = (1/θ) exp(−x/θ)I(0,∞)(x). Find the mle and MVUE of P (X ≤ 2).

7.6.10. Let X1, X2, . . . , Xn be a random sample with the common pdf f(x) =
θ−1e−x/θ, for x > 0, zero elsewhere; that is, f(x) is a Γ(1, θ) pdf.

(a) Show that the statistic X = n−1
∑n

i=1 Xi is a complete and sufficient statistic
for θ.

(b) Determine the MVUE of θ.

(c) Determine the mle of θ.

(d) Often, though, this pdf is written as f(x) = τe−τx, for x > 0, zero elsewhere.
Thus τ = 1/θ. Use Theorem 6.1.2 to determine the mle of τ .

(e) Show that the statistic X = n−1
∑n

i=1 Xi is a complete and sufficient statistic
for τ . Show that (n − 1)/(nX) is the MVUE of τ = 1/θ. Hence, as usual,
the reciprocal of the mle of θ is the mle of 1/θ, but, in this situation, the
reciprocal of the MVUE of θ is not the MVUE of 1/θ.

(f) Compute the variances of each of the unbiased estimators in parts (b) and
(e).
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7.6.11. Consider the situation of the last exercise, but suppose we have the following
two independent random samples: (1) X1, X2, . . . , Xn is a random sample with the
common pdf fX(x) = θ−1e−x/θ, for x > 0, zero elsewhere, and (2) Y1, Y2, . . . , Yn is
a random sample with common pdf fY (y) = θe−θy, for y > 0, zero elsewhere. The
last exercise suggests that, for some constant c, Z = cX/Y might be an unbiased
estimator of θ2. Find this constant c and the variance of Z.
Hint: Show that X/(θ2Y ) has an F -distribution.

7.6.12. Obtain the asymptotic distribution of the MVUE in Example 7.6.1 for the
case θ = 1/2.

7.7 The Case of Several Parameters

In many of the interesting problems we encounter, the pdf or pmf may not depend
upon a single parameter θ, but perhaps upon two (or more) parameters. In general,
our parameter space Ω is a subset of Rp, but in many of our examples p is 2.

Definition 7.7.1. Let X1, X2, . . . , Xn denote a random sample from a distribution
that has pdf or pmf f(x; θ), where θ ∈ Ω ⊂ Rp. Let S denote the support of X.
Let Y be an m-dimensional random vector of statistics Y = (Y1, . . . , Ym)′, where
Yi = ui(X1, X2, . . . , Xn), for i = 1, . . . , m. Denote the pdf or pmf of Y by fY(y; θ)
for y ∈ Rm. The random vector of statistics Y is jointly sufficient for θ if and
only if ∏n

i=1 f(xi; θ)

fY(y; θ)
= H(x1, x2, . . . , xn), for all xi ∈ S,

where H(x1, x2, . . . , xn) does not depend upon θ.

In general, m 
= p, i.e., the number of sufficient statistics does not have to be
the same as the number of parameters, but in most of our examples this is the case.

As may be anticipated, the factorization theorem can be extended. In our nota-
tion it can be stated in the following manner. The vector of statistics Y is jointly
sufficient for the parameter θ ∈ Ω if and only if we can find two nonnegative func-
tions k1 and k2 such that

n∏
i=1

f(xi; θ) = k1(y; θ)k2(x1, . . . , xn), for all xi ∈ S, (7.7.1)

where the function k2(x1, x2, . . . , xn) does not depend upon θ.

Example 7.7.1. Let X1, X2, . . . , Xn be a random sample from a distribution hav-
ing pdf

f(x; θ1, θ2) =

{
1

2θ2
θ1 − θ2 < x < θ1 + θ2

0 elsewhere,

where −∞ < θ1 < ∞, 0 < θ2 < ∞. Let Y1 < Y2 < · · · < Yn be the order statistics.
The joint pdf of Y1 and Yn is given by

fY1,Y2(y1, yn; θ1, θ2) =
n(n− 1)

(2θ2)n
(yn − y1)

n−2, θ1 − θ2 < y1 < yn < θ1 + θ2,
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and equals zero elsewhere. Accordingly, the joint pdf of X1, X2, . . . , Xn can be
written, for all points in its support (all xi such that θ1 − θ2 < xi < θ1 + θ2),(

1

2θ2

)n

=
n(n− 1)[max(xi)−min(xi)]

n−2

(2θ2)n

(
1

n(n− 1)[max(xi)−min(xi)]n−2

)
.

Since min(xi) ≤ xj ≤ max(xi), j = 1, 2, . . . , n, the last factor does not depend
upon the parameters. Either the definition or the factorization theorem assures us
that Y1 and Yn are joint sufficient statistics for θ1 and θ2.

The concept of a complete family of probability density functions is generalized
as follows: Let

{f(v1, v2, . . . , vk; θ) : θ ∈ Ω}
denote a family of pdfs of k random variables V1, V2, . . . , Vk that depends upon the
p-dimensional vector of parameters θ ∈ Ω. Let u(v1, v2, . . . , vk) be a function of
v1, v2, . . . , vk (but not a function of any or all of the parameters). If

E[u(V1, V2, . . . , Vk)] = 0

for all θ ∈ Ω implies that u(v1, v2, . . . , vk) = 0 at all points (v1, v2, . . . , vk), except on
a set of points that has probability zero for all members of the family of probability
density functions, we shall say that the family of probability density functions is a
complete family.

In the case where θ is a vector, we generally consider best estimators of functions
of θ, that is, parameters δ, where δ = g(θ) for a specified function g. For example,
suppose we are sampling from a N(θ1, θ2) distribution, where θ2 is the variance. Let
θ = (θ1, θ2)

′ and consider the two parameters δ1 = g1(θ) = θ1 and δ2 = g2(θ) =√
θ2. Hence we are interested in best estimates of δ1 and δ2.

The Rao–Blackwell, Lehmann–Scheffé theory outlined in Sections 7.3 and 7.4
extends naturally to this vector case. Briefly, suppose δ = g(θ) is the parameter
of interest and Y is a vector of sufficient and complete statistics for θ. Let T be
a statistic that is a function of Y, such as T = T (Y). If E(T ) = δ, then T is the
unique MVUE of δ.

The remainder of our treatment of the case of several parameters is restricted to
probability density functions that represent what we shall call regular cases of the
exponential class. Here m = p.

Definition 7.7.2. Let X be a random variable with pdf or pmf f(x; θ), where
the vector of parameters θ ∈ Ω ⊂ Rm. Let S denote the support of X. If X is
continuous, assume that S = (a, b), where a or b may be −∞ or ∞, respectively. If
X is discrete, assume that S = {a1, a2, . . .}. Suppose f(x; θ) is of the form

f(x; θ) =

{
exp

[∑m
j=1 pj(θ)Kj(x) + H(x) + q(θ1, θ2, . . . , θm)

]
for all x ∈ S

0 elsewhere.
(7.7.2)

Then we say this pdf or pmf is a member of the exponential class. We say it is
a regular case of the exponential family if, in addition,
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1. the support does not depend on the vector of parameters θ,

2. the space Ω contains a nonempty, m-dimensional open rectangle,

3. the pj(θ), j = 1, . . . , m, are nontrivial, functionally independent, continuous
functions of θ,

4. and, depending on whether X is continuous or discrete, one of the following
holds, respectively:

(a) if X is a continuous random variable, then the m derivatives K ′
j(x), for

j = 1, 2, . . . , m, are continuous for a < x < b and no one is a linear
homogeneous function of the others, and H(x) is a continuous function
of x, a < x < b.

(b) if X is discrete, the Kj(x), j = 1, 2, . . . , m, are nontrivial functions of
x on the support S and no one is a linear homogeneous function of the
others.

Let X1, . . . , Xn be a random sample on X where the pdf or pmf of X is a regular
case of the exponential class with the same notation as in Definition 7.7.2. It follows
from (7.7.2) that the joint pdf or pmf of the sample is given by

n∏
i=1

f(xi; θ) = exp

⎡⎣ m∑
j=1

pj(θ)
n∑

i=1

Kj(xi) + nq(θ)

⎤⎦ exp

[
n∑

i=1

H(xi)

]
, (7.7.3)

for all xi ∈ S. In accordance with the factorization theorem, the statistics

Y1 =

n∑
i=1

K1(xi), Y2 =

n∑
i=1

K2(xi), . . . , Ym =

n∑
i=1

Km(xi)

are joint sufficient statistics for the m-dimensional vector of parameters θ. It is left
as an exercise to prove that the joint pdf of Y = (Y1, . . . , Ym)′ is of the form

R(y) exp

⎡⎣ m∑
j=1

pj(θ)yj + nq(θ)

⎤⎦ , (7.7.4)

at points of positive probability density. These points of positive probability density
and the function R(y) do not depend upon the vector of parameters θ. Moreover,
in accordance with a theorem in analysis, it can be asserted that in a regular case
of the exponential class, the family of probability density functions of these joint
sufficient statistics Y1, Y2, . . . , Ym is complete when n > m. In accordance with a
convention previously adopted, we shall refer to Y1, Y2, . . . , Ym as joint complete
sufficient statistics for the vector of parameters θ.

Example 7.7.2. Let X1, X2, . . . , Xn denote a random sample from a distribution
that is N(θ1, θ2), −∞ < θ1 < ∞, 0 < θ2 < ∞. Thus the pdf f(x; θ1, θ2) of the
distribution may be written as

f(x; θ1, θ2) = exp

(−1

2θ2
x2 +

θ1

θ2
x− θ2

1

2θ2
− ln

√
2πθ2

)
.
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Therefore, we can take K1(x) = x2 and K2(x) = x. Consequently, the statistics

Y1 =

n∑
1

X2
i and Y2 =

n∑
1

Xi

are joint complete sufficient statistics for θ1 and θ2. Since the relations

Z1 =
Y2

n
= X, Z2 =

Y1 − Y 2
2 /n

n− 1
=

∑
(Xi −X)2

n− 1

define a one-to-one transformation, Z1 and Z2 are also joint complete sufficient
statistics for θ1 and θ2. Moreover,

E(Z1) = θ1 and E(Z2) = θ2.

From completeness, we have that Z1 and Z2 are the only functions of Y1 and Y2

that are unbiased estimators of θ1 and θ2, respectively. Hence Z1 and Z2 are the
unique minimum variance estimators of θ1 and θ2, respectively. The MVUE of the
standard deviation

√
θ2 is derived in Exercise 7.7.5.

In this section we have extended the concepts of sufficiency and completeness
to the case where θ is a p-dimensional vector. We now extend these concepts to
the case where X is a k-dimensional random vector. We only consider the regular
exponential class.

Suppose X is a k-dimensional random vector with pdf or pmf f(x; θ), where
θ ∈ Ω ⊂ Rp. Let S ⊂ Rk denote the support of X. Suppose f(x; θ) is of the form

f(x; θ) =

{
exp

[∑m
j=1 pj(θ)Kj(x) + H(x) + q(θ)

]
for all x ∈ S

0 elsewhere.
(7.7.5)

Then we say this pdf or pmf is a member of the exponential class. If, in addition,
p = m, the support does not depend on the vector of parameters θ, and conditions
similar to those of Definition 7.7.2 hold, then we say this pdf is a regular case of
the exponential class.

Suppose that X1, . . . ,Xn constitute a random sample on X. Then the statistics,

Yj =

n∑
i=1

Kj(Xi), for j = 1, . . . , m, (7.7.6)

are sufficient and complete statistics for θ. Let Y = (Y1, . . . , Ym)′. Suppose δ = g(θ)
is a parameter of interest. If T = h(Y) for some function h and E(T ) = δ then T
is the unique minimum variance unbiased estimator of δ.

Example 7.7.3 (Multinomial). In Example 6.4.5, we consider the mles of the
multinomial distribution. In this example we determine the MVUEs of several of
the parameters. As in Example 6.4.5, consider a random trial that can result in one,
and only one, of k outcomes or categories. Let Xj be 1 or 0 depending on whether
the jth outcome does or does not occur, for j = 1, . . . , k. Suppose the probability
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that outcome j occurs is pj ; hence,
∑k

j=1 pj = 1. Let X = (X1, . . . , Xk−1)
′ and

p = (p1, . . . , pk−1)
′. The distribution of X is multinomial and can be found in

expression (6.4.18), which can be reexpressed as

f(x,p) = exp

⎧⎨⎩
k−1∑
j=1

(
log

[
pj

1−
∑

i�=k pi

])
xj + log

⎛⎝1−
∑
i�=k

pi

⎞⎠⎫⎬⎭ .

Because this a regular case of the exponential family, the following statistics, re-
sulting from a random sample X1, . . . ,Xn from the distribution of X, are jointly
sufficient and complete for the parameters p = (p1, . . . , pk−1)

′:

Yj =

n∑
i=1

Xij , for j = 1, . . . , k − 1.

Each random variable Xij is Bernoulli with parameter pj and the variables Xij

are independent for i = 1, . . . , n. Hence the variables Yj are binomial(n, pj) for
j = 1, . . . , k. Thus the MVUE of pj is the statistic n−1Yj .

Next, we shall find the MVUE of pjpl, for j 
= l. Exercise 7.7.8 shows that the
mle of pjpl is n−2YjYl. Recall from Section 3.1 that the conditional distribution of
Yj , given Yl, is b[n−Yl, pj/(1− pl)]. As an initial guess at the MVUE, consider the
mle, which, as shown by Exercise 7.7.8, is n−2YjYl. Hence

E[n−2YjYl] =
1

n2
E[E(YjYl|Yl)] =

1

n2
E[YlE(Yj |Yl)]

=
1

n2
E

[
Yl(n− Yl)

pj

1− pl

]
=

1

n2

pj

1− pl
{E[nYl]− E[Y 2

l ]}

=
1

n2

pj

1− pl
{n2pl − npl(1− pl)− n2p2

l }

=
1

n2

pj

1− pl
npl(n− 1)(1− pl) =

(n− 1)

n
pjpl.

Hence the MVUE of pjpl is 1
n(n−1)YjYl.

Example 7.7.4 (Multivariate Normal). Let X have the multivariate normal distri-
bution Nk(μ,Σ), where Σ is a positive definite k× k matrix. The pdf of X is given
in expression (3.5.16). In this case θ is a {k+[k(k+1)/2]}-dimensional vector whose

first k components consist of the mean vector μ and whose last k(k+1)
2 components

consist of the componentwise variances σ2
i and the covariances σij , for j ≥ i. The

density of X can be written as

fX(x) = exp

{
−1

2
x′Σ−1x + μ′Σ−1x− 1

2
μ′Σ−1μ− 1

2
log |Σ| − k

2
log 2π

}
,

(7.7.7)
for x ∈ Rk. Hence, by (7.7.5), the multivariate normal pdf is a regular case of the
exponential class of distributions. We need only identify the functions K(x). The
second term in the exponent on the right side of (7.7.7) can be written as (μ′Σ−1)x;
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hence, K1(x) = x. The first term is easily seen to be a linear combination of the
products xixj , i, j = 1, 2, . . . , k, which are the entries of the matrix xx′. Hence we
can take K2(x) = xx′. Now, let X1, . . . ,Xn be a random sample on X. Based on
(7.7.7) then, a set of sufficient and complete statistics is given by

Y1 =

n∑
i=1

Xi and Y2 =

n∑
i=1

XiX
′
i. (7.7.8)

Note that Y1 is a vector of k statistics and that Y2 is a k × k symmetric matrix.
Because the matrix is symmetric, we can eliminate the bottom-half [elements (i, j)
with i > j] of the matrix, which results in {k + [k(k + 1)]} complete sufficient
statistics, i.e., as many complete sufficient statistics as there are parameters.

Based on marginal distributions, it is easy to show that Xj = n−1
∑n

i=1 Xij is
the MVUE of μj and that (n − 1)−1

∑n
i=1(Xij − Xj)

2 is the MVUE of σ2
j . The

MVUEs of the covariance parameters are obtained in Exercise 7.7.9.

For our last example, we consider a case where the set of parameters is the cdf.

Example 7.7.5. Let X1, X2, . . . , Xn be a random sample having the common con-
tinuous cdf F (x). Let Y1 < Y2 < · · · < Yn denote the corresponding order statistics.
Note that given Y1 = y1, Y2 = y2, . . . , Yn = yn, the conditional distribution of
X1, X2, . . . , Xn is discrete with probability 1

n! on each of the n! permutations of
the vector (y1, y2, . . . , yn), [because F (x) is continuous, we can assume that each
of the values y1, y2, . . . , yn is distinct]. That is, the conditional distribution does
not depend on F (x). Hence, by the definition of sufficiency, the order statistics are
sufficient for F (x). Furthermore, while the proof is beyond the scope of this book,
it can be shown that the order statistics are also complete; see page 72 of Lehmann
and Casella (1998).

Let T = T (x1, x2, . . . , xn) be any statistic that is symmetric in its arguments;
i.e., T (x1, x2, . . . , xn) = T (xi1 , xi2 , . . . , xin) for any permutation (xi1 , xi2 , . . . , xin)
of (x1, x2, . . . , xn). Then T is a function of the order statistics. This is useful in
determining MVUEs for this situation; see Exercises 7.7.12 and 7.7.13.

EXERCISES

7.7.1. Let Y1 < Y2 < Y3 be the order statistics of a random sample of size 3 from
the distribution with pdf

f(x; θ1, θ2) =

{
1
θ2

exp
(
−x−θ1

θ2

)
θ1 < x < ∞, −∞ < θ1 <∞, 0 < θ2 <∞

0 elsewhere.

Find the joint pdf of Z1 = Y1, Z2 = Y2, and Z3 = Y1 + Y2 + Y3. The corresponding
transformation maps the space {(y1, y2, y3) : θ1 < y1 < y2 < y3 < ∞} onto the
space

{(z1, z2, z3) : θ1 < z1 < z2 < (z3 − z1)/2 <∞}.
Show that Z1 and Z3 are joint sufficient statistics for θ1 and θ2.
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7.7.2. Let X1, X2, . . . , Xn be a random sample from a distribution that has a
pdf of the form (7.7.2) of this section. Show that Y1 =

∑n
i=1 K1(Xi), . . . , Ym =∑m

i=1 Km(Xi) have a joint pdf of the form (7.7.4) of this section.

7.7.3. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a random sample of size n from
a bivariate normal distribution with means μ1 and μ2, positive variances σ2

1 and
σ2

2 , and correlation coefficient ρ. Show that
∑n

1 Xi,
∑n

1 Yi,
∑n

1 X2
i ,

∑n
1 Y 2

i , and∑n
1 XiYi are joint complete sufficient statistics for the five parameters. Are X =∑n
1 Xi/n, Y =

∑n
1 Yi/n, S2

1 =
∑n

1 (Xi −X)2/(n− 1), S2
2 =

∑n
1 (Yi − Y )2/(n− 1),

and
∑n

1 (Xi − X)(Yi − Y )/(n − 1)S1S2 also joint complete sufficient statistics for
these parameters?

7.7.4. Let the pdf f(x; θ1, θ2) be of the form

exp[p1(θ1, θ2)K1(x) + p2(θ1, θ2)K2(x) + H(x) + q1(θ1, θ2)], a < x < b,

zero elsewhere. Suppose that K ′
1(x) = cK ′

2(x). Show that f(x; θ1, θ2) can be written
in the form

exp[p(θ1, θ2)K2(x) + H(x) + q(θ1, θ2)], a < x < b,

zero elsewhere. This is the reason why it is required that no one K ′
j(x) be a lin-

ear homogeneous function of the others, that is, so that the number of sufficient
statistics equals the number of parameters.

7.7.5. In Example 7.7.2:

(a) Find the MVUE of the standard deviation
√

θ2.

(b) Modify the R function bootse1.R so that it returns the estimate in (a) and
its bootstrap standard error. Run it on the Bavarian forest data discussed
in Example 4.1.3, where the response is the concentration of sulfur dioxide.
Using 3,000 bootstraps, report the estimate and its bootstrap standard error.

7.7.6. Let X1, X2, . . . , Xn be a random sample from the uniform distribution with
pdf f(x; θ1, θ2) = 1/(2θ2), θ1 − θ2 < x < θ1 + θ2, where −∞ < θ1 < ∞ and θ2 > 0,
and the pdf is equal to zero elsewhere.

(a) Show that Y1 = min(Xi) and Yn = max(Xi), the joint sufficient statistics for
θ1 and θ2, are complete.

(b) Find the MVUEs of θ1 and θ2.

7.7.7. Let X1, X2, . . . , Xn be a random sample from N(θ1, θ2).

(a) If the constant b is defined by the equation P (X ≤ b) = p where p is specified,
find the mle and the MVUE of b.

(b) Modify the R function bootse1.R so that it returns the MVUE of Part (a)
and its bootstrap standard error.

(c) Run your function in Part (b) on the data set discussed in Example 7.6.4 for
p = 0.75 and 3,000 bootstraps.
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7.7.8. In the notation of Example 7.7.3, show that the mle of pjpl is n−2YjYl.

7.7.9. Refer to Example 7.7.4 on sufficiency for the multivariate normal model.

(a) Determine the MVUE of the covariance parameters σij .

(b) Let g =
∑k

i=1 aiμi, where a1, . . . , ak are specified constants. Find the MVUE
for g.

7.7.10. In a personal communication, LeRoy Folks noted that the inverse Gaussian
pdf

f(x; θ1, θ2) =

(
θ2

2πx3

)1/2

exp

[−θ2(x− θ1)
2

2θ2
1x

]
, 0 < x <∞, (7.7.9)

where θ1 > 0 and θ2 > 0, is often used to model lifetimes. Find the complete
sufficient statistics for (θ1, θ2) if X1, X2, . . . , Xn is a random sample from the dis-
tribution having this pdf.

7.7.11. Let X1, X2, . . . , Xn be a random sample from a N(θ1, θ2) distribution.

(a) Show that E[(X1 − θ1)
4] = 3θ2

2.

(b) Find the MVUE of 3θ2
2.

7.7.12. Let X1, . . . , Xn be a random sample from a distribution of the continuous
type with cdf F (x). Suppose the mean, μ = E(X1), exists. Using Example 7.7.5,
show that the sample mean, X = n−1

∑n
i=1 Xi, is the MVUE of μ.

7.7.13. Let X1, . . . , Xn be a random sample from a distribution of the continuous
type with cdf F (x). Let θ = P (X1 ≤ a) = F (a), where a is known. Show that the
proportion n−1#{Xi ≤ a} is the MVUE of θ.

7.8 Minimal Sufficiency and Ancillary Statistics

In the study of statistics, it is clear that we want to reduce the data contained in
the entire sample as much as possible without losing relevant information about the
important characteristics of the underlying distribution. That is, a large collection
of numbers in the sample is not as meaningful as a few good summary statistics of
those data. Sufficient statistics, if they exist, are valuable because we know that
the statisticians with those summary measures have as much information as the
statistician with the entire sample. Sometimes, however, there are several sets of
joint sufficient statistics, and thus we would like to find the simplest one of these sets.
For illustration, in a sense, the observations X1, X2, . . . , Xn, n > 2, of a random
sample from N(θ1, θ2) could be thought of as joint sufficient statistics for θ1 and θ2.
We know, however, that we can use X and S2 as joint sufficient statistics for those
parameters, which is a great simplification over using X1, X2, . . . , Xn, particularly
if n is large.

In most instances in this chapter, we have been able to find a single sufficient
statistic for one parameter or two joint sufficient statistics for two parameters. Pos-
sibly the most complicated cases considered so far are given in Example 7.7.3, in
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which we find k +k(k+1)/2 joint sufficient statistics for k +k(k+1)/2 parameters;
or the multivariate normal distribution given in Example 7.7.4; or in the use the
order statistics of a random sample for some completely unknown distribution of
the continuous type as in Example 7.7.5.

What we would like to do is to change from one set of joint sufficient statistics
to another, always reducing the number of statistics involved until we cannot go
any further without losing the sufficiency of the resulting statistics. Those statistics
that are there at the end of this reduction are called minimal sufficient statis-
tics. These are sufficient for the parameters and are functions of every other set
of sufficient statistics for those same parameters. Often, if there are k parameters,
we can find k joint sufficient statistics that are minimal. In particular, if there is
one parameter, we can often find a single sufficient statistic that is minimal. Most
of the earlier examples that we have considered illustrate this point, but this is not
always the case, as shown by the following example.

Example 7.8.1. Let X1, X2, . . . , Xn be a random sample from the uniform distri-
bution over the interval (θ − 1, θ + 1) having pdf

f(x; θ) = (1
2 )I(θ−1,θ+1)(x), where−∞ < θ < ∞.

The joint pdf of X1, X2, . . . , Xn equals the product of (1
2 )n and certain indicator

functions, namely,(
1

2

)n n∏
i=1

I(θ−1,θ+1)(xi) =

(
1

2

)n

{I(θ−1,θ+1)[min(xi)]}{I(θ−1,θ+1)[max(xi)]},

because θ − 1 < min(xi) ≤ xj ≤ max(xi) < θ + 1, j = 1, 2, . . . , n. Thus the order
statistics Y1 = min(Xi) and Yn = max(Xi) are the sufficient statistics for θ. These
two statistics actually are minimal for this one parameter, as we cannot reduce the
number of them to less than two and still have sufficiency.

There is an observation that helps us see that almost all the sufficient statistics
that we have studied thus far are minimal. We have noted that the mle θ̂ of θ is
a function of one or more sufficient statistics, when the latter exists. Suppose that
this mle θ̂ is also sufficient. Since this sufficient statistic θ̂ is a function of the other
sufficient statistics, by Theorem 7.3.2, it must be minimal. For example, we have

1. The mle θ̂ = X of θ in N(θ, σ2), σ2 known, is a minimal sufficient statistic
for θ.

2. The mle θ̂ = X of θ in a Poisson distribution with mean θ is a minimal
sufficient statistic for θ.

3. The mle θ̂ = Yn = max(Xi) of θ in the uniform distribution over (0, θ) is a
minimal sufficient statistic for θ.

4. The maximum likelihood estimators θ̂1 = X and θ̂2 = [(n− 1)/n]S2 of θ1 and
θ2 in N(θ1, θ2) are joint minimal sufficient statistics for θ1 and θ2.
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From these examples we see that the minimal sufficient statistics do not need
to be unique, for any one-to-one transformation of them also provides minimal
sufficient statistics. The linkage between minimal sufficient statistics and the mle,
however, does not hold in many interesting instances. We illustrate this in the next
two examples.

Example 7.8.2. Consider the model given in Example 7.8.1. There we noted that
Y1 = min(Xi) and Yn = max(Xi) are joint sufficient statistics. Also, we have

θ − 1 < Y1 < Yn < θ + 1

or, equivalently,

Yn − 1 < θ < Y1 + 1.

Hence, to maximize the likelihood function so that it equals (1
2 )n, θ can be any

value between Yn − 1 and Y1 + 1. For example, many statisticians take the mle to
be the mean of these two endpoints, namely,

θ̂ =
Yn − 1 + Y1 + 1

2
=

Y1 + Yn

2
,

which is the midrange. We recognize, however, that this mle is not unique. Some
might argue that since θ̂ is an mle of θ and since it is a function of the joint sufficient
statistics, Y1 and Yn, for θ, it is a minimal sufficient statistic. This is not the case at
all, for θ̂ is not even sufficient. Note that the mle must itself be a sufficient statistic
for the parameter before it can be considered the minimal sufficient statistic.

Note that we can model the situation in the last example by

Xi = θ + Wi, (7.8.1)

where W1, W2, . . . , Wn are iid with the common uniform(−1, 1) pdf. Hence this is
an example of a location model. We discuss these models in general next.

Example 7.8.3. Consider a location model given by

Xi = θ + Wi, (7.8.2)

where W1, W2, . . . , Wn are iid with the common pdf f(w) and common continuous
cdf F (w). From Example 7.7.5, we know that the order statistics Y1 < Y2 < · · · < Yn

are a set of complete and sufficient statistics for this situation. Can we obtain a
smaller set of minimal sufficient statistics? Consider the following four situations:

(a) Suppose f(w) is the N(0, 1) pdf. Then we know that X is both the MVUE
and mle of θ. Also, X = n−1

∑n
i=1 Yi, i.e., a function of the order statistics.

Hence X is minimal sufficient.

(b) Suppose f(w) = exp{−w}, for w > 0, zero elsewhere. Then the statistic Y1 is
a sufficient statistic as well as the mle, and thus is minimal sufficient.
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(c) Suppose f(w) is the logistic pdf. As discussed in Example 6.1.2, the mle of θ
exists and it is easy to compute. As shown on page 38 of Lehmann and Casella
(1998), though, the order statistics are minimal sufficient for this situation.
That is, no reduction is possible.

(d) Suppose f(w) is the Laplace pdf. It was shown in Example 6.1.1 that the
median, Q2 is the mle of θ, but it is not a sufficient statistic. Further, similar
to the logistic pdf, it can be shown that the order statistics are minimal
sufficient for this situation.

In general, the situation described in parts (c) and (d), where the mle is obtained
rather easily while the set of minimal sufficient statistics is the set of order statistics
and no reduction is possible, is the norm for location models.

There is also a relationship between a minimal sufficient statistic and complete-
ness that is explained more fully in Lehmann and Scheffé (1950). Let us say simply
and without explanation that for the cases in this book, complete sufficient statistics
are minimal sufficient statistics. The converse is not true, however, by noting that
in Example 7.8.1, we have

E

[
Yn − Y1

2
− n− 1

n + 1

]
= 0, for all θ.

That is, there is a nonzero function of those minimal sufficient statistics, Y1 and Yn,
whose expectation is zero for all θ.

There are other statistics that almost seem opposites of sufficient statistics.
That is, while sufficient statistics contain all the information about the parameters,
these other statistics, called ancillary statistics, have distributions free of the
parameters and seemingly contain no information about those parameters. As an
illustration, we know that the variance S2 of a random sample from N(θ, 1) has
a distribution that does not depend upon θ and hence is an ancillary statistic.
Another example is the ratio Z = X1/(X1 +X2), where X1, X2 is a random sample
from a gamma distribution with known parameter α > 0 and unknown parameter
β = θ, because Z has a beta distribution that is free of θ. There are many examples
of ancillary statistics, and we provide some rules that make them rather easy to find
with certain models, which we present in the next three examples.

Example 7.8.4 (Location-Invariant Statistics). In Example 7.8.3, we introduced
the location model. Recall that a random sample X1, X2, . . . , Xn follows this model
if

Xi = θ + Wi, i = 1, . . . , n, (7.8.3)

where −∞ < θ < ∞ is a parameter and W1, W2, . . . , Wn are iid random variables
with the pdf f(w), which does not depend on θ. Then the common pdf of Xi is
f(x− θ).

Let Z = u(X1, X2, . . . , Xn) be a statistic such that

u(x1 + d, x2 + d, . . . , xn + d) = u(x1, x2, . . . , xn),
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for all real d. Hence

Z = u(W1 + θ, W2 + θ, . . . , Wn + θ) = u(W1, W2, . . . , Wn)

is a function of W1, W2, . . . , Wn alone (not of θ). Hence Z must have a distribution
that does not depend upon θ. We call Z = u(X1, X2, . . . , Xn) a location-invariant
statistic.

Assuming a location model, the following are some examples of location-invariant
statistics: the sample variance = S2, the sample range = max{Xi} −min{Xi}, the
mean deviation from the sample median = (1/n)

∑
|Xi −median(Xi)|, X1 + X2 −

X3−X4, X1 + X3− 2X2, (1/n)
∑

[Xi−min(Xi)], and so on. To see that the range
is location-invariant, note that

max{Xi} − θ = max{Xi − θ} = max{Wi}
min{Xi} − θ = min{Xi − θ} = min{Wi}.

So,

range = max{Xi}−min{Xi} = max{Xi}−θ−(min{Xi}−θ) = max{Wi}−min{Wi}.

Hence the distribution of the range only depends on the distribution of the Wis
and, thus, it is location-invariant. For the location invariance of other statistics, see
Exercise 7.8.4.

Example 7.8.5 (Scale-Invariant Statistics). Consider a random sample X1, . . . , Xn

that follows a scale model, i.e., a model of the form

Xi = θWi, i = 1, . . . , n, (7.8.4)

where θ > 0 and W1, W2, . . . , Wn are iid random variables with pdf f(w), which
does not depend on θ. Then the common pdf of Xi is θ−1f(x/θ). We call θ a scale
parameter. Suppose that Z = u(X1, X2, . . . , Xn) is a statistic such that

u(cx1, cx2, . . . , cxn) = u(x1, x2, . . . , xn)

for all c > 0. Then

Z = u(X1, X2, . . . , Xn) = u(θW1, θW2, . . . , θWn) = u(W1, W2, . . . , Wn).

Since neither the joint pdf of W1, W2, . . . , Wn nor Z contains θ, the distribution of
Z must not depend upon θ. We say that Z is a scale-invariant statistic.

The following are some examples of scale-invariant statistics: X1/(X1 + X2),
X2

1/
∑n

1 X2
i , min(Xi)/ max(Xi), and so on. The scale invariance of the first statistic

follows from
X1

X1 + X2
=

(θX1)/θ

[(θX1) + (θX2)]/θ
=

W1

W1 + W2
.

The scale invariance of the other statistics is asked for in Exercise 7.8.5.
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Example 7.8.6 (Location- and Scale-Invariant Statistics). Finally, consider a ran-
dom sample X1, X2, . . . , Xn that follows a location and scale model as in Example
7.7.5. That is,

Xi = θ1 + θ2Wi, i = 1, . . . , n, (7.8.5)

where Wi are iid with the common pdf f(t) which is free of θ1 and θ2. In this case,
the pdf of Xi is θ−1

2 f((x − θ1)/θ2). Consider the statistic Z = u(X1, X2, . . . , Xn),
where

u(cx1 + d, . . . , cxn + d) = u(x1, . . . , xn).

Then

Z = u(X1, . . . , Xn) = u(θ1 + θ2W1, . . . , θ1 + θ2Wn) = u(W1, . . . , Wn).

Since neither the joint pdf of W1, . . . , Wn nor Z contains θ1 and θ2, the distribution
of Z must not depend upon θ1 nor θ2. Statistics such as Z = u(X1, X2, . . . , Xn) are
called location- and scale-invariant statistics. The following are four examples
of such statistics:

(a) T1 = [max(Xi)−min(Xi)]/S;

(b) T2 =
∑n−1

i=1 (Xi+1 −Xi)
2/S2;

(c) T3 = (Xi −X)/S;

(d) T4 = |Xi −Xj |/S,, ; i 
= j.

Let X − θ1 = n−1
∑n

i=1(Xi − θ1). Then the location and scale invariance of the
statistic in (d) follows from the two identities

S2 = θ2
2

n∑
i=1

[
Xi − θ1

θ2
− X − θ1

θ2

]2

= θ2
2

n∑
i=1

(Wi −W )2

Xi −Xj = θ2

[
Xi − θ1

θ2
− Xj − θ1

θ2

]
= θ2(Wi −Wj).

See Exercise 7.8.6 for the other statistics.

Thus, these location-invariant, scale-invariant, and location- and scale-invariant
statistics provide good illustrations, with the appropriate model for the pdf, of an-
cillary statistics. Since an ancillary statistic and a complete (minimal) sufficient
statistic are such opposites, we might believe that there is, in some sense, no rela-
tionship between the two. This is true, and in the next section we show that they
are independent statistics.

EXERCISES

7.8.1. Let X1, X2, . . . , Xn be a random sample from each of the following distribu-
tions involving the parameter θ. In each case find the mle of θ and show that it is
a sufficient statistic for θ and hence a minimal sufficient statistic.
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(a) b(1, θ), where 0 ≤ θ ≤ 1.

(b) Poisson with mean θ > 0.

(c) Gamma with α = 3 and β = θ > 0.

(d) N(θ, 1), where −∞ < θ <∞.

(e) N(0, θ), where 0 < θ <∞.

7.8.2. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of
size n from the uniform distribution over the closed interval [−θ, θ] having pdf
f(x; θ) = (1/2θ)I[−θ,θ](x).

(a) Show that Y1 and Yn are joint sufficient statistics for θ.

(b) Argue that the mle of θ is θ̂ = max(−Y1, Yn).

(c) Demonstrate that the mle θ̂ is a sufficient statistic for θ and thus is a minimal
sufficient statistic for θ.

7.8.3. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n
from a distribution with pdf

f(x; θ1, θ2) =

(
1

θ2

)
e−(x−θ1)/θ2I(θ1,∞)(x),

where −∞ < θ1 < ∞ and 0 < θ2 < ∞. Find the joint minimal sufficient statistics
for θ1 and θ2.

7.8.4. Continuing with Example 7.8.4, show that the following statistics are location-
invariant:

(a) The sample variance = S2.

(b) The mean deviation from the sample median = (1/n)
∑ |Xi −median(Xi)|.

(c) (1/n)
∑

[Xi −min(Xi)].

7.8.5. In Example 7.8.5, a scale model was presented and scale invariance was
defined. Using the notation of this example, show that the following statistics are
scale-invariant:

(a) X2
1/

n∑
1

X2
i .

(b) min{Xi}/ max{Xi}.

7.8.6. Obtain the location and scale invariance of the other statistics listed in
Example 7.8.6, i.e., the statistics

(a) T1 = [max(Xi)−min(Xi)]/S.
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(b) T2 =
∑n−1

i=1 (Xi+1 −Xi)
2/S2.

(c) T3 = (Xi −X)/S.

7.8.7. With random samples from each of the distributions given in Exercises
7.8.1(d), 7.8.2, and 7.8.3, define at least two ancillary statistics that are differ-
ent from the examples given in the text. These examples illustrate, respectively,
location-invariant, scale-invariant, and location- and scale-invariant statistics.

7.9 Sufficiency, Completeness, and Independence

We have noted that if we have a sufficient statistic Y1 for a parameter θ, θ ∈ Ω,
then h(z|y1), the conditional pdf of another statistic Z, given Y1 = y1, does not
depend upon θ. If, moreover, Y1 and Z are independent, the pdf g2(z) of Z is
such that g2(z) = h(z|y1), and hence g2(z) must not depend upon θ either. So the
independence of a statistic Z and the sufficient statistic Y1 for a parameter θ imply
that the distribution of Z does not depend upon θ ∈ Ω. That is, Z is an ancillary
statistic.

It is interesting to investigate a converse of that property. Suppose that the
distribution of an ancillary statistic Z does not depend upon θ; then are Z and
the sufficient statistic Y1 for θ independent? To begin our search for the answer,
we know that the joint pdf of Y1 and Z is g1(y1; θ)h(z|y1), where g1(y1; θ) and
h(z|y1) represent the marginal pdf of Y1 and the conditional pdf of Z given Y1 = y1,
respectively. Thus the marginal pdf of Z is∫ ∞

−∞
g1(y1; θ)h(z|y1) dy1 = g2(z),

which, by hypothesis, does not depend upon θ. Because∫ ∞

−∞
g2(z)g1(y1; θ) dy1 = g2(z),

if follows, by taking the difference of the last two integrals, that∫ ∞

−∞
[g2(z)− h(z|y1)]g1(y1; θ) dy1 = 0 (7.9.1)

for all θ ∈ Ω. Since Y1 is sufficient statistic for θ, h(z|y1) does not depend upon θ.
By assumption, g2(z) and hence g2(z)− h(z|y1) do not depend upon θ. Now if the
family {g1(y1; θ) : θ ∈ Ω} is complete, Equation (7.9.1) would require that

g2(z)− h(z|y1) = 0 or g2(z) = h(z|y1).

That is, the joint pdf of Y1 and Z must be equal to

g1(y1; θ)h(z|y1) = g1(y1; θ)g2(z).

Accordingly, Y1 and Z are independent, and we have proved the following theorem,
which was considered in special cases by Neyman and Hogg and proved in general
by Basu.
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Theorem 7.9.1. Let X1, X2, . . . , Xn denote a random sample from a distribution
having a pdf f(x; θ), θ ∈ Ω, where Ω is an interval set. Suppose that the statistic
Y1 is a complete and sufficient statistic for θ. Let Z = u(X1, X2, . . . , Xn) be any
other statistic (not a function of Y1 alone). If the distribution of Z does not depend
upon θ, then Z is independent of the sufficient statistic Y1.

In the discussion above, it is interesting to observe that if Y1 is a sufficient
statistic for θ, then the independence of Y1 and Z implies that the distribution
of Z does not depend upon θ whether {g1(y1; θ) : θ ∈ Ω} is or is not complete.
Conversely, to prove the independence from the fact that g2(z) does not depend
upon θ, we definitely need the completeness. Accordingly, if we are dealing with
situations in which we know that family {g1(y1; θ) : θ ∈ Ω} is complete (such as a
regular case of the exponential class), we can say that the statistic Z is independent
of the sufficient statistic Y1 if and only if the distribution of Z does not depend
upon θ(i.e., Z is an ancillary statistic).

It should be remarked that the theorem (including the special formulation of
it for regular cases of the exponential class) extends immediately to probability
density functions that involve m parameters for which there exist m joint sufficient
statistics. For example, let X1, X2, . . . , Xn be a random sample from a distribution
having the pdf f(x; θ1, θ2) that represents a regular case of the exponential class
so that there are two joint complete sufficient statistics for θ1 and θ2. Then any
other statistic Z = u(X1, X2, . . . , Xn) is independent of the joint complete sufficient
statistics if and only if the distribution of Z does not depend upon θ1 or θ2.

We present an example of the theorem that provides an alternative proof of the
independence of X and S2, the mean and the variance of a random sample of size n
from a distribution that is N(μ, σ2). This proof is given as if we were unaware that
(n− 1)S2/σ2 is χ2(n− 1), because that fact and the independence were established
in Theorem 3.6.1.

Example 7.9.1. Let X1, X2, . . . , Xn denote a random sample of size n from a
distribution that is N(μ, σ2). We know that the mean X of the sample is, for
every known σ2, a complete sufficient statistic for the parameter μ, −∞ < μ < ∞.
Consider the statistic

S2 =
1

n− 1

n∑
i=1

(Xi −X)2,

which is location-invariant. Thus S2 must have a distribution that does not depend
upon μ; and hence, by the theorem, S2 and X , the complete sufficient statistic for
μ, are independent.

Example 7.9.2. Let X1, X2, . . . , Xn be a random sample of size n from the distri-
bution having pdf

f(x; θ) = exp {−(x− θ)}, θ < x < ∞, −∞ < θ < ∞,

= 0 elsewhere.

Here the pdf is of the form f(x−θ), where f(w) = e−w, 0 < w < ∞, zero elsewhere.
Moreover, we know (Exercise 7.4.5) that the first order statistic Y1 = min(Xi) is a
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complete sufficient statistic for θ. Hence Y1 must be independent of each location-
invariant statistic u(X1, X2, . . . , Xn), enjoying the property that

u(x1 + d, x2 + d, . . . , xn + d) = u(x1, x2, . . . , xn)

for all real d. Illustrations of such statistics are S2, the sample range, and

1

n

n∑
i=1

[Xi −min(Xi)].

Example 7.9.3. Let X1, X2 denote a random sample of size n = 2 from a distri-
bution with pdf

f(x; θ) =
1

θ
e−x/θ, 0 < x < ∞, 0 < θ <∞,

= 0 elsewhere.

The pdf is of the form (1/θ)f(x/θ), where f(w) = e−w, 0 < w < ∞, zero else-
where. We know that Y1 = X1 + X2 is a complete sufficient statistic for θ. Hence,
Y1 is independent of every scale-invariant statistic u(X1, X2) with the property
u(cx1, cx2) = u(x1, x2). Illustrations of these are X1/X2 and X1/(X1 +X2), statis-
tics that have F - and beta distributions, respectively.

Example 7.9.4. Let X1, X2, . . . , Xn denote a random sample from a distribution
that is N(θ1, θ2), −∞ < θ1 < ∞, 0 < θ2 < ∞. In Example 7.7.2 it was proved
that the mean X and the variance S2 of the sample are joint complete sufficient
statistics for θ1 and θ2. Consider the statistic

Z =

n−1∑
1

(Xi+1 −Xi)
2

n∑
1

(Xi −X)2
= u(X1, X2, . . . , Xn),

which satisfies the property that u(cx1 + d, . . . , cxn + d) = u(x1, . . . , xn). That is,
the ancillary statistic Z is independent of both X and S2.

In this section we have given several examples in which the complete sufficient
statistics are independent of ancillary statistics. Thus, in those cases, the ancillary
statistics provide no information about the parameters. However, if the sufficient
statistics are not complete, the ancillary statistics could provide some information
as the following example demonstrates.

Example 7.9.5. We refer back to Examples 7.8.1 and 7.8.2. There the first and
nth order statistics, Y1 and Yn, were minimal sufficient statistics for θ, where the
sample arose from an underlying distribution having pdf (1

2 )I(θ−1,θ+1)(x). Often
T1 = (Y1 + Yn)/2 is used as an estimator of θ, as it is a function of those sufficient
statistics that is unbiased. Let us find a relationship between T1 and the ancillary
statistic T2 = Yn − Y1.
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The joint pdf of Y1 and Yn is

g(y1, yn; θ) = n(n− 1)(yn − y1)
n−2/2n, θ − 1 < y1 < yn < θ + 1,

zero elsewhere. Accordingly, the joint pdf of T1 and T2 is, since the absolute value
of the Jacobian equals 1,

h(t1, t2; θ) = n(n− 1)tn−2
2 /2n, θ − 1 +

t2
2

< t1 < θ + 1− t2
2

, 0 < t2 < 2,

zero elsewhere. Thus the pdf of T2 is

h2(t2; θ) = n(n− 1)tn−2
2 (2− t2)/2n, 0 < t2 < 2,

zero elsewhere, which, of course, is free of θ as T2 is an ancillary statistic. Thus,
the conditional pdf of T1, given T2 = t2, is

h1|2(t1|t2; θ) =
1

2− t2
, θ − 1 +

t2
2

< t1 < θ + 1− t2
2

, 0 < t2 < 2,

zero elsewhere. Note that this is uniform on the interval (θ− 1+ t2/2, θ +1− t2/2);
so the conditional mean and variance of T1 are, respectively,

E(T1|t2) = θ and var(T1|t2) =
(2− t2)

2

12
.

Given T2 = t2, we know something about the conditional variance of T1. In particu-
lar, if that observed value of T2 is large (close to 2), then that variance is small and
we can place more reliance on the estimator T1. On the other hand, a small value
of t2 means that we have less confidence in T1 as an estimator of θ. It is extremely
interesting to note that this conditional variance does not depend upon the sample
size n but only on the given value of T2 = t2. As the sample size increases, T2 tends
to become larger and, in those cases, T1 has smaller conditional variance.

While Example 7.9.5 is a special one demonstrating mathematically that an
ancillary statistic can provide some help in point estimation, this does actually
happen in practice, too. For illustration, we know that if the sample size is large
enough, then

T =
X − μ

S/
√

n

has an approximate standard normal distribution. Of course, if the sample arises
from a normal distribution, X and S are independent and T has a t-distribution with
n− 1 degrees of freedom. Even if the sample arises from a symmetric distribution,
X and S are uncorrelated and T has an approximate t-distribution and certainly an
approximate standard normal distribution with sample sizes around 30 or 40. On
the other hand, if the sample arises from a highly skewed distribution (say to the
right), then X and S are highly correlated and the probability P (−1.96 < T < 1.96)
is not necessarily close to 0.95 unless the sample size is extremely large (certainly
much greater than 30). Intuitively, one can understand why this correlation exists if
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the underlying distribution is highly skewed to the right. While S has a distribution
free of μ (and hence is an ancillary), a large value of S implies a large value of X,
since the underlying pdf is like the one depicted in Figure 7.9.1. Of course, a small
value of X (say less than the mode) requires a relatively small value of S. This
means that unless n is extremely large, it is risky to say that

x− 1.96s√
n

, x +
1.96s√

n

provides an approximate 95% confidence interval with data from a very skewed
distribution. As a matter of fact, the authors have seen situations in which this
confidence coefficient is closer to 80%, rather than 95%, with sample sizes of 30 to
40.

f(x)

x

Figure 7.9.1: Graph of a right skewed distribution; see also Exercise 7.9.14.

EXERCISES

7.9.1. Let Y1 < Y2 < Y3 < Y4 denote the order statistics of a random sample
of size n = 4 from a distribution having pdf f(x; θ) = 1/θ, 0 < x < θ, zero
elsewhere, where 0 < θ < ∞. Argue that the complete sufficient statistic Y4 for θ
is independent of each of the statistics Y1/Y4 and (Y1 + Y2)/(Y3 + Y4).
Hint: Show that the pdf is of the form (1/θ)f(x/θ), where f(w) = 1, 0 < w < 1,
zero elsewhere.

7.9.2. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a
N(θ, σ2), −∞ < θ < ∞, distribution. Show that the distribution of Z = Yn − X
does not depend upon θ. Thus Y =

∑n
1 Yi/n, a complete sufficient statistic for θ is

independent of Z.

7.9.3. Let X1, X2, . . . , Xn be iid with the distribution N(θ, σ2), −∞ < θ < ∞.
Prove that a necessary and sufficient condition that the statistics Z =

∑n
1 aiXi and

Y =
∑n

1 Xi, a complete sufficient statistic for θ, are independent is that
∑n

1 ai = 0.
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7.9.4. Let X and Y be random variables such that E(Xk) and E(Y k) 
= 0 exist
for k = 1, 2, 3, . . . . If the ratio X/Y and its denominator Y are independent, prove
that E[(X/Y )k] = E(Xk)/E(Y k), k = 1, 2, 3, . . . .
Hint: Write E(Xk) = E[Y k(X/Y )k].

7.9.5. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample of size n
from a distribution that has pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞, 0 < θ <∞, zero
elsewhere. Show that the ratio R = nY1 /

∑n
1 Yi and its denominator (a complete

sufficient statistic for θ) are independent. Use the result of the preceding exercise
to determine E(Rk), k = 1, 2, 3, . . . .

7.9.6. Let X1, X2, . . . , X5 be iid with pdf f(x) = e−x, 0 < x < ∞, zero elsewhere.
Show that (X1 + X2)/(X1 + X2 + · · ·+ X5) and its denominator are independent.
Hint: The pdf f(x) is a member of {f(x; θ) : 0 < θ < ∞}, where f(x; θ) =
(1/θ)e−x/θ, 0 < x < ∞, zero elsewhere.

7.9.7. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from the
normal distribution N(θ1, θ2), −∞ < θ1 < ∞, 0 < θ2 < ∞. Show that the joint
complete sufficient statistics X = Y and S2 for θ1 and θ2 are independent of each
of (Yn − Y )/S and (Yn − Y1)/S.

7.9.8. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a
distribution with the pdf

f(x; θ1, θ2) =
1

θ2
exp

(
−x− θ1

θ2

)
,

θ1 < x < ∞, zero elsewhere, where −∞ < θ1 < ∞, 0 < θ2 < ∞. Show that the
joint complete sufficient statistics Y1 and X = Y for the parameters θ1 and θ2 are
independent of (Y2 − Y1) /

∑n
1 (Yi − Y1) .

7.9.9. Let X1, X2, . . . , X5 be a random sample of size n = 5 from the normal
distribution N(0, θ).

(a) Argue that the ratio R = (X2
1 + X2

2 )/(X2
1 + · · · + X2

5 ) and its denominator
(X2

1 + · · ·+ X2
5 ) are independent.

(b) Does 5R/2 have an F -distribution with 2 and 5 degrees of freedom? Explain
your answer.

(c) Compute E(R) using Exercise 7.9.4.

7.9.10. Referring to Example 7.9.5 of this section, determine c so that

P (−c < T1 − θ < c|T2 = t2) = 0.95.

Use this result to find a 95% confidence interval for θ, given T2 = t2; and note how
its length is smaller when the range of t2 is larger.

7.9.11. Show that Y = |X | is a complete sufficient statistic for θ > 0, where X has
the pdf fX(x; θ) = 1/(2θ), for −θ < x < θ, zero elsewhere. Show that Y = |X | and
Z = sgn(X) are independent.
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7.9.12. Let Y1 < Y2 < · · · < Yn be the order statistics of a random sample from a
N(θ, σ2) distribution, where σ2 is fixed but arbitrary. Then Y = X is a complete
sufficient statistic for θ. Consider another estimator T of θ, such as T = (Yi +
Yn+1−i)/2, for i = 1, 2, . . . , [n/2], or T could be any weighted average of these latter
statistics.

(a) Argue that T −X and X are independent random variables.

(b) Show that Var(T ) = Var(X) + Var(T −X).

(c) Since we know Var(X) = σ2/n, it might be more efficient to estimate Var(T )
by estimating the Var(T−X) by Monte Carlo methods rather than doing that
with Var(T ) directly, because Var(T ) ≥ Var(T −X). This is often called the
Monte Carlo Swindle.

7.9.13. Suppose X1, X2, . . . , Xn is a random sample from a distribution with pdf
f(x; θ) = (1/2)θ3x2e−θx, 0 < x < ∞, zero elsewhere, where 0 < θ <∞:

(a) Find the mle, θ̂, of θ. Is θ̂ unbiased?

Hint: Find the pdf of Y =
∑n

1 Xi and then compute E(θ̂).

(b) Argue that Y is a complete sufficient statistic for θ.

(c) Find the MVUE of θ.

(d) Show that X1/Y and Y are independent.

(e) What is the distribution of X1/Y ?

7.9.14. The pdf depicted in Figure 7.9.1 is given by

fm2(x) = e−x(1 + m−1
2 e−x)−(m2+1), −∞ < x <∞, (7.9.2)

where m2 > 0 (the pdf graphed is for m2 = 0.1). This is a member of a large family
of pdfs, log F -family, which are useful in survival (lifetime) analysis; see Chapter 3
of Hettmansperger and McKean (2011).

(a) Let W be a random variable with pdf (7.9.2). Show that W = log Y , where
Y has an F -distribution with 2 and 2m2 degrees of freedom.

(b) Show that the pdf becomes the logistic (6.1.8) if m2 = 1.

(c) Consider the location model where

Xi = θ + Wi i = 1, . . . , n,

where W1, . . . , Wn are iid with pdf (7.9.2). Similar to the logistic location
model, the order statistics are minimal sufficient for this model. Show, similar
to Example 6.1.2, that the mle of θ exists.
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Chapter 8

Optimal Tests of Hypotheses

8.1 Most Powerful Tests

In Section 4.5, we introduced the concept of hypotheses testing and followed it with
the introduction of likelihood ratio tests in Chapter 6. In this chapter, we discuss
certain best tests.

For convenience to the reader, in the next several paragraphs we quickly review
concepts of testing that were presented in Section 4.5. We are interested in a random
variable X that has pdf or pmf f(x; θ), where θ ∈ Ω. We assume that θ ∈ ω0 or
θ ∈ ω1, where ω0 and ω1 are disjoint subsets of Ω and ω0 ∪ ω1 = Ω. We label the
hypotheses as

H0 : θ ∈ ω0 versus H1 : θ ∈ ω1. (8.1.1)

The hypothesis H0 is referred to as the null hypothesis, while H1 is referred to
as the alternative hypothesis. The test of H0 versus H1 is based on a sample
X1, . . . , Xn from the distribution of X . In this chapter, we often use the vector
X′ = (X1, . . . , Xn) to denote the random sample and x′ = (x1, . . . , xn) to denote
the values of the sample. Let S denote the support of the random sample X′ =
(X1, . . . , Xn).

A test of H0 versus H1 is based on a subset C of S. This set C is called the
critical region and its corresponding decision rule is

Reject H0 (Accept H1) if X ∈ C (8.1.2)

Retain H0 (Reject H1) if X ∈ Cc.

Note that a test is defined by its critical region. Conversely, a critical region defines
a test.

Recall that the 2 × 2 decision table, Table 4.5.1, summarizes the results of the
hypothesis test in terms of the true state of nature. Besides the correct decisions,
two errors can occur. A Type I error occurs if H0 is rejected when it is true, while
a Type II error occurs if H0 is accepted when H1 is true. The size or significance
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level of the test is the probability of a Type I error; i.e.,

α = max
θ∈ω0

Pθ(X ∈ C). (8.1.3)

Note that Pθ(X ∈ C) should be read as the probability that X ∈ C when θ is the
true parameter. Subject to tests having size α, we select tests that minimize Type II
error or equivalently maximize the probability of rejecting H0 when θ ∈ ω1. Recall
that the power function of a test is given by

γC(θ) = Pθ(X ∈ C); θ ∈ ω1. (8.1.4)

In Chapter 4, we gave examples of tests of hypotheses, while in Sections 6.3 and
6.4, we discussed tests based on maximum likelihood theory. In this chapter, we
want to construct best tests for certain situations.

We begin with testing a simple hypothesis H0 against a simple alternative H1.
Let f(x; θ) denote the pdf or pmf of a random variable X , where θ ∈ Ω = {θ′, θ′′}.
Let ω0 = {θ′} and ω1 = {θ′′}. Let X′ = (X1, . . . , Xn) be a random sample from
the distribution of X . We now define a best critical region (and hence a best test)
for testing the simple hypothesis H0 against the alternative simple hypothesis H1.

Definition 8.1.1. Let C denote a subset of the sample space. Then we say that C
is a best critical region of size α for testing the simple hypothesis H0 : θ = θ′

against the alternative simple hypothesis H1 : θ = θ′′ if

(a) Pθ′ [X ∈ C] = α.

(b) And for every subset A of the sample space,

Pθ′ [X ∈ A] = α ⇒ Pθ′′ [X ∈ C] ≥ Pθ′′ [X ∈ A].

This definition states, in effect, the following: In general, there is a multiplicity
of subsets A of the sample space such that Pθ′ [X ∈ A] = α. Suppose that there
is one of these subsets, say C, such that when H1 is true, the power of the test
associated with C is at least as great as the power of the test associated with every
other A. Then C is defined as a best critical region of size α for testing H0 against
H1.

As Theorem 8.1.1 shows, there is a best test for this simple versus simple case.
But first, we offer a simple example examining this definition in some detail.

Example 8.1.1. Consider the one random variable X that has a binomial distri-
bution with n = 5 and p = θ. Let f(x; θ) denote the pmf of X and let H0 : θ = 1

2
and H1 : θ = 3

4 . The following tabulation gives, at points of positive probability
density, the values of f(x; 1

2 ), f(x; 3
4 ), and the ratio f(x; 1

2 )/f(x; 3
4 ).
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x 0 1 2
f(x; 1/2) 1/32 5/32 10/32
f(x; 3/4) 1/1024 15/1024 90/1024
f(x; 1/2)/f(x; 3/4) 32/1 32/3 32/9

x 3 4 5
f(x; 1/2) 10/32 5/32 1/32
f(x; 3/4) 270/1024 405/1024 243/1024
f(x; 1/2)/f(x; 3/4) 32/27 32/81 32/243

We shall use one random value of X to test the simple hypothesis H0 : θ = 1
2

against the alternative simple hypothesis H1 : θ = 3
4 , and we shall first assign

the significance level of the test to be α = 1
32 . We seek a best critical region of

size α = 1
32 . If A1 = {x : x = 0} or A2 = {x : x = 5}, then P{θ=1/2}(X ∈

A1) = P{θ=1/2}(X ∈ A2) = 1
32 and there is no other subset A3 of the space {x :

x = 0, 1, 2, 3, 4, 5} such that P{θ=1/2}(X ∈ A3) = 1
32 . Then either A1 or A2 is

the best critical region C of size α = 1
32 for testing H0 against H1. We note that

P{θ=1/2}(X ∈ A1) = 1
32 and P{θ=3/4}(X ∈ A1) = 1

1024 . Thus, if the set A1 is used as

a critical region of size α = 1
32 , we have the intolerable situation that the probability

of rejecting H0 when H1 is true (H0 is false) is much less than the probability of
rejecting H0 when H0 is true.

On the other hand, if the set A2 is used as a critical region, then P{θ=1/2}(X ∈
A2) = 1

32 and P{θ=3/4}(X ∈ A2) = 243
1024 . That is, the probability of rejecting H0

when H1 is true is much greater than the probability of rejecting H0 when H0 is
true. Certainly, this is a more desirable state of affairs, and actually A2 is the best
critical region of size α = 1

32 . The latter statement follows from the fact that when
H0 is true, there are but two subsets, A1 and A2, of the sample space, each of whose
probability measure is 1

32 and the fact that

243
1024 = P{θ=3/4}(X ∈ A2) > P{θ=3/4}(X ∈ A1) = 1

1024 .

It should be noted in this problem that the best critical region C = A2 of size
α = 1

32 is found by including in C the point (or points) at which f(x; 1
2 ) is small in

comparison with f(x; 3
4 ). This is seen to be true once it is observed that the ratio

f(x; 1
2 )/f(x; 3

4 ) is a minimum at x = 5. Accordingly, the ratio f(x; 1
2 )/f(x; 3

4 ), that
is given in the last line of the above tabulation, provides us with a precise tool by
which to find a best critical region C for certain given values of α. To illustrate this,
take α = 6

32 . When H0 is true, each of the subsets {x : x = 0, 1}, {x : x = 0, 4},
{x : x = 1, 5}, {x : x = 4, 5} has probability measure 6

32 . By direct computation it
is found that the best critical region of this size is {x : x = 4, 5}. This reflects the
fact that the ratio f(x; 1

2 )/f(x; 3
4 ) has its two smallest values for x = 4 and x = 5.

The power of this test, which has α = 6
32 , is

P{θ=3/4}(X = 4, 5) = 405
1024 + 243

1024 = 648
1024 .

The preceding example should make the following theorem, due to Neyman and
Pearson, easier to understand. It is an important theorem because it provides a
systematic method of determining a best critical region.
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Theorem 8.1.1. Neyman–Pearson Theorem. Let X1, X2, . . . , Xn, where n
is a fixed positive integer, denote a random sample from a distribution that has pdf
or pmf f(x; θ). Then the likelihood of X1, X2, . . . , Xn is

L(θ;x) =

n∏
i=1

f(xi; θ), for x′ = (x1, . . . , xn).

Let θ′ and θ′′ be distinct fixed values of θ so that Ω = {θ : θ = θ′, θ′′}, and let k be
a positive number. Let C be a subset of the sample space such that

(a)
L(θ′;x)

L(θ′′;x)
≤ k, for each point x ∈ C.

(b)
L(θ′;x)

L(θ′′;x)
≥ k, for each point x ∈ Cc.

(c) α = PH0 [X ∈ C].

Then C is a best critical region of size α for testing the simple hypothesis H0 : θ = θ′

against the alternative simple hypothesis H1 : θ = θ′′.

Proof: We shall give the proof when the random variables are of the continuous
type. If C is the only critical region of size α, the theorem is proved. If there
is another critical region of size α, denote it by A. For convenience, we shall let∫
· · ·
R

∫
L(θ; x1, . . . , xn) dx1 · · ·dxn be denoted by

∫
R L(θ). In this notation we wish

to show that ∫
C

L(θ′′)−
∫

A

L(θ′′) ≥ 0.

Since C is the union of the disjoint sets C ∩A and C ∩Ac and A is the union of the
disjoint sets A ∩ C and A ∩ Cc, we have∫

C

L(θ′′)−
∫

A

L(θ′′) =

∫
C∩A

L(θ′′) +

∫
C∩Ac

L(θ′′)−
∫

A∩C

L(θ′′)−
∫

A∩Cc

L(θ′′)

=

∫
C∩Ac

L(θ′′)−
∫

A∩Cc

L(θ′′). (8.1.5)

However, by the hypothesis of the theorem, L(θ′′) ≥ (1/k)L(θ′) at each point of C,
and hence at each point of C ∩Ac; thus,∫

C∩Ac

L(θ′′) ≥ 1

k

∫
C∩Ac

L(θ′).

But L(θ′′) ≤ (1/k)L(θ′) at each point of Cc, and hence at each point of A ∩ Cc;
accordingly, ∫

A∩Cc

L(θ′′) ≤ 1

k

∫
A∩Cc

L(θ′).

These inequalities imply that∫
C∩Ac

L(θ′′)−
∫

A∩Cc

L(θ′′) ≥ 1

k

∫
C∩Ac

L(θ′)− 1

k

∫
A∩Cc

L(θ′);
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and, from Equation (8.1.5), we obtain∫
C

L(θ′′)−
∫

A

L(θ′′) ≥ 1

k

[∫
C∩Ac

L(θ′)−
∫

A∩Cc

L(θ′)
]

. (8.1.6)

However,∫
C∩Ac

L(θ′)−
∫

A∩Cc

L(θ′) =

∫
C∩Ac

L(θ′) +

∫
C∩A

L(θ′)

−
∫

A∩C

L(θ′)−
∫

A∩Cc

L(θ′)

=

∫
C

L(θ′)−
∫

A

L(θ′) = α− α = 0.

If this result is substituted in inequality (8.1.6), we obtain the desired result,∫
C

L(θ′′)−
∫

A

L(θ′′) ≥ 0.

If the random variables are of the discrete type, the proof is the same with integra-
tion replaced by summation.

Remark 8.1.1. As stated in the theorem, conditions (a), (b), and (c) are sufficient
ones for region C to be a best critical region of size α. However, they are also
necessary. We discuss this briefly. Suppose there is a region A of size α that does
not satisfy (a) and (b) and that is as powerful at θ = θ′′ as C, which satisfies (a),
(b), and (c). Then expression (8.1.5) would be zero, since the power at θ′′ using A is
equal to that using C. It can be proved that to have expression (8.1.5) equal zero, A
must be of the same form as C. As a matter of fact, in the continuous case, A and C
would essentially be the same region; that is, they could differ only by a set having
probability zero. However, in the discrete case, if PH0 [L(θ′) = kL(θ′′)] is positive,
A and C could be different sets, but each would necessarily enjoy conditions (a),
(b), and (c) to be a best critical region of size α.

It would seem that a test should have the property that its power should never
fall below its significance level; otherwise, the probability of falsely rejecting H0

(level) is higher than the probability of correctly rejecting H0 (power). We say a
test having this property is unbiased, which we now formally define:

Definition 8.1.2. Let X be a random variable which has pdf or pmf f(x; θ), where
θ ∈ Ω. Consider the hypotheses given in expression (8.1.1). Let X′ = (X1, . . . , Xn)
denote a random sample on X. Consider a test with critical region C and level α.
We say that this test is unbiased if

Pθ(X ∈ C) ≥ α,

for all θ ∈ ω1.
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As the next corollary shows, the best test given in Theorem 8.1.1 is an unbiased
test.

Corollary 8.1.1. As in Theorem 8.1.1, let C be the critical region of the best test
of H0 : θ = θ′ versus H1 : θ = θ′′. Suppose the significance level of the test is α.
Let γC(θ′′) = Pθ′′ [X ∈ C] denote the power of the test. Then α ≤ γC(θ′′).

Proof: Consider the “unreasonable” test in which the data are ignored, but a
Bernoulli trial is performed which has probability α of success. If the trial ends
in success, we reject H0. The level of this test is α. Because the power of a test
is the probability of rejecting H0 when H1 is true, the power of this unreasonable
test is α also. But C is the best critical region of size α and thus has power greater
than or equal to the power of the unreasonable test. That is, γC(θ′′) ≥ α, which is
the desired result.

Another aspect of Theorem 8.1.1 to be emphasized is that if we take C to be
the set of all points x which satisfy

L(θ′;x)

L(θ′′;x)
≤ k, k > 0,

then, in accordance with the theorem, C is a best critical region. This inequality
can frequently be expressed in one of the forms (where c1 and c2 are constants)

u1(x; θ′, θ′′) ≤ c1

or

u2(x; θ′, θ′′) ≥ c2.

Suppose that it is the first form, u1 ≤ c1. Since θ′ and θ′′ are given constants,
u1(X; θ′, θ′′) is a statistic; and if the pdf or pmf of this statistic can be found when
H0 is true, then the significance level of the test of H0 against H1 can be determined
from this distribution. That is,

α = PH0 [u1(X; θ′, θ′′) ≤ c1].

Moreover, the test may be based on this statistic; for if the observed vector value
of X is x, we reject H0 (accept H1) if u1(x) ≤ c1.

A positive number k determines a best critical region C whose size is α =
PH0 [X ∈ C] for that particular k. It may be that this value of α is unsuitable for
the purpose at hand; that is, it is too large or too small. However, if there is a
statistic u1(X) as in the preceding paragraph, whose pdf or pmf can be determined
when H0 is true, we need not experiment with various values of k to obtain a
desirable significance level. For if the distribution of the statistic is known, or can
be found, we may determine c1 such that PH0 [u1(X) ≤ c1] is a desirable significance
level.

An illustrative example follows.
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Example 8.1.2. Let X′ = (X1, . . . , Xn) denote a random sample from the distri-
bution that has the pdf

f(x; θ) =
1√
2π

exp

(
− (x− θ)2

2

)
, −∞ < x <∞.

It is desired to test the simple hypothesis H0 : θ = θ′ = 0 against the alternative
simple hypothesis H1 : θ = θ′′ = 1. Now

L(θ′;x)

L(θ′′;x)
=

(1/
√

2π)n exp

[
−

n∑
1

x2
i /2

]

(1/
√

2π)n exp

[
−

n∑
1

(xi − 1)2

/
2

]

= exp

(
−

n∑
1

xi +
n

2

)
.

If k > 0, the set of all points (x1, x2, . . . , xn) such that

exp

(
−

n∑
1

xi +
n

2

)
≤ k

is a best critical region. This inequality holds if and only if

−
n∑
1

xi +
n

2
≤ log k

or, equivalently,
n∑
1

xi ≥
n

2
− log k = c.

In this case, a best critical region is the set C = {(x1, x2, . . . , xn) :
∑n

1 xi ≥ c},
where c is a constant that can be determined so that the size of the critical region
is a desired number α. The event

∑n
1 Xi ≥ c is equivalent to the event X ≥

c/n = c1, for example, so the test may be based upon the statistic X. If H0 is
true, that is, θ = θ′ = 0, then X has a distribution that is N(0, 1/n). Given the
significance level α, the number c1 is computed in R as c1 = qnorm(1−α, 0, 1/

√
n);

hence, PH0(X ≥ c1) = α. So, if the experimental values of X1, X2, . . . , Xn were,
respectively, x1, x2, . . . , xn, we would compute x =

∑n
1 xi/n. If x ≥ c1, the simple

hypothesis H0 : θ = θ′ = 0 would be rejected at the significance level α; if x < c1,
the hypothesis H0 would be accepted. The probability of rejecting H0 when H0 is
true is α the level of significance. The probability of rejecting H0, when H0 is false,
is the value of the power of the test at θ = θ′′ = 1, which is,

PH1(X ≥ c1) =

∫ ∞

c1

1√
2π

√
1/n

exp

[
− (x− 1)2

2(1/n)

]
dx. (8.1.7)
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For example, if n = 25 and α is 0.05, c1 = qnorm(0.95,0,1/5) = 0.329, using
R. Hence, the power of the test to detect θ = 1, given in expression (8.1.7), is
computed by 1 - pnorm(0.329,1,1/5) = 0.9996.

There is another aspect of this theorem that warrants special mention. It has to
do with the number of parameters that appear in the pdf. Our notation suggests
that there is but one parameter. However, a careful review of the proof reveals
that nowhere was this needed or assumed. The pdf or pmf may depend upon
any finite number of parameters. What is essential is that the hypothesis H0 and
the alternative hypothesis H1 be simple, namely, that they completely specify the
distributions. With this in mind, we see that the simple hypotheses H0 and H1 do
not need to be hypotheses about the parameters of a distribution, nor, as a matter
of fact, do the random variables X1, X2, . . . , Xn need to be independent. That is, if
H0 is the simple hypothesis that the joint pdf or pmf is g(x1, x2, . . . , xn), and if H1

is the alternative simple hypothesis that the joint pdf or pmf is h(x1, x2, . . . , xn),
then C is a best critical region of size α for testing H0 against H1 if, for k > 0,

1.
g(x1, x2, . . . , xn)

h(x1, x2, . . . , xn)
≤ k for (x1, x2, . . . , xn) ∈ C.

2.
g(x1, x2, . . . , xn)

h(x1, x2, . . . , xn)
≥ k for (x1, x2, . . . , xn) ∈ Cc.

3. α = PH0 [(X1, X2, . . . , Xn) ∈ C].

Consider the following example.

Example 8.1.3. Let X1, . . . , Xn denote a random sample on X that has pmf f(x)
with support {0, 1, 2, . . .}. It is desired to test the simple hypothesis

H0 : f(x) =

{
e−1

x! x = 0, 1, 2, . . .
0 elsewhere,

against the alternative simple hypothesis

H1 : f(x) =

{
(1
2 )x+1 x = 0, 1, 2, . . .

0 elsewhere.

That is, we want to test whether X has a Poisson distribution with mean λ = 1
versus X has a geometric distribution with p = 1/2. Here

g(x1, . . . , xn)

h(x1, . . . , xn)
=

e−n/(x1!x2! · · ·xn!)

(1
2 )n(1

2 )x1+x2+···+xn

=
(2e−1)n2

P
xi

n∏
1

(xi!)

.

If k > 0, the set of points (x1, x2, . . . , xn) such that(
n∑
1

xi

)
log 2− log

[
n∏
1

(xi!)

]
≤ log k − n log(2e−1) = c
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is a best critical region C. Consider the case of k = 1 and n = 1. The preceding
inequality may be written 2x1/x1! ≤ e/2. This inequality is satisfied by all points
in the set C = {x1 : x1 = 0, 3, 4, 5, . . .}. Using R, the level of significance is

PH0(X1 ∈ C) = 1− PH0(X1 = 1, 2) = 1− dpois(1, 1)− dpois(2, 1) = 0.4482.

The power of the test to detect H1 is computed as

PH1(X1 ∈ C) = 1− PH1(X1 = 1, 2) = 1− (1
4 + 1

8 ) = 0.625.

Note that these results are consistent with Corollary 8.1.1.

Remark 8.1.2. In the notation of this section, say C is a critical region such that

α =

∫
C

L(θ′) and β =

∫
Cc

L(θ′′),

where α and β equal the respective probabilities of the Type I and Type II errors
associated with C. Let d1 and d2 be two given positive constants. Consider a certain
linear function of α and β, namely,

d1

∫
C

L(θ′) + d2

∫
Cc

L(θ′′) = d1

∫
C

L(θ′) + d2

[
1−

∫
C

L(θ′′)
]

= d2 +

∫
C

[d1L(θ′)− d2L(θ′′)].

If we wished to minimize this expression, we would select C to be the set of all
(x1, x2, . . . , xn) such that

d1L(θ′)− d2L(θ′′) < 0

or, equivalently,

L(θ′)
L(θ′′)

<
d2

d1
, for all (x1, x2, . . . , xn) ∈ C,

which according to the Neyman–Pearson theorem provides a best critical region
with k = d2/d1. That is, this critical region C is one that minimizes d1α + d2β.
There could be others, including points on which L(θ′)/L(θ′′) = d2/d1, but these
would still be best critical regions according to the Neyman–Pearson theorem.
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EXERCISES

8.1.1. In Example 8.1.2 of this section, let the simple hypotheses read H0 : θ =
θ′ = 0 and H1 : θ = θ′′ = −1. Show that the best test of H0 against H1 may be
carried out by use of the statistic X, and that if n = 25 and α = 0.05, the power of
the test is 0.9996 when H1 is true.

8.1.2. Let the random variable X have the pdf f(x; θ) = (1/θ)e−x/θ, 0 < x < ∞,
zero elsewhere. Consider the simple hypothesis H0 : θ = θ′ = 2 and the alternative
hypothesis H1 : θ = θ′′ = 4. Let X1, X2 denote a random sample of size 2 from this
distribution. Show that the best test of H0 against H1 may be carried out by use
of the statistic X1 + X2.

8.1.3. Repeat Exercise 8.1.2 when H1 : θ = θ′′ = 6. Generalize this for every
θ′′ > 2.

8.1.4. Let X1, X2, . . . , X10 be a random sample of size 10 from a normal distribution
N(0, σ2). Find a best critical region of size α = 0.05 for testing H0 : σ2 = 1 against
H1 : σ2 = 2. Is this a best critical region of size 0.05 for testing H0 : σ2 = 1 against
H1 : σ2 = 4? Against H1 : σ2 = σ2

1 > 1?

8.1.5. If X1, X2, . . . , Xn is a random sample from a distribution having pdf of the
form f(x; θ) = θxθ−1, 0 < x < 1, zero elsewhere, show that a best critical region
for testing H0 : θ = 1 against H1 : θ = 2 is C = {(x1, x2, . . . , xn) : c ≤∏n

i=1 xi}.

8.1.6. Let X1, X2, . . . , X10 be a random sample from a distribution that is N(θ1, θ2).
Find a best test of the simple hypothesis H0 : θ1 = θ′1 = 0, θ2 = θ′2 = 1 against the
alternative simple hypothesis H1 : θ1 = θ′′1 = 1, θ2 = θ′′2 = 4.

8.1.7. Let X1, X2, . . . , Xn denote a random sample from a normal distribution
N(θ, 100). Show that C = {(x1, x2, . . . , xn) : c ≤ x =

∑n
1 xi/n} is a best critical

region for testing H0 : θ = 75 against H1 : θ = 78. Find n and c so that

PH0 [(X1, X2, . . . , Xn) ∈ C] = PH0 (X ≥ c) = 0.05

and

PH1 [(X1, X2, . . . , Xn) ∈ C] = PH1(X ≥ c) = 0.90,

approximately.

8.1.8. If X1, X2, . . . , Xn is a random sample from a beta distribution with param-
eters α = β = θ > 0, find a best critical region for testing H0 : θ = 1 against
H1 : θ = 2.

8.1.9. Let X1, X2, . . . , Xn be iid with pmf f(x; p) = px(1 − p)1−x, x = 0, 1, zero
elsewhere. Show that C = {(x1, . . . , xn) :

∑n
1 xi ≤ c} is a best critical region for

testing H0 : p = 1
2 against H1 : p = 1

3 . Use the Central Limit Theorem to find n
and c so that approximately PH0(

∑n
1 Xi ≤ c) = 0.10 and PH1 (

∑n
1 Xi ≤ c) = 0.80.
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8.1.10. Let X1, X2, . . . , X10 denote a random sample of size 10 from a Poisson
distribution with mean θ. Show that the critical region C defined by

∑10
1 xi ≥ 3

is a best critical region for testing H0 : θ = 0.1 against H1 : θ = 0.5. Determine,
for this test, the significance level α and the power at θ = 0.5. Use the R function
ppois.

8.2 Uniformly Most Powerful Tests

This section takes up the problem of a test of a simple hypothesis H0 against an
alternative composite hypothesis H1. We begin with an example.

Example 8.2.1. Consider the pdf

f(x; θ) =

{
1
θe−x/θ 0 < x < ∞
0 elsewhere

of Exercises 8.1.2 and 8.1.3. It is desired to test the simple hypothesis H0 : θ = 2
against the alternative composite hypothesis H1 : θ > 2. Thus Ω = {θ : θ ≥ 2}.
A random sample, X1, X2, of size n = 2 is used, and the critical region is C =
{(x1, x2) : 9.5 ≤ x1 + x2 < ∞}. It was shown in the exercises cited that the
significance level of the test is approximately 0.05 and the power of the test when
θ = 4 is approximately 0.31. The power function γ(θ) of the test for all θ ≥ 2 is

γ(θ) = 1−
∫ 9.5

0

∫ 9.5−x2

0

1

θ2
exp

(
−x1 + x2

θ

)
dx1dx2

=

(
θ + 9.5

θ

)
e−9.5/θ, 2 ≤ θ.

For example, γ(2) = 0.05, γ(4) = 0.31, and γ(9.5) = 2/e ≈ 0.74. It is shown
(Exercise 8.1.3) that the set C = {(x1, x2) : 9.5 ≤ x1 + x2 < ∞} is a best critical
region of size 0.05 for testing the simple hypothesis H0 : θ = 2 against each simple
hypothesis in the composite hypothesis H1 : θ > 2.

The preceding example affords an illustration of a test of a simple hypothesis
H0 that is a best test of H0 against every simple hypothesis in the alternative
composite hypothesis H1. We now define a critical region, when it exists, which
is a best critical region for testing a simple hypothesis H0 against an alternative
composite hypothesis H1. It seems desirable that this critical region should be a
best critical region for testing H0 against each simple hypothesis in H1. That is,
the power function of the test that corresponds to this critical region should be at
least as great as the power function of any other test with the same significance
level for every simple hypothesis in H1.

Definition 8.2.1. The critical region C is a uniformly most powerful (UMP)
critical region of size α for testing the simple hypothesis H0 against an alternative
composite hypothesis H1 if the set C is a best critical region of size α for testing
H0 against each simple hypothesis in H1. A test defined by this critical region C
is called a uniformly most powerful (UMP) test, with significance level α, for
testing the simple hypothesis H0 against the alternative composite hypothesis H1.
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As will be seen presently, uniformly most powerful tests do not always exist.
However, when they do exist, the Neyman–Pearson theorem provides a technique
for finding them. Some illustrative examples are given here.

Example 8.2.2. Let X1, X2, . . . , Xn denote a random sample from a distribution
that is N(0, θ), where the variance θ is an unknown positive number. It will be
shown that there exists a uniformly most powerful test with significance level α
for testing the simple hypothesis H0 : θ = θ′, where θ′ is a fixed positive number,
against the alternative composite hypothesis H1 : θ > θ′. Thus Ω = {θ : θ ≥ θ′}.
The joint pdf of X1, X2, . . . , Xn is

L(θ; x1, x2, . . . , xn) =

(
1

2πθ

)n/2

exp

{
− 1

2θ

n∑
i=1

x2
i

}
.

Let θ′′ represent a number greater than θ′, and let k denote a positive number. Let
C be the set of points where

L(θ′; x1, x2, . . . , xn)

L(θ′′; x1, x2, . . . , xn)
≤ k,

that is, the set of points where(
θ′′

θ′

)n/2

exp

[
−

(
θ′′ − θ′

2θ′θ′′

) n∑
1

x2
i

]
≤ k

or, equivalently,

n∑
1

x2
i ≥

2θ′θ′′

θ′′ − θ′

[
n

2
log

(
θ′′

θ′

)
− log k

]
= c.

The set C = {(x1, x2, . . . , xn) :
∑n

1 x2
i ≥ c} is then a best critical region for testing

the simple hypothesis H0 : θ = θ′ against the simple hypothesis θ = θ′′. It remains
to determine c, so that this critical region has the desired size α. If H0 is true, the
random variable

∑n
1 X2

i /θ′ has a chi-square distribution with n degrees of freedom.
Since α = Pθ′(

∑n
1 X2

i /θ′ ≥ c/θ′), c/θ′ may be computed, for example, by the
R code qchisq(1 − α, n). Then C = {(x1, x2, . . . , xn) :

∑n
1 x2

i ≥ c} is a best
critical region of size α for testing H0 : θ = θ′ against the hypothesis θ = θ′′.
Moreover, for each number θ′′ greater than θ′, the foregoing argument holds. That
is, C = {(x1, . . . , xn) :

∑n
1 x2

i ≥ c} is a uniformly most powerful critical region
of size α for testing H0 : θ = θ′ against H1 : θ > θ′. If x1, x2, . . . , xn denote
the experimental values of X1, X2, . . . , Xn, then H0 : θ = θ′ is rejected at the
significance level α, and H1 : θ > θ′ is accepted if

∑n
1 x2

i ≥ c; otherwise, H0 : θ = θ′

is accepted.
If, in the preceding discussion, we take n = 15, α = 0.05, and θ′ = 3, then

the two hypotheses are H0 : θ = 3 and H1 : θ > 3. Using R, c/3 is computed by
qchisq(0.95,15) = 24.996. Hence, c = 74.988.
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Example 8.2.3. Let X1, X2, . . . , Xn denote a random sample from a distribution
that is N(θ, 1), where θ is unknown. It will be shown that there is no uniformly most
powerful test of the simple hypothesis H0 : θ = θ′, where θ′ is a fixed number against
the alternative composite hypothesis H1 : θ 
= θ′. Thus Ω = {θ : −∞ < θ < ∞}.
Let θ′′ be a number not equal to θ′. Let k be a positive number and consider

(1/2π)n/2 exp

[
−

n∑
1

(xi − θ′)2/2

]

(1/2π)n/2 exp

[
−

n∑
1

(xi − θ′′)2/2

] ≤ k.

The preceding inequality may be written as

exp

{
−(θ′′ − θ′)

n∑
1

xi +
n

2
[(θ′′)2 − (θ′)2]

}
≤ k

or

(θ′′ − θ′)
n∑
1

xi ≥
n

2
[(θ′′)2 − (θ′)2]− log k.

This last inequality is equivalent to

n∑
1

xi ≥
n

2
(θ′′ + θ′)− log k

θ′′ − θ′
,

provided that θ′′ > θ′, and it is equivalent to

n∑
1

xi ≤
n

2
(θ′′ + θ′)− log k

θ′′ − θ′

if θ′′ < θ′. The first of these two expressions defines a best critical region for testing
H0 : θ = θ′ against the hypothesis θ = θ′′ provided that θ′′ > θ′, while the second
expression defines a best critical region for testing H0 : θ = θ′ against the hypothesis
θ = θ′′ provided that θ′′ < θ′. That is, a best critical region for testing the simple
hypothesis against an alternative simple hypothesis, say θ = θ′+1, does not serve as
a best critical region for testing H0 : θ = θ′ against the alternative simple hypothesis
θ = θ′− 1. By definition, then, there is no uniformly most powerful test in the case
under consideration.

It should be noted that had the alternative composite hypothesis been one-sided,
either H1 : θ > θ′ or H1 : θ < θ′, a uniformly most powerful test would exist in each
instance.

Example 8.2.4. In Exercise 8.1.10, the reader was asked to show that if a random
sample of size n = 10 is taken from a Poisson distribution with mean θ, the critical
region defined by

∑n
1 xi ≥ 3 is a best critical region for testing H0 : θ = 0.1 against
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H1 : θ = 0.5. This critical region is also a uniformly most powerful one for testing
H0 : θ = 0.1 against H1 : θ > 0.1 because, with θ′′ > 0.1,

(0.1)
P

xie−10(0.1)/(x1!x2! · · ·xn!)

(θ′′)
P

xie−10(θ′′)/(x1!x2! · · ·xn!)
≤ k

is equivalent to (
0.1

θ′′

)P
xi

e−10(0.1−θ′′) ≤ k.

The preceding inequality may be written as(
n∑
1

xi

)
(log 0.1− log θ′′) ≤ log k + 10(1− θ′′)

or, since θ′′ > 0.1, equivalently as

n∑
1

xi ≥
log k + 10− 10θ′′

log 0.1− log θ′′
.

Of course,
∑n

1 xi ≥ 3 is of the latter form.

Let us make an important observation, although obvious when pointed out. Let
X1, X2, . . . , Xn denote a random sample from a distribution that has pdf f(x; θ), θ ∈
Ω. Suppose that Y = u(X1, X2, . . . , Xn) is a sufficient statistic for θ. In accordance
with the factorization theorem, the joint pdf of X1, X2, . . . , Xn may be written

L(θ; x1, x2, . . . , xn) = k1[u(x1, x2, . . . , xn); θ]k2(x1, x2, . . . , xn),

where k2(x1, x2, . . . , xn) does not depend upon θ. Consequently, the ratio

L(θ′; x1, x2, . . . , xn)

L(θ′′; x1, x2, . . . , xn)
=

k1[u(x1, x2, . . . , xn); θ′]
k1[u(x1, x2, . . . , xn); θ′′]

depends upon x1, x2, . . . , xn only through u(x1, x2, . . . , xn). Accordingly, if there
is a sufficient statistic Y = u(X1, X2, . . . , Xn) for θ and if a best test or a uniformly
most powerful test is desired, there is no need to consider tests that are based upon
any statistic other than the sufficient statistic. This result supports the importance
of sufficiency.

In the above examples, we have presented uniformly most powerful tests. For
some families of pdfs and hypotheses, we can obtain general forms of such tests.
We sketch these results for the general one-sided hypotheses of the form

H0 : θ ≤ θ′ versus H1 : θ > θ′. (8.2.1)

The other one-sided hypotheses with the null hypothesis H0 : θ ≥ θ′, is completely
analogous. Note that the null hypothesis of (8.2.1) is a composite hypothesis. Recall
from Chapter 4 that the level of a test for the hypotheses (8.2.1) is defined by
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maxθ≤θ′ γ(θ), where γ(θ) is the power function of the test. That is, the significance
level is the maximum probability of Type I error.

Let X′ = (X1, . . . , Xn) be a random sample with common pdf (or pmf) f(x; θ),
θ ∈ Ω, and, hence with the likelihood function

L(θ,x) =

n∏
i=1

f(xi; θ), x′ = (x1, . . . , xn) .

We consider the family of pdfs that has monotone likelihood ratio as defined next.

Definition 8.2.2. We say that the likelihood L(θ,x) has monotone likelihood
ratio (mlr) in the statistic y = u(x) if, for θ1 < θ2, the ratio

L(θ1,x)

L(θ2,x)
(8.2.2)

is a monotone function of y = u(x).

Assume then that our likelihood function L(θ,x) has a monotone decreasing
likelihood ratio in the statistic y = u(x). Then the ratio in (8.2.2) is equal to g(y),
where g is a decreasing function. The case where the likelihood function has a mono-
tone increasing likelihood ratio (i.e., g is an increasing function) follows similarly
by changing the sense of the inequalities below. Let α denote the significance level.
Then we claim that the following test is UMP level α for the hypotheses (8.2.1):

Reject H0 if Y ≥ cY , (8.2.3)

where cY is determined by α = Pθ′ [Y ≥ cY ]. To show this claim, first consider the
simple null hypothesis H ′

0 : θ = θ′. Let θ′′ > θ′ be arbitrary but fixed. Let C
denote the most powerful critical region for θ′ versus θ′′. By the Neyman–Pearson
Theorem, C is defined by

L(θ′,X)

L(θ′′,X)
≤ k if and only if X ∈ C,

where k is determined by α = Pθ′ [X ∈ C]. But by Definition 8.2.2, because θ′′ > θ′,

L(θ′,X)

L(θ′′,X)
= g(Y ) ≤ k ⇔ Y ≥ g−1(k),

where g−1(k) satisfies α = Pθ′ [Y ≥ g−1(k)]; i.e., cY = g−1(k). Hence the Neyman–
Pearson test is equivalent to the test defined by (8.2.3). Furthermore, the test is
UMP for θ′ versus θ′′ > θ′ because the test only depends on θ′′ > θ′ and g−1(k) is
uniquely determined under θ′.

Let γY (θ) denote the power function of the test (8.2.3). To finish, we need to
show that maxθ≤θ′ γY (θ) = α. But this follows immediately if we can show that
γY (θ) is a nondecreasing function. To see this, let θ1 < θ2. Note that since θ1 < θ2,
the test (8.2.3) is the most powerful test for testing θ1 versus θ2 with the level
γY (θ1). By Corollary 8.1.1, the power of the test at θ2 must not be below the level;
i.e., γY (θ2) ≥ γY (θ1). Hence γY (θ) is a nondecreasing function. Since the power
function is nondecreasing, it follows from Definition 8.1.2 that the mlr tests are
unbiased tests for the hypotheses (8.2.1); see Exercise 8.2.14.
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Example 8.2.5. Let X1, X2, . . . , Xn be a random sample from a Bernoulli distri-
bution with parameter p = θ, where 0 < θ < 1. Let θ′ < θ′′. Consider the ratio of
likelihoods

L(θ′; x1, x2, . . . , xn)

L(θ′′; x1, x2, . . . , xn)
=

(θ′)
P

xi(1− θ′)n−P
xi

(θ′′)
P

xi(1− θ′′)n−P
xi

=

[
θ′(1 − θ′′)
θ′′(1 − θ′)

]P
xi

(
1− θ′

1− θ′′

)n

.

Since θ′/θ′′ < 1 and (1 − θ′′)/(1 − θ′) < 1, so that θ′(1 − θ′′)/θ′′(1 − θ′) < 1, the
ratio is a decreasing function of y =

∑
xi. Thus we have a monotone likelihood

ratio in the statistic Y =
∑

Xi.

Consider the hypotheses

H0 : θ ≤ θ′ versus H1 : θ > θ′. (8.2.4)

By our discussion above, the UMP level α decision rule for testing H0 versus H1 is
given by

Reject H0 if Y =
∑n

i=1 Xi ≥ c,

where c is such that α = Pθ′ [Y ≥ c].

In the last example concerning a Bernoulli pmf, we obtained a UMP test by
showing that its likelihood possesses mlr. The Bernoulli distribution is a regular
case of the exponential family and our argument, under the one assumption below,
can be generalized to the entire regular exponential family. To show this, suppose
that the random sample X1, X2, . . . , Xn arises from a pdf or pmf representing a
regular case of the exponential class, namely,

f(x; θ) =

{
exp[p(θ)K(x) + H(x) + q(θ)] x ∈ S
0 elsewhere,

where the support of X , S, is free of θ. Further assume that p(θ) is an increasing
function of θ. Then

L(θ′)
L(θ′′)

=

exp

[
p(θ′)

n∑
1

K(xi) +
n∑
1

H(xi) + nq(θ′)

]

exp

[
p(θ′′)

n∑
1

K(xi) +

n∑
1

H(xi) + nq(θ′′)

]

= exp

{
[p(θ′)− p(θ′′)]

n∑
1

K(xi) + n[q(θ′)− q(θ′′)]

}
.

If θ′ < θ′′, p(θ) being an increasing function, requires this ratio to be a decreasing
function of y =

∑n
1 K(xi). Thus, we have a monotone likelihood ratio in the statistic

Y =
∑n

1 K(Xi). Hence consider the hypotheses

H0 : θ ≤ θ′ versus H1 : θ > θ′. (8.2.5)
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By our discussion above concerning mlr, the UMP level α decision rule for testing
H0 versus H1 is given by

Reject H0 if Y =
n∑

i=1

K(Xi) ≥ c,

where c is such that α = Pθ′ [Y ≥ c]. Furthermore, the power function of this test
is an increasing function in θ.

For the record, consider the other one-sided alternative hypotheses,

H0 : θ ≥ θ′ versus H1 : θ < θ′. (8.2.6)

The UMP level α decision rule is, for p(θ) an increasing function,

Reject H0 if Y =

n∑
i=1

K(Xi) ≤ c,

where c is such that α = Pθ′ [Y ≤ c].
If in the preceding situation with monotone likelihood ratio we test H0 : θ =

θ′ against H1 : θ > θ′, then
∑

K(xi) ≥ c would be a uniformly most powerful
critical region. From the likelihood ratios displayed in Examples 8.2.2–8.2.5, we see
immediately that the respective critical regions

n∑
i=1

x2
i ≥ c,

n∑
i=1

xi ≥ c,

n∑
i=1

xi ≥ c,

n∑
i=1

xi ≥ c

are uniformly most powerful for testing H0 : θ = θ′ against H1 : θ > θ′.
There is a final remark that should be made about uniformly most powerful

tests. Of course, in Definition 8.2.1, the word uniformly is associated with θ; that
is, C is a best critical region of size α for testing H0 : θ = θ0 against all θ values
given by the composite alternative H1. However, suppose that the form of such a
region is

u(x1, x2, . . . , xn) ≤ c.

Then this form provides uniformly most powerful critical regions for all attainable α
values by, of course, appropriately changing the value of c. That is, there is a certain
uniformity property, also associated with α, that is not always noted in statistics
texts.

EXERCISES

8.2.1. Let X have the pmf f(x; θ) = θx(1 − θ)1−x, x = 0, 1, zero elsewhere. We
test the simple hypothesis H0 : θ = 1

4 against the alternative composite hypothesis
H1 : θ < 1

4 by taking a random sample of size 10 and rejecting H0 : θ = 1
4 if and

only if the observed values x1, x2, . . . , x10 of the sample observations are such that∑10
1 xi ≤ 1. Find the power function γ(θ), 0 < θ ≤ 1

4 , of this test.
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8.2.2. Let X have a pdf of the form f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere. Let
Y1 < Y2 < Y3 < Y4 denote the order statistics of a random sample of size 4 from
this distribution. Let the observed value of Y4 be y4. We reject H0 : θ = 1 and
accept H1 : θ 
= 1 if either y4 ≤ 1

2 or y4 > 1. Find the power function γ(θ), 0 < θ,
of the test.

8.2.3. Consider a normal distribution of the form N(θ, 4). The simple hypothesis
H0 : θ = 0 is rejected, and the alternative composite hypothesis H1 : θ > 0 is
accepted if and only if the observed mean x of a random sample of size 25 is greater
than or equal to 3

5 . Find the power function γ(θ), 0 ≤ θ, of this test.

8.2.4. Consider the distributions N(μ1, 400) and N(μ2, 225). Let θ = μ1− μ2. Let
x and y denote the observed means of two independent random samples, each of
size n, from these two distributions. We reject H0 : θ = 0 and accept H1 : θ > 0 if
and only if x− y ≥ c. If γ(θ) is the power function of this test, find n and c so that
γ(0) = 0.05 and γ(10) = 0.90, approximately.

8.2.5. Consider Example 8.2.2. Show that L(θ) has a monotone likelihood ratio in
the statistic

∑n
i=1 X2

i . Use this to determine the UMP test for H0 : θ = θ′, where
θ′ is a fixed positive number, versus H1 : θ < θ′.

8.2.6. If, in Example 8.2.2 of this section, H0 : θ = θ′, where θ′ is a fixed positive
number, and H1 : θ 
= θ′, show that there is no uniformly most powerful test for
testing H0 against H1.

8.2.7. Let X1, X2, . . . , X25 denote a random sample of size 25 from a normal dis-
tribution N(θ, 100). Find a uniformly most powerful critical region of size α = 0.10
for testing H0 : θ = 75 against H1 : θ > 75.

8.2.8. Let X1, X2, . . . , Xn denote a random sample from a normal distribution
N(θ, 16). Find the sample size n and a uniformly most powerful test of H0 : θ = 25
against H1 : θ < 25 with power function γ(θ) so that approximately γ(25) = 0.10
and γ(23) = 0.90.

8.2.9. Consider a distribution having a pmf of the form f(x; θ) = θx(1−θ)1−x, x =
0, 1, zero elsewhere. Let H0 : θ = 1

20 and H1 : θ > 1
20 . Use the Central Limit

Theorem to determine the sample size n of a random sample so that a uniformly
most powerful test of H0 against H1 has a power function γ(θ), with approximately
γ( 1

20 ) = 0.05 and γ( 1
10 ) = 0.90.

8.2.10. Illustrative Example 8.2.1 of this section dealt with a random sample of
size n = 2 from a gamma distribution with α = 1, β = θ. Thus the mgf of the
distribution is (1 − θt)−1, t < 1/θ, θ ≥ 2. Let Z = X1 + X2. Show that Z has
a gamma distribution with α = 2, β = θ. Express the power function γ(θ) of
Example 8.2.1 in terms of a single integral. Generalize this for a random sample of
size n.

8.2.11. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf
f(x; θ) = θxθ−1, 0 < x < 1, zero elsewhere, where θ > 0. Show the likelihood has
mlr in the statistic

∏n
i=1 Xi. Use this to determine the UMP test for H0 : θ = θ′

against H1 : θ < θ′, for fixed θ′ > 0.
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8.2.12. Let X have the pdf f(x; θ) = θx(1 − θ)1−x, x = 0, 1, zero elsewhere. We
test H0 : θ = 1

2 against H1 : θ < 1
2 by taking a random sample X1, X2, . . . , X5 of

size n = 5 and rejecting H0 if Y =
∑n

1 Xi is observed to be less than or equal to a
constant c.

(a) Show that this is a uniformly most powerful test.

(b) Find the significance level when c = 1.

(c) Find the significance level when c = 0.

(d) By using a randomized test, as discussed in Example 4.6.4, modify the tests
given in parts (b) and (c) to find a test with significance level α = 2

32 .

8.2.13. Let X1, . . . , Xn denote a random sample from a gamma-type distribution
with α = 2 and β = θ. Let H0 : θ = 1 and H1 : θ > 1.

(a) Show that there exists a uniformly most powerful test for H0 against H1,
determine the statistic Y upon which the test may be based, and indicate the
nature of the best critical region.

(b) Find the pdf of the statistic Y in part (a). If we want a significance level of
0.05, write an equation that can be used to determine the critical region. Let
γ(θ), θ ≥ 1, be the power function of the test. Express the power function as
an integral.

8.2.14. Show that the mlr test defined by expression (8.2.3) is an unbiased test for
the hypotheses (8.2.1).

8.3 Likelihood Ratio Tests

In the first section of this chapter, we presented the most powerful tests for sim-
ple versus simple hypotheses. In the second section, we extended this theory to
uniformly most powerful tests for essentially one-sided alternative hypotheses and
families of distributions that have a monotone likelihood ratio. What about the
general case? That is, suppose the random variable X has pdf or pmf f(x; θ),
where θ is a vector of parameters in Ω. Let ω ⊂ Ω and consider the hypotheses

H0 : θ ∈ ω versus H1 : θ ∈ Ω ∩ ωc. (8.3.1)

There are complications in extending the optimal theory to this general situation,
which are addressed in more advanced books; see, in particular, Lehmann (1986).
We illustrate some of these complications with an example. Suppose X has a
N(θ1, θ2) distribution and that we want to test θ1 = θ′1, where θ′1 is specified. In
the notation of (8.3.1), θ = (θ1, θ2), Ω = {θ : −∞ < θ1 < ∞, θ2 > 0}, and
ω = {θ : θ1 = θ′1, θ2 > 0}. Notice that H0 : θ ∈ ω is a composite null hypothesis.
Let X1, . . . , Xn be a random sample on X .

Assume for the moment that θ2 is known. Then H0 becomes the simple hypoth-
esis θ1 = θ′1. This is essentially the situation discussed in Example 8.2.3. There
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it was shown that no UMP test exists for this situation. If we restrict attention
to the class of unbiased tests (Definition 8.1.2), then a theory of best tests can be
constructed; see Lehmann (1986). For our illustrative example, as Exercise 8.3.21
shows, the test based on the critical region

C2 =

{
|X − θ′1| >

√
θ2

n
zα/2

}

is unbiased. Then it follows from Lehmann that it is an UMP unbiased level α test.

In practice, though, the variance θ2 is unknown. In this case, theory for optimal
tests can be constructed using the concept of what are called conditional tests.
We do not pursue this any further in this text, but refer the interested reader to
Lehmann (1986).

Recall from Chapter 6 that the likelihood ratio tests (6.3.3) can be used to test
general hypotheses such as (8.3.1). While in general the exact null distribution of the
test statistic cannot be determined, under regularity condtions the likelihood ratio
test statistic is asymptotically χ2 under H0. Hence we can obtain an approximate
test in most situations. Although, there is no guarantee that likelihood ratio tests
are optimal, similar to tests based on the Neyman–Pearson Theorem, they are
based on a ratio of likelihood functions and, in many situations, are asymptotically
optimal.

In the example above on testing for the mean of a normal distribution, with
known variance, the likelihood ratio test is the same as the UMP unbiased test.
When the variance is unknown, the likelihood ratio test results in the one-sample
t-test as shown in Example 6.5.1 of Chapter 6. This is the same as the conditional
test discussed in Lehmann (1986).

In the remainder of this section, we present likelihood ratio tests for situations
when sampling from normal distributions.

8.3.1 Likelihood Ratio Tests for Testing Means of Normal

Distributions

In Example 6.5.1 of Chapter 6, we derived the likelihood ratio test for the one-
sample t-test to test for the mean of a normal distribution with unknown variance.
In the next example, we derive the likelihood ratio test for compairing the means
of two independent normal distributions. We then discuss the power functions for
both of these tests.

Example 8.3.1. Let the independent random variables X and Y have distributions
that are N(θ1, θ3) and N(θ2, θ3), where the means θ1 and θ2 and common variance θ3

are unknown. Then Ω = {(θ1, θ2, θ3) : −∞ < θ1 <∞,−∞ < θ2 <∞, 0 < θ3 <∞}.
Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym denote independent random samples from
these distributions. The hypothesis H0 : θ1 = θ2, unspecified, and θ3 unspecified,
is to be tested against all alternatives. Then ω = {(θ1, θ2, θ3) : −∞ < θ1 = θ2 <
∞, 0 < θ3 < ∞}. Here X1, X2, . . . , Xn, Y1, Y2, . . . , Ym are n + m > 2 mutually
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independent random variables having the likelihood functions

L(ω) =

(
1

2πθ3

)(n+m)/2

exp

{
− 1

2θ3

[
n∑
1

(xi − θ1)
2 +

m∑
1

(yi − θ1)
2

]}

and

L(Ω) =

(
1

2πθ3

)(n+m)/2

exp

{
− 1

2θ3

[
n∑
1

(xi − θ1)
2 +

m∑
1

(yi − θ2)
2

]}
.

If ∂ log L(ω)/∂θ1 and ∂ log L(ω)/∂θ3 are equated to zero, then (Exercise 8.3.2)

n∑
1

(xi − θ1) +

m∑
1

(yi − θ1) = 0

1

θ3

[
n∑
1

(xi − θ1)
2 +

m∑
1

(yi − θ1)
2

]
= n + m. (8.3.2)

The solutions for θ1 and θ3 are, respectively,

u = (n + m)−1

{
n∑
1

xi +
m∑
1

yi

}

w = (n + m)−1

{
n∑
1

(xi − u)2 +

m∑
1

(yi − u)2

}
.

Further, u and w maximize L(ω). The maximum is

L(ω̂) =

(
e−1

2πw

)(n+m)/2

.

In a like manner, if

∂ log L(Ω)

∂θ1
,

∂ log L(Ω)

∂θ2
,

∂ log L(Ω)

∂θ3

are equated to zero, then (Exercise 8.3.3)

n∑
1

(xi − θ1) = 0

m∑
1

(yi − θ2) = 0 (8.3.3)

−(n + m) +
1

θ3

[
n∑
1

(xi − θ1)
2 +

m∑
1

(yi − θ2)
2

]
= 0.
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The solutions for θ1, θ2, and θ3 are, respectively,

u1 = n−1
n∑
1

xi

u2 = m−1
m∑
1

yi

w′ = (n + m)−1

[
n∑
1

(xi − u1)
2 +

m∑
1

(yi − u2)
2

]
,

and, further, u1, u2, and w′ maximize L(Ω). The maximum is

L(Ω̂) =

(
e−1

2πw′

)(n+m)/2

,

so that

Λ(x1, . . . , xn, y1, . . . , ym) = Λ =
L(ω̂)

L(Ω̂)
=

(
w′

w

)(n+m)/2

.

The random variable defined by Λ2/(n+m) is

n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

n∑
1

{Xi − [(nX + mY )/(n + m)]}2 +

n∑
1

{Yi − [(nX + mY )/(n + m)]}2
.

Now

n∑
1

(
Xi −

nX + mY

n + m

)2

=

n∑
1

[
(Xi −X) +

(
X − nX + mY

n + m

)]2

=

n∑
1

(Xi −X)2 + n

(
X − nX + mY

n + m

)2

and

m∑
1

(
Yi −

nX + mY

n + m

)2

=

m∑
1

[
(Yi − Y ) +

(
Y − nX + mY

n + m

)]2

=

m∑
1

(Yi − Y )2 + m

(
Y − nX + mY

n + m

)2

.

But

n

(
X − nX + mY

n + m

)2

=
m2n

(n + m)2
(X − Y )2
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and

m

(
Y − nX + mY

n + m

)2

=
n2m

(n + m)2
(X − Y )2.

Hence the random variable defined by Λ2/(n+m) may be written

n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

n∑
1

(Xi −X)2 +
m∑
1

(Yi − Y )2 + [nm/(n + m)](X − Y )2

=
1

1 +
[nm/(n + m)](X − Y )2

n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

.

If the hypothesis H0 : θ1 = θ2 is true, the random variable

T =

√
nm

n + m
(X − Y )

{
(n + m− 2)−1

[
n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

]}−1/2

(8.3.4)
has, in accordance with Section 3.6, a t-distribution with n + m − 2 degrees of
freedom. Thus the random variable defined by Λ2/(n+m) is

n + m− 2

(n + m− 2) + T 2
.

The test of H0 against all alternatives may then be based on a t-distribution with
n + m− 2 degrees of freedom.

The likelihood ratio principle calls for the rejection of H0 if and only if Λ ≤ λ0 <
1. Thus the significance level of the test is

α = PH0 [Λ(X1, . . . , Xn, Y1, . . . , Ym) ≤ λ0].

However, Λ(X1, . . . , Xn, Y1, . . . , Ym) ≤ λ0 is equivalent to |T | ≥ c, and so

α = P (|T | ≥ c; H0).

For given values of n and m, the number c is is easily computed. In R, c =qt(1−
α/2, n + m− 2). Then H0 is rejected at a significance level α if and only if |t| ≥ c,
where t is the observed value of T . If, for instance, n = 10, m = 6, and α = 0.05,
then c = qt(0.975, 14) = 2.1448.

For this last example as well as the one-sample t-test derived in Example 6.5.1, it
was found that the likelihood ratio test could be based on a statistic that, when the
hypothesis H0 is true, has a t-distribution. To help us compute the power functions
of these tests at parameter points other than those described by the hypothesis H0,
we turn to the following definition.
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Definition 8.3.1. Let the random variable W be N(δ, 1); let the random variable
V be χ2(r), and let W and V be independent. The quotient

T =
W√
V/r

is said to have a noncentral t-distribution with r degrees of freedom and noncen-
trality parameter δ. If δ = 0, we say that T has a central t-distribution.

In the light of this definition, let us reexamine the t-statistics of Examples 6.5.1
and 8.3.1.

Example 8.3.2 (Power of the One Sample t-Test). For Example 6.5.1, consider a
more general situation. Assume that X1, . . . , Xn is a random sample on X that has
a N(μ, σ2) distribution. We are interested in testing H0 : μ = μ0 versus H1 : μ 
= μ0,
where μ0 is specified. Then from Example 6.5.1, the likelihood ratio test statistic is

t(X1, . . . , Xn) =

√
n(X − μ0)√√√√ n∑

1

(Xi −X)2/(n− 1)

=

√
n(X − μ0)/σ√√√√ n∑

1

(Xi −X)2/[σ2(n− 1)]

.

The hypothesis H0 is rejected at level α if |t| ≥ tα/2,n−1. Suppose μ1 
= μ0 is an

alternative of interest. Because Eμ1 [
√

nX/σ
√

nX/σ] =
√

n(μ1 − μ0)/σ, the power
of the test to detect μ1 is

γ(μ1) = P (|t| ≥ tα/2,n−1) = 1− P (t ≤ tα/2,n−1) + P (t ≤ −tα/2,n−1), (8.3.5)

where t has a noncentral t-distribution with noncentrality parameter δ =
√

n(μ1 −
μ0)/σ and n− 1 degrees of freedom. This is computed in R by the call

1 - pt(tc,n-1,ncp=delta) + pt(-tc,n-1,ncp=delta)

where tc is tα/2,n−1 and delta is the noncentrality parameter δ.
The following R code computes a graph of the power curve of this test. Notice

that the horizontal range of the plot is the interval [μ0 − 4σ/
√

n, μ0 + 4σ/
√

n]. As
indicated the parameters need to be set.
## Input mu0, sig, n, alpha.

fse = 4*sig/sqrt(n); maxmu = mu0 + fse; tc = qt(1-(alpha/2),n-1)

minmu = mu0 -fse; mu1 = seq(minmu,maxmu,.1)

delta = (mu1-mu0)/(sig/sqrt(n))

gs = 1 - pt(tc,n-1,ncp=delta) + pt(-tc,n-1,ncp=delta)

plot(gs~mu1,pch=" ",xlab=expression(mu[1]),ylab=expression(gamma))

lines(gs~mu1)

This code is the body of the function tpowerg.R. Exercise 8.3.5 discusses its use.
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Example 8.3.3 (Power of the Two Sample t-Test). In Example 8.3.1 we had

T =
W2√

V2/(n + m− 2)
,

where

W2 =

√
nm

n + m
(X − Y )

/
σ

and

V2 =

n∑
1

(Xi −X)2 +

m∑
1

(Yi − Y )2

σ2
.

Here W2 is N [
√

nm/(n + m)(θ1− θ2)/σ, 1], V2 is χ2(n+m−2), and W2 and V2 are
independent. Accordingly, if θ1 
= θ2, T has a noncentral t-distribution with n+m−2
degrees of freedom and noncentrality parameter δ2 =

√
nm/(n + m)(θ1− θ2)/σ. It

is interesting to note that δ1 =
√

nθ1/σ measures the deviation of θ1 from θ1 = 0
in units of the standard deviation σ/

√
n of X . The noncentrality parameter δ2 =√

nm/(n + m)(θ1 − θ2)/σ is equal to the deviation of θ1 − θ2 from θ1 − θ2 = 0 in

units of the standard deviation σ/
√

(n + m)/mn of X − Y .
As in the last example, it is easy to write R code that evaluates power for this

test. For a numerical illustration, assume that the common variance is θ3 = 100,
n = 20, and m = 15. Suppose α = 0.05 and we want to determine the power
of the test to detect Δ = 5, where Δ = θ1 − θ2. In this case the critical value is
t0.25,33 = qt(.975, 33) = 2.0345 and the noncentrality parameter is δ2 = 1.4639. The
power is computed as

1- pt(2.0345,33,ncp=1.4639) + pt(-2.0345,33,ncp=1.4639) = 0.2954

Hence, the test has a 29.4% chance of detecting a difference in means of 5.

Remark 8.3.1. The one- and two-sample tests for normal means, presented in
Examples 6.5.1 and 8.3.1, are the tests for normal means presented in most elemen-
tary statistics books. They are based on the assumption of normality. What if the
underlying distributions are not normal? In that case, with finite variances, the
t-test statistics for these situations are asymptotically correct. For example, con-
sider the one-sample t-test. Suppose X1, . . . , Xn are iid with a common nonnormal
pdf that has mean θ1 and finite variance σ2. The hypotheses remain the same, i.e.,
H0 : θ1 = θ′1 versus H1 : θ1 
= θ′1. The t-test statistic, Tn, is given by

Tn =

√
n(X − θ′1)

Sn
, (8.3.6)

where Sn is the sample standard deviation. Our critical region is C1 = {|Tn| ≥
tα/2,n−1}. Recall that Sn → σ in probability. Hence, by the Central Limit Theorem,
under H0,

Tn =
σ

Sn

√
n(X − θ′1)

σ

D→ Z, (8.3.7)
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where Z has a standard normal distribution. Hence the asymptotic test would use
the critical region C2 = {|Tn| ≥ zα/2}. By (8.3.7) the critical region C2 would have
approximate size α. In practice, we would use C1, because t critical values are gen-
erally larger than z critical values and, hence, the use of C1 would be conservative;
i.e., the size of C1 would be slightly smaller than that of C2. As Exercise 8.3.4
shows, the two-sample t-test is also asymptotically correct, provided the underlying
distributions have the same variance.

For nonnormal situations where the distribution is “close” to the normal distri-
bution, the t-test is essentially valid; i.e., the true level of significance is close to the
nominal α. In terms of robustness, we would say that for these situations the t-test
possesses robustness of validity. But the t-test may not possess robustness of
power. For nonnormal situations, there are more powerful tests than the t-test;
see Chapter 10 for discussion.

For finite sample sizes and for distributions that are decidedly not normal, very
skewed for instance, the validity of the t-test may also be questionable, as we illus-
trate in the following simulation study.

Example 8.3.4 (Skewed Contaminated Normal Family of Distributions). Consider
the random variable X given by

X = (1− Iε)Z + IεY, (8.3.8)

where Z has a N(0, 1) distribution, Y has a N(μc, σ
2
c ) distribution, Iε has a bin(1, ε)

distribution, and Z, Y , and Iε are mutually independent. Assume that ε < 0.5
and σc > 1, so that Y is the contaminating random variable in the mixture. If
μc = 0, then X has the contaminated normal distribution discussed in Section
3.4.1, which is symmetrically distributed about 0. For μc 
= 0, the distribution of X ,
(8.3.8), is skewed and we call it the skewed contaminated normal distribution,
SCN(ε, σc, μC). Note that E(X) = εμc and in Exercise 8.3.18 the cdf and pdf of X
are derived. The R function rscn generates random variates from this distribution.

In this example, we show the results of a small simulation study on the validity
of the t-test for random samples from the distribution of X . Consider the one-sided
hypotheses

H0 : μ = μX versus H0 : μ < μX .

Let X1, X2, . . . , Xn be a random sample from the distribution of X . As a test
statistic we consider the t-test discussed in Example 4.5.4, which is also given in
expression (8.3.6); that is, the test statistic is Tn = (X − μX)/(Sn/

√
n), where X

and Sn are the sample mean and standard deviation of X1, X2, . . . , Xn, respectively.
We set the level of significance at α = 0.05 and used the decision rule: Reject H0

if Tn ≤ t0.05,n−1. For the study, we set n = 30, ε = 0.20, and σc = 25. For μc, we
selected the five values of 0, 5, 10, 15, and 20, as shown in Table 8.3.1. For each of
these five situations, we ran 10,000 simulations and recorded α̂, which is the number
of rejections of H0 divided by the number of simulations, i.e., the empirical α level.

For the test to be valid, α̂ should be close to the nominal value of 0.05. As
Table 8.3.1 shows, though, for all cases other than μc = 0, the t-test is quite liberal;
that is, its empirical significance level far exceeds the nominal 0.05 level (as Exercise
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Table 8.3.1: Empirical α Levels for the Nominal 0.05 t-Test of Example 8.3.4.

Empirical α
μc 0 5 10 15 20
α̂ 0.0458 0.0961 0.1238 0.1294 0.1301

8.3.19 shows, the sampling error in the table is about 0.004). Note that when μc = 0
the distribution of X is symmetric about 0 and in this case the empirical level is
close to the nominal value of 0.05.

8.3.2 Likelihood Ratio Tests for Testing Variances of Normal

Distributions

In this section, we discuss likelihood ratio tests for variances of normal distributions.
In the next example, we begin with the two sample problem.

Example 8.3.5. In Example 8.3.1, in testing the equality of the means of two
normal distributions, it was assumed that the unknown variances of the distributions
were equal. Let us now consider the problem of testing the equality of these two
unknown variances. We are given the independent random samples X1, . . . , Xn and
Y1, . . . , Ym from the distributions, which are N(θ1, θ3) and N(θ2, θ4), respectively.
We have

Ω = {(θ1, θ2, θ3, θ4) : −∞ < θ1, θ2 < ∞, 0 < θ3, θ4 <∞}.
The hypothesis H0 : θ3 = θ4, unspecified, with θ1 and θ2 also unspecified, is to be
tested against all alternatives. Then

ω = {(θ1, θ2, θ3, θ4) : −∞ < θ1, θ2 <∞, 0 < θ3 = θ4 <∞}.

It is easy to show (see Exercise 8.3.11) that the statistic defined by Λ = L(ω̂)/L(Ω̂)
is a function of the statistic

F =

n∑
1

(Xi −X)2/(n− 1)

m∑
1

(Yi − Y )2/(m− 1)

. (8.3.9)

If θ3 = θ4, this statistic F has an F -distribution with n − 1 and m − 1 degrees of
freedom. The hypothesis that (θ1, θ2, θ3, θ4) ∈ ω is rejected if the computed F ≤ c1

or if the computed F ≥ c2. The constants c1 and c2 are usually selected so that, if
θ3 = θ4,

P (F ≤ c1) = P (F ≥ c2) =
α1

2
,

where α1 is the desired significance level of this test. The power function of this
test is derived in Exercise 8.3.10.
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Remark 8.3.2. We caution the reader on this last test for the equality of two
variances. In Remark 8.3.1, we discussed that the one- and two-sample t-tests for
means are asymptotically correct. The two-sample variance test of the last example
is not, however; see, for example, page 143 of Hettmansperger and McKean (2011).
If the underlying distributions are not normal, then the F -critical values may be
far from valid critical values (unlike the t-critical values for the means tests as
discussed in Remark 8.3.1). In a large simulation study, Conover, Johnson, and
Johnson (1981) showed that instead of having the nominal size of α = 0.05, the
F -test for variances using the F -critical values could have significance levels as high
as 0.80, in certain nonnormal situations. Thus the two-sample F -test for variances
does not possess robustness of validity. It should only be used in situations where
the assumption of normality can be justified. See Exercise 8.3.17 for an illustrative
data set.

The corresponding likelihood ratio test for the variance of a normal distribution
based on one sample is discussed in Exercise 8.3.9. The cautions raised in Remark
8.3.1, hold for this test also.

Example 8.3.6. Let the independent random variables X and Y have distributions
that are N(θ1, θ3) and N(θ2, θ4). In Example 8.3.1, we derived the likelihood ratio
test statistic T of the hypothesis θ1 = θ2 when θ3 = θ4, while in Example 8.3.5
we obtained the likelihood ratio test statistic F of the hypothesis θ3 = θ4. The
hypothesis that θ1 = θ2 is rejected if the computed |T | ≥ c, where the constant c is
selected so that α2 = P (|T | ≥ c; θ1 = θ2, θ3 = θ4) is the assigned significance level of
the test. We shall show that, if θ3 = θ4, the likelihood ratio test statistics for equality
of variances and equality of means, respectively F and T , are independent. Among
other things, this means that if these two tests based on F and T , respectively,
are performed sequentially with significance levels α1 and α2, the probability of
accepting both these hypotheses, when they are true, is (1−α1)(1−α2). Thus the
significance level of this joint test is α = 1− (1− α1)(1 − α2).

Independence of F and T , when θ3 = θ4, can be established using sufficiency
and completeness. The statistics X , Y , and

∑n
1 (Xi − X)2 +

∑n
1 (Yi − Y )2 are

joint complete sufficient statistics for the three parameters θ1, θ2, and θ3 = θ4.
Obviously, the distribution of F does not depend upon θ1, θ2, or θ3 = θ4, and hence
F is independent of the three joint complete sufficient statistics. However, T is a
function of these three joint complete sufficient statistics alone, and, accordingly, T
is independent of F . It is important to note that these two statistics are independent
whether θ1 = θ2 or θ1 
= θ2. This permits us to calculate probabilities other than
the significance level of the test. For example, if θ3 = θ4 and θ1 
= θ2, then

P (c1 < F < c2, |T | ≥ c) = P (c1 < F < c2)P (|T | ≥ c).

The second factor in the right-hand member is evaluated by using the probabilities
of a noncentral t-distribution. Of course, if θ3 = θ4 and the difference θ1 − θ2 is
large, we would want the preceding probability to be close to 1 because the event
{c1 < F < c2, |T | ≥ c} leads to a correct decision, namely, accept θ3 = θ4 and
reject θ1 = θ2.
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EXERCISES

8.3.1. Verzani (2014) discusses a data set on healthy individuals, including their
temperatures by gender. The data are in the file tempbygender.rda and the vari-
ables of interest are maletemp and femaletemp. Download this file from the site
listed in the Preface.

(a) Obtain comparison boxplots. Comment on the plots. Which, if any, gen-
der seems to have lower temperatures? Based on the width of the boxplots,
comment on the assumption of equal variances.

(b) As discussed in Example 8.3.3, compute the two-sample, two-sided t-test that
there is no difference in the true mean temperatures between genders. Obtain
the p-value of the test and conclude in terms of the problem at the nominal
α-level of 0.05.

(c) Obtain a 95% confidence interval for the difference in means. What does it
mean in terms of the problem?

8.3.2. Verify Equations (8.3.2) of Example 8.3.1 of this section.

8.3.3. Verify Equations (8.3.3) of Example 8.3.1 of this section.

8.3.4. Let X1, . . . , Xn and Y1, . . . , Ym follow the location model

Xi = θ1 + Zi, i = 1, . . . , n

Yi = θ2 + Zn+i, i = 1, . . . , m,

where Z1, . . . , Zn+m are iid random variables with common pdf f(z). Assume that
E(Zi) = 0 and Var(Zi) = θ3 < ∞.

(a) Show that E(Xi) = θ1, E(Yi) = θ2, and Var(Xi) = Var(Yi) = θ3.

(b) Consider the hypotheses of Example 8.3.1, i.e.,

H0 : θ1 = θ2 versus H1 : θ1 
= θ2.

Show that under H0, the test statistic T given in expression (8.3.4) has a
limiting N(0, 1) distribution.

(c) Using part (b), determine the corresponding large sample test (decision rule)
of H0 versus H1. (This shows that the test in Example 8.3.1 is asymptotically
correct.)

8.3.5. In Example 8.3.2, the power function for the one-sample t-test is discussed.

(a) Plot the power function for the following setup: X has a N(μ, σ2) distribution;
H0 : μ = 50 versus H1 : μ 
= 50; α = 0.05; n = 25; and σ = 10.

(b) Overlay the power curve in (a) with that for α = 0.01. Comment.

(c) Overlay the power curve in (a) with that for n = 35. Comment.
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(d) Determine the smallest value of n so the power exceeds 0.80 to detect μ = 53.
Hint: Modify the R function tpowerg.R so it returns the power for a specified
alternative.

8.3.6. The effect that a certain drug (Drug A) has on increasing blood pressure
is a major concern. It is thought that a modification of the drug (Drug B) will
lessen the increase in blood pressure. Let μA and μB be the true mean increases
in blood pressure due to Drug A and B, respectively. The hypotheses of interest
are H0 : μA = μB = 0 versus H1 : μA > μB = 0. The two-sample t-test statistic
discussed in Example 8.3.3 is to be used to conduct the analysis. The nominal level
is set at α = 0.05 For the experimental design assume that the sample sizes are
the same; i.e., m = n. Also, based on data from Drug A, σ = 30 seems to be a
reasonable selection for the common standard deviation. Determine the common
sample size, so that the difference in means μA−μB = 12 has an 80% detection rate.
Suppose when the experiment is over, due to patients dropping out, the sample sizes
for Drugs A and B are respectively n = 72 and m = 68. What was the actual power
of the experiment to detect the difference of 12?

8.3.7. Show that the likelihood ratio principle leads to the same test when testing
a simple hypothesis H0 against an alternative simple hypothesis H1, as that given
by the Neyman–Pearson theorem. Note that there are only two points in Ω.

8.3.8. Let X1, X2, . . . , Xn be a random sample from the normal distribution N(θ, 1).
Show that the likelihood ratio principle for testing H0 : θ = θ′, where θ′ is specified,
against H1 : θ 
= θ′ leads to the inequality |x− θ′| ≥ c.

(a) Is this a uniformly most powerful test of H0 against H1?

(b) Is this a uniformly most powerful unbiased test of H0 against H1?

8.3.9. Let X1, X2, . . . , Xn be iid N(θ1, θ2). Show that the likelihood ratio principle
for testing H0 : θ2 = θ′2 specified, and θ1 unspecified, against H1 : θ2 
= θ′2, θ1

unspecified, leads to a test that rejects when
∑n

1 (xi−x)2 ≤ c1 or
∑n

1 (xi−x)2 ≥ c2,
where c1 < c2 are selected appropriately.

8.3.10. For the situation discussed in Example 8.3.5, derive the power function for
the likelihood ratio test statistic given in expression (8.3.9).

8.3.11. Let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from the
distributions N(θ1, θ3) and N(θ2, θ4), respectively.

(a) Show that the likelihood ratio for testing H0 : θ1 = θ2, θ3 = θ4 against all
alternatives is given by[

n∑
1

(xi − x)2/n

]n/2 [
m∑
1

(yi − y)2/m

]m/2

{[
n∑
1

(xi − u)2 +
m∑
1

(yi − u)2

]/
(m + n)

}(n+m)/2
,

where u = (nx + my)/(n + m).



8.3. Likelihood Ratio Tests 499

(b) Show that the likelihood ratio for testing H0 : θ3 = θ4 with θ1 and θ2 unspec-
ified can be based on the test statistic F given in expression (8.3.9).

8.3.12. Let Y1 < Y2 < · · · < Y5 be the order statistics of a random sample of size
n = 5 from a distribution with pdf f(x; θ) = 1

2e−|x−θ|, −∞ < x < ∞, for all real θ.
Find the likelihood ratio test Λ for testing H0 : θ = θ0 against H1 : θ 
= θ0.

8.3.13. A random sample X1, X2, . . . , Xn arises from a distribution given by

H0 : f(x; θ) =
1

θ
, 0 < x < θ, zero elsewhere,

or

H1 : f(x; θ) =
1

θ
e−x/θ, 0 < x < ∞, zero elsewhere.

Determine the likelihood ratio (Λ) test associated with the test of H0 against H1.

8.3.14. Consider a random sample X1, X2, . . . , Xn from a distribution with pdf
f(x; θ) = θ(1 − x)θ−1, 0 < x < 1, zero elsewhere, where θ > 0.

(a) Find the form of the uniformly most powerful test of H0 : θ = 1 against
H1 : θ > 1.

(b) What is the likelihood ratio Λ for testing H0 : θ = 1 against H1 : θ 
= 1?

8.3.15. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn be independent random samples from
two normal distributions N(μ1, σ

2) and N(μ2, σ
2), respectively, where σ2 is the

common but unknown variance.

(a) Find the likelihood ratio Λ for testing H0 : μ1 = μ2 = 0 against all alterna-
tives.

(b) Rewrite Λ so that it is a function of a statistic Z which has a well-known
distribution.

(c) Give the distribution of Z under both null and alternative hypotheses.

8.3.16. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample from a bivariate
normal distribution with μ1, μ2, σ

2
1 = σ2

2 = σ2, ρ = 1
2 , where μ1, μ2, and σ2 > 0 are

unknown real numbers. Find the likelihood ratio Λ for testing H0 : μ1 = μ2 = 0, σ2

unknown against all alternatives. The likelihood ratio Λ is a function of what
statistic that has a well-known distribution?

8.3.17. Let X be a random variable with pdf fX(x) = (2bX)−1 exp{−|x|/bX}, for
−∞ < x < ∞ and bX > 0. First, show that the variance of X is σ2

X = 2b2
X . Next,

let Y , independent of X , have pdf fY (y) = (2bY )−1 exp{−|y|/bY }, for −∞ < x < ∞
and bY > 0. Consider the hypotheses

H0 : σ2
X = σ2

Y versus H1 : σ2
X > σ2

Y .

To illustrate Remark 8.3.2 for testing these hypotheses, consider the following data
set (data are also in the file exercise8316.rda). Sample 1 represents the values
of a sample drawn on X with bX = 1, while Sample 2 represents the values of a
sample drawn on Y with bY = 1. Hence, in this case H0 is true.
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Sample −0.389 −2.177 0.813 −0.001
1 −0.110 −0.709 0.456 0.135

Sample 0.763 −0.570 −2.565 −1.733
1 0.403 0.778 −0.115

Sample −1.067 −0.577 0.361 −0.680
2 −0.634 −0.996 −0.181 0.239

Sample −0.775 −1.421 −0.818 0.328
2 0.213 1.425 −0.165

(a) Obtain comparison boxplots of these two samples. Comparison boxplots con-
sist of boxplots of both samples drawn on the same scale. Based on these
plots, in particular the interquartile ranges, what do you conclude about H0?

(b) Obtain the F -test (for a one-sided hypothesis) as discussed in Remark 8.3.2
at level α = 0.10. What is your conclusion?

(c) The test in part (b) is not exact. Why?

8.3.18. For the skewed contaminated normal random variable X of Example 8.3.4,
derive the cdf, pdf, mean, and variance of X .

8.3.19. For Table 8.3.1 of Example 8.3.4, show that the half-width of the 95%
confidence interval for a binomial proportion as given in Chapter 4 is 0.004 at the
nominal value of 0.05.

8.3.20. If computational facilities are available, perform a Monte Carlo study of
the two-sided t-test for the skewed contaminated normal situation of Example 8.3.4.
The R function rscn.R generates variates from the distribution of X .

8.3.21. Suppose X1, . . . , Xn is a random sample on X which has a N(μ, σ2
0) distri-

bution, where σ2
0 is known. Consider the two-sided hypotheses

H0 : μ = 0 versus H1 : μ 
= 0.

Show that the test based on the critical region C = {|X| >
√

σ2
0/nzα/2} is an

unbiased level α test.

8.3.22. Assume the same situation as in the last exercise but consider the test
with critical region C∗ = {X >

√
σ2

0/nzα}. Show that the test based on C∗ has
significance level α but that it is not an unbiased test.

8.4 ∗The Sequential Probability Ratio Test

Theorem 8.1.1 provides us with a method for determining a best critical region
for testing a simple hypothesis against an alternative simple hypothesis. Recall its
statement: Let X1, X2, . . . , Xn be a random sample with fixed sample size n from
a distribution that has pdf or pmf f(x; θ), where θ = {θ : θ = θ′, θ′′} and θ′ and θ′′
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are known numbers. For this section, we denote the likelihood of X1, X2, . . . , Xn

by
L(θ; n) = f(x1; θ)f(x2; θ) · · · f(xn; θ),

a notation that reveals both the parameter θ and the sample size n. If we reject
H0 : θ = θ′ and accept H1 : θ = θ′′ when and only when

L(θ′; n)

L(θ′′; n)
≤ k,

where k > 0, then by Theorem 8.1.1 this is a best test of H0 against H1.
Let us now suppose that the sample size n is not fixed in advance. In fact,

let the sample size be a random variable N with sample space {1, 2, , 3, . . .}. An
interesting procedure for testing the simple hypothesis H0 : θ = θ′ against the simple
hypothesis H1 : θ = θ′′ is the following: Let k0 and k1 be two positive constants
with k0 < k1. Observe the independent outcomes X1, X2, X3, . . . in a sequence, for
example, x1, x2, x3, . . ., and compute

L(θ′; 1)

L(θ′′; 1)
,

L(θ′; 2)

L(θ′′; 2)
,

L(θ′; 3)

L(θ′′; 3)
, . . . .

The hypothesis H0 : θ = θ′ is rejected (and H1 : θ = θ′′ is accepted) if and only if
there exists a positive integer n so that xn = (x1, x2, . . . , xn) belongs to the set

Cn =

{
xn : k0 <

L(θ′, j)
L(θ′′, j)

< k1, j = 1, . . . , n− 1, and
L(θ′, n)

L(θ′′, n)
≤ k0

}
. (8.4.1)

On the other hand, the hypothesis H0 : θ = θ′ is accepted (and H1 : θ = θ′′

is rejected) if and only if there exists a positive integer n so that (x1, x2, . . . , xn)
belongs to the set

Bn =

{
xn : k0 <

L(θ′, j)
L(θ′′, j)

< k1, j = 1, . . . , n− 1, and
L(θ′, n)

L(θ′′, n)
≥ k1

}
. (8.4.2)

That is, we continue to observe sample observations as long as

k0 <
L(θ′, n)

L(θ′′, n)
< k1. (8.4.3)

We stop these observations in one of two ways:

1. With rejection of H0 : θ = θ′ as soon as

L(θ′, n)

L(θ′′, n)
≤ k0

or

2. With acceptance of H0 : θ = θ′ as soon as

L(θ′, n)

L(θ′′, n)
≥ k1,



502 Optimal Tests of Hypotheses

A test of this kind is called Wald’s sequential probability ratio test. Fre-
quently, inequality (8.4.3) can be conveniently expressed in an equivalent form:

c0(n) < u(x1, x2, . . . , xn) < c1(n), (8.4.4)

where u(X1, X2, . . . , Xn) is a statistic and c0(n) and c1(n) depend on the constants
k0, k1, θ

′, θ′′, and on n. Then the observations are stopped and a decision is reached
as soon as

u(x1, x2, . . . , xn) ≤ c0(n) or u(x1, x2, . . . , xn) ≥ c1(n).

We now give an illustrative example.

Example 8.4.1. Let X have a pmf

f(x; θ) =

{
θx(1 − θ)1−x x = 0, 1
0 elsewhere.

In the preceding discussion of a sequential probability ratio test, let H0 : θ = 1
3 and

H1 : θ = 2
3 ; then, with

∑
xi =

∑n
i=1 xi,

L(1
3 , n)

L(2
3 , n)

=
(1
3 )

P
xi(2

3 )n−P
xi

(2
3 )

P
xi(1

3 )n−P
xi

= 2n−2
P

xi .

If we take logarithms to the base 2, the inequality

k0 <
L(1

3 , n)

L(2
3 , n)

< k1,

with 0 < k0 < k1, becomes

log2 k0 < n− 2

n∑
1

xi < log2 k1,

or, equivalently, in the notation of expression (8.4.4),

c0(n) =
n

2
− 1

2
log2 k1 <

n∑
1

xi <
n

2
− 1

2
log2 k0 = c1(n).

Note that L(1
3 , n)/L(2

3 , n) ≤ k0 if and only if c1(n) ≤∑n
1 xi; and L(1

3 , n)/L(2
3 , n) ≥

k1 if and only if c0(n) ≥
∑n

1 xi. Thus we continue to observe outcomes as long as
c0(n) <

∑n
1 xi < c1(n). The observation of outcomes is discontinued with the first

value of n of N for which either c1(n) ≤ ∑n
1 xi or c0(n) ≥ ∑n

1 xi. The inequality
c1(n) ≤

∑n
1 xi leads to rejection of H0 : θ = 1

3 (the acceptance of H1), and the
inequality c0(n) ≥ ∑n

1 xi leads to the acceptance of H0 : θ = 1
3 (the rejection of

H1).

Remark 8.4.1. At this point, the reader undoubtedly sees that there are many
questions that should be raised in connection with the sequential probability ratio
test. Some of these questions are possibly among the following:
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1. What is the probability of the procedure continuing indefinitely?

2. What is the value of the power function of this test at each of the points θ = θ′

and θ = θ′′?

3. If θ′′ is one of several values of θ specified by an alternative composite hypoth-
esis, say H1 : θ > θ′, what is the power function at each point θ ≥ θ′?

4. Since the sample size N is a random variable, what are some of the properties
of the distribution of N? In particular, what is the expected value E(N) of
N?

5. How does this test compare with tests that have a fixed sample size n?

A course in sequential analysis would investigate these and many other problems.
However, in this book our objective is largely that of acquainting the reader with
this kind of test procedure. Accordingly, we assert that the answer to question 1
is zero. Moreover, it can be proved that if θ = θ′ or if θ = θ′′, E(N) is smaller for
this sequential procedure than the sample size of a fixed-sample-size test that has
the same values of the power function at those points. We now consider question 2
in some detail.

In this section we shall denote the power of the test when H0 is true by the
symbol α and the power of the test when H1 is true by the symbol 1 − β. Thus
α is the probability of committing a Type I error (the rejection of H0 when H0 is
true), and β is the probability of committing a Type II error (the acceptance of H0

when H0 is false). With the sets Cn and Bn as previously defined, and with random
variables of the continuous type, we then have

α =
∞∑

n=1

∫
Cn

L(θ′, n), 1− β =
∞∑

n=1

∫
Cn

L(θ′′, n).

Since the probability is 1 that the procedure terminates, we also have

1− α =

∞∑
n=1

∫
Bn

L(θ′, n), β =

∞∑
n=1

∫
Bn

L(θ′′, n).

If (x1, x2, . . . , xn) ∈ Cn, we have L(θ′, n) ≤ k0L(θ′′, n); hence, it is clear that

α =

∞∑
n=1

∫
Cn

L(θ′, n) ≤
∞∑

n=1

∫
Cn

k0L(θ′′, n) = k0(1− β).

Because L(θ′, n) ≥ k1L(θ′′, n) at each point of the set Bn, we have

1− α =

∞∑
n=1

∫
Bn

L(θ′, n) ≥
∞∑

n=1

∫
Bn

k1L(θ′′, n) = k1β.

Accordingly, it follows that

α

1− β
≤ k0, k1 ≤

1− α

β
, (8.4.5)
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provided that β is not equal to 0 or 1.
Now let αa and βa be preassigned proper fractions; some typical values in the

applications are 0.01, 0.05, and 0.10. If we take

k0 =
αa

1− βa
, k1 =

1− αa

βa
,

then inequalities (8.4.5) become

α

1− β
≤ αa

1− βa
,

1− αa

βa
≤ 1− α

β
; (8.4.6)

or, equivalently,

α(1 − βa) ≤ (1 − β)αa, β(1− αa) ≤ (1 − α)βa.

If we add corresponding members of the immediately preceding inequalities, we find
that

α + β − αβa − βαa ≤ αa + βa − βαa − αβa

and hence

α + β ≤ αa + βa;

that is, the sum α + β of the probabilities of the two kinds of errors is bounded
above by the sum αa +βa of the preassigned numbers. Moreover, since α and β are
positive proper fractions, inequalities (8.4.6) imply that

α ≤ αa

1− βa
, β ≤ βa

1− αa
;

consequently, we have an upper bound on each of α and β. Various investigations
of the sequential probability ratio test seem to indicate that in most practical cases,
the values of α and β are quite close to αa and βa. This prompts us to approximate
the power function at the points θ = θ′ and θ = θ′′ by αa and 1− βa, respectively.

Example 8.4.2. Let X be N(θ, 100). To find the sequential probability ratio
test for testing H0 : θ = 75 against H1 : θ = 78 such that each of α and β is
approximately equal to 0.10, take

k0 =
0.10

1− 0.10
=

1

9
, k1 =

1− 0.10

0.10
= 9.

Since

L(75, n)

L(78, n)
=

exp
[
−∑

(xi − 75)2/2(100)
]

exp [−∑
(xi − 78)2/2(100)]

= exp

(
−6

∑
xi − 459n

200

)
,

the inequality

k0 =
1

9
<

L(75, n)

L(78, n)
< 9 = k1
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can be rewritten, by taking logarithms, as

− log 9 <
6
∑

xi − 459n

200
< log 9.

This inequality is equivalent to the inequality

c0(n) =
153

2
n− 100

3
log 9 <

n∑
1

xi <
153

2
n +

100

3
log 9 = c1(n).

Moreover, L(75, n)/L(78, n) ≤ k0 and L(75, n)/L(78, n) ≥ k1 are equivalent to the
inequalities

∑n
1 xi ≥ c1(n) and

∑n
1 xi ≤ c0(n), respectively. Thus the observation

of outcomes is discontinued with the first value of n of N for which either
∑n

1 xi ≥
c1(n) or

∑n
1 xi ≤ c0(n). The inequality

∑n
1 xi ≥ c1(n) leads to the rejection

of H0 : θ = 75, and the inequality
∑n

1 xi ≤ c0(n) leads to the acceptance of
H0 : θ = 75. The power of the test is approximately 0.10 when H0 is true, and
approximately 0.90 when H1 is true.

Remark 8.4.2. It is interesting to note that a sequential probability ratio test can
be thought of as a random-walk procedure. To illustrate, the final inequalities of
Examples 8.4.1 and 8.4.2 can be written as

− log2 k1 <

n∑
1

2(xi − 0.5) < − log2 k0

and

−100

3
log 9 <

n∑
1

(xi − 76.5) <
100

3
log 9,

respectively. In each instance, think of starting at the point zero and taking random
steps until one of the boundaries is reached. In the first situation the random steps
are 2(X1 − 0.5), 2(X2 − 0.5), 2(X3 − 0.5), . . ., which have the same length, 1, but
with random directions. In the second instance, both the length and the direction
of the steps are random variables, X1 − 76.5, X2 − 76.5, X3 − 76.5, . . . .

In recent years, there has been much attention devoted to improving quality
of products using statistical methods. One such simple method was developed by
Walter Shewhart in which a sample of size n of the items being produced is taken and
they are measured, resulting in n values. The mean X of these n measurements has
an approximate normal distribution with mean μ and variance σ2/n. In practice, μ
and σ2 must be estimated, but in this discussion, we assume that they are known.
From theory we know that the probability is 0.997 that x is between

LCL = μ− 3σ√
n

and UCL = μ +
3σ√
n

.

These two values are called the lower (LCL) and upper (UCL) control limits, respec-
tively. Samples like these are taken periodically, resulting in a sequence of means,
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say x1, x2, x3, . . . . These are usually plotted; and if they are between the LCL and
UCL, we say that the process is in control. If one falls outside the limits, this
would suggest that the mean μ has shifted, and the process would be investigated.

It was recognized by some that there could be a shift in the mean, say from μ to
μ + (σ/

√
n); and it would still be difficult to detect that shift with a single sample

mean, for now the probability of a single x exceeding UCL is only about 0.023. This
means that we would need about 1/0.023 ≈ 43 samples, each of size n, on the average
before detecting such a shift. This seems too long; so statisticians recognized that
they should be cumulating experience as the sequence X1, X2, X3, . . . is observed
in order to help them detect the shift sooner. It is the practice to compute the
standardized variable Z = (X − μ)/(σ/

√
n); thus, we state the problem in these

terms and provide the solution given by a sequential probability ratio test.

Here Z is N(θ, 1), and we wish to test H0 : θ = 0 against H1 : θ = 1 using the
sequence of iid random variables Z1, Z2, . . . , Zm, . . . . We use m rather than n, as
the latter is the size of the samples taken periodically. We have

L(0, m)

L(1, m)
=

exp
[
−∑

z2
i /2

]
exp [−∑

(zi − 1)2/2]
= exp

[
−

m∑
i=1

(zi − 0.5)

]
.

Thus

k0 < exp

[
−

m∑
i=1

(zi − 0.5)

]
< k1

can be written as

h = − log k0 >

m∑
i=1

(zi − 0.5) > − log k1 = −h.

It is true that − log k0 = log k1 when αa = βa. Often, h = − log k0 is taken
to be about 4 or 5, suggesting that αa = βa is small, like 0.01. As

∑
(zi − 0.5)

is cumulating the sum of zi − 0.5, i = 1, 2, 3, . . ., these procedures are often called
CUSUMS. If the CUSUM =

∑
(zi−0.5) exceeds h, we would investigate the process,

as it seems that the mean has shifted upward. If this shift is to θ = 1, the theory
associated with these procedures shows that we need only eight or nine samples on
the average, rather than 43, to detect this shift. For more information about these
methods, the reader is referred to one of the many books on quality improvement
through statistical methods. What we would like to emphasize here is that through
sequential methods (not only the sequential probability ratio test), we should take
advantage of all past experience that we can gather in making inferences.

EXERCISES

8.4.1. Let X be N(0, θ) and, in the notation of this section, let θ′ = 4, θ′′ = 9,
αa = 0.05, and βa = 0.10. Show that the sequential probability ratio test can be
based upon the statistic

∑n
1 X2

i . Determine c0(n) and c1(n).
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8.4.2. Let X have a Poisson distribution with mean θ. Find the sequential proba-
bility ratio test for testing H0 : θ = 0.02 against H1 : θ = 0.07. Show that this test
can be based upon the statistic

∑n
1 Xi. If αa = 0.20 and βa = 0.10, find c0(n) and

c1(n).

8.4.3. Let the independent random variables Y and Z be N(μ1, 1) and N(μ2, 1),
respectively. Let θ = μ1 − μ2. Let us observe independent observations from
each distribution, say Y1, Y2, . . . and Z1, Z2, . . . . To test sequentially the hypothesis
H0 : θ = 0 against H1 : θ = 1

2 , use the sequence Xi = Yi − Zi, i = 1, 2, . . . . If

αa = βa = 0.05, show that the test can be based upon X = Y −Z. Find c0(n) and
c1(n).

8.4.4. Suppose that a manufacturing process makes about 3% defective items,
which is considered satisfactory for this particular product. The managers would
like to decrease this to about 1% and clearly want to guard against a substantial
increase, say to 5%. To monitor the process, periodically n = 100 items are taken
and the number X of defectives counted. Assume that X is b(n = 100, p = θ).
Based on a sequence X1, X2, . . . , Xm, . . ., determine a sequential probability ratio
test that tests H0 : θ = 0.01 against H1 : θ = 0.05. (Note that θ = 0.03, the present
level, is in between these two values.) Write this test in the form

h0 >
m∑

i=1

(xi − nd) > h1

and determine d, h0, and h1 if αa = βa = 0.02.

8.4.5. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x; θ) =
θxθ−1, 0 < x < 1, zero elsewhere.

(a) Find a complete sufficient statistic for θ.

(b) If αa = βa = 1
10 , find the sequential probability ratio test of H0 : θ = 2 against

H1 : θ = 3.

8.5 ∗Minimax and Classification Procedures

We have considered several procedures that may be used in problems of point es-
timation. Among these were decision function procedures (in particular, minimax
decisions). In this section, we apply minimax procedures to the problem of testing a
simple hypothesis H0 against an alternative simple hypothesis H1. It is important
to observe that these procedures yield, in accordance with the Neyman–Pearson
theorem, a best test of H0 against H1. We end this section with a discussion on an
application of these procedures to a classification problem.

8.5.1 Minimax Procedures

We first investigate the decision function approach to the problem of testing a simple
null hypothesis against a simple alternative hypothesis. Let the joint pdf of the n
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random variables X1, X2, . . . , Xn depend upon the parameter θ. Here n is a fixed
positive integer. This pdf is denoted by L(θ; x1, x2, . . . , xn) or, for brevity, by L(θ).
Let θ′ and θ′′ be distinct and fixed values of θ. We wish to test the simple hypothesis
H0 : θ = θ′ against the simple hypothesis H1 : θ = θ′′. Thus the parameter space is
Ω = {θ : θ = θ′, θ′′}. In accordance with the decision function procedure, we need
a function δ of the observed values of X1, . . . , Xn (or, of the observed value of a
statistic Y ) that decides which of the two values of θ, θ′ or θ′′, to accept. That is,
the function δ selects either H0 : θ = θ′ or H1 : θ = θ′′. We denote these decisions
by δ = θ′ and δ = θ′′, respectively. Let L(θ, δ) represent the loss function associated
with this decision problem. Because the pairs (θ = θ′, δ = θ′) and (θ = θ′′, δ = θ′′)
represent correct decisions, we shall always take L(θ′, θ′) = L(θ′′, θ′′) = 0. On the
other hand, if either δ = θ′′ when θ = θ′ or δ = θ′ when θ = θ′′, then a positive value
should be assigned to the loss function; that is, L(θ′, θ′′) > 0 and L(θ′′, θ′) > 0.

It has previously been emphasized that a test of H0 : θ = θ′ against H1 : θ = θ′′

can be described in terms of a critical region in the sample space. We can do the
same kind of thing with the decision function. That is, we can choose a subset of C
of the sample space and if (x1, x2, . . . , xn) ∈ C, we can make the decision δ = θ′′;
whereas if (x1, x2, . . . , xn) ∈ Cc, the complement of C, we make the decision δ = θ′.
Thus a given critical region C determines the decision function. In this sense, we
may denote the risk function by R(θ, C) instead of R(θ, δ). That is, in a notation
used in Section 7.1,

R(θ, C) = R(θ, δ) =

∫
C∪Cc

L(θ, δ)L(θ).

Since δ = θ′′ if (x1, . . . , xn) ∈ C and δ = θ′ if (x1, . . . , xn) ∈ Cc, we have

R(θ, C) =

∫
C

L(θ, θ′′)L(θ) +

∫
Cc

L(θ, θ′)L(θ). (8.5.1)

If, in Equation (8.5.1), we take θ = θ′, then L(θ′, θ′) = 0 and hence

R(θ′, C) =

∫
C

L(θ′, θ′′)L(θ′) = L(θ′, θ′′)
∫

C

L(θ′).

On the other hand, if in Equation (8.5.1) we let θ = θ′′, then L(θ′′, θ′′) = 0 and,
accordingly,

R(θ′′, C) =

∫
Cc

L(θ′′, θ′)L(θ′′) = L(θ′′, θ′)
∫

Cc

L(θ′′).

It is enlightening to note that if γ(θ) is the power function of the test associated
with the critical region C, then

R(θ′, C) = L(θ′, θ′′)γ(θ′) = L(θ′, θ′′)α,

where α = γ(θ′) is the significance level; and

R(θ′′, C) = L(θ′′, θ′)[1− γ(θ′′)] = L(θ′′, θ′)β,
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where β = 1− γ(θ′′) is the probability of the type II error.
Let us now see if we can find a minimax solution to our problem. That is, we

want to find a critical region C so that

max[R(θ′, C), R(θ′′, C)]

is minimized. We shall show that the solution is the region

C =

{
(x1, . . . , xn) :

L(θ′; x1, . . . , xn)

L(θ′′; x1, . . . , xn)
≤ k

}
,

provided the positive constant k is selected so that R(θ′, C) = R(θ′′, C). That is, if
k is chosen so that

L(θ′, θ′′)
∫

C

L(θ′) = L(θ′′, θ′)
∫

Cc

L(θ′′),

then the critical region C provides a minimax solution. In the case of random vari-
ables of the continuous type, k can always be selected so that R(θ′, C) = R(θ′′, C).
However, with random variables of the discrete type, we may need to consider an
auxiliary random experiment when L(θ′)/L(θ′′) = k in order to achieve the exact
equality R(θ′, C) = R(θ′′, C).

To see that C is the minimax solution, consider every other region A for which
R(θ′, C) ≥ R(θ′, A). A region A for which R(θ′, C) < R(θ′, A) is not a candidate for
a minimax solution, for then R(θ′, C) = R(θ′′, C) < max[R(θ′, A), R(θ′′, A)]. Since
R(θ′, C) ≥ R(θ′, A) means that

L(θ′, θ′′)
∫

C

L(θ′) ≥ L(θ′, θ′′)
∫

A

L(θ′),

we have

α =

∫
C

L(θ′) ≥
∫

A

L(θ′);

that is, the significance level of the test associated with the critical region A is less
than or equal to α. But C, in accordance with the Neyman–Pearson theorem, is a
best critical region of size α. Thus∫

C

L(θ′′) ≥
∫

A

L(θ′′)

and ∫
Cc

L(θ′′) ≤
∫

Ac

L(θ′′).

Accordingly,

L(θ′′, θ′)
∫

Cc

L(θ′′) ≤ L(θ′′, θ′)
∫

Ac

L(θ′′),
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or, equivalently,
R(θ′′, C) ≤ R(θ′′, A).

That is,
R(θ′, C) = R(θ′′, C) ≤ R(θ′′, A).

This means that
max[R(θ′, C), R(θ′′, C)] ≤ R(θ′′, A).

Then certainly,

max[R(θ′, C), R(θ′′, C)] ≤ max[R(θ′, A), R(θ′′, A)],

and the critical region C provides a minimax solution, as we wanted to show.

Example 8.5.1. Let X1, X2, . . . , X100 denote a random sample of size 100 from
a distribution that is N(θ, 100). We again consider the problem of testing H0 :
θ = 75 against H1 : θ = 78. We seek a minimax solution with L(75, 78) = 3 and
L(78, 75) = 1. Since L(75)/L(78) ≤ k is equivalent to x ≥ c, we want to determine
c, and thus k, so that

3P (X ≥ c; θ = 75) = P (X < c; θ = 78). (8.5.2)

Because X is N(θ, 1), the preceding equation can be rewritten as

3[1− Φ(c− 75)] = Φ(c− 78).

As requested in Exercise 8.5.4, the reader can show by using Newton’s algorithm
that the solution to one place is c = 76.8. The significance level of the test is
1 − Φ(1.8) = 0.036, approximately, and the power of the test when H1 is true is
1− Φ(−1.2) = 0.885, approximately.

8.5.2 Classification

The summary above has an interesting application to the problem of classification,
which can be described as follows. An investigator makes a number of measurements
on an item and wants to place it into one of several categories (or classify it).
For convenience in our discussion, we assume that only two measurements, say
X and Y , are made on the item to be classified. Moreover, let X and Y have
a joint pdf f(x, y; θ), where the parameter θ represents one or more parameters.
In our simplification, suppose that there are only two possible joint distributions
(categories) for X and Y , which are indexed by the parameter values θ′ and θ′′,
respectively. In this case, the problem then reduces to one of observing X = x and
Y = y and then testing the hypothesis θ = θ′ against the hypothesis θ = θ′′, with
the classification of X and Y being in accord with which hypothesis is accepted.
From the Neyman–Pearson theorem, we know that a best decision of this sort is of
the following form: If

f(x, y; θ′)
f(x, y; θ′′)

≤ k,
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choose the distribution indexed by θ′′; that is, we classify (x, y) as coming from the
distribution indexed by θ′′. Otherwise, choose the distribution indexed by θ′; that
is, we classify (x, y) as coming from the distribution indexed by θ′. Some discussion
on the choice of k follows in the next remark.

Remark 8.5.1 (On the Choice of k). Consider the following probabilities:

π′ = P [(X, Y ) is drawn from the distribution with pdf f(x, y; θ′)]

π′′ = P [(X, Y ) is drawn from the distribution with pdf f(x, y; θ′′)].

Note that π′ + π′′ = 1. Then it can be shown that the optimal classification rule
is determined by taking k = π′′/π′; see, for instance, Seber (1984). Hence, if we
have prior information on how likely the item is drawn from the distribution with
parameter θ′, then we can obtain the classification rule. In practice, it is common
for each distribution to be equilikely, in which case, π′ = π′′ = 1/2 and, hence,
k = 1.

Example 8.5.2. Let (x, y) be an observation of the random pair (X, Y ), which has
a bivariate normal distribution with parameters μ1, μ2, σ

2
1 , σ2

2 , and ρ. In Section 3.5
that joint pdf is given by

f(x, y; μ1, μ2, σ
2
1 , σ2

2) =
1

2πσ1σ2

√
1− ρ2

e−q(x,y;μ1,μ2)/2,

for −∞ < x <∞ and −∞ < y < ∞, where σ1 > 0, σ2 > 0, −1 < ρ < 1, and

q(x, y; μ1, μ2) =
1

1− ρ2

[(
x− μ1

σ1

)2

− 2ρ

(
x− μ1

σ1

)(
y − μ2

σ2

)
+

(
y − μ2

σ2

)2
]

.

Assume that σ2
1 , σ2

2 , and ρ are known but that we do not know whether the respective
means of (X, Y ) are (μ′

1, μ
′
2) or (μ′′

1 , μ′′
2 ). The inequality

f(x, y; μ′
1, μ

′
2, σ

2
1 , σ2

2 , ρ)

f(x, y; μ′′
1 , μ′′

2 , σ2
1 , σ2

2 , ρ)
≤ k

is equivalent to
1
2 [q(x, y; μ′′

1 , μ′′
2)− q(x, y; μ′

1, μ
′
2)] ≤ log k.

Moreover, it is clear that the difference in the left-hand member of this inequality
does not contain terms involving x2, xy, and y2. In particular, this inequality is the
same as

1

1− ρ2

{[
μ′

1 − μ′′
1

σ2
1

− ρ(μ′
2 − μ′′

2)

σ1σ2

]
x +

[
μ′

2 − μ′′
2

σ2
2

− ρ(μ′
1 − μ′′

1 )

σ1σ2

]
y

}
≤ log k + 1

2 [q(0, 0; μ′
1, μ

′
2)− q(0, 0; μ′′

1 , μ′′
2 )],

or, for brevity,
ax + by ≤ c. (8.5.3)
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That is, if this linear function of x and y in the left-hand member of inequality
(8.5.3) is less than or equal to a constant, we classify (x, y) as coming from the
bivariate normal distribution with means μ′′

1 and μ′′
2 . Otherwise, we classify (x, y)

as arising from the bivariate normal distribution with means μ′
1 and μ′

2. Of course,
if the prior probabilities can be assigned as discussed in Remark 8.5.1 then k and
thus c can be found easily; see Exercise 8.5.3.

Once the rule for classification is established, the statistician might be interested
in the two probabilities of misclassifications using that rule. The first of these two is
associated with the classification of (x, y) as arising from the distribution indexed by
θ′′ if, in fact, it comes from that index by θ′. The second misclassification is similar,
but with the interchange of θ′ and θ′′. In the preceding example, the probabilities
of these respective misclassifications are

P (aX + bY ≤ c; μ′
1, μ

′
2) and P (aX + bY > c; μ′′

1 , μ′′
2).

The distribution of Z = aX + bY is obtained from Theorem 3.5.2. It follows
that the distribution of Z = aX + bY is given by

N(aμ1 + bμ2, a
2σ2

1 + 2abρσ1σ2 + b2σ2
2).

With this information, it is easy to compute the probabilities of misclassifications;
see Exercise 8.5.3.

One final remark must be made with respect to the use of the important classi-
fication rule established in Example 8.5.2. In most instances the parameter values
μ′

1, μ
′
2 and μ′′

1 , μ′′
2 as well as σ2

1 , σ2
2 , and ρ are unknown. In such cases the statis-

tician has usually observed a random sample (frequently called a training sample)
from each of the two distributions. Let us say the samples have sizes n′ and n′′,
respectively, with sample characteristics

x′, y′, (s′x)2, (s′y)2, r′ and x′′, y′′, (s′′x)2, (s′′y)2, r′′.

The statistics r′ and r′′ are the sample correlation coefficients, as defined in ex-
pression (9.7.1) of Section 9.7. The sample correlation coefficient is the mle for the
correlation parameter ρ of a bivariate normal distribution; see Section 9.7. If in
inequality (8.5.3) the parameters μ′

1, μ
′
2, μ

′′
1 , μ′′

2 , σ2
1 , σ

2
2 , and ρσ1σ2 are replaced by

the unbiased estimates

x′, y′, x′′, y′′,
(n′ − 1)(s′x)2 + (n′′ − 1)(s′′x)2

n′ + n′′ − 2
,
(n′ − 1)(s′y)2 + (n′′ − 1)(s′′y)2

n′ + n′′ − 2
,

(n′ − 1)r′s′xs′y + (n′′ − 1)r′′s′′xs′′y
n′ + n′′ − 2

,

the resulting expression in the left-hand member is frequently called Fisher’s lin-
ear discriminant function. Since those parameters have been estimated, the
distribution theory associated with aX + bY does provide an approximation.

Although we have considered only bivariate distributions in this section, the
results can easily be extended to multivariate normal distributions using the results
of Section 3.5; see also Chapter 6 of Seber (1984).
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EXERCISES

8.5.1. Let X1, X2, . . . , X20 be a random sample of size 20 from a distribution that
is N(θ, 5). Let L(θ) represent the joint pdf of X1, X2, . . . , X20. The problem is to
test H0 : θ = 1 against H1 : θ = 0. Thus Ω = {θ : θ = 0, 1}.

(a) Show that L(1)/L(0) ≤ k is equivalent to x ≤ c.

(b) Find c so that the significance level is α = 0.05. Compute the power of this
test if H1 is true.

(c) If the loss function is such that L(1, 1) = L(0, 0) = 0 and L(1, 0) = L(0, 1) > 0,
find the minimax test. Evaluate the power function of this test at the points
θ = 1 and θ = 0.

8.5.2. Let X1, X2, . . . , X10 be a random sample of size 10 from a Poisson distribu-
tion with parameter θ. Let L(θ) be the joint pdf of X1, X2, . . . , X10. The problem
is to test H0 : θ = 1

2 against H1 : θ = 1.

(a) Show that L(1
2 )/L(1) ≤ k is equivalent to y =

∑n
1 xi ≥ c.

(b) In order to make α = 0.05, show that H0 is rejected if y > 9 and, if y = 9,
reject H0 with probability 1

2 (using some auxiliary random experiment).

(c) If the loss function is such that L(1
2 , 1

2 ) = L(1, 1) = 0 and L(1
2 , 1) = 1 and

L(1, 1
2 ) = 2, show that the minimax procedure is to reject H0 if y > 6 and, if

y = 6, reject H0 with probability 0.08 (using some auxiliary random experi-
ment).

8.5.3. In Example 8.5.2 let μ′
1 = μ′

2 = 0, μ′′
1 = μ′′

2 = 1, σ2
1 = 1, σ2

2 = 1, and ρ = 1
2 .

(a) Find the distribution of the linear function aX + bY .

(b) With k = 1, compute P (aX +bY ≤ c; μ′
1 = μ′

2 = 0) and P (aX +bY > c; μ′′
1 =

μ′′
2 = 1).

8.5.4. Determine Newton’s algorithm to find the solution of Equation (8.5.2). If
software is available, write a program that performs your algorithm and then show
that the solution is c = 76.8. If software is not available, solve (8.5.2) by “trial and
error.”

8.5.5. Let X and Y have the joint pdf

f(x, y; θ1, θ2) =
1

θ1θ2
exp

(
− x

θ1
− y

θ2

)
, 0 < x < ∞, 0 < y < ∞,

zero elsewhere, where 0 < θ1, 0 < θ2. An observation (x, y) arises from the joint
distribution with parameters equal to either (θ′1 = 1, θ′2 = 5) or (θ′′1 = 3, θ′′2 = 2).
Determine the form of the classification rule.
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8.5.6. Let X and Y have a joint bivariate normal distribution. An observation
(x, y) arises from the joint distribution with parameters equal to either

μ′
1 = μ′

2 = 0, (σ2
1)′ = (σ2

2)′ = 1, ρ′ = 1
2

or

μ′′
1 = μ′′

2 = 1, (σ2
1)′′ = 4, (σ2

2)′′ = 9, ρ′′ = 1
2 .

Show that the classification rule involves a second-degree polynomial in x and y.

8.5.7. Let W ′ = (W1, W2) be an observation from one of two bivariate normal
distributions, I and II, each with μ1 = μ2 = 0 but with the respective variance-
covariance matrices

V 1 =

(
1 0
0 4

)
and V 2 =

(
3 0
0 12

)
.

How would you classify W into I or II?



Chapter 9

Inferences About Normal

Linear Models

9.1 Introduction

In this chapter, we consider analyses of some of the most widely used linear mod-
els. These models include one- and two-way analysis of variance (ANOVA) models
and regression and correlation models. We generally assume normally distributed
random errors for these models. The inference procedures that we discuss are, for
the most part, based on maximum likelihood procedures. The theory requires some
discussion of quadratic forms which we briefly introduce next.

Consider polynomials of degree 2 in n variables, X1, . . . , Xn, of the form

q(X1, . . . , Xn) =

n∑
i=1

n∑
j=1

XiaijXj,

for n2 constants aij . We call this form a quadratic form in the variables X1, . . . , Xn.
If both the variables and the coefficients are real, it is called a real quadratic
form. Only real quadratic forms are considered in this book. To illustrate, the form
X2

1 + X1X2 + X2
2 is a quadratic form in the two variables X1 and X2; the form

X2
1 + X2

2 + X2
3 − 2X1X2 is a quadratic form in the three variables X1, X2, and X3;

but the form (X1 − 1)2 + (X2 − 2)2 = X2
1 + X2

2 − 2X1 − 4X2 + 5 is not a quadratic
form in X1 and X2, although it is a quadratic form in the variables X1 − 1 and
X2 − 2.

Let X and S2 denote, respectively, the mean and variance of a random sample

515
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X1, X2, . . . , Xn from an arbitrary distribution. Thus

(n− 1)S2 =

n∑
i=1

(Xi −X)2 =

n∑
i=1

X2
i − nX

2

=

n∑
i=1

X2
i −

n

n2

(
n∑

i=1

Xi

)2

=
n∑

i=1

X2
i −

1

n

⎛⎝ n∑
i=1

Xi

n∑
j=1

Xj

⎞⎠
=

n∑
i=1

X2
i −

1

n

⎛⎝ n∑
i=1

X2
i + 2

∑
i<j

XiXj

⎞⎠
=

n− 1

n

n∑
i=1

X2
i −

2

n

∑
i<j

XiXj .

So the sample variance is a quadratic form in the variables X1, . . . , Xn.

9.2 One-Way ANOVA

Consider b independent random variables that have normal distributions with un-
known means μ1, μ2, . . . , μb, respectively, and unknown but common variance σ2.
For each j = 1, 2, . . . , b, let X1j, X2j , . . . , Xnjj represent a random sample of size
nj from the normal distribution with mean μj and variance σ2. The appropriate
model for the observations is

Xij = μj + eij ; i = 1, . . . , nj , j = 1, . . . , b, (9.2.1)

where eij are iid N(0, σ2). Let n =
∑b

j=1 nj denote the total sample size. Suppose
that it is desired to test the composite hypothesis

H0 : μ1 = μ2 = · · · = μb versus H1 : μj 
= μj′ , for some j 
= j′. (9.2.2)

We derive the likelihood ratio test for these hypotheses.
Such problems often arise in practice. For example, suppose for a certain type

of disease there are b drugs that can be used to treat it and we are interested
in determining which drug is best in terms of a certain response. Let Xj denote
this response when drug j is applied and let μj = E(Xj). If we assume that Xj

is N(μj , σ
2), then the above null hypothesis says that all the drugs are equally

effective; see Exercise 9.2.6 for a numerical illustration of this situation involving
drugs that are intended to lower cholesterol. In general, we often summarize this
problem by saying that we have one factor at b levels. In this case the factor is the
treatment of the disease and each level corresponds to one of the treatment drugs.

Model (9.2.1) is called a one-way model. As shown, the likelihood ratio test
can be thought of in terms of estimates of variance. Hence, this is an example of an
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analysis of variance (ANOVA). In short, we say that this example is a one-way
ANOVA problem.

Here the full model parameter space is

Ω = {(μ1, μ2, . . . , μb, σ
2) : −∞ < μj <∞, 0 < σ2 < ∞},

while the reduced model (full model under H0) parameter space is

ω = {(μ1, μ2, . . . , μb, σ
2) : −∞ < μ1 = μ2 = · · · = μb = μ < ∞, 0 < σ2 <∞}.

The likelihood functions, denoted by L(Ω) and L(ω) are, respectively,

L(Ω) =

(
1

2πσ2

)ab/2

exp

⎡⎣− 1

2σ2

b∑
j=1

nj∑
i=1

(xij − μj)
2

⎤⎦ .

and

L(ω) =

(
1

2πσ2

)ab/2

exp

⎡⎣− 1

2σ2

b∑
j=1

nj∑
i=1

(xij − μ)2

⎤⎦

We first consider the reduced model. Notice that it is just a one sample model
with sample size n from a N(μ, σ2) distribution. We have derived the mles in
Example 4.1.3 of Chapter 4, which, in this notation, are given by

μ̂ω = 1
n

∑b
j=1

∑nj

i=1 xij = x·· and σ̂2
ω = 1

n

∑b
j=1

∑nj

i=1(xij − x··)2. (9.2.3)

The notation x·· denotes that the mean is taken over both subscripts. This is often
called the grand mean. Evaluating L(ω) at the mles, we obtain after simplification:

L(ω̂) =

(
1

2π

)n/2 (
1

σ̂2
ω

)n/2

e−n/2. (9.2.4)

Next, we consider the full model. The log of its likelihood is

log L(Ω) = −(n/2) log(2π)− (n/2) log(σ2)− 1

2σ2

b∑
j=1

nj∑
i=1

(xij − μj)
2. (9.2.5)

For j = 1, . . . , b, the partial of the log of L(Ω) with respect to μj results in

∂ log L(Ω

∂μj
=

1

σ2

nj∑
i=1

(xij − μj).

Setting this partial to 0 and solving for μj , we obtain the mle of μj which we denote
by

μ̂j =
1

nj

nj∑
i=1

xij = x·j , j = 1, . . . , b. (9.2.6)
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Since this derivation did not depend on σ, to find the mle of σ, we substitute x·j
for μj in the log L(Ω). Taking the partial derivative with respect to σ we then get

∂ log L(Ω

∂σ
= −(n/2)

2σ

σ2
+

1

σ3

b∑
j=1

nj∑
i=1

(xij − x·j)2.

Solving this for σ2, we obtain1 the mle

σ̂2
Ω =

1

n

b∑
j=1

nj∑
i=1

(xij − x·j)2. (9.2.7)

Substituting these mles for their respective parameters in L(Ω), after some simpli-
fication, leads to

L(Ω̂) =

(
1

2π

)n/2 (
1

σ̂2
Ω

)n/2

e−n/2. (9.2.8)

Hence, the likelihood ratio test rejects H0 in favor of H1 for small values of the
statistic Λ̂ = L(ω̂)/L(Ω̂) or equivalently, for large values of Λ̂−2/n. We can express
this test statistic as a ratio of two quadratic forms Q3 and Q as

Λ̂n/2 =
σ̂2

Ω

σ̂2
ω

=

∑b
j=1

∑nj

i=1(xij − x·j)2∑b
j=1

∑nj

i=1(xij − x··)2

=dfn
Q3

Q
. (9.2.9)

In order to rewrite the test statistic in terms of an F -statistic, consider the identity
involving Q, Q3, and another quadratic form Q4 given by:

Q =

b∑
j=1

nj∑
i=1

(xij − x··)2 =

b∑
j=1

nj∑
i=1

[(xij − x·j) + (x·j − x··)]2

=

b∑
j=1

nj∑
i=1

(xij − x·j)2 +

b∑
j=1

nj(x·j − x··)2

=dfn Q3 + Q4. (9.2.10)

This derivation follows because the cross product term in the second line is 0. Using
this identity, the test statistic Λ̂−2/n can be expressed as

Λ̂−2/n =
Q3 + Q4

Q3
= 1 +

Q4

Q3
.

As the final version, note that the test rejects H0 if F is too large where

F =
Q4/(b− 1)

Q3/(n− b)
. (9.2.11)

1We are using the fact that the mle of σ2 is the square of the mle of σ.
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To complete the test, we need to determine the distribution of F under H0.
First consider the sum of squares in the denominator, Q3, which we write as:

Q3/σ2 =
b∑

j=1

{
1

σ2

nj∑
i=1

(Xij −X ·j)2
}

.

Notice, since we are discussing distributions, we are now using random variable
notation. By Part (c) of Theorem 3.6.1, for j = 1, . . . , b, the term within the braces
has a χ2-distribution with nj − 1 degrees of freedom. Further, the samples are
independent so these χ2 random variables are independent. Hence, by Corollary
3.3.1, Q3/σ2 has a χ2-distribution with

∑b
j=1(nj − 1) = n− b degrees of freedom.

By Part (b) of Theorem 3.6.1, the random variable X ·j is independent of the sum
of squares within the braces and further, by the independence of the samples, it
is independent of Q3. Thus, all b sample means are independent of Q3. Because
X ·· =

∑b
j=1 njX ·j , the grand mean X ·· is a function of the b sample means, it

must be independent of Q3, also. Therefore, Q4 is independent of Q3. For the
distribution of the numerator sum of squares, write the identity (9.2.10) as

Q/σ2 = Q3/σ2 + Q4/σ2.

For the left side, under H0, Q/σ2 has a χ2-distribution with n−1 degrees of freedom.
On the right side Q3/σ2 has a χ2-distribution with n− b degrees of freedom and it
is also independent of Q4/σ2. By equating the mgfs of both sides, it follows that
Q4/σ2 has a χ2-distribution with (n − 1) − (n − b) = b − 1 degrees of freedom.
Therefore, under H0, the F test statistic, (9.2.11), has a F -distribution with b− 1
and n− b degrees of freedom.

Suppose now that we wish to compute the power of the test of H0 against H1

when H0 is false, that is, when we do not have μ1 = μ2 = · · · = μb. In Section
9.3 we show that under H1, Q4/σ2 no longer has a χ2(b− 1) distribution. Thus we
cannot use an F -statistic to compute the power of the test when H1 is true. The
problem is discussed in Section 9.3.

Next, based on a simple example, we illustrate the computation of the F -test
using R.

Example 9.2.1. Devore (2012), page 412, presents a data set where the response
is the elastic modulus for an alloy that is cast by one of three different casting
processes. The null hypothesis is that the mean of the elastic modulus is not affected
by the casting process. The data are:

Cast Method Elastic Modulus
Permanent mold 45.5 45.3 45.4 44.4 44.6 43.9 44.6 44.0
Die cast 44.2 43.9 44.7 44.2 44.0 43.8 44.6 43.1
Plaster mold 46.0 45.9 44.8 46.2 45.1 45.5

The data are in the file elasticmod.rda. The variable elasticmod contains the
response while the variable ind contains the casting method (1, 2, or 3). The R
code and results (test statistic F and the p-value) are:
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oneway.test(elasticmod~ind,var.equal=T)

F = 12.565, num df = 2, denom df = 19, p-value = 0.0003336

With such a low p-value, the null hypothesis would be rejected and we would con-
clude that the casting method does have an effect on the elastic modulus.

In this example, the experimenter would also be interested in the pairwise com-
parisons of the casting methods. We consider this in Section 9.4.

EXERCISES

9.2.1. Consider the T -statistic that was derived through a likelihood ratio for test-
ing the equality of the means of two normal distributions having common variance
in Example 8.3.1. Show that T 2 is exactly the F -statistic of expression (9.2.11).

9.2.2. Under Model (9.2.1), show that the linear functions Xij−X .j and X .j−X ..

are uncorrelated.
Hint: Recall the definition of X .j and X .. and, without loss of generality, we can
let E(Xij) = 0 for all i, j.

9.2.3. The following are observations associated with independent random sam-
ples from three normal distributions having equal variances and respective means
μ1, μ2, μ3.

I II III
0.5 2.1 3.0
1.3 3.3 5.1

−1.0 0.0 1.9
1.8 2.3 2.4

2.5 4.2
4.1

Using R or another statistical package, compute the F -statistic that is used to test
H0 : μ1 = μ2 = μ3.

9.2.4. Let X1, X2, . . . , Xn be a random sample from a normal distribution N(μ, σ2).
Show that

n∑
i=1

(Xi −X)2 =

n∑
i=2

(Xi −X
′
)2 +

n− 1

n
(X1 −X

′
)2,

where X =
∑n

i=1 Xi/n and X
′
=

∑n
i=2 Xi/(n− 1).

Hint: Replace Xi−X by (Xi−X
′
)− (X1−X

′
)/n. Show that

∑n
i=2(Xi−X

′
)2/σ2

has a chi-square distribution with n − 2 degrees of freedom. Prove that the two
terms in the right-hand member are independent. What then is the distribution of

[(n− 1)/n](X1 −X
′
)2

σ2
?
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9.2.5. Using the notation of this section, assume that the means satisfy the con-
dition that μ = μ1 + (b − 1)d = μ2 − d = μ3 − d = · · · = μb − d. That is, the
last b − 1 means are equal but differ from the first mean μ1, provided that d 
= 0.
Let independent random samples of size a be taken from the b normal distributions
with common unknown variance σ2.

(a) Show that the maximum likelihood estimators of μ and d are μ̂ = X .. and

d̂ =

b∑
j=2

X .j/(b− 1)−X .1

b
.

(b) Using Exercise 9.2.4, find Q6 and Q7 = cd̂2 so that, when d = 0, Q7/σ2 is
χ2(1) and

a∑
i=1

b∑
j=1

(Xij −X ..)
2 = Q3 + Q6 + Q7.

(c) Argue that the three terms in the right-hand member of part (b), once di-
vided by σ2, are independent random variables with chi-square distributions,
provided that d = 0.

(d) The ratio Q7/(Q3 +Q6) times what constant has an F -distribution, provided
that d = 0? Note that this F is really the square of the two-sample T used to
test the equality of the mean of the first distribution and the common mean
of the other distributions, in which the last b − 1 samples are combined into
one.

9.2.6. On page 123 of their text, Kloke and McKean (2014) present the results of an
experiment investigating 4 drugs (treatments) for their effect on lowering LDL (low
density lipids) cholesterol. For the experimental design, 39 quail were randomly
assigned to one of the 4 drugs. The drug was mixed in their food, but, other than
this, the quail were all treated in the same way. After a specified period of time,
the LDL level of each quail was determined. The first drug was a placebo, so the
interest is to see if any other of the drugs resulted in lower LDL than the placebo.
The data are in the file quailldl.rda. The first column of this matrix contains the
drug indicator (1 through 4) for the quail while the second column contains the ldl
level of that quail.

(a) Obtain comparison boxplots of LDL levels. Which drugs seem to result in
lower LDL levels? Identify, by observation number, the outliers in the data.

(b) Compute the F -test that all mean levels of LDL are the same for all 4 drugs.
Report the F -test statistic and p-value. Conclude in terms of the problem
using the nominal significance level of 0.05. Use the R code in Example 9.2.1.

(c) Does your conclusion in Part (b) agree with the boxplots of Part (a)?
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(d) Note that one assumption for the F -test is that the random errors eij in Model
(9.2.1) are normally distributed. An estimate of eij is xij − x·j . These are
called residuals, i.e., what is left after the full model fit. Compute these
residuals and then obtain a histogram, a boxplot, and a normal q−q plot of
them. Comment on the normality assumption. Use the code:

resd <- lm(quailmat[,2]~factor(quailmat[,1]))$resid

par(mfrow=c(2,2));hist(resd); boxplot(resd); qqnorm(resd)

9.2.7. Let μ1, μ2, μ3 be, respectively, the means of three normal distributions with
a common but unknown variance σ2. In order to test, at the α = 5% significance
level, the hypothesis H0 : μ1 = μ2 = μ3 against all possible alternative hypotheses,
we take an independent random sample of size 4 from each of these distributions.
Determine whether we accept or reject H0 if the observed values from these three
distributions are, respectively,

X1 : 5 9 6 8
X2 : 11 13 10 12
X3 : 10 6 9 9

9.2.8. The driver of a diesel-powered automobile decided to test the quality of three
types of diesel fuel sold in the area based on mpg. Test the null hypothesis that the
three means are equal using the following data. Make the usual assumptions and
take α = 0.05.

Brand A: 38.7 39.2 40.1 38.9
Brand B: 41.9 42.3 41.3
Brand C: 40.8 41.2 39.5 38.9 40.3

9.3 Noncentral χ2 and F -Distributions

Let X1, X2, . . . , Xn denote independent random variables that are N(μi, σ
2), i =

1, 2, . . . , n, and consider the quadratic form Y =
∑n

1 X2
i /σ2. If each μi is zero, we

know that Y is χ2(n). We shall now investigate the distribution of Y when each μi

is not zero. The mgf of Y is given by

M(t) = E

[
exp

(
t

n∑
i=1

X2
i

σ2

)]

=

n∏
i=1

E

[
exp

(
t
X2

i

σ2

)]
.

Consider

E

[
exp

(
tX2

i

σ2

)]
=

∫ ∞

−∞

1

σ
√

2π
exp

[
tx2

i

σ2
− (xi − μi)

2

2σ2

]
dxi.
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The integral exists if t < 1
2 . To evaluate the integral, note that

tx2
i

σ2
− (xi − μi)

2

2σ2
= −x2

i (1− 2t)

2σ2
+

2μixi

2σ2
− μ2

i

2σ2

=
tμ2

i

σ2(1− 2t)
− 1− 2t

2σ2

(
xi −

μi

1− 2t

)2

.

Accordingly, with t < 1
2 , we have

E

[
exp

(
tX2

i

σ2

)]
= exp

[
tμ2

i

σ2(1− 2t)

]∫ ∞

−∞

1

σ
√

2π
exp

[
−1− 2t

2σ2

(
xi −

μi

1− 2t

)2
]

dxi.

If we multiply the integrand by
√

1− 2t, t < 1
2 , we have the integral of a normal

pdf with mean μi/(1− 2t) and variance σ2/(1− 2t). Thus

E

[
exp

(
tX2

i

σ2

)]
=

1√
1− 2t

exp

[
tμ2

i

σ2(1− 2t)

]
,

and the mgf of Y =
∑n

1 X2
i /σ2 is given by

M(t) =
1

(1− 2t)n/2
exp

[
t
∑n

1 μ2
i

σ2(1− 2t)

]
, t <

1

2
. (9.3.1)

A random variable that has the mgf

M(t) =
1

(1− 2t)r/2
etθ/(1−2t), (9.3.2)

where t < 1
2 , 0 < θ, and r is a positive integer, is said to have a noncentral

chi-square distribution with r degrees of freedom and noncentrality parameter
θ. If one sets the noncentrality parameter θ = 0, one has M(t) = (1 − 2t)−r/2,
which is the mgf of a random variable that is χ2(r). Such a random variable can
appropriately be called a central chi-square variable. We shall use the symbol
χ2(r, θ) to denote a noncentral chi-square distribution that has the parameters r
and θ; and we shall say that a random variable is χ2(r, θ) when that random variable
has this kind of distribution. The symbol χ2(r, 0) is equivalent to χ2(r). Thus our
random variable Y =

∑n
1 X2

i /σ2 of this section is χ2
(
n,

∑n
1 μ2

i /σ2
)
. The mean of

Y is given by

E(Y ) =
1

σ2

n∑
i=1

E(X2
i ) =

1

σ2

n∑
i=1

(σ2 + μ2
i ) = n + θ, (9.3.3)

i.e., the mean of the central χ2 plus the noncentrality parameter. If each μi is equal
to zero, then Y is χ2(n, 0) or, more simply, Y is χ2(n) with mean n.

The noncentral χ2-variables, in which we have interest, are certain quadratic
forms in normally distributed variables divided by a variance σ2. In our exam-
ple it is worth noting that the noncentrality parameter of

∑n
1 X2

i /σ2, which is



524 Inferences About Normal Linear Models

∑n
1 μ2

i /σ2, may be computed by replacing each Xi in the quadratic form by its
mean μi, i = 1, 2, . . . , n. This is no fortuitous circumstance; any quadratic form
Q = Q(X1, . . . , Xn) in normally distributed variables, which is such that Q/σ2 is
χ2(r, θ), has θ = Q(μ1, μ2, . . . , μn)/σ2; and if Q/σ2 is a chi-square variable (central
or noncentral) for certain real values of μ1, μ2, . . . , μn, it is chi-square (central or
noncentral) for all real values of these means.

We next discuss the noncentral F -distribution. If U and V are independent and
are, respectively, χ2(r1) and χ2(r2), the random variable F has been defined by
F = r2U/r1V . Now suppose, in particular, that U is χ2(r1, θ), V is χ2(r2), and
U and V are independent. The distribution of the random variable r2U/r1V is
called a noncentral F -distribution with r1 and r2 degrees of freedom with non-
centrality parameter θ. Note that the noncentrality parameter of F is precisely the
noncentrality parameter of the random variable U , which is χ2(r1, θ). To obtain the
expectation of F , use the E(U) in expression (9.3.3) and the derivation of the ex-
pected value of a central F given in expression (3.6.8). These together immediately
imply that

E(F ) =
r2

r2 − 2

[
r1 + θ

r1

]
, (9.3.4)

provided, of course, that r2 > 2. If θ > 0 then the quantity in brackets exceeds one
and, hence, the mean of the noncentral F exceeds the mean of the corresponding
central F .

We next discuss the noncentral F distribution for the one-way ANOVA of the
last section.

Example 9.3.1 (Noncentrality Parameter for One-way ANOVA). Consider the
one-way model with b levels, expression (9.2.1), with the hypotheses H0 : μ1 =
· · · = μb versus H1 : μj 
= μj′ for some j 
= j′. From expression (9.2.11), the F test
statistic is F = [Q4/(b− 1)]/[Q3/(n− b)]. In the denominator, the random variable
Q3/σ2 is χ2(n − b) under the full model and, hence, in particular, under H1. It
follows from Remark 9.8.3 of Section 9.8, though, that the distribution of Q4/σ2 is
noncentral χ2(b− 1, θ) under the full model. Recall that

Q4/σ2 =
1

σ2

b∑
j=1

nj(X ·j −X ··)2.

Under the full model, E(X ·j) = μj and E(X ··) =
∑b

j=1(nj/n)μj . Calling this last
expectation μ, we have from the above discussion that

θ =
1

σ2

b∑
j=1

nj(μj − μ)2. (9.3.5)

If H0 is true then μj ≡ μ, for some μ, and, hence, μ = μ. Thus, under H0, θ = 0.
Under H1, there are distinct j and j′ such that μj 
= μj′ . In particular, then both
μj and μj′ cannot equal μ, so θ > 0. Therefore, under H1 the expectation of F
exceeds the null expectation.
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There are R commands that compute the cdf of noncentral χ2 and F random
variables. For example, suppose we want to compute P (Y ≤ y), where Y has
a χ2-distribution with d degrees of freedom and noncentrality parameter b. This
probability is returned with the command pchisq(y,d,b). The corresponding value
of the pdf at y is computed by the command dchisq(y,d,b). As another exam-
ple, suppose we want P (W ≥ w), where W has an F -distribution with n1 and n2

degrees of freedom and noncentrality parameter theta. This is computed by the
command 1-pf(w,n1,n2,theta), while the command df(w,n1,n2,theta) com-
putes the value of the density of W at w. Tables of the noncentral chi-square and
noncentral F -distributions are available in the literature also.

EXERCISES

9.3.1. Let Yi, i = 1, 2, . . . , n, denote independent random variables that are, re-
spectively, χ2(ri, θi), i = 1, 2, . . . , n. Prove that Z =

∑n
1 Yi is χ2 (

∑n
1 ri,

∑n
1 θi).

9.3.2. Compute the variance of a random variable that is χ2(r, θ).

9.3.3. Three different medical procedures (A, B, and C) for a certain disease are
under investigation. For the study, 3m patients having this disease are to be selected
and m are to be assigned to each procedure. This common sample size m must be
determined. Let μ1, μ2, and μ3, be the means of the response of interest under
treatments A, B, and C, respectively. The hypotheses are: H0 : μ1 = μ2 = μ3

versus H1 : μj 
= μj′ for some j 
= j′. To determine m, from a pilot study the
experimenters use a guess of 30 of σ2 and they select the significance level of 0.05.
They are interested in detecting the pattern of means: μ2 = μ1+5 and μ3 = μ1+10.

(a) Determine the noncentrality parameter under the above pattern of means.

(b) Use the R function pf to determine the powers of the F -test to detect the
above pattern of means for m = 5 and m = 10.

(c) Determine the smallest value of m so that the power of detection is at least
0.80.

(d) Answer (a)–(c) if σ2 = 40.

9.3.4. Show that the square of a noncentral T random variable is a noncentral F
random variable.

9.3.5. Let X1 and X2 be two independent random variables. Let X1 and Y =
X1 +X2 be χ2(r1, θ1) and χ2(r, θ), respectively. Here r1 < r and θ1 ≤ θ. Show that
X2 is χ2(r − r1, θ − θ1).

9.4 Multiple Comparisons

For this section, consider the one-way ANONA model with b treatments as de-
scribed in expression (9.2.1) of Section 9.2. In that section, we developed the F -test
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of the hypotheses of equal means, (9.2.2). In practice, besides this test, statisticians
usually want to make pairwise comparisons of the form μj−μj′ . This is often called
the Second Stage Analysis, while the F -test is consider the First Stage Anal-
ysis. The analysis for such comparisons usually consists of confidence intervals for
the differences μj − μj′ and μj is declared different from μj′ if 0 is not in the
confidence interval. The random samples for treatments j and j′ are: X1j , . . . , Xnjj

from the N(μj , σ
2) distribution and X1j′ , . . . , Xnj′ j

′ from the N(μj′ , σ
2) distribu-

tion, which are independent random samples. Based on these samples the estimator
of μj − μj′ is X ·j −X ·j′ . Further in the one-way analysis, an estimator of σ2 is the

full model estimator σ̂2
Ω defined in expression (9.2.7). As discussed in Section 9.2,

(n − b)σ̂2
Ω/σ2 has a χ2(n − b) distribution which is independent of all the sample

means X ·j . Hence, for a specified α it follows as in (4.2.13) of Chapter 4 that

X ·j −X ·j′ ± tα/2,n−bσ̂Ω

√
1

nj
+

1

nj′
(9.4.1)

is a (1− α)100% confidence interval for μj − μj′ .

We often want to make many pairwise comparisons, though. For example, the
first treatment might be a placebo or represent the standard treatment. In this case,
there are b− 1 pairwise comparisons of interest. On the other hand, we may want
to make all

(
b
2

)
pairwise comparisons. In making so many comparisons, while each

confidence interval, (9.4.1), has confidence (1 − α), it would seem that the overall
confidence diminishes. As we next show, this slippage of overall confidence is true.
These problems are often called Multiple Comparison Problems (MCP). In
this section, we present several MCP procedures.

Bonferroni Multiple Comparison Procedure

It is easy to motivate the Bonferroni Procedure while, at the same time, showing
the slippage of confidence. This procedure is quite general and can be used in many
settings not just the one-way design. So suppose we have k parameters θi with
(1 − α)100% confidence intervals Ii, i = 1, . . . , k, where 0 < α < 1 is given. Then
the overall confidence is P (θ1 ∈ I1, . . . , θk ∈ Ik). Using the method of complements,
DeMorgan’s Laws, and Boole’s inequality, expression (1.3.7) of Chapter 1, we have

P (θ1 ∈ I1, . . . , θk ∈ Ik) = 1− P
(
∪k

i=1θi 
∈ Ii

)
≥ 1−

k∑
i=1

P (θi 
∈ Ii) = 1− kα. (9.4.2)

The quantity 1− kα is the lower bound on the slippage of confidence. For example,
if k = 20 and α = 0.05 then the overall confidence may be 0. The Bonferroni
procedure follows from expression (9.4.2). Simply change the confidence level of
each confidence interval to [1− (α/k)]. Then the overall confidence is at least 1−α.

For our one-way analysis, suppose we have k differences of interest. Then the
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Bonferroni confidence interval for μj − μj′ is

X ·j −X ·j′ ± tα/(2k),n−bσ̂Ω

√
1

nj
+

1

nj′
(9.4.3)

While the overall confidence of the Bonferroni procedure is at least (1 − α), for a
large number of comparisons, the lengths of its intervals are wide; i.e., a loss in
precision. We offer two other procedures that, generally, lessen this effect.

The R function mcpbon.R2 computes the Bonferroni procedure for all pairwise
comparisons for a one-way design. The call is mcpbon(y,ind,alpha=0.05) where
y is the vector of the combined samples and ind is the corresponding treatment
vector. See Example 9.4.1 below.

Tukey’s Multiple Comparison Procedure

To state Tukey’s procedure, we first need to define the Studentized range distri-
bution.

Definition 9.4.1. Let Y1, . . . , Yk be iid N(μ, σ2). Denote the range of these vari-
ables by R = max{Yi}−min{Yi}. Suppose mS2/σ2 has a χ2(m) distribution which
is independent of Y1, . . . , Yk. Then we say that Q = R/S has a Studentized range
distribution with parameters k and m.

The distribution of Q cannot be obtained in close form but packages such as R
have functions that compute the cdf and quantiles. In R, the call ptukey(x,k,m)
computes the cdf of Q at x, while the call qtukey(p,k,m) returns the pth quantile.

Consider the one-way design. First, assume that all the sample sizes are the
same; i.e., for some positive integer a, nj = a, for all j = 1, . . . , b. Let R =
Range{X ·1−μ1, . . . ,X ·b−μb}. Then since X ·1−μ1, . . . ,X ·b−μb are iid N(0, σ2/a),
the random variable Q = R/(σ̂Ω/

√
a) has a Studentized range distribution with

parameters b and n− b. Let qc = q1−α,b,n−b.

1− α = P (Q ≤ qc) = P
(
max{X ·j − μj} −min{X ·j − μj} ≤ qcσ̂Ω/

√
a
)

= P
(
|(μj − μj′)− (X ·j −X ·j′)| ≤ qcσ̂Ω/

√
a, for all j, j′

)
If we expand the inequality in the last statement, we obtain the (1−α)100% simul-
taneous confidence intervals for all pairwise differences given by

X ·j −X ·j′ ± q1−α,b,n−b
σ̂Ω√

a
, for all j, j′ in 1, . . . b. (9.4.4)

The statistician John Tukey developed these simultaneous confidence intervals for
the balanced case. For the unbalanced case, first write the error term in (9.4.4) as

q1−α,b,n−b√
2

σ̂Ω

√
1

a
+

1

a
.

2Downloadable at the site listed in the Preface.
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For the unbalanced case, this suggests the following intervals

X ·j −X ·j′ ±
q1−α,b,n−b√

2
σ̂Ω

√
1

nj
+

1

nj′
, for all j, j′ in 1, . . . b. (9.4.5)

This correction is due to Kramer and these intervals are often referred to as the
Tukey-Kramer multiple comparison procedure; see Miller (1981) for discussion.
These intervals do not have exact confidence (1 − α) but studies have indicated
that if the unbalance is not severe the confidence is close to (1 − α); see Dunnett
(1980). Corresponding R code is shown in Example 9.4.1.

Fisher’s PLSD Multiple Comparison Procedure

The final procedure we discuss is Fisher’s Protected Least Significance Dif-
ference (PLSD). The setting is the general (unbalanced) one-way design (9.2.1).
This procedure is a two-stage procedure. It can be used for an arbitrary umber of
comparisons but we state it for all comparisons. For a specified level of significance
α, Stage 1 consists of the F -test of the hypotheses of equal means, (9.2.2). If the test
rejects at level α then Stage 2 consists of the usual pairwise (1−α)100% confidence
intervals, i.e.,

X ·j −X ·j′ ± tα/2,n−bσ̂Ω

√
1

nj
+

1

nj′
, for all j, j′ in 1, . . . , b. (9.4.6)

If the test in Stage 1 fails to reject, users sometimes perform Stage 2 using the
Bonferroni procedure. Fisher’s procedure does not have overall coverage 1−α, but
the initial F -test offers protection. Simulation studies have shown that Fisher’s
procedure performs well in terms of power and level; see, for instance, Carmer and
Swanson (1973) and McKean et al. (1989). The R function3 mcpfisher.R computes
this procedure as discussed in the next example.

Example 9.4.1 (Fast Cars). Kitchens (1997) discusses an experiment concern-
ing the speed of cars. Five cars are considered: Acura (1), Ferrari (2), Lotus (3),
Porsche (4), and Viper (5). For each car, 6 runs were made, 3 in each direction. For
each run, the speed recorded is the maximum speed on the run achieved without
exceeding the engine’s redline. The data are in the file fastcars.rda. Figure 9.4.1
displays the comparison boxplots of the speeds versus the cars, which shows clearly
that there are differences in speed due to the car. Ferrari and Porsche seem to be
the fastest but are the differences significant? We assume the one-way design (9.2.1)
and use R to do the computations. Key commands and corresponding results are
given next. The overall F -test of the hypotheses of equal means, (9.2.2), is quite
significant: F = 25.15 with the p-value 0.0000. We selected the Tukey MCP at level
0.05. The command below returns all

(
5
2

)
= 10 pairwise comparisons, but in our

summary we only list two.
### Code assumes that fastcars.rda has been loaded in R

3Down loadable at the site listed in the Preface.
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> fit <- lm(speed~factor(car))

> anova(fit)

### F-Stat and p-value 25.145 1.903e-08

> aovfit <- aov(speed~factor(car))

> TukeyHSD(aovfit)

## Tukey�s procedures of all pairwise comparisons are computed.

## Summary of a pertinent few

## Cars Mean-diff LB CI UB CI Sig??

## Porsche - Ferrari -2.6166667 -9.0690855 3.835752 NS

## Viper - Porsche -7.7333333 -14.1857522 -1.280914 Sig.

## Bonferroni

> mcpbon(speed,car)

## Porsche - Ferrari -2.6166667 -9.3795891 4.1462558 NS

## Viper - Porsche -7.7333333 -14.496255 -0.9704109 Sig.

2.197038 6.762922 0.9704109 14.49625578

## Fisher

> mcpfisher(speed,car)

## ftest 2.514542e+01 1.903360e-08

## Porsche - Ferrari -2.6166667 -7.141552 1.908219 NS

## Viper - Porsche -7.7333333 -12.258219 -3.208448 Sig.

For discussion, we cite only two of Tukey’s confidence intervals. As the second in-
terval in the above printout shows, the mean speeds of both the Ferrari and Porsche
are significantly faster than the mean speeds of the other cars. The difference be-
tween the Ferrari’s and Porsche’s mean speeds, though, is insignificant. Below the
two Tukey confidence intervals, we display the results based on the Bonferroni and
Fisher procedures. Note that all three procedures result in the same conclusions for
these comparisons. The Bonferroni intervals are slightly larger than those of the
Tukey procedure. The Fisher procedure gives the shortest intervals as expected.

In practice, the Tukey-Kramer procedure is often used, but there are many other
multiple comparison procedures. A classical monograph on MCPs is Miller (1981)
while Hus (1996) offers a more recent discussion.

EXERCISES

9.4.1. For the study discussed in Exercise 9.2.8, obtain the results of Bonferroni
multiple comparison procedure using α = 0.10. Based on this procedure, which
brand of fuel if any is significantly best?

9.4.2. For the study discussed in Exercise 9.2.6, compute the Tukey-Kramer pro-
cedure. Are there any significant differences?

9.4.3. Suppose X and Y are discrete random variables that have the common
range {1, 2, . . . , k}. Let p1j and p2j be the respective probabilities P (X = j) and
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Figure 9.4.1: Boxplot of car speeds cited in Example 9.4.1.

P (Y = j). Let X1, . . . , Xn1 and Y1, . . . , Yn2 be respective independent random
samples on X and Y . The samples are recorded in a 2 × k contingency table of
counts Oij , where O1j = #{Xi = j} and O2j = #{Yi = j}. In Example 4.7.3,
based on this table, we discussed a test that the distributions of X and Y are the
same. Here we want to consider all the differences p1j − p2j for j = 1, . . . , k. Let
p̂ij = Oij/ni.

(a) Determine the Bonferroni method for performing all these comparisons.

(b) Determine the Fisher method for performing all these comparisons.

9.4.4. Suppose the samples in Exercise 9.4.3 resulted in the contingency table:

1 2 3 4 5 6 7 8 9 10
x 20 31 56 18 45 55 47 78 56 81
y 36 41 65 15 38 78 18 72 59 85

To compute (in R) the confidence intervals below, use the command prop.test as
in Example 4.2.5.

(a) Based on the Bonferroni procedure for all 10 comparisons, compute the con-
fidence interval for p16 − p26.

(b) Based on the Fisher procedure for all 10 comparisons, compute the confidence
interval for p16 − p26.

9.4.5. Write an R function that computes the Fisher procedure of Exercise 9.4.3.
Validate it using the data of Exercise 9.4.4.
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9.4.6. Extend the Bonferroni procedure to simultaneous testing. That is, suppose
we have m hypotheses of interest: H0i versus H1i, i = 1, . . . , m. For testing H0i

versus H1i, let Ci,α be a critical region of size α and assume H0i is rejected if
Xi ∈ Ci,α, for a sample Xi. Determine a rule so that we can simultaneously test
these m hypotheses with a Type I error rate less than or equal to α.

9.5 Two-Way ANOVA

Recall the one-way analysis of variance (ANOVA) problem considered in Section
9.2 which was concerned with one factor at b levels. In this section, we are con-
cerned with the situation where we have two factors A and B with levels a and
b, respectively. This is called a two-way analysis of variance (ANOVA). Let
Xij , i = 1, 2, . . . , a and j = 1, 2, . . . , b, denote the response for factor A at level
i and factor B at level j. Denote the total sample size by n = ab. We shall assume
that the Xijs are independent normally distributed random variables with common
variance σ2. Denote the mean of Xij by μij . The mean μij is often referred to as
the mean of the (i, j)th cell. For our first model, we consider the additive model
where

μij = μ + (μi· − μ) + (μ·j − μ) ; (9.5.1)

that is, the mean in the (i, j)th cell is due to additive effects of the levels, i of factor
A and j of factor B, over the average (constant) μ. Let αi = μi· − μ, i = 1, . . . , a;
βj = μ·j − μ, j = 1, . . . , b; and μ = μ. Then the model can be written more simply
as

μij = μ + αi + βj , (9.5.2)

where
∑a

i=1 αi = 0 and
∑b

j=1 βj = 0. We refer to this model as being a two-way
additive ANOVA model.

For example, take a = 2, b = 3, μ = 5, α1 = 1, α2 = −1, β1 = 1, β2 = 0, and
β3 = −1. Then the cell means are

Factor B
1 2 3

Factor A 1 μ11 = 7 μ12 = 6 μ13 = 5
2 μ21 = 5 μ22 = 4 μ23 = 3

Note that for each i, the plots of μij versus j are parallel. This is true for additive
models in general; see Exercise 9.5.9. We call these plots mean profile plots.

Had we taken β1 = β2 = β3 = 0, then the cell means would be

Factor B
1 2 3

Factor A 1 μ11 = 6 μ12 = 6 μ13 = 6
2 μ21 = 4 μ22 = 4 μ23 = 4

The hypotheses of interest are

H0A : α1 = · · · = αa = 0 versus H1A : αi 
= 0, for some i, (9.5.3)
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and
H0B : β1 = · · · = βb = 0 versus H1B : βj 
= 0, for some j. (9.5.4)

If H0A is true, then by (9.5.2) the mean of the (i, j)th cell does not depend on the
level of A. The second example above is under H0B . The cell means remain the
same from column to column for a specified row. We call these hypotheses main
effect hypotheses.

Remark 9.5.1. The model just described, and others similar to it, are widely used
in statistical applications. Consider a situation in which it is desirable to investigate
the effects of two factors that influence an outcome. Thus the variety of a grain
and the type of fertilizer used influence the yield; or the teacher and the size of the
class may influence the score on a standardized test. Let Xij denote the yield from
the use of variety i of a grain and type j of fertilizer. A test of the hypothesis that
β1 = β2 = · · · = βb = 0 would then be a test of the hypothesis that the mean yield
of each variety of grain is the same regardless of the type of fertilizer used.

Call the model described around expression (9.5.2) the full model. We want to
determine the mles. If we write out the likelihood function, the summation in the
exponent of e is

SS =

a∑
i=1

b∑
j=1

(xij − μ− αi − βj)
2.

The mles of αi, βj , and μ minimize SS. By adding in and subtracting out, we
obtain:

SS =

a∑
i=1

b∑
j=1

{[x·· − μ]−[αi − (xi· − x··)]−[βj − (x·j − x··)]+[xij − xi· − x·j + x··]}2 .

(9.5.5)
From expression (9.5.2), we have

∑
i αi =

∑
j βj = 0. Further,

a∑
i=1

(xi· − x··) =
b∑

j=1

(x·j − x··) = 0

and
a∑

i=1

(xij − xi· − x·j + x··) =

b∑
j=1

(xij − xi· − x·j + x··) = 0.

Therefore, in the expansion of the sum of squares, (9.5.5), all cross product terms
are 0. Hence, we have the identity

SS = ab[x·· − μ]2 + b
a∑

i=1

[αi − (xi· − x··)]2 + a
b∑

j=1

[βj − (x·j − x··)]2

+

a∑
i=1

b∑
j=1

[xij − xi· − x·j + x··]2. (9.5.6)
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Since these are sums of squares, the minimizing values, (mles), must be

μ̂ = X ··, α̂i = X i· −X ··, and β̂j = X ·j −X ··. (9.5.7)

Note that we have used random variable notation. So these are the maximum
likelihood estimators. It then follows that the maximum likelihood estimator of σ2

is

σ̂2
Ω =

∑a
i=1

∑b
j=1[Xij −Xi· −X ·j + X ··]2

ab
=dfn

Q′
3

ab
, (9.5.8)

where we have defined the numerator of σ̂2
Ω as the quadratic form Q′

3. It follows
from an advanced course in linear models that abσ̂2

Ω/σ2 has a χ2((a − 1)(b − 1))
distribution.

Next we construct the likelihood ratio test for H0B. Under the reduced model
(full model constrained by H0B), βj = 0 for all j = 1, . . . , b. To obtain the mles for
the reduced model, the identity (9.5.6) becomes

SS = ab[x·· − μ]2 + b

a∑
i=1

[αi − (xi· − x··)]2

+a

b∑
j=1

[x·j − x··]2 +

a∑
i=1

b∑
j=1

[xij − xi· − x·j + x··]2. (9.5.9)

Thus the mles for αi and μ remain the same as in the full model and the reduced
model maximum likelihood estimator of σ2 is

σ̂2
ω =

{
a
∑b

j=1[X ·j −X ··]2 +
∑a

i=1

∑b
j=1[Xij −Xi· −X ·j + X ··]2

}
ab

. (9.5.10)

Denote the numerator of σ̂2
ω by Q′. Note that it is the residual variation left after

fitting the reduced model.
Let Λ denote the likelihood ratio test statistic for H0B . Our derivation is similar

to the derivation for the likelihood ratio test statistic for one-way ANOVA of Section
9.2. Hence, similar to equation (9.2.9), our likelihood ratio test statistic simplifies
to

Λab/2 =
σ̂2

Ω

σ̂2
ω

=
Q′

3

Q′ .

Then, similar to the one-way derivation, the likelihood ratio test rejects H0B for
large values of Q′

4/Q′
3, where in this case,

Q′
4 = a

b∑
j=1

[x·j − x··]2. (9.5.11)

Note that Q′
4 = Q′ −Q′

3; i.e., it is the incremental increase in residual variation if
we use the reduced model instead of the full model.

To obtain the null distribution of Q′
4, notice that it is the numerator of the sample

variance of the random variables
√

aX ·1, . . . ,
√

aX ·b. These random variables are
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independent with the common N(
√

aμ, σ2) distribution; see Exercise 9.5.2. Hence,
by Theorem 3.6.1, Q′

4/σ2 has χ2(b− 1) distribution. In a more advanced course, it
can be further shown that Q′

4 and Q′
3 are independent. Hence, the statistic

FB =
a
∑b

j=1[X ·j −X ··]2/(b− 1)∑a
i=1

∑b
j=1[Xij −Xi· −X ·j + X ··]2/(a− 1)(b− 1)

(9.5.12)

has an F (b− 1, (a− 1)(b− 1)) under H0B. Thus, a level α test is to reject H0B in
favor of H1B if

FB ≥ F (α, b− 1, (a− 1)(b− 1)). (9.5.13)

If we are to compute the power function of the test, we need the distribution of
FB when H0B is not true. As we have stated above, Q′

3/σ2, (9.5.8), has a central
χ2-distribution with (a − 1)(b − 1) degrees of freedom under the full model, and,
hence, under H1B. Further, it can be shown that Q′

4, (9.5.11), has a noncentral χ2-
distribution with b−1 degrees of freedom under H1B . To compute the noncentrality
parameters of Q′

4/σ2 when H1B is true, we have E(Xij) = μ + αi + βj , E(X i.) =
μ + αi, E(X .j) = μ + βj , and E(X ..) = μ. Using the general rule discussed in
Section 9.4, we replace the variables in Q′

4/σ2 with their means. Accordingly, the
noncentrality parameter Q′

4/σ2 is

a

σ2

b∑
j=1

(μ + βj − μ)2 =
a

σ2

b∑
j=1

β2
j .

Thus, if the hypothesis H0B is not true, F has a noncentral F -distribution with b−1
and (a− 1)(b− 1) degrees of freedom and noncentrality parameter a

∑b
j=1 β2

j /σ2.

A similar argument can be used to construct the likelihood ratio test statistics
FA to test H0A versus H1A, (9.5.3). The numerator of the F test statistic is the
sum of squares among rows. The test statistic is

FA =
b
∑a

i=1[Xi· −X ··]2/(a− 1)∑a
i=1

∑b
j=1[Xij −X i· −X ·j + X ··]2/(a− 1)(b− 1)

(9.5.14)

and it has an F (a− 1, (a− 1)(b− 1)) distribution under H0A.

9.5.1 Interaction between Factors

The analysis of variance problem that has just been discussed is usually referred
to as a two-way classification with one observation per cell. Each combination of i
and j determines a cell; thus, there is a total of ab cells in this model. Let us now
investigate another two-way classification problem, but in this case we take c > 1
independent observations per cell.

Let Xijk, i = 1, 2, . . . , a, j = 1, 2, . . . , b, and k = 1, 2, . . . , c, denote n = abc
random variables that are independent and have normal distributions with common,
but unknown, variance σ2. Denote the mean of each Xijk, k = 1, 2, . . . , c, by μij .
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Under the additive model, (9.5.1), the mean of each cell depended on its row and
column, but often the mean is cell-specific. To allow this, consider the parameters

γij = μij − {μ + (μi· − μ) + (μ·j − μ)}
= μij − μi· − μ·j + μ,

for i = 1, . . . a, j = 1, . . . , b. Hence γij reflects the specific contribution to the cell
mean over and above the additive model. These parameters are called interaction
parameters. Using the second form (9.5.2), we can write the cell means as

μij = μ + αi + βj + γij , (9.5.15)

where
∑a

i=1 αi = 0,
∑b

j=1 βj = 0, and
∑a

i=1 γij =
∑b

j=1 γij = 0. This model is
called a two-way model with interaction.

For example, take a = 2, b = 3, μ = 5, α1 = 1, α2 = −1, β1 = 1, β2 = 0,
β3 = −1, γ11 = 1, γ12 = 1, γ13 = −2, γ21 = −1, γ22 = −1, and γ23 = 2. Then the
cell means are

Factor B
1 2 3

Factor A 1 μ11 = 8 μ12 = 7 μ13 = 3
2 μ21 = 4 μ22 = 3 μ23 = 5

If each γij = 0, then the cell means are

Factor B
1 2 3

Factor A 1 μ11 = 7 μ12 = 6 μ13 = 5
2 μ21 = 5 μ22 = 4 μ23 = 3

Note that the mean profile plots for this second example are parallel, but those in
the first example (where interaction is present) are not.

The derivation of the mles under the full model, (9.5.15), is quite similar to the
derivation for the additive model. Letting SS denote the sums of squares in the
exponent of e in the likelihood function, we obtain the following identity by adding
in and subtracting out (we have omitted subscripts on the sums):

SS =
∑∑∑

(xijk − μ− αi − βj − γijk)2

=
∑∑∑

{[xijk−xij·]−[μ−x···]− [αi − (xi·· − x···)]− [βj − (x·j· − x···)]

−[γij − (xij· − xi·· − x·j· + x···]}2

=
∑∑∑

[xijk − xij·]2 + abc[μ− x···]2 + bc
∑

[αi − (xi·· − x···)]2 +

ac
∑

[βj − (x·j· − x···)]2 + c
∑∑

[γij−(xij·−xi··−x·j·+x···)]2 (9.5.16)

where, as in the additive model, the cross product terms in the expansion are 0.
Thus, the mles of μ, αi and βj are the same as in the additive model; the mle of
γij is γ̂ij = Xij· −Xi·· −X ·j· + X ···; and the mle of σ2 is

σ̂2
Ω =

∑∑∑
[Xijk −Xij·]2

abc
. (9.5.17)
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Let Q′′
3 denote the numerator of σ̂2.

The major hypotheses of interest for the interaction model are

H0AB : γij = 0 for all i, j versus H1AB : γij 
= 0, for some i, j. (9.5.18)

Substituting γij = 0 in SS, it is clear that the reduced model mle of σ2 is

σ̂2
ω =

∑∑∑
[Xijk −Xij·]2 + c

∑∑
[Xij· −Xi·· −X ·j· + X ···]2

abc
. (9.5.19)

Let Q′′ denote the numerator of σ̂2
ω and let Q′′

4 = Q′′−Q′′
3 . Then it follows as in the

additive model that the likelihood ratio test statistic rejects H0AB for large values
of Q′′

4/Q′′
3 . In a more advanced class, it is shown that the standardized test statistic

FAB =
Q′′

4/[(a− 1)(b− 1)]

Q′′
3/[ab(c− 1)]

(9.5.20)

has under H0AB an F -distribution with (a − 1)(b − 1) and ab(c − 1) degrees of
freedom.

If H0AB : γij = 0 is accepted, then one usually continues to test αi = 0, i =
1, 2, . . . , a, by using the test statistic

F =

bc

a∑
i=1

(X i·· −X ···)2/(a− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(Xijk −X ij·)2/[ab(c− 1)]

,

which has a null F -distribution with a−1 and ab(c−1) degrees of freedom. Similarly,
the test of βj = 0, j = 1, 2, . . . , b, proceeds by using the test statistic

F =

ac

b∑
j=1

(X ·j· −X ···)2/(b− 1)

a∑
i=1

b∑
j=1

c∑
k=1

(Xijk −X ij·)2/[ab(c− 1)]

,

which has a null F -distribution with b− 1 and ab(c− 1) degrees of freedom.
We conclude this section with an example that serves as an illustration of two-

way ANOVA along with its associated R code.

Example 9.5.1. Devore (2012), page 435, presents a study concerning the effects
to the thermal conductivity of an asphalt mix due to two factors: Binder Grade
at three different levels (PG58, PG64, and PG70) and Coarseness of Aggregate
Content at three levels (38%, 41%, and 44%). Hence, there are 3× 3 = 9 different
treatments. The responses are the thermal conductivities of the mixes of asphalt at
these crossed levels. Two replications were performed at each treatment. The data
are:
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Coarse Aggregate Content
Binder-Grade 38% 41% 44%
PG58 0.835 0.822 0.785

0.845 0.826 0.795
PG64 0.855 0.832 0.790

0.865 0.836 0.800
PG70 0.815 0.800 0.770

0.825 0.820 0.790

The data are also in the file conductivity.rda. Assuming this file has been loaded
into the R work area, the mean profile plot is computed by

interaction.plot(Binder,Aggregate,Conductivity,legend=T)

and it is displayed in Figure 9.5.1. Note that the mean profiles are almost parallel,
a graphical indication of little interaction between the factors. The ANOVA for
the study is computed by the following two commands. It yields the tabled results
(which we have abbreviated). The next to last column shows the F -test statistics
discussed in this section.

fit=lm(Conductivity ~ factor(Binder) + factor(Aggregate) +

factor(Binder)*factor(Aggregate))

anova(fit)

Analysis of Variance Table

Df Sum Sq F value Pr(>F)

factor(Binder) 2 0.0020893 14.1171 0.001678

factor(Aggregate) 2 0.0082973 56.0631 8.308e-06

factor(Binder):factor(Aggregate) 4 0.0003253 1.0991 0.413558

As the interaction plot suggests, interaction is not significant (p = 0.4135). In prac-
tice, we would accept the additive (no interaction) model. The main effects are
both highly significant. So both factors have an effect on conductivity. See Devore
(2012) for more discussion.

EXERCISES

9.5.1. For the two-way interaction model, (9.5.15), show that the following decom-
position of sums of squares is true:

a∑
i=1

b∑
j=1

c∑
k=1

(Xijk −X ...)
2 = bc

a∑
i=1

(Xi.. −X ...)
2 + ac

b∑
j=1

(X .j. −X ...)
2

+ c

a∑
i=1

b∑
j=1

(Xij. −X i.. −X .j. + X ...)
2

+

a∑
i=1

b∑
j=1

c∑
k=1

(Xijk −Xij.)
2;

that is, the total sum of squares is decomposed into that due to row differences,
that due to column differences, that due to interaction, and that within cells.
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Figure 9.5.1: Mean profile plot for the study discussed in Example 9.5.1. The
profiles are nearly parallel, indicating little interaction between the factors.

9.5.2. Consider the discussion above expression (9.5.14). Show that the random
variables

√
aX ·1, . . . ,

√
aX ·b are independent with the common N(

√
aμ, σ2) distri-

bution.

9.5.3. For the two-way interaction model, (9.5.15), show that the noncentrality

parameter of the test statistic FAB is equal to c
∑b

j=1

∑a
i=1 γ2

ij/σ2.

9.5.4. Using the background of the two-way classification with one observation per
cell, determine the distribution of the maximum likelihood estimators of αi, βj , and
μ.

9.5.5. Prove that the linear functions Xij − X i. − X .j + X .. and X .j − X .. are
uncorrelated, under the assumptions of this section.

9.5.6. Given the following observations associated with a two-way classification
with a = 3 and b = 4, use R or another statistical package to compute the F -
statistic used to test the equality of the column means (β1 = β2 = β3 = β4 = 0)
and the equality of the row means (α1 = α2 = α3 = 0), respectively.

Row/Column 1 2 3 4
1 3.1 4.2 2.7 4.9
2 2.7 2.9 1.8 3.0
3 4.0 4.6 3.0 3.9

9.5.7. With the background of the two-way classification with c > 1 observations
per cell, determine the distribution of the mles of αi, βj, and γij .
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9.5.8. Given the following observations in a two-way classification with a = 3,
b = 4, and c = 2, compute the F -statistics used to test that all interactions are
equal to zero (γij = 0), all column means are equal (βj = 0), and all row means
are equal (αi = 0), respectively. Data are in the form xijk , i, j in the data set
sec951.rda.

Row/Column 1 2 3 4
1 3.1 4.2 2.7 4.9

2.9 4.9 3.2 4.5
2 2.7 2.9 1.8 3.0

2.9 2.3 2.4 3.7
3 4.0 4.6 3.0 3.9

4.4 5.0 2.5 4.2

9.5.9. For the additive model (9.5.1), show that the mean profile plots are parallel.
The sample mean profile plots are given by plotting Xij· versus j, for each i. These
offer a graphical diagnostic for interaction detection. Obtain these plots for the last
exercise.

9.5.10. We wish to compare compressive strengths of concrete corresponding to
a = 3 different drying methods (treatments). Concrete is mixed in batches that
are just large enough to produce three cylinders. Although care is taken to achieve
uniformity, we expect some variability among the b = 5 batches used to obtain the
following compressive strengths. (There is little reason to suspect interaction, and
hence only one observation is taken in each cell.) Data are also in the data set
sec95set2.rda.

Batch
Treatment B1 B2 B3 B4 B5

A1 52 47 44 51 42
A2 60 55 49 52 43
A3 56 48 45 44 38

(a) Use the 5% significance level and test HA : α1 = α2 = α3 = 0 against all
alternatives.

(b) Use the 5% significance level and test HB : β1 = β2 = β3 = β4 = β5 = 0
against all alternatives.

9.5.11. With a = 3 and b = 4, find μ, αi, βj and γij if μij , for i = 1, 2, 3 and
j = 1, 2, 3, 4, are given by

6 7 7 12
10 3 11 8
8 5 9 10

9.6 A Regression Problem

There is often interest in the relationship between two variables, for example, a
student’s scholastic aptitude test score in mathematics and this same student’s
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grade in calculus. Frequently, one of these variables, say x, is known in advance
of the other and there is interest in predicting a future random variable Y . Since
Y is a random variable, we cannot predict its future observed value Y = y with
certainty. Thus let us first concentrate on the problem of estimating the mean
of Y , that is, E(Y ). Now E(Y ) is usually a function of x; for example, in our
illustration with the calculus grade, say Y , we would expect E(Y ) to increase with
increasing mathematics aptitude score x. Sometimes E(Y ) = μ(x) is assumed to
be of a given form, such as a linear or quadratic or exponential function; that is,
μ(x) could be assumed to be equal to α + βx or α + βx + γx2 or αeβx. To estimate
E(Y ) = μ(x), or equivalently the parameters α, β, and γ, we observe the random
variable Y for each of n possible different values of x, say x1, x2, . . . , xn, which are
not all equal. Once the n independent experiments have been performed, we have
n pairs of known numbers (x1, y1), (x2, y2), . . . , (xn, yn). These pairs are then used
to estimate the mean E(Y ). Problems like this are often classified under regression
because E(Y ) = μ(x) is frequently called a regression curve.

Remark 9.6.1. A model for the mean such as α + βx + γx2 is called a linear
model because it is linear in the parameters α, β, and γ. Thus αeβx is not a linear
model because it is not linear in α and β. Note that, in Sections 9.2 to 9.5, all the
means were linear in the parameters and hence are linear models.

For the most part in this section, we consider the case in which E(Y ) = μ(x) is
a linear function. Denote by Yi the response at xi and consider the model

Yi = α + β(xi − x) + ei, i = 1, . . . , n, (9.6.1)

where x = n−1
∑n

i=1 xi and e1, . . . , en are iid random variables with a common
N(0, σ2) distribution. Hence E(Yi) = α + β(xi − x), Var(Yi) = σ2, and Yi has
N(α+β(xi−x), σ2) distribution. The major assumption is that the random errors,
ei, are iid. In particular, this means that the errors are not a function of the
xi’s. This is discussed in Remark 9.6.3. First, we discuss the maximum likelihood
estimates of the parameters α, β, and σ.

9.6.1 Maximum Likelihood Estimates

Assume that the n points (x1, Y1), (x2, Y2), . . . , (xn, Yn) follow Model 9.6.1. So the
first problem is that of fitting a straight line to the set of points; i.e., estimating
α and β. As an aid to our discussion, Figure 9.6.1 shows a scatterplot of 60
observations (x1, y1), . . . , (x60, y60) simulated from a linear model of the form (9.6.1).
Our method of estimation in this section is that of maximum likelihood (mle). The
joint pdf of Y1, . . . , Yn is the product of the individual probability density functions;
that is, the likelihood function equals

L(α, β, σ2) =

n∏
i=1

1√
2πσ2

exp

{
− [yi − α− β(xi − x)]2

2σ2

}

=

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
i=1

[yi − α− β(xi − x)]2

}
.
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Figure 9.6.1: The plot shows the least squares fitted line (solid line) to a set of
data. The dashed-line segment from (xi, ŷi) to (xi, yi) shows the deviation of (xi, yi)
from its fit.

To maximize L(α, β, σ2), or, equivalently, to minimize

− logL(α, β, σ2) =
n

2
log(2πσ2) +

∑n
i=1[yi − α− β(xi − x)]2

2σ2
,

we must select α and β to minimize

H(α, β) =

n∑
i=1

[yi − α− β(xi − x)]2.

Since |yi − α − β(xi − x)| = |yi − μ(xi)| is the vertical distance from the point
(xi, yi) to the line y = μ(x) (see the dashed-line segment in Figure 9.6.1), we note
that H(α, β) represents the sum of the squares of those distances. Thus, selecting
α and β so that the sum of the squares is minimized means that we are fitting the
straight line to the data by the method of least squares (LS).

To minimize H(α, β), we find the two first partial derivatives,

∂H(α, β)

∂α
= 2

n∑
i=1

[yi − α− β(xi − x)](−1)

and

∂H(α, β)

∂β
= 2

n∑
i=1

[yi − α− β(xi − x)][−(xi − x)].
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Setting ∂H(α, β)/∂α = 0, we obtain

n∑
i=1

yi − nα− β

n∑
i=1

(xi − x) = 0. (9.6.2)

Since
∑n

i=1(xi − x) = 0, the equation becomes
∑n

i=1 yi− nα = 0; hence, the mle of
α is

α̂ = Y . (9.6.3)

The equation ∂H(α, β)/∂β = 0 yields, with α replaced by y,

n∑
i=1

(yi − y)(xi − x)− β
n∑

i=1

(xi − x)2 = 0 (9.6.4)

and, hence, the mle of β is

β̂ =

∑n
i=1(Yi − Y )(xi − x)∑n

i=1(xi − x)2
=

∑n
i=1 Yi(xi − x)∑n
i=1(xi − x)2

. (9.6.5)

Equations (9.6.2) and (9.6.4) are the estimating equations for the LS solutions for
this simple linear model.

The fitted value at the point (xi, yi) is given by

ŷi = α̂ + β̂(xi − x), (9.6.6)

which is shown on Figure 9.6.1. The fitted value ŷi is also called the predicted
value of yi at xi. The residual at the point (xi, yi) is given by

êi = yi − ŷi, (9.6.7)

which is also shown on Figure 9.6.1. Residual means “what is left” and the residual
in regression is exactly that, i.e., what is left over after the fit. The relationship
between the fitted values and the residuals are explored in Remark 9.6.3 and in
Exercise 9.6.13.

To find the maximum likelihood estimator of σ2, consider the partial derivative

∂[− log L(α, β, σ2)]

∂(σ2)
=

n

2σ2
−

∑n
i=1[yi − α− β(xi − x)]2

2(σ2)2
.

Setting this equal to zero and replacing α and β by their solutions α̂ and β̂, we
obtain

σ̂2 =
1

n

n∑
i=1

[Yi − α̂− β̂(xi − x)]2. (9.6.8)

Of course, due to the invariance of mles, σ̂ =
√

σ̂2. Note that in terms of the resid-
uals, σ̂2 = n−1

∑n
i=1 ê2

i . As shown in Exercise 9.6.13, the average of the residuals
is 0.
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Since α̂ is a linear function of independent and normally distributed random
variables, α̂ has a normal distribution with mean

E(α̂) = E

(
1

n

n∑
i=1

Yi

)
=

1

n

n∑
i=1

E(Yi) =
1

n

n∑
i=1

[α + β(xi − x)] = α

and variance

var(α̂) =

n∑
i=1

(
1

n

)2

var(Yi) =
σ2

n
.

The estimator β̂ is also a linear function of Y1, Y2, . . . , Yn and hence has a normal
distribution with mean

E(β̂) =

∑n
i=1(xi − x)[α + β(xi − x)]∑n

i=1(xi − x)2

=
α
∑n

i=1(xi − x) + β
∑n

i=1(xi − x)2∑n
i=1(xi − x)2

= β

and variance

var(β̂) =

n∑
i=1

[
xi − x∑n

i=1(xi − x)2

]2

var(Yi)

=

∑n
i=1(xi − x)2

[
∑n

i=1(xi − x)2]
2 σ2 =

σ2∑n
i=1(xi − x)2

.

In summary, the estimators α̂ and β̂ are linear functions of the independent
normal random variables Y1, . . . , Yn. In Exercise 9.6.4 it is further shown that the
covariance between α̂ and β̂ is zero. It follows that α̂ and β̂ are independent random
variables with a bivariate normal distribution; that is,(

α̂

β̂

)
has a N2

((
α
β

)
, σ2

[ 1
n 0
0 1Pn

i=1(xi−x)2

])
distribution. (9.6.9)

Next, we consider the estimator of σ2. It can be shown (Exercise 9.6.9) that

n∑
i=1

[Yi − α− β(xi − x)]2 =

n∑
i=1

{(α̂− α) + (β̂ − β)(xi − x)

+ [Yi − α̂− β̂(xi − x)]}2

= n(α̂− α)2 + (β̂ − β)2
n∑

i=1

(xi − x)2 + nσ̂2,

or for brevity,
Q = Q1 + Q2 + Q3.

Here Q, Q1, Q2, and Q3 are real quadratic forms in the variables

Yi − α− β(xi − x), i = 1, 2, . . . , n.



544 Inferences About Normal Linear Models

In this equation, Q represents the sum of the squares of n independent random
variables that have normal distributions with means zero and variances σ2. Thus
Q/σ2 has a χ2 distribution with n degrees of freedom. Each of the random variables√

n(α̂ − α)/σ and
√∑n

i=1(xi − x)2(β̂ − β)/σ has a normal distribution with zero
mean and unit variance; thus, each of Q1/σ2 and Q2/σ2 has a χ2 distribution with
1 degree of freedom. In accordance with Theorem 9.9.2 (proved in Section 9.9),
because Q3 is nonnegative, we have that Q1, Q2, and Q3 are independent and that
Q3/σ2 has a χ2 distribution with n − 1 − 1 = n − 2 degrees of freedom. That is,
nσ̂2/σ2 has a χ2 distribution with n− 2 degrees of freedom.

We now extend this discussion to obtain inference for the parameters α and β.
It follows from the above derivations that both the random variable T1

T1 =
[
√

n(α̂− α)]/σ√
Q3/[σ2(n− 2)]

=
α̂− α√

σ̂2/(n− 2)

and the random variable T2

T2 =

[√∑n
i=1(xi − x)2(β̂ − β)

]/
σ√

Q3/[σ2(n− 2)]
=

β̂ − β√
nσ̂2 /[(n− 2)

∑n
1 (xi − x)2]

(9.6.10)

have a t-distribution with n− 2 degrees of freedom. These facts enable us to obtain
confidence intervals for α and β; see Exercise 9.6.5. The fact that nσ̂2/σ2 has a
χ2 distribution with n − 2 degrees of freedom provides a means of determining a
confidence interval for σ2. These are some of the statistical inferences about the
parameters to which reference was made in the introductory remarks of this section.

Remark 9.6.2. The more discerning reader should quite properly question our
construction of T1 and T2 immediately above. We know that the squares of the
linear forms are independent of Q3 = nσ̂2, but we do not know, at this time,
that the linear forms themselves enjoy this independence. A more general result is
obtained in Theorem 9.9.1 of Section 9.9 and the present case is a special instance.

Before considering a numerical example, we discuss a diagnostic plot for the
major assumption of Model 9.6.1.

Remark 9.6.3 (Diagnostic Plot Based on Fitted Values and Residuals). The major
assumption in the model is that the random errors e1, . . . , en are iid. In particular,
this means that the errors are not a function of the xi’s so that a plot of ei versus α+
β(xi−x) should result in a random scatter. Since the errors and the parameters are
unknown this plot is not possible. We have estimates, though, of these quantities,
namely the residuals êi and the fitted values ŷi. A diagnostic for the assumption is
to plot the residuals versus the fitted values. This is called the residual plot. If the
plot results in a random scatter, it is an indication that the model is appropriate.
Patterns in the plot, though, are indicative of a poor model. Often in this later
case, the patterns in the plot lead to better models.
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As a final note, in Model 9.6.1 we have centered the x’s; i.e., subtracted x from
xi. In practice, usually we do not precenter the x’s. Instead, we fit the model
yi = α∗ + βxi + ei. In this case, the least squares, and hence, mles minimize the
sum of squares

n∑
i=1

(yi − α∗ − βxi)
2. (9.6.11)

In Exercise 9.6.1, the reader is asked to show that the estimate of β remains the
same as in expression (9.6.5), while α̂∗ = y − β̂x. We use this noncentered model
in the following example.

Example 9.6.1 (Men’s 1500 meters). As a numerical illustration, consider data
drawn from the Olympics. The response of interest is the winning time of the men’s
1500 meters, while the predictor is the year of the olympics. The data were taken
from Wikipedia and can be found in olym1500mara.rda. Assume the R vectors
for the winning times and year are time and year, respectively. There are n = 27
data points. The top panel of Figure 9.6.2 shows a scatterplot of the data that is
computed by the R command

par(mfrow=c(2,1));plot(time~year,xlab="Year",ylab="Winning time")

The winning times are steadily decreasing over time and, based on this plot, a sim-
ple linear model seems reasonable. Obviously the time for 2016 is an outlier but it
is the correct time. Before proceeding to inference, though, we check the quality
of the fit of the model. The following R commands obtain the least squares fit,
overlaying it on the scatterplot in Figure 9.6.2, the fitted values, and the residuals.
These are used to obtain the residual plot that is displayed in the bottom panel of
9.6.2.

fit <- lm(time~year); abline(fit)

ehat <- fit$resid; yhat <- fit$fitted.values

plot(ehat~yhat,xlab="Fitted values",ylab="Residuals")

Recall a “good” fit is indicated by a random scatter in the residual plot. This does
not appear to be the case. There is a dependence4 between adjacent points over
time. This dependence is apparent from the scatterplot too. In a time series course,
this dependence would be investigated.

Based on the dependence, the following inference is approximate. The command
summary(fit) produces the table of coefficients:

Estimate Std. Error t value Pr(>t|) |
(Intercept) 12.325411 1.039402 11.858 9.26e-12

year -0.004376 0.000530 -8.257 1.31e-08

Hence, the prediction equation is ŷ = 12.33−.0044year. Based on the slope estimate,
we predict the winning time to drop by 0.004 minutes every year. For a 95%
confidence interval for the slope, the t-critical value via R is qt(.975,25) which
computes to 2.060. Using the standard error in the summary table, the following R
commands compute confidence interval for the slope parameter:

err=0.000530*2.060;lb=-0.004376-err;ub=-0.004376+err;ci=c(lb,ub)

4This dependence is not surprising. The runners race against each other but they also try to
beat the Olympic record.
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ci; -0.0054678 -0.0032842

So with approximate confidence 95%, we estimate the drop in winning time to
between 0.0032 to 0.0055 minutes per year.

Based on the fit, the predicted winning time for the men’s 1500 meters in the
2020 Olympics is

ŷ = 12.325411− 0.004376(2020) = 3.486. (9.6.12)

Exercise 9.6.8 provides an estimate (predictive interval) of error for this prediction.
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Figure 9.6.2: The top panel is the scatterplot of winning times in the men’s 1500
meters versus the year of the Olympics. The least squares fit is overlaid. The
bottom panel is the residual plot of the fit.

9.6.2 ∗Geometry of the Least Squares Fit

In the modern literature, linear models are usually expressed in terms of matrices
and vectors, which we briefly introduce in this example. Furthermore, this allows
us to discuss the simple geometry behind the least squares fit. Consider then Model
(9.6.1). Write the vectors Y = (Y1, . . . , Yn)′, e = (e1, . . . , en)′, and xc = (x1 −
x, . . . , xn − x)′. Let 1 denote the n × 1 vector whose components are all 1. Then
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Model (9.6.1) can be expressed equivalently as

Y = α1 + βxc + e

= [1 xc]

(
α
β

)
+ e

= Xβ + e, (9.6.13)

where X is the n × 2 matrix with columns 1 and xc and β = (α, β)′. Next, let
θ = E(Y) = Xβ. Finally, let V be the two-dimensional subspace of Rn spanned by
the columns of X; i.e., V is the range of the matrix X. Hence we can also express
the model succinctly as

Y = θ + e, θ ∈ V. (9.6.14)

Hence, except for the random error vector e, Y would lie in V . It makes sense
intuitively then, as suggested by Figure 9.6.3, to estimate θ by the vector in V that
is “closest” (in Euclidean distance) to Y, that is, by θ̂, where

θ̂ = Argminθ∈V ‖Y − θ‖2, (9.6.15)

where the square of the Euclidean norm is given by ‖u‖2 =
∑n

i=1 u2
i , for u ∈ Rn.

As shown in Exercise 9.6.13 and depicted on the plot in Figure 9.6.3, θ̂ = α̂1+ β̂xc,
where α̂ and β̂ are the least squares estimates given above. Also, the vector ê =
Y − θ̂ is the vector of residuals and nσ̂2 = ‖ê‖2. Also, just as depicted in Figure

9.6.3, the angle between the vectors θ̂ and ê is a right angle. In linear models, we
say that θ̂ is the projection of Y onto the subspace V .

Y

V

e

0 ^

^

Figure 9.6.3: The sketch shows the geometry of least squares. The vector of
responses is Y, the fit is θ̂, and the vector of residuals is ê.
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EXERCISES

9.6.1. Obtain the least squares estimates for the model yi = α∗ + βxi + ei by min-
imizing the sum of squares given in expression (9.6.11). Determine the distribution
of α̂∗.

9.6.2. Students’ scores on the mathematics portion of the ACT examination, x,
and on the final examination in the first-semester calculus (200 points possible), y,
are:

x 25 20 26 26 28 28 29 32 20 25

y 138 84 104 112 88 132 90 183 100 143

x 26 28 25 31 30

y 141 161 124 118 168

The data are also in the rda file regr1.rda. Use R or another statistical package
for computation and plotting.

(a) Calculate the least squares regression line for these data.

(b) Plot the points and the least squares regression line on the same graph.

(c) Obtain the residual plot and comment on the appropriateness of the model.

(d) Find 95% confidence interval for β under the usual assumptions. Comment
in terms of the problem.

9.6.3 (Telephone Data). Consider the data presented below. The responses (y) for
this data set are the numbers of telephone calls (tens of millions) made in Belgium
for the years 1950 through 1973. Time, the years, serves as the predictor variable
(x). The data are discussed on page 172 of Hettmansperger and McKean (2011)
and are in the file telephone.rda.

Year 50 51 52 53 54 55
No. Calls 0.44 0.47 0.47 0.59 0.66 0.73
Year 56 57 58 59 60 61
No. Calls 0.81 0.88 1.06 1.20 1.35 1.49
Year 62 63 64 65 66 67
No. Calls 1.61 2.12 11.90 12.40 14.20 15.90
Year 68 69 70 71 72 73
No. Calls 18.20 21.20 4.30 2.40 2.70 2.90

(a) Calculate the least squares regression line for these data.

(b) Plot the points and the least squares regression line on the same graph.

(c) What is the reason for the poor least squares fit?

9.6.4. Show that the covariance between α̂ and β̂ is zero.

9.6.5. Find (1− α)100% confidence intervals for the parameters α and β in Model
(9.6.1).
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9.6.6. Consider Model (9.6.1). Let η0 = E(Y |x = x0 − x). The least squares

estimator of η0 is η̂0 = α̂ + β̂(x0 − x).

(a) Using (9.6.9), show that η̂0 is an unbiased estimator and show that its variance
is given by

V (η̂0) = σ2

[
1

n
+

(x0 − x)2∑n
i=1(x1 − x)2

]
(b) Obtain the distribution of η̂0 and use it to determine a (1−α)100% confidence

interval for η0.

9.6.7. Assume that the sample (x1, Y1), . . . , (xn, Yn) follows the linear model (9.6.1).
Suppose Y0 is a future observation at x = x0 − x and we want to determine a pre-
dictive interval for it. Assume that the model (9.6.1) holds for Y0; i.e., Y0 has a
N(α + β(x0 − x), σ2) distribution. We use η̂0 of Exercise 9.6.6 as our prediction of
Y0.

(a) Obtain the distribution of Y0 − η̂0, showing that its variance is:

V (Y0 − η̂0) = σ2

[
1 +

1

n
+

(x0 − x)2∑n
i=1(x1 − x)2

]
Use the fact that the future observation Y0 is independent of the sample
(x1, Y1), . . . , (xn, Yn).

(b) Determine a t-statistic with numerator Y0 − η̂0.

(c) Now beginning with 1− α = P [−tα/2,n−2 < T < tα/2,n−2], where 0 < α < 1,
determine a (1− α)100% predictive interval for Y0.

(d) Compare this predictive interval with the confidence interval obtained in Ex-
ercise 9.6.6. Intuitively, why is the predictive interval larger?

9.6.8. In Example 9.6.1, we obtain the predicted winning time for the men’s 1500
meters in the 2020 Olympics. Compute the 95% predictive interval for this predic-
tion that is given in the last exercise. These computations are performed by the R
function cipi.R. The call is cipi(lm(time~year),matrix(c(1,2020),ncol=2)).
In terms of the problem, what does this predictive interval mean? Next compute
the prediction for the 2024 and 2028 Olympics. Why are the intervals increasing in
length?

9.6.9. Show that

n∑
i=1

[Yi−α−β(xi−x)]2 = n(α̂−α)2 +(β̂−β)2
n∑

i=1

(xi−x)2 +
n∑

i=1

[Yi− α̂− β̂(xi−x)]2.

9.6.10. Let the independent random variables Y1, Y2, . . . , Yn have, respectively, the
probability density functions N(βxi, γ

2x2
i ), i = 1, 2, . . . , n, where the given numbers

x1, x2, . . . , xn are not all equal and no one is zero. Find the maximum likelihood
estimators of β and γ2.
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9.6.11. Let the independent random variables Y1, . . . , Yn have the joint pdf

L(α, β, σ2) =

(
1

2πσ2

)n/2

exp

{
− 1

2σ2

n∑
1

[yi − α− β(xi − x)]2

}
,

where the given numbers x1, x2, . . . , xn are not all equal. Let H0 : β = 0 (α and
σ2 unspecified). It is desired to use a likelihood ratio test to test H0 against all
possible alternatives. Find Λ and see whether the test can be based on a familiar
statistic.
Hint: In the notation of this section, show that

n∑
1

(Yi − α̂)2 = Q3 + β̂2
n∑
1

(xi − x)2.

9.6.12. Using the notation of Section 9.2, assume that the means μj satisfy a linear
function of j, namely, μj = c + d[j − (b + 1)/2]. Let independent random samples
of size a be taken from the b normal distributions having means μ1, μ2, . . . , μb,
respectively, and common unknown variance σ2.

(a) Show that the maximum likelihood estimators of c and d are, respectively,
ĉ = X .. and

d̂ =

∑b
j=1[j − (b− 1)/2](X.j −X ..)∑b

j=1[j − (b + 1)/2]2
.

(b) Show that

a∑
i=1

b∑
j=1

(Xij −X ..)
2 =

a∑
i=1

b∑
j=1

[
Xij −X .. − d̂

(
j − b + 1

2

)]2

+ d̂2
b∑

j=1

a

(
j − b + 1

2

)2

.

(c) Argue that the two terms in the right-hand member of part (b), once divided
by σ2, are independent random variables with χ2 distributions provided that
d = 0.

(d) What F -statistic would be used to test the equality of the means, that is,
H0 : d = 0?

9.6.13. Consider the discussion in Section 9.6.2.

(a) Show that θ̂ = α̂1 + β̂xc, where α̂ and β̂ are the least squares estimators
derived in this section.

(b) Show that the vector ê = Y− θ̂ is the vector of residuals; i.e., its ith entry is
êi, (9.6.7).
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(c) As depicted in Figure 9.6.3, show that the angle between the vectors θ̂ and ê
is a right angle.

(d) Show that the residuals sum to zero; i.e., 1′ê = 0.

9.6.14. Fit y = a + x to the data

x 0 1 2
y 1 3 4

by the method of least squares.

9.6.15. Fit by the method of least squares the plane z = a + bx + cy to the five
points (x, y, z) : (−1,−2, 5), (0,−2, 4), (0, 0, 4), (1, 0, 2), (2, 1, 0).
Let the R vectors x,y,z contain the values for x, y, and z. Then the LS fit is
computed by lm(z ~ x + y).

9.6.16. Let the 4 × 1 matrix Y be multivariate normal N(Xβ, σ2I), where the
4× 3 matrix X equals

X =

⎡⎢⎢⎣
1 1 2
1 −1 2
1 0 −3
1 0 −1

⎤⎥⎥⎦
and β is the 3× 1 regression coefficient matrix.

(a) Find the mean matrix and the covariance matrix of β̂ = (X ′X)−1X ′Y .

(b) If we observe Y ′ to be equal to (6, 1, 11, 3), compute β̂.

9.6.17. Suppose Y is an n × 1 random vector, X is an n × p matrix of known
constants of rank p, and β is a p× 1 vector of regression coefficients. Let Y have a
N(Xβ, σ2I) distribution. Obtain the pdf of β̂ = (X ′X)−1X ′Y .

9.6.18. Let the independent normal random variables Y1, Y2, . . . , Yn have, respec-
tively, the probability density functions N(μ, γ2x2

i ), i = 1, 2, . . . , n, where the given
x1, x2, . . . , xn are not all equal and no one of which is zero. Discuss the test of
the hypothesis H0 : γ = 1, μ unspecified, against all alternatives H1 : γ 
= 1, μ
unspecified.

9.7 A Test of Independence

Let X and Y have a bivariate normal distribution with means μ1 and μ2, posi-
tive variances σ2

1 and σ2
2 , and correlation coefficient ρ. We wish to test the hy-

pothesis that X and Y are independent. Because two jointly normally distributed
random variables are independent if and only if ρ = 0, we test the hypothesis
H0 : ρ = 0 against the hypothesis H1 : ρ 
= 0. A likelihood ratio test is used.
Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote a random sample of size n > 2 from the



552 Inferences About Normal Linear Models

bivariate normal distribution; that is, the joint pdf of these 2n random variables is
given by

f(x1, y1)f(x2, y2) · · · f(xn, yn).

Although it is fairly difficult to show, the statistic that is defined by the likelihood
ratio Λ is a function of the statistic, which is the mle of ρ, namely,

R =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
∑n

i=1(Yi − Y )2
. (9.7.1)

This statistic R is called the sample correlation coefficient of the random sam-
ple. Following the discussion after expression (5.4.5), the statistic R is a consistent
estimate of ρ; see Exercise 9.7.5. The likelihood ratio principle, which calls for the
rejection of H0 if Λ ≤ λ0, is equivalent to the computed value of |R| ≥ c. That
is, if the absolute value of the correlation coefficient of the sample is too large, we
reject the hypothesis that the correlation coefficient of the distribution is equal to
zero. To determine a value of c for a satisfactory significance level, it is necessary
to obtain the distribution of R, or a function of R, when H0 is true, as we outline
next.

Let X1 = x1, X2 = x2, . . . , Xn = xn, n > 2, where x1, x2, . . . , xn and x =∑n
1 xi/n are fixed numbers such that

∑n
1 (xi−x)2 > 0. Consider the conditional pdf

of Y1, Y2, . . . , Yn given that X1 = x1, X2 = x2, . . . , Xn = xn. Because Y1, Y2, . . . , Yn

are independent and, with ρ = 0, are also independent of X1, X2, . . . , Xn, this
conditional pdf is given by(

1√
2πσ2

)n

exp

{
− 1

2σ2
2

n∑
1

(yi − μ2)
2

}
.

Let Rc be the correlation coefficient, given X1 = x1, X2 = x2, . . . , Xn = xn, so that

Rc

√√√√ n∑
i=1

(Yi − Y )2

√√√√ n∑
i=1

(xi − x)2

=

n∑
i=1

(xi − x)(Yi − Y )

n∑
i=1

(xi − x)2
=

n∑
i=1

(xi − x)Yi

n∑
i=1

(xi − x)2
(9.7.2)

is β̂, expression (9.6.5) of Section 9.6. Conditionally the mean of Yi is μ2; i.e., a
constant. So here expression (9.7.2) has expectation 0 which implies that E(Rc) = 0.

Next consider the t-ratio of β̂ given by T2 of expression (9.6.10) of Section 9.6. In
this notation T2 can be expressed as

T2 =
Rc

√∑
(Yi − Y )2/

√∑
(xi − x)2√P

n
i=1

n
Yi−Y −

h
Rc

qP
n
j=1(Yj−Y )2/

√P
n
j=1(xj−x)2

i
(xi−x)

o2

(n−2)
P

n
j=1(xj−x)2

=
Rc

√
n− 2√

1−R2
c

.

(9.7.3)
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Thus T2, given X1 = x1, . . . , Xn = xn, has a conditional t-distribution with n − 2
degrees of freedom. Note that the pdf, say g(t), of this t-distribution does not depend
upon x1, x2, . . . , xn. Now the joint pdf of X1, X2, . . . , Xn and R

√
n− 2/

√
1−R2,

where R is given by expression (9.7.1), is the product of g(t) and the joint pdf of
X1, . . . , Xn. Integration on x1, . . . , xn yields the marginal pdf of R

√
n− 2/

√
1−R2;

because g(t) does not depend upon x1, x2, . . . , xn, it is obvious that this marginal pdf
is g(t), the conditional pdf of R

√
n− 2/

√
1−R2. The change-of-variable technique

can now be used to find the pdf of R.

Remark 9.7.1. Since R has, when ρ = 0, a conditional distribution that does not
depend upon x1, x2, . . . , xn (and hence that conditional distribution is, in fact, the
marginal distribution of R), we have the remarkable fact that R is independent of
X1, X2, . . . , Xn. It follows that R is independent of every function of X1, X2, . . . , Xn

alone, that is, a function that does not depend upon any Yi. In like manner, R is
independent of every function of Y1, Y2, . . . , Yn alone. Moreover, a careful review of
the argument reveals that nowhere did we use the fact that X has a normal marginal
distribution. Thus, if X and Y are independent, and if Y has a normal distribution,
then R has the same conditional distribution whatever the distribution of X, subject
to the condition

∑n
1 (xi − x)2 > 0. Moreover, if P [

∑n
1 (Xi −X)2 > 0] = 1, then R

has the same marginal distribution whatever the distribution of X.

If we write T = R
√

n− 2/
√

1−R2, where T has a t-distribution with n− 2 > 0
degrees of freedom, it is easy to show by the change-of-variable technique (Exercise
9.7.4) that the pdf of R is given by

h(r) =

{
Γ[(n−1)/2]

Γ( 1
2 )Γ[(n−2)/2]

(1 − r2)(n−4)/2 −1 < r < 1

0 elsewhere.
(9.7.4)

We have now solved the problem of the distribution of R, when ρ = 0 and n > 2,
or perhaps more conveniently, that of R

√
n− 2/

√
1−R2. The likelihood ratio test

of the hypothesis H0 : ρ = 0 against all alternatives H1 : ρ 
= 0 may be based either
on the statistic R or on the statistic R

√
n− 2/

√
1− R2 = T , although the latter is

easier to use. Therefore, a level α test is to reject H0 : ρ = 0 if |T | ≥ tα/2,n−2.

Remark 9.7.2. It is possible to obtain an approximate test of size α by using the
fact that

W =
1

2
log

(
1 + R

1−R

)
has an approximate normal distribution with mean 1

2 log[(1 + ρ)/(1− ρ)] and with
variance 1/(n − 3). We accept this statement without proof. Thus a test of H0 :
ρ = 0 can be based on the statistic

Z =
1
2 log[(1 + R)/(1−R)]− 1

2 log[(1 + ρ)/(1− ρ)]√
1/(n− 3)

, (9.7.5)
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with ρ = 0 so that 1
2 log[(1 + ρ)/(1 − ρ)] = 0. However, using W , we can also test

a hypothesis like H0 : ρ = ρ0 against H1 : ρ 
= ρ0, where ρ0 is not necessarily zero.
In that case, the hypothesized mean of W is

1

2
log

(
1 + ρ0

1− ρ0

)
.

Furthermore, as outlined in Exercise 9.7.6, Z can be used to obtain an asymptotic
confidence interval for ρ.

EXERCISES

9.7.1. Show that

R =

n∑
1

(Xi −X)(Yi − Y )√√√√ n∑
1

(Xi −X)2
n∑
1

(Yi − Y )2

=

n∑
1

XiYi − nXY√√√√(
n∑
1

X2
i − nX

2

)(
n∑
1

Y 2
i − nY

2

) .

9.7.2. A random sample of size n = 6 from a bivariate normal distribution yields
a value of the correlation coefficient of 0.89. Would we accept or reject, at the 5%
significance level, the hypothesis that ρ = 0?

9.7.3. Verify Equation (9.7.3) of this section.

9.7.4. Verify the pdf (9.7.4) of this section.

9.7.5. Using the results of Section 4.5, show that R, (9.7.1), is a consistent estimate
of ρ.

9.7.6. By doing the following steps, determine a (1 − α)100% approximate confi-
dence interval for ρ.

(a) For 0 < α < 1, in the usual way, start with 1 − α = P (−zα/2 < Z < zα/2),
where Z is given by expression (9.7.5). Then isolate h(ρ) = (1/2) log [(1 +
ρ)/(1−ρ)] in the middle part of the inequality. Find h′(ρ) and show that it is
strictly positive on −1 < ρ < 1; hence, h is strictly increasing and its inverse
function exists.

(b) Show that this inverse function is the hyperbolic tangent function given by
tanh(y) = (ey − e−y)/(ey + e−y).

(c) Obtain a (1− α)100% confidence interval for ρ.

9.7.7. The intrinsic R function cor.test(x,y) computes the estimate of ρ and the
confidence interval in Exercise 9.7.6. Recall the baseball data which is in the file
bb.rda.
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(a) Using the baseball data, determine the estimate and the confidence interval for
the correlation coefficient between height and weight for professional baseball
players.

(b) Separate the pitchers and hitters and for each obtain the estimate and confi-
dence for the correlation coefficient between height and weight. Do they differ
significantly?

(c) Argue that the difference in the estimates of the correlation coefficients is the
mle of ρ1 − ρ2 for two independent samples, as in Part (b).

9.7.8. Two experiments gave the following results:

n x y sx sy r
100 10 20 5 8 0.70
200 12 22 6 10 0.80

Calculate r for the combined sample.

9.8 The Distributions of Certain Quadratic Forms

Remark 9.8.1. It is essential that the reader have the background of the multi-
variate normal distribution as given in Section 3.5 to understand Sections 9.8 and
9.9.

Remark 9.8.2. We make use of the trace of a square matrix. If A = [aij ] is an
n × n matrix, then we define the trace of A, (trA), to be the sum of its diagonal
entries; i.e.,

trA =

n∑
i=1

aii. (9.8.1)

The trace of a matrix has several interesting properties. One is that it is a linear
operator; that is,

tr (aA + bB) = a trA + b trB. (9.8.2)

A second useful property is: If A is an n×m matrix, B is an m× k matrix, and C
is a k × n matrix, then

tr (ABC) = tr (BCA) = tr (CAB). (9.8.3)

The reader is asked to prove these facts in Exercise 9.8.7. Finally, a simple but
useful property is that tra = a, for any scalar a.

We begin this section with a more formal but equivalent definition of a quadratic
form. Let X = (X1, . . . , Xn) be an n-dimensional random vector and let A be a
real n × n symmetric matrix. Then the random variable Q = X′AX is called a
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quadratic form in X. Due to the symmetry of A, there are several ways we can
write Q:

Q = X′AX =

n∑
i=1

n∑
j=1

aijXiXj =

n∑
i=1

aiiX
2
i +

∑∑
i�=j

aijXiXj (9.8.4)

=

n∑
i=1

aiiX
2
i + 2

∑∑
i<j

aijXiXj .

(9.8.5)

These are very useful random variables in analysis of variance models. As the
following theorem shows, the mean of a quadratic form is easily obtained.

Theorem 9.8.1. Suppose the n-dimensional random vector X has mean μ and
variance–covariance matrix Σ. Let Q = X′AX, where A is a real n×n symmetric
matrix. Then

E(Q) = trAΣ + μ′Aμ. (9.8.6)

Proof: Using the trace operator and property (9.8.3), we have

E(Q) = E(trX′AX) = E(trAXX′)

= trAE(XX′)

= trA(Σ + μμ′)

= trAΣ + μ′Aμ,

where the third line follows from Theorem 2.6.3.

Example 9.8.1 (Sample Variance). Let X′ = (X1, . . . , Xn) be an n-dimensional
vector of random variables. Let 1′ = (1, . . . , 1) be the n-dimensional vector whose
components are 1. Let I be the n×n identity matrix. Consider the quadratic form
Q = X′(I − 1

nJ)X, where J = 11′; i.e., J is an n× n matrix with all entries equal
to 1. Note that the off-diagonal entries of (I − 1

n ,J) are −n−1 while the diagonal
entries are 1− n−1; hence, by (9.8.4), Q simplifies to

Q =

n∑
i=1

X2
i

(
1− 1

n

)
+

∑∑
i�=j

(
− 1

n

)
XiXj

=

n∑
i=1

X2
i

(
1− 1

n

)
− 1

n

n∑
i=1

Xi

n∑
j=1

Xj +
1

n

n∑
i=1

X2
i

=

n∑
i=1

X2
i − nX

2
= (n− 1)S2, (9.8.7)

where X and S2 denote the sample mean and variance of X1, . . . , Xn.
Suppose we further assume that X1, . . . , Xn are iid random variables with com-

mon mean μ and variance σ2. Using Theorem 9.8.1, we can obtain yet another
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proof that S2 is an unbiased estimate of σ2. Note that the mean of the random
vector X is μ1 and that its variance–covariance matrix is σ2I. Based on Theorem
9.8.1, we find immediately that

E(S2) =
1

n− 1

{
tr

(
I− 1

n
J

)
σ2I + μ2

(
1′1− 1

n
1′11′1

)}
= σ2 .

The spectral decomposition of symmetric matrices proves quite useful in this part
of the chapter. As discussed around expression (3.5.8), a real symmetric matrix A
can be diagonalized as

A = Γ′ΛΓ, (9.8.8)

where Λ is the diagonal matrix Λ = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn are the eigen-
values of A, and the columns of Γ′ = [v1 · · ·vn] are the corresponding orthonormal
eigenvectors (i.e., Γ is an orthogonal matrix). Recall from linear algebra that the
rank of A is the number of nonzero eigenvalues. Further, because Λ is diagonal, we
can write this expression as

A =

n∑
i=1

λiviv
′
i. (9.8.9)

The R command to compute the spectral decomposition of A is sdc=eigen(amat),
where amat is the R matrix for A. The eigenvalues and eigenvectors are in the
respective attributes sdc$values and sdc$vectors. For normal random variables,
we make use of equation (9.8.9) to obtain the mgf of the quadratic form Q in the
next theorem, Theorem 9.8.2.

Theorem 9.8.2. Let X′ = (X1, . . . , Xn), where X1, . . . , Xn are iid N(0, σ2). Con-
sider the quadratic form Q = σ−2X′AX for a symmetric matrix A of rank r ≤ n.
Then Q has the moment generating function

M(t) =

r∏
i=1

(1− 2tλi)
−1/2 = |I− 2tA|−1/2, (9.8.10)

where λ1, . . . , λr are the nonzero eigenvalues of A, |t| < 1/(2λ∗), and the value of
λ∗ is given by λ∗ = max1≤i≤r |λi|.
Proof: Write the spectral decomposition of A as in expression (9.8.9). Since the
rank of A is r, exactly r of the eigenvalues are not 0. Denote the nonzero eigenvalues
by λ1, . . . , λr. Then we can write Q as

Q =

r∑
i=1

λi(σ
−1v′

iX)2. (9.8.11)

Let Γ′
1 = [v1 · · ·vr] and define the r-dimensional random vector W by W =

σ−1Γ1X. Since X is Nn(0, σ2In) and Γ′
1Γ1 = Ir, Theorem 3.5.2 shows that W

has a Nr(0, Ir) distribution. In terms of the Wi, we can write (9.8.11) as

Q =

r∑
i=1

λiW
2
i . (9.8.12)
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Because W1, . . . , Wr are independent N(0, 1) random variables, W 2
1 , . . . , W 2

r are
independent χ2(1) random variables. Thus the mgf of Q is

E[exp{tQ}] = E

[
exp

{
r∑

i=1

tλiW
2
i

}]

=
r∏

i=1

E[exp{tλiW
2
i }] =

r∏
i=1

(1 − 2tλi)
−1/2. (9.8.13)

The last equality holds if we assume that |t| < 1/(2λ∗), where λ∗ = max1≤i≤r |λi|;
see Exercise 9.8.6. To obtain the second form in (9.8.10), recall that the determinant
of an orthogonal matrix is 1. The result then follows from

|I− 2tA| = |Γ′Γ− 2tΓ′ΛΓ| = |Γ′(I− 2tΛ)Γ|

= |I− 2tΛ| =
{

r∏
i=1

(1− 2tλi)
−1/2

}−2

.

Example 9.8.2. To illustrate this theorem, suppose Xi, i = 1, 2, . . . , n, are in-
dependent random variables with Xi distributed as N(μi, σ

2
i ), i = 1, 2, . . . , n, re-

spectively. Let Zi = (Xi − μi)/σi. We know that
∑n

i=1 Z2
i has a χ2 distribution

with n degrees of freedom. To illustrate Theorem 9.8.2, let Z′ = (Z1, . . . , Zn). Let
Q = Z′IZ. Hence the symmetric matrix associated with Q is the identity matrix I,
which has n eigenvalues, all of value 1; i.e., λi ≡ 1. By Theorem 9.8.2, the mgf of
Q is (1− 2t)−n/2; i.e., Q is distributed χ2 with n degrees of freedom.

In general, from Theorem 9.8.2, note how close the mgf of the quadratic form
Q is to the mgf of a χ2 distribution. The next two theorems give conditions where
this is true.

Theorem 9.8.3. Let X′ = (X1, X2, . . . , Xn) have a Nn(μ,Σ) distribution, where
Σ is positive definite. Then Q = (X− μ)′Σ−1(X− μ) has a χ2(n) distribution.

Proof: Write the spectral decomposition of Σ as Σ = Γ′ΛΓ, where Γ is an orthog-
onal matrix and Λ = diag{λ1, . . . , λn} is a diagonal matrix whose diagonal entries
are the eigenvalues of Σ. Because Σ is positive definite, all λi > 0. Hence we can
write

Σ−1 = Γ′Λ−1Γ = Γ′Λ−1/2ΓΓ′Λ−1/2Γ,

where Λ−1/2 = diag{λ−1/2
1 , . . . , λ

−1/2
n }. Thus we have

Q =
{
Λ−1/2Γ(X − μ)

}′
I
{
Λ−1/2Γ(X− μ)

}
.

But by Theorem 3.5.2, it is easy to show that the random vector Λ−1/2Γ(X − μ)
has a Nn(0, I) distribution; hence, Q has a χ2(n) distribution.

The remarkable fact that the random variable Q in the last theorem is χ2(n)
stimulates a number of questions about quadratic forms in normally distributed
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variables. We would like to treat this problem generally, but limitations of space
forbid this, and we find it necessary to restrict ourselves to some special cases; see,
for instance, Stapleton (2009) for discussion.

Recall from linear algebra that a symmetric matrix A is idempotent if A2 = A.
In Section 9.1, we have already met some idempotent matrices. For example, the
matrix I − 1

nJ of Example 9.8.1 is idempotent. Idempotent matrices possess some
important characteristics. Suppose λ is an eigenvalue of an idempotent matrix A
with corresponding eigenvector v. Then the following identity is true:

λv = Av = A2v = λAv = λ2v.

Hence λ(λ − 1)v = 0. Since v 
= 0, λ = 0 or 1. Conversely, if the eigenvalues
of a real symmetric matrix are only 0s and 1s then it is idempotent; see Exercise
9.8.10. Thus the rank of an idempotent matrix A is the number of its eigenvalues
which are 1. Denote the spectral decomposition of A by A = Γ′ΛΓ, where Λ is a
diagonal matrix of eigenvalues and Γ is an orthogonal matrix whose columns are
the corresponding orthonormal eigenvectors. Because the diagonal entries of Λ are
0 or 1 and Γ is orthogonal, we have

trA = trΛΓΓ′ = trΛ = rank(A);

i.e., the rank of an idempotent matrix is equal to its trace.

Theorem 9.8.4. Let X′ = (X1, . . . , Xn), where X1, . . . , Xn are iid N(0, σ2). Let
Q = σ−2X′AX for a symmetric matrix A with rank r. Then Q has a χ2(r) distri-
bution if and only if A is idempotent.

Proof: By Theorem 9.8.2, the mgf of Q is

MQ(t) =

r∏
i=1

(1− 2tλi)
−1/2, (9.8.14)

where λ1, . . . , λr are the r nonzero eigenvalues of A. Suppose, first, that A is
idempotent. Then λ1 = · · · = λr = 1 and the mgf of Q is MQ(t) = (1 − 2t)−r/2;
i.e., Q has a χ2(r) distribution. Next, suppose Q has a χ2(r) distribution. Then
for t in a neighborhood of 0, we have the identity

r∏
i=1

(1− 2tλi)
−1/2 = (1− 2t)−r/2,

which, upon squaring both sides, leads to

r∏
i=1

(1 − 2tλi) = (1− 2t)r,

By the uniqueness of the factorization of polynomials, λ1 = · · · = λr = 1. Hence A
is idempotent.
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Example 9.8.3. Based on this last theorem, we can obtain quickly the distri-
bution of the sample variance when sampling from a normal distribution. Sup-
pose X1, X2, . . . , Xn are iid N(μ, σ2). Let X = (X1, X2, . . . , Xn)′. Then X has a
Nn(μ1, σ2I) distribution, where 1 denotes a n× 1 vector with all components equal
to 1. Let S2 = (n− 1)−1

∑n
i=1(Xi −X)2. Then by Example 9.8.1, we can write

(n− 1)S2

σ2
= σ−2X′

(
I− 1

n
J

)
X = σ−2(X− μ1)′

(
I− 1

n
J

)
(X− μ1),

where the last equality holds because
(
I− 1

nJ
)
1 = 0. Because the matrix I− 1

nJ is
idempotent, tr (I− 1

nJ) = n− 1, and X−μ1 is Nn(0, σ2I), it follows from Theorem
9.8.4 that (n− 1)S2/σ2 has a χ2(n− 1) distribution.

Remark 9.8.3. If the normal distribution in Theorem 9.8.4 is Nn(μ, σ2I), the
condition A2 = A remains a necessary and sufficient condition that Q/σ2 have a
chi-square distribution. In general, however, Q/σ2 is not central χ2(r) but instead,
Q/σ2 has a noncentral chi-square distribution if A2 = A. The number of degrees
of freedom is r, the rank of A, and the noncentrality parameter is μ′Aμ/σ2. If
μ = μ1, then μ′Aμ = μ2

∑
i,j aij , where A = [aij ]. Then, if μ 
= 0, the condi-

tions A2 = A and
∑
i,j

aij = 0 are necessary and sufficient conditions that Q/σ2

be central χ2(r). Moreover, the theorem may be extended to a quadratic form in
random variables which have a multivariate normal distribution with positive def-
inite covariance matrix Σ; here the necessary and sufficient condition that Q have
a chi-square distribution is AΣA = A. See Exercise 9.8.9.

EXERCISES

9.8.1. Let Q = X1X2 −X3X4, where X1, X2, X3, X4 is a random sample of size 4
from a distribution that is N(0, σ2). Show that Q/σ2 does not have a chi-square
distribution. Find the mgf of Q/σ2.

9.8.2. Let X′ = [X1, X2] be bivariate normal with matrix of means μ′ = [μ1, μ2]
and positive definite covariance matrix Σ. Let

Q1 =
X2

1

σ2
1(1 − ρ2)

− 2ρ
X1X2

σ1σ2(1 − ρ2)
+

X2
2

σ2
2(1− ρ2)

.

Show that Q1 is χ2(r, θ) and find r and θ. When and only when does Q1 have a
central chi-square distribution?

9.8.3. Let X′ = [X1, X2, X3] denote a random sample of size 3 from a distribution
that is N(4, 8) and let

A =

⎛⎝ 1
2 0 1

2
0 1 0
1
2 0 1

2

⎞⎠ .

Let Q = X′AX/σ2.
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(a) Use Theorem 9.8.1 to find the E(Q).

(b) Justify the assertion that Q is χ2(2, 6).

9.8.4. Suppose X1, . . . , Xn are independent random variables with the common
mean μ but with unequal variances σ2

i = Var(Xi).

(a) Determine the variance of X .

(b) Determine the constant K so that Q = K
∑n

i=1(Xi − X)2 is an unbiased
estimate of the variance of X. (Hint: Proceed as in Example 9.8.3.)

9.8.5. Suppose X1, . . . , Xn are correlated random variables, with common mean μ
and variance σ2 but with correlations ρ (all correlations are the same).

(a) Determine the variance of X .

(b) Determine the constant K so that Q = K
∑n

i=1(Xi − X)2 is an unbiased
estimate of the variance of X. (Hint: Proceed as in Example 9.8.3.)

9.8.6. Fill in the details for expression (9.8.13).

9.8.7. For the trace operator defined in expression (9.8.1), prove the following
properties are true.

(a) If A and B are n× n matrices and a and b are scalars, then

tr (aA + bB) = a trA + b trB.

(b) If A is an n×m matrix, B is an m× k matrix, and C is a k×n matrix, then

tr (ABC) = tr (BCA) = tr (CAB).

(c) If A is a square matrix and Γ is an orthogonal matrix, use the result of part
(a) to show that tr(Γ′AΓ) = trA.

(d) If A is a real symmetric idempotent matrix, use the result of part (b) to prove
that the rank of A is equal to trA.

9.8.8. Let A = [aij ] be a real symmetric matrix. Prove that
∑

i

∑
j a2

ij is equal to
the sum of the squares of the eigenvalues of A.
Hint: If Γ is an orthogonal matrix, show that

∑
j

∑
i a2

ij = tr(A2) = tr(Γ′A2Γ) =
tr[(Γ′AΓ)(Γ′AΓ)].

9.8.9. Suppose X has a Nn(0,Σ) distribution, where Σ is positive definite. Let
Q = X′AX for a symmetric matrix A with rank r. Prove Q has a χ2(r) distribution
if and only if AΣA = A.
Hint: Write Q as

Q = (Σ−1/2X)′Σ1/2AΣ1/2(Σ−1/2X),

where Σ1/2 = Γ′Λ1/2Γ and Σ = Γ′ΛΓ is the spectral decomposition of Σ. Then
use Theorem 9.8.4.

9.8.10. Suppose A is a real symmetric matrix. If the eigenvalues of A are only 0s
and 1s then prove that A is idempotent.
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9.9 The Independence of Certain Quadratic Forms

We have previously investigated the independence of linear functions of normally
distributed variables. In this section we shall prove some theorems about the in-
dependence of quadratic forms. We shall confine our attention to normally dis-
tributed variables that constitute a random sample of size n from a distribution
that is N(0, σ2).

Remark 9.9.1. In the proof of the next theorem, we use the fact that if A is an
m × n matrix of rank n (i.e., A has full column rank), then the matrix A′A is
nonsingular. A proof of this linear algebra fact is sketched in Exercises 9.9.12 and
9.9.13.

Theorem 9.9.1 (Craig). Let X′ = (X1, . . . , Xn), where X1, . . . , Xn are iid N(0, σ2)
random variables. For real symmetric matrices A and B, let Q1 = σ−2X′AX and
Q2 = σ−2X′BX denote quadratic forms in X. The random variables Q1 and Q2

are independent if and only if AB = 0.

Proof: First, we obtain some preliminary results. Based on these results, the proof
follows immediately. Assume the ranks of the matrices A and B are r and s,
respectively. Let Γ′

1Λ1Γ1 denote the spectral decomposition of A. Denote the r
nonzero eigenvalues of A by λ1, . . . , λr. Without loss of generality, assume that
these nonzero eigenvalues of A are the first r elements on the main diagonal of Λ1

and let Γ′
11 be the n× r matrix whose columns are the corresponding eigenvectors.

Finally, let Λ11 = diag {λ1, . . . , λr}. Then we can write the spectral decomposition
of A in either of the two ways

A = Γ′
1Λ1Γ1 = Γ′

11Λ11Γ11. (9.9.1)

Note that we can write Q1 as

Q1 = σ−2X′Γ′
11Λ11Γ11X = σ−2(Γ11X)′Λ11(Γ11X) = W′

1Λ11W1, (9.9.2)

where W1 = σ−1Γ11X. Next, obtain a similar representation based on the s nonzero
eigenvalues γ1, . . . , γs of B. Let Λ22 = diag{γ1, . . . , γs} denote the s × s diagonal
matrix of nonzero eigenvalues and form the n× s matrix Γ′

21 = [u1 · · ·us] of corre-
sponding eigenvectors. Then we can write the spectral decomposition of B as

B = Γ′
21Λ22Γ21. (9.9.3)

Also, we can write Q2 as
Q2 = W′

2Λ22W2, (9.9.4)

where W2 = σ−1Γ21X. Letting W′ = (W′
1,W

′
2), we have

W = σ−1

[
Γ11

Γ21

]
X.

Because X has a Nn(0, σ2I) distribution, Theorem 3.5.2 shows that W has an
(r + s)–dimensional multivariate normal distribution with mean 0 and variance–
covariance matrix

Var (W) =

[
Ir Γ11Γ

′
21

Γ21Γ
′
11 Is

]
. (9.9.5)
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Finally, using (9.9.1) and (9.9.3), we have the identity

AB = {Γ′
11Λ11}Γ11Γ

′
21{Λ22Γ21}. (9.9.6)

Let U denote the matrix in the first set of braces. Note that U has full column
rank, so its kernel is null; i.e., its kernel consists of the vector 0. Let V denote the
matrix in the second set of braces. Note that V has full row rank, hence the kernel
of V′ is null.

For the proof then, suppose AB = 0. Then

U [Γ11Γ
′
21V] = 0.

Because the kernel of U is null this implies each column of the matrix in the brackets
is the vector 0; i.e., the matrix in the brackets is the matrix 0. This implies that

V′ [Γ21Γ
′
11] = 0.

In the same way, because the kernel of V′ is null, we have Γ11Γ
′
21 = 0. Hence, by

(9.9.5), the random vectors W1 and W2 are independent. Therefore, by (9.9.2) and
(9.9.4), Q1 and Q2 are independent.

Conversely, if Q1 and Q2 are independent, then

{E[exp{t1Q1 + t2Q2}]}−2
= {E[exp{t1Q1}]}−2 {E[exp{t2Q2}]}−2

, (9.9.7)

for (t1, t2) in an open neighborhood of (0, 0). Note that t1Q1 + t2Q2 is a quadratic
form in X with symmetric matrix t1A+t2B. Recall that the matrix Γ1 is orthogonal
and hence has determinant ±1. Using this and Theorem 9.8.2, we can write the left
side of (9.9.7) as

E−2[exp{t1Q1 + t2Q2}] = |In − 2t1A− 2t2B|
= |Γ′

1Γ1 − 2t1Γ
′
1Λ1Γ1 − 2t2Γ

′
1(Γ1BΓ′

1)Γ1|
= |In − 2t1Λ1 − 2t2D|, (9.9.8)

where the matrix D is given by

D = Γ1BΓ′
1 =

[
D11 D12

D21 D22

]
, (9.9.9)

and D11 is r × r. By (9.9.2), (9.9.3), and Theorem 9.8.2, the right side of (9.9.7)
can be written as

{E[exp{t1Q1}]}−2 {E[exp{t2Q2}]}−2 =

{
r∏

i=1

(1− 2t1λi)

}
|In − 2t2D|. (9.9.10)

This leads to the identity

|In − 2t1Λ1 − 2t2D| =
{

r∏
i=1

(1 − 2t1λi)

}
|In − 2t2D|, (9.9.11)
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for (t1, t2) in an open neighborhood of (0, 0).

The coefficient of (−2t1)
r on the right side of (9.9.11) is λ1 · · ·λr|I−2t2D|. It is

not so easy to find the coefficient of (−2t1)
r in the left side of the equation (9.9.11).

Conceive of expanding this determinant in terms of minors of order r formed from
the first r columns. One term in this expansion is the product of the minor of order
r in the upper left-hand corner, namely, |Ir − 2t1Λ11 − 2t2D11|, and the minor of
order n− r in the lower right-hand corner, namely, |In−r − 2t2D22|. Moreover, this
product is the only term in the expansion of the determinant that involves (−2t1)

r.
Thus the coefficient of (−2t1)

r in the left-hand member of Equation (9.9.11) is
λ1 · · ·λr|In−r − 2t2D22|. If we equate these coefficients of (−2t1)

r, we have

|I− 2t2D| = |In−r − 2t2D22|, (9.9.12)

for t2 in an open neighborhood of 0. Equation (9.9.12) implies that the nonzero
eigenvalues of the matrices D and D22 are the same (see Exercise 9.9.8). Recall
that the sum of the squares of the eigenvalues of a symmetric matrix is equal to the
sum of the squares of the elements of that matrix (see Exercise 9.8.8). Thus the
sum of the squares of the elements of matrix D is equal to the sum of the squares
of the elements of D22. Since the elements of the matrix D are real, it follows that
each of the elements of D11,D12, and D21 is zero. Hence we can write

0 = Λ1D = Γ1AΓ′
1Γ1BΓ′

1

because Γ1 is an orthogonal matrix, AB = 0.

Remark 9.9.2. Theorem 9.9.1 remains valid if the random sample is from a distri-
bution that is N(μ, σ2), whatever the real value of μ. Moreover, Theorem 9.9.1 may
be extended to quadratic forms in random variables that have a joint multivariate
normal distribution with a positive definite covariance matrix Σ. The necessary and
sufficient condition for the independence of two such quadratic forms with symmet-
ric matrices A and B then becomes AΣB = 0. In our Theorem 9.9.1, we have
Σ = σ2I, so that AΣB = Aσ2IB = σ2AB = 0.

The following theorem is from Hogg and Craig (1958).

Theorem 9.9.2 (Hogg and Craig). Define the sum Q = Q1 + · · · + Qk−1 + Qk,
where Q, Q1, . . . , Qk−1, Qk are k+1 random variables that are quadratic forms in the
observations of a random sample of size n from a distribution that is N(0, σ2). Let
Q/σ2 be χ2(r), let Qi/σ2 be χ2(ri), i = 1, 2, . . . , k − 1, and let Qk be nonnegative.
Then the random variables Q1, Q2, . . . , Qk are independent and, hence, Qk/σ2 is
χ2(rk = r − r1 − · · · − rk−1).

Proof: Take first the case of k = 2 and let the real symmetric matrices Q, Q1, and
Q2 be denoted, respectively, by A, A1, A2. We are given that Q = Q1 + Q2 or,
equivalently, that A = A1 + A2. We are also given that Q/σ2 is χ2(r) and that
Q1/σ2 is χ2(r1). In accordance with Theorem 9.8.4, we have A2 = A and A2

1 = A.
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Since Q2 ≥ 0, each of the matrices A, A1, and A2 is positive semidefinite. Because
A2 = A, we can find an orthogonal matrix Γ such that

Γ′AΓ =

[
Ir O
O O

]
.

If we multiply both members of A = A1 +A2 on the left by Γ′ and on the right by
Γ, we have [

Ir 0
0 0

]
= Γ′A1Γ + Γ′A2Γ.

Now each of A1 and A2, and hence each of Γ′A1Γ and Γ′A2Γ is positive semidefi-
nite. Recall that if a real symmetric matrix is positive semidefinite, each element on
the principal diagonal is positive or zero. Moreover, if an element on the principal
diagonal is zero, then all elements in that row and all elements in that column are
zero. Thus Γ′AΓ = Γ′A1Γ + Γ′A2Γ can be written as[

Ir 0
0 0

]
=

[
Gr 0
0 0

]
+

[
Hr 0
0 0

]
. (9.9.13)

Since A2
1 = A1, we have

(Γ′A1Γ)2 = Γ′A1Γ =

[
Gr 0
0 0

]
.

If we multiply both members of Equation (9.9.13) on the left by the matrix Γ′A1Γ,
we see that [

Gr 0
0 0

]
=

[
Gr 0
0 0

]
+

[
GrHr 0

0 0

]
or, equivalently, Γ′A1Γ = Γ′A1Γ+(Γ′A1Γ)(Γ′A2Γ). Thus (Γ′A1Γ)×(Γ′A2Γ) = 0
and A1A2 = 0. In accordance with Theorem 9.9.1, Q1 and Q2 are independent.
This independence immediately implies that Q2/σ2 is χ2(r2 = r − r1). This com-
pletes the proof when k = 2. For k > 2, the proof may be made by induction. We
shall merely indicate how this can be done by using k = 3. Take A = A1+A2+A3,
where A2 = A, A2

1 = A1, A2
2 = A2, and A3 is positive semidefinite. Write

A = A1 + (A2 + A3) = A1 + B1, say. Now A2 = A, A2
1 = A1, and B1 is

positive semidefinite. In accordance with the case of k = 2, we have A1B1 = 0,
so that B2

1 = B1. With B1 = A2 + A3, where B2
1 = B1, A2

2 = A2, it follows
from the case of k = 2 that A2A3 = 0 and A2

3 = A3. If we regroup by writing
A = A2 + (A1 + A3), we obtain A1A3 = 0, and so on.

Remark 9.9.3. In our statement of Theorem 9.9.2, we took X1, X2, . . . , Xn to
be observations of a random sample from a distribution that is N(0, σ2). We did
this because our proof of Theorem 9.9.1 was restricted to that case. In fact, if
Q′, Q′

1, . . . , Q
′
k are quadratic forms in any normal variables (including multivariate

normal variables), if Q′ = Q′
1+· · ·+Q′

k, if Q′, Q′
1, . . . , Q

′
k−1 are central or noncentral

chi-square, and if Q′
k is nonnegative, then Q′

1, . . . , Q
′
k are independent and Q′

k is
either central or noncentral chi-square.



566 Inferences About Normal Linear Models

This section concludes with a proof of a frequently quoted theorem due to
Cochran.

Theorem 9.9.3 (Cochran). Let X1, X2, . . . , Xn denote a random sample from a
distribution that is N(0, σ2). Let the sum of the squares of these observations be
written in the form

n∑
1

X2
i = Q1 + Q2 + · · ·+ Qk,

where Qj is a quadratic form in X1, X2, . . . , Xn, with matrix Aj that has rank
rj , j = 1, 2, . . . , k. The random variables Q1, Q2, . . . , Qk are independent and

Qj/σ2 is χ2(rj), j = 1, 2, . . . , k, if and only if
∑k

1 rj = n.

Proof. First assume the two conditions
∑k

1 rj = n and
∑n

1 X2
i =

∑k
1 Qj to be

satisfied. The latter equation implies that I = A1+A2+· · ·+Ak. Let Bi = I−Ai;
that is, Bi is the sum of the matrices A1, . . . ,Ak exclusive of Ai. Let Ri denote
the rank of Bi. Since the rank of the sum of several matrices is less than or equal
to the sum of the ranks, we have Ri ≤

∑k
1 rj − ri = n− ri. However, I = Ai + Bi,

so that n ≤ ri + Ri and n− ri ≤ Ri. Hence Ri = n− ri. The eigenvalues of Bi are
the roots of the equation |Bi − λI| = 0. Since Bi = I −Ai, this equation can be
written as |I −Ai − λI| = 0. Thus we have |Ai − (1 − λ)I | = 0. But each root of
the last equation is 1 minus an eigenvalue of Ai. Since Bi has exactly n−Ri = ri

eigenvalues that are zero, then Ai has exactly ri eigenvalues that are equal to 1.
However, ri is the rank of Ai. Thus each of the ri nonzero eigenvalues of Ai is 1.
That is, A2

i = Ai and thus Qi/σ2 has a χ2(ri), for i = 1, 2, . . . , k. In accordance
with Theorem 9.9.2, the random variables Q1, Q2, . . . , Qk are independent.

To complete the proof of Theorem 9.9.3, take

n∑
1

X2
i = Q1 + Q2 + · · ·+ Qk,

let Q1, Q2, . . . , Qk be independent, and let Qj/σ2 be χ2(rj), j = 1, 2, . . . , k. Then∑k
1 Qj/σ2 is χ2(

∑k
1 rj). But

∑k
1 Qj/σ2 =

∑n
1 X2

i /σ2 is χ2(n). Thus
∑k

1 rj = n
and the proof is complete.

EXERCISES

9.9.1. Let X1, X2, X3 be a random sample from the normal distribution N(0, σ2).
Are the quadratic forms X2

1 +3X1X2 +X2
2 +X1X3 +X2

3 and X2
1 −2X1X2 + 2

3X2
2 −

2X1X2 −X2
3 independent or dependent?

9.9.2. Let X1, X2, . . . , Xn denote a random sample of size n from a distribution
that is N(0, σ2). Prove that

∑n
1 X2

i and every quadratic form, that is nonidentically
zero in X1, X2, . . . , Xn, are dependent.

9.9.3. Let X1, X2, X3, X4 denote a random sample of size 4 from a distribution
that is N(0, σ2). Let Y =

∑4
1 aiXi, where a1, a2, a3, and a4 are real constants. If

Y 2 and Q = X1X2 −X3X4 are independent, determine a1, a2, a3, and a4.
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9.9.4. Let A be the real symmetric matrix of a quadratic form Q in the observations
of a random sample of size n from a distribution that is N(0, σ2). Given that Q
and the mean X of the sample are independent, what can be said of the elements
of each row (column) of A?

Hint: Are Q and X
2

independent?

9.9.5. Let A1, A2, . . . ,Ak be the matrices of k > 2 quadratic forms Q1, Q2, . . . , Qk

in the observations of a random sample of size n from a distribution that is N(0, σ2).
Prove that the pairwise independence of these forms implies that they are mutually
independent.
Hint: Show that AiAj = 0, i 
= j, permits E[exp(t1Q1 + t2Q2 + · · · + tkQk)] to
be written as a product of the mgfs of Q1, Q2, . . . , Qk.

9.9.6. Let X ′ = [X1, X2, . . . , Xn], where X1, X2, . . . , Xn are observations of a ran-
dom sample from a distribution that is N(0, σ2). Let b′ = [b1, b2, . . . , bn] be a
real nonzero vector, and let A be a real symmetric matrix of order n. Prove that
the linear form b′X and the quadratic form X ′AX are independent if and only if
b′A = 0. Use this fact to prove that b′X and X ′AX are independent if and only
if the two quadratic forms (b′X)2 = X ′bb′X and X ′AX are independent.

9.9.7. Let Q1 and Q2 be two nonnegative quadratic forms in the observations of a
random sample from a distribution that is N(0, σ2). Show that another quadratic
form Q is independent of Q1 +Q2 if and only if Q is independent of each of Q1 and
Q2.
Hint: Consider the orthogonal transformation that diagonalizes the matrix of
Q1 + Q2. After this transformation, what are the forms of the matrices Q, Q1 and
Q2 if Q and Q1 + Q2 are independent?

9.9.8. Prove that Equation (9.9.12) of this section implies that the nonzero eigen-
values of the matrices D and D22 are the same.
Hint: Let λ = 1/(2t2), t2 
= 0, and show that Equation (9.9.12) is equivalent to
|D − λI| = (−λ)r|D22 − λIn−r|.
9.9.9. Here Q1 and Q2 are quadratic forms in observations of a random sample from
N(0, 1). If Q1 and Q2 are independent and if Q1 +Q2 has a chi-square distribution,
prove that Q1 and Q2 are chi-square variables.

9.9.10. Often in regression the mean of the random variable Y is a linear function
of p-values x1, x2, . . . , xp, say β1x1 + β2x2 + · · ·+ βpxp, where β′ = (β1, β2, . . . , βp)
are the regression coefficients. Suppose that n values, Y ′ = (Y1, Y2, . . . , Yn), are
observed for the x-values in X = [xij ], where X is an n× p design matrix and its
ith row is associated with Yi, i = 1, 2, . . . , n. Assume that Y is multivariate normal
with mean Xβ and variance–covariance matrix σ2I, where I is the n× n identity
matrix.

(a) Note that Y1, Y2, . . . , Yn are independent. Why?

(b) Since Y should approximately equal its mean Xβ, we estimate β by solving
the normal equations X ′Y = X ′Xβ for β. Assuming that X ′X is non-
singular, solve the equations to get β̂ = (X ′X)−1X ′Y . Show that β̂ has a
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multivariate normal distribution with mean β and variance–covariance matrix
σ2(X ′X)−1.

(c) Show that

(Y −Xβ)′(Y −Xβ) = (β̂ − β)′(X ′X)(β̂ − β) + (Y −Xβ̂)′(Y −Xβ̂),

For the remainder of the exercise, let Q denote the quadratic form on the left
side of this expression and Q1 and Q2 denote the respective quadratic forms
on the right side. Hence, Q = Q1 + Q2.

(d) Show that Q1/σ2 is χ2(p).

(e) Show that Q1 and Q2 are independent.

(f) Argue that Q2/σ2 is χ2(n− p).

(g) Find c so that cQ1/Q2 has an F -distribution.

(h) The fact that a value d can be found so that P (cQ1/Q2 ≤ d) = 1 − α could
be used to find a 100(1− α)% confidence ellipsoid for β. Explain.

9.9.11. Say that G.P.A. (Y ) is thought to be a linear function of a “coded” high
school rank (x2) and a “coded” American College Testing score (x3), namely, β1 +
β2x2 + β3x3. Note that all x1 values equal 1. We observe the following five points:

x1 x2 x3 Y
1 1 2 3
1 4 3 6
1 2 2 4
1 4 2 4
1 3 2 4

(a) Compute X ′X and β̂ = (X ′X)−1X ′Y .

(b) Compute a 95% confidence ellipsoid for β′ = (β1, β2, β3). See part (h) of
Exercise 9.9.10.

9.9.12. Assume that X is an n× p matrix. Then the kernel of X is defined to be
the space ker(X) = {b : Xb = 0}.
(a) Show that ker(X) is a subspace of Rp.

(b) The dimension of ker(X) is called the nullity of X and is denoted by ν(X).
Let ρ(X) denote the rank of X. A fundamental theorem of linear algebra says
that ρ(X) + ν(X) = p. Use this to show that if X has full column rank, then
ker(X) = {0}.

9.9.13. Suppose X is an n× p matrix with rank p.

(a) Show that ker(X′X) = ker(X).

(b) Use part (a) and the last exercise to show that if X has full column rank, then
X′X is nonsingular.



Chapter 10

Nonparametric and Robust

Statistics

10.1 Location Models

In this chapter, we present some nonparametric procedures for the simple location
problems. As we shall show, the test procedures associated with these methods
are distribution-free under null hypotheses. We also obtain point estimators and
confidence intervals associated with these tests. The distributions of the estimators
are not distribution-free; hence, we use the term rank-based to refer collectively to
these procedures. The asymptotic relative efficiencies of these procedures are easily
obtained, thus facilitating comparisons among them and procedures that we have
discussed in earlier chapters. We also obtain estimators that are asymptotically
efficient; that is, they achieve asymptotically the Rao–Cramér bound.

Our purpose is not a rigorous development of these concepts, and at times we
simply sketch the theory. A rigorous treatment can be found in several advanced
texts, such as Randles and Wolfe (1979) or Hettmansperger and McKean (2011).
For an applied discussion using R, see Kloke and McKean (2014).

In this and the following section, we consider the one-sample problem. For the
most part, we consider continuous random variables X with cdf and pdf FX(x)
and fX(x), respectively. We assume that fX(x) > 0 on the support of X ; so, in
particular, FX(x) is strictly increasing on the support. In this and the succeeding
chapters, we want to identify classes of parameters. Think of a parameter as a
function of the cdf (or pdf) of a given random variable. For example, consider the
mean μ of X . We can write it as μX = T (FX) if T is defined as

T (FX) = E(X).

As another example, recall that the median of a random variable X is a parameter
ξ such that FX(ξ) = 1/2; i.e., ξ = F−1

X (1/2). Hence, in this notation, we say that
the parameter ξ is defined by the function T (FX) = F−1

X (1/2). Note that these T s
are functions of the cdfs (or pdfs). We shall call them functionals.

569
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Remark 10.1.1 (Natural Nonparametric Estimators). Functionals induce non-
parametric estimators naturally. Let X1, X2, . . . , Xn denote a random sample from
some distribution with cdf F (x) and let T (F ) be a functional. Let x1, x2, . . . , xn be
a realization of this sample. Recall that the empirical distribution function of the
sample is given by

F̂n(x) = n−1[#{xi ≤ x}], −∞ < x < ∞. (10.1.1)

Hence, Fn is a discrete cdf that puts mass (probability) 1/n at each xi. Because

F̂n(x) is a cdf, T (F̂n) is well defined. Furthermore, T (F̂n) depends only on the

sample; hence, it is a statistic. We call T (F̂n) the induced estimator of T (F ).
For example, if T (F ) is the mean of the distribution, then it is easy to see that

T (F̂n) = x; see Exercise 10.1.3.
For another example, consider the median. Note that F̂n is a discrete cdf; hence,

we use the general definition of a median of a distribution that is given in Definition
1.7.2 of Chapter 1. Let θ̂ denote the usual sample median which is defined in
expression (4.4.4); that is, θ̂ = x((n+1)/2) if n is odd while θ̂ = [x(n/2) +x((n/2)+1)]/2

if n is even. To show that θ̂ satisfies Definition 1.7.2, note that:

� If n is even, then F̂n(θ̂) = 1/2.

� If n is odd then

n−1#{xi < θ̂} = 1
2 − 1

n ≤ 1/2 and Fn(θ̂) ≥ 1/2.

Thus in either case, by Definition 1.7.2, θ̂ is a median of F̂n. Note that when n
is even any point in the interval (X(n/2), X((n/2)+1)) satisfies the definition of a
median.

We begin with the definition of a location functional.

Definition 10.1.1. Let X be a continuous random variable with cdf FX(x) and pdf
fX(x). We say that T (FX) is a location functional if it satisfies

If Y = X + a, then T (FY ) = T (FX) + a, for all a ∈ R, (10.1.2)

If Y = aX; then T (FY ) = aT (FX), for all a 
= 0. (10.1.3)

For example, suppose T is the mean functional; i.e., T (FX) = E(X). Let
Y = X + a; then E(Y ) = E(X + a) = E(X) + a. Secondly, if Y = aX , then
E(Y ) = aE(X). Hence the mean is a location functional. The next example shows
that the median is a location functional.

Example 10.1.1. Let F (x) be the cdf of X and let T (FX) = F−1
X (1/2) be the

median functional of X . Note that another way to state this is FX(T (FX)) = 1/2.
Let Y = X + a. It then follows that the cdf of Y is FY (y) = FX(y − a). The
following identity shows that T (FY ) = T (FX) + a:

FY (T (FX) + a) = FX(T (FX) + a− a) = FX(T (FX)) = 1/2.
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Next, suppose Y = aX . If a > 0, then FY (y) = FX(y/a) and, hence,

FY (aT (FX)) = FX(aT (FX)/a) = FX(T (FX)) = 1/2.

Thus T (FY ) = aT (FX) when a > 0. On the other hand, if a < 0, then FY (y) =
1− FX(y/a). Hence

FY (aT (FX)) = 1− FX(aT (FX)/a) = 1− FX(T (FX)) = 1− 1

2
=

1

2
.

Therefore, (10.1.3) holds for all a 
= 0. Thus the median is a location functional.

Recall that the median is a percentile, namely, the 50th percentile of a distribu-
tion. As Exercise 10.1.1 shows, the median is the only percentile that is a location
functional.

We often continue to use parameter notation to denote functionals. For example,
θX = T (FX).

In Chapters 4 and 6, we wrote the location model for specified pdfs. In this
chapter, we write it for a general pdf in terms of a specified location functional.
Let X be a random variable with cdf FX(x) and pdf fX(x). Let θX = T (FX) be a
location functional. Define the random variable ε to be ε = X − T (FX). Then by
(10.1.2), T (Fε) = 0; i.e., ε has location 0, according to T . Further, the pdf of X
can be written as fX(x) = f(x− T (FX)), where f(x) is the pdf of ε.

Definition 10.1.2 (Location Model). Let θX = T (FX) be a location functional. We
say that the observations X1, X2, . . . , Xn follow a location model with functional
θX = T (FX) if

Xi = θX + εi, (10.1.4)

where ε1, ε2, . . . , εn are iid random variables with pdf f(x) and T (Fε) = 0. Hence,
from the above discussion, X1, X2, . . . , Xn are iid with pdf fX(x) = f(x− T (FX)).

Example 10.1.2. Let ε be a random variable with cdf F (x), such that F (0) = 1/2.
Assume that ε1, ε2, . . . , εn are iid with cdf F (x). Let θ ∈ R and define

Xi = θ + εi, i = 1, 2, . . . , n.

Then X1, X2, . . . , Xn follow the location model with the locational functional θ,
which is the median of Xi.

Note that the location model very much depends on the functional. It forces one
to state clearly which location functional is being used in order to write the model
statement. For the class of symmetric densities, though, all location functionals are
the same.

Theorem 10.1.1. Let X be a random variable with cdf FX(x) and pdf fX(x) such
that the distribution of X is symmetric about a. Let T (FX) be any location func-
tional. Then T (FX) = a.
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Proof: By (10.1.2), we have

T (FX−a) = T (FX)− a. (10.1.5)

Since the distribution of X is symmetric about a, it is easy to show that X − a and
−(X−a) have the same distribution; see Exercise 10.1.2. Hence, using (10.1.2) and
(10.1.3), we have

T (FX−a) = T (F−(X−a)) = −(T (FX)− a) = −T (FX) + a. (10.1.6)

Putting (10.1.5) and (10.1.6) together gives the result.
The assumption of symmetry is very appealing, because the concept of “center”

is unique when it is true.

EXERCISES

10.1.1. Let X be a continuous random variable with cdf F (x). For 0 < p < 1, let
ξp be the pth quantile; i.e., F (ξp) = p. If p 
= 1/2, show that while property (10.1.2)
holds, property (10.1.3) does not. Thus ξp is not a location parameter.

10.1.2. Let X be a continuous random variable with pdf f(x). Suppose f(x) is
symmetric about a; i.e., f(x − a) = f(−(x − a)). Show that the random variables
X − a and −(X − a) have the same pdf.

10.1.3. Let F̂n(x) denote the empirical cdf of the sample X1, X2, . . . , Xn. The

distribution of F̂n(x) puts mass 1/n at each sample item Xi. Show that its mean is

X. If T (F ) = F−1(1/2) is the median, show that T (F̂n) = Q2, the sample median.

10.1.4. Let X be a random variable with cdf F (x) and let T (F ) be a functional.
We say that T (F ) is a scale functional if it satisfies the three properties

(i)
(ii)

(iii)

T (FaX) = aT (FX), for a > 0
T (FX+b) = T (FX), for all b
T (F−X) = T (FX).

Show that the following functionals are scale functionals.

(a) The standard deviation, T (FX) = (Var(X))1/2.

(b) The interquartile range, T (FX) = F−1
X (3/4)− F−1

X (1/4).

10.2 Sample Median and the Sign Test

In this section, we consider inference for the median of a distribution using the
sample median. Fundamental to this discussion is the sign test statistic, which we
present first.

Let X1, X2, . . . , Xn be a random sample that follows the location model

Xi = θ + εi, (10.2.1)
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where ε1, ε2, . . . , εn are iid with cdf F (x), pdf f(x), and median 0. Note that in
terms of Section 10.1, the location functional is the median and, hence, θ is the
median of Xi. We begin with a test for the one-sided hypotheses

H0 : θ = θ0 versus H1 : θ > θ0. (10.2.2)

Consider the statistic

S(θ0) = #{Xi > θ0}, (10.2.3)

which is called the sign statistic because it counts the number of positive signs in
the differences Xi− θ0, i = 1, 2, . . . , n. If we define I(x > a) to be 1 or 0 depending
on whether x > a or x ≤ a, then we can express S(θ0) as

S(θ0) =

n∑
i=1

I(Xi > θ0). (10.2.4)

Note that if H0 is true, then we expect one half of the observations to exceed θ0,
while if H1 is true, we expect more than half of the observations to exceed θ0.
Consider then the test of the hypotheses (10.2.2) given by

Reject H0 in favor of H1 if S(θ0) ≥ c. (10.2.5)

Under the null hypothesis, the random variables I(Xi > θ0) are iid with a Bernoulli
b(1, 1/2) distribution. Hence the null distribution of S(θ0) is b(n, 1/2) with mean
n/2 and variance n/4. Note that under H0, the sign test does not depend on the
distribution of Xi. In general, we call such a test a distribution free test.

For a level α test, select c to be cα, where cα is the upper α critical point of a bi-
nomial b(n, 1/2) distribution. The test statistic, though, has a discrete distribution,
so for an exact test there are only a finite number of levels α available. The values
of cα are easily found by most computer packages. For instance, the R command
pbinom(0:15,15,.5) returns the cdf of a binomial distribution with n = 15 and
p = 0.5, from which all possible levels can be seen.

For a given data set, the p-value associated with the sign test is given by p̂ =
PH0(S(θ0) ≥ s), where s is the realized value of S(θ0) based on the sample. For
computation, the R command 1 - pbinom(s-1,n,.5) computes p̂.

It is convenient at times to use a large sample test based on the asymptotic
distribution of the test statistic. By the Central Limit Theorem, under H0 the stan-
dardized statistic [S(θ0) − (n/2)]/

√
n/2 is asymptotically normal, N(0, 1). Hence

the large sample test rejects H0 if

S(θ0)− (n/2)√
n/2

≥ zα; (10.2.6)

see Exercise 10.2.2.
We briefly touch on the two-sided hypotheses given by

H0 : θ = θ0 versus H1 : θ 
= θ0. (10.2.7)
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The following symmetric decision rule seems appropriate:

Reject H0 in favor of H1 if S(θ0) ≤ c1 or if S(θ0) ≥ n− c1. (10.2.8)

For a level α test, c1 would be chosen such that α/2 = PH0(S(θ0) ≤ c1). Recall
that the p-value is given by p̂ = 2 min{PH0(S(θ0) ≤ s), PH0(S(θ0) ≥ s)}, where s is
the realized value of S(θ0) based on the sample.

Example 10.2.1 (Shoshoni Rectangles). A golden rectangle is a rectangle in which
the ratio of the width (w) to the length (l) is the golden ratio, which is approxi-
mately 0.618. It can be characterized in various ways. For example, w/l = l/(w+ l)
characterizes the golden rectangle. It is considered to be an aesthetic standard in
Western civilization and appears in art and architecture going back to the ancient
Greeks. It now appears in such items as credit and business cards. In a cultural
anthropology study, DuBois (1960) reports on a study of the Shoshoni beaded bas-
kets. These baskets contain beaded rectangles, and the question was whether the
Shoshonis use the same aesthetic standard as the West. Let X denote the ratio of
the width to the length of a Shoshoni beaded basket. Let θ be the median of X .
The hypotheses of interest are

H0 : θ = 0.618 versus H1 : θ 
= 0.618.

These are two-sided hypotheses. It follows from the above discussion that the sign
test rejects H0 in favor of H1 if S(0.618) ≤ c or S(0.618) ≥ n− c.

A sample of 20 width to length (ordered) ratios from Shoshoni baskets resulted
in the data

Width-to-Length Ratios of Rectangles
0.553 0.570 0.576 0.601 0.606 0.606 0.609 0.611 0.615 0.628
0.654 0.662 0.668 0.670 0.672 0.690 0.693 0.749 0.844 0.933

The data can be found in the file shoshoni.rda. For these data, the sign test statis-
tic is S(0.618) = 11. Using R the p-value is: 2*(1-pbinom(10,20,.5))= 0.8238.
Thus there is no evidence to reject H0 based on these data.

A boxplot and a normal q−q plot of the data are given in Figure 10.2.1. Notice
that the data contain two, possibly three, potential outliers. The data do not appear
to be drawn from a normal distribution.

We next obtain several useful results concerning the power function of the sign
test for the hypotheses (10.2.2). The following function proves useful here and in
the associated estimation and confidence intervals described below. Define

S(θ) = #{Xi > θ}. (10.2.9)

The sign test statistic is given by S(θ0). We can easily describe the function S(θ).
First, note that we can write it in terms of the order statistics Y1 < · · · < Yn of
X1, . . . , Xn because #{Yi > θ} = #{Xi > θ}. Now if θ < Y1, then all the Yis
are larger than θ and, hence S(θ) = n. Next, if Y1 ≤ θ < Y2 then S(θ) = n − 1.
Continuing this way, we see that S(θ) is a decreasing step function of θ, which steps
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Figure 10.2.1: Boxplot (Panel A) and normal q−q plot (Panel B) of the Shoshoni
data.

down one unit at each order statistic Yi, attaining its maximum and minimum values
n and 0 at Y1 and Yn, respectively. Figure 10.2.2 depicts this function.

We need the following translation property. Because we can always subtract θ0

from each Xi, we can assume without loss of generality that θ0 = 0.

Lemma 10.2.1. For every k,

Pθ[S(0) ≥ k] = P0[S(−θ) ≥ k]. (10.2.10)

Proof: Note that the left side of equation (10.2.10) concerns the probability of the
event #{Xi > 0}, where Xi has median θ. The right side concerns the probability
of the event #{(Xi + θ) > 0}, where the random variable Xi + θ has median θ
(because under θ = 0, Xi has median 0). Hence the left and right sides give the
same probability.
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Figure 10.2.2: The sketch shows the graph of the decreasing step function S(θ).
The function drops one unit at each order statistic Yi.

Based on this lemma, it is easy to show that the power function of the sign test
is monotone for one-sided tests.

Theorem 10.2.1. Suppose Model (10.2.1) is true. Let γ(θ) be the power function
of the sign test of level α for the one-sided hypotheses (10.2.2). Then γ(θ) is a
nondecreasing function of θ.

Proof: Let cα denote the b(n, 1/2) upper critical value as defined after expression
(10.2.8). Without loss of generality, assume that θ0 = 0. The power function of the
sign test is

γ(θ) = Pθ[S(0) ≥ cα], for −∞ < θ < ∞.

Suppose θ1 < θ2. Then −θ1 > −θ2 and hence, since S(θ) is nonincreasing, S(−θ1) ≤
S(−θ2). This and Lemma 10.2.1 yield the desired result; i.e.,

γ(θ1) = Pθ1 [S(0) ≥ cα]

= P0[S(−θ1) ≥ cα]

≤ P0[S(−θ2) ≥ cα]

= Pθ2 [S(0) ≥ cα]

= γ(θ2).

This is a very desirable property for any test. Because the monotonicity of the
power function of the sign test holds for all θ, −∞ < θ < ∞, we can extend the
simple null hypothesis of (10.2.2) to the composite null hypothesis

H0 : θ ≤ θ0 versus H1 : θ > θ0. (10.2.11)
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Recall from Definition 4.5.4 of Chapter 4 that the size of the test for a composite
null hypothesis is given by maxθ≤θ0 γ(θ). Because γ(θ) is nondecreasing, the size of
the sign test is α for this extended null hypothesis. As a second result, it follows
immediately that the sign test is an unbiased test; see Section 8.3. As Exercise
10.2.8 shows, the power function of the sign test for the other one-sided alternative,
H1 : θ < θ0, is nonincreasing.

Under an alternative, say θ = θ1, the test statistic S(θ0) has the binomial
distribution b(n, p1), where p1 is given by

p1 = Pθ1(X > 0) = 1− F (−θ1), (10.2.12)

where F (x) is the cdf of ε in Model (10.2.1). Hence S(θ0) is not distribution free
under alternative hypotheses. As in Exercise 10.2.3, we can determine the power of
the test for specified θ1 and F (x). We want to compare the power of the sign test
to other size α tests, in particular the test based on the sample mean. However,
for these comparison purposes, we need more general results, some of which are
obtained in the next subsection.

10.2.1 Asymptotic Relative Efficiency

One solution to this problem is to consider the behavior of a test under a sequence
of local alternatives. In this section, we often take θ0 = 0 in hypotheses (10.2.2). As
noted before Lemma 10.2.1, this is without loss of generality. For the hypotheses
(10.2.2), consider the sequence of alternatives

H0 : θ = 0 versus H1n : θn = δ√
n
, (10.2.13)

where δ > 0. Note that this sequence of alternatives converges to the null hypothesis
as n → ∞. We often call such a sequence of alternatives local alternatives. The
idea is to consider how the power function of a test behaves relative to the power
functions of other tests under this sequence of alternatives. We only sketch this
development. For more details, the reader can consult the more advanced books
cited in Section 10.1. As a first step in that direction, we obtain the asymptotic
power lemma for the sign test.

Consider the large sample size α test given by (10.2.6). Under the alternative
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θn, we can approximate the mean of this test as follows:

Eθn

[
1√
n

(
S(0)− n

2

)]
= E0

[
1√
n

(
S(−θn)− n

2

)]
=

1√
n

n∑
i=1

E0[I(Xi > −θn)]−
√

n

2

=
1√
n

n∑
i=1

P0(Xi > −θn)−
√

n

2

=
√

n

(
1− F (−θn)− 1

2

)
=

√
n

(
1

2
− F (−θn)

)
≈

√
nθnf(0) = δf(0), (10.2.14)

where the step to the last line is due to the mean value theorem. It can be shown
in more advanced texts that the variance of [S(0)− (n/2)]/(

√
n/2) converges to 1

under θn, just as under H0, and that, furthermore, [S(0)−(n/2)−√nδf(0)]/(
√

n/2)
has a limiting standard normal distribution. This leads to the asymptotic power
lemma, which we state in the form of a theorem.

Theorem 10.2.2 (Asymptotic Power Lemma). Consider the sequence of hypotheses
(10.2.13). The limit of the power function of the large sample, size α, sign test is

lim
n→∞

γ(θn) = 1− Φ(zα − δτ−1
S ), (10.2.15)

where τS = 1/[2f(0)] and Φ(z) is the cdf of a standard normal random variable.

Proof: Using expression (10.2.14) and the discussion that followed its derivation,
we have

γ(θn) = Pθn

[
n−1/2[S(0)− (n/2)]

1/2
≥ zα

]
= Pθn

[
n−1/2[S(0)− (n/2)−√nδf(0)]

1/2
≥ zα − δ2f(0)

]
→ 1− Φ(zα − δ2f(0)),

which was to be shown.

As shown in Exercise 10.2.5, the parameter τS = 1/[2f(0)] is a scale parameter
(functional) as defined in Exercise 10.1.4 of the last section. We later show that
τS/
√

n is the asymptotic standard deviation of the sample median.
Note that there were several approximations used in the proof of Theorem 10.2.2.

A rigorous proof can be found in more advanced texts, such as those cited in Section
10.1. It is quite helpful for the next sections to reconsider the approximation of the
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mean given in (10.2.14) in terms of another concept called efficacy. Consider
another standardization of the test statistic given by

S(0) =
1

n

n∑
i=1

I(Xi > 0), (10.2.16)

where the bar notation is used to signify that S(0) is an average of I(Xi > 0) and,
in this case under H0, converges in probability to 1

2 . Let μ(θ) = Eθ(S(0) − 1
2 ).

Then, by expression (10.2.14), we have

μ(θn) = Eθn

(
S(0)− 1

2

)
=

1

2
− F (−θn). (10.2.17)

Let σ2
S

= Var(S(0)) = 1
4n . Finally, define the efficacy of the sign test to be

cS = lim
n→∞

μ′(0)√
nσS

. (10.2.18)

That is, the efficacy is the rate of change of the mean of the test statistic at the
null divided by the product of

√
n and the standard deviation of the test statistic

at the null. So the efficacy increases with an increase in this rate, as it should. We
use this formulation of efficacy throughout this chapter.

Hence, by expression (10.2.14), the efficacy of the sign test is

cS =
f(0)

1/2
= 2f(0) = τ−1

S , (10.2.19)

the reciprocal of the scale parameter τS . In terms of efficacy, we can write the
conclusion of the Asymptotic Power Lemma as

lim
n→∞

γ(θn) = 1− Φ(zα − δcS). (10.2.20)

This is not a coincidence, and it is true for the procedures we consider in the next
section.

Remark 10.2.1. In this chapter, we compare nonparametric procedures with tra-
ditional parametric procedures. For instance, we compare the sign test with the test
based on the sample mean. Traditionally, tests based on sample means are referred
to as t-tests. Even though our comparisons are asymptotic and we could use the
terminology of z-tests, we instead use the traditional terminology of t-tests.

As a second illustration of efficacy, we determine the efficacy of the t-test for the
mean. Assume that the random variables εi in Model (10.2.1) are symmetrically
distributed about 0 and their mean exists. Hence the parameter θ is the location
parameter. In particular, θ = E(Xi) = med(Xi). Denote the variance of Xi by σ2.
This allows us to easily compare the sign and t-tests. Recall for hypotheses (10.2.2)
that the t-test rejects H0 in favor of H1 if X ≥ c. The form of the test statistic is
then X. Furthermore, we have

μX(θ) = Eθ(X) = θ (10.2.21)
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and

σ2
X

(0) = V0(X) =
σ2

n
. (10.2.22)

Thus, by (10.2.21) and (10.2.22), the efficacy of the t-test is

ct = lim
n→∞

μ′
X

(0)
√

n(σ/
√

n)
=

1

σ
. (10.2.23)

As confirmed in Exercise 10.2.9, the asymptotic power of the large sample level α,
t-test under the sequence of alternatives (10.2.13) is 1− Φ(zα − δct). Thus we can
compare the sign and t-tests by comparing their efficacies. We do this from the
perspective of sample size determination.

Assume without loss of generality that H0 : θ = 0. Now suppose we want
to determine the sample size so that a level α sign test can detect the alternative
θ∗ > 0 with (approximate) probability γ∗. That is, find n so that

γ∗ = γ(θ∗) = Pθ∗

[
S(0)− (n/2)√

n/2
≥ zα

]
. (10.2.24)

Write θ∗ =
√

nθ∗/
√

n. Then, using the asymptotic power lemma, we have

γ∗ = γ(
√

nθ∗/
√

n) ≈ 1− Φ(zα −
√

nθ∗τ−1
S ).

Now denote zγ∗ to be the upper 1−γ∗ quantile of the standard normal distribution.
Then, from this last equation, we have

zγ∗ = zα −
√

nθ∗τ−1
S .

Solving for n, we get

nS =

(
(zα − zγ∗)τS

θ∗

)2

. (10.2.25)

As outlined in Exercise 10.2.9, for this situation the sample size determination for
the test based on the sample mean is

nX =

(
(zα − zγ∗)σ

θ∗

)2

, (10.2.26)

where σ2 = Var(ε).
Suppose we have two tests of the same level for which the asymptotic power

lemma holds and for each we determine the sample size necessary to achieve power
γ∗ at the alternative θ∗. Then the ratio of these sample sizes is called the asymp-
totic relative efficiency (ARE) between the tests. We show later that this is the
same as the ARE defined in Chapter 6 between estimators. Hence the ARE of the
sign test to the t-test is

ARE(S, t) =
nX

nS
=

σ2

τ2
S

=
c2
S

c2
t

. (10.2.27)
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Note that this is the same relative efficiency that was discussed in Example 6.2.5
when the sample median was compared to the sample mean. In the next two
examples we revisit this discussion by examining the AREs when Xi has a normal
distribution and then a Laplace (double exponential) distribution.

Example 10.2.2 (ARE(S, t): normal distribution). Suppose X1, X2, . . . , Xn follow
the location model (10.1.4), where f(x) is a N(0, σ2) pdf. Then τS = (2f(0))−1 =
σ
√

π/2. Hence the ARE(S, t) is given by

ARE(S, t) =
σ2

τ2
S

=
σ2

(π/2)σ2
=

2

π
≈ 0.637. (10.2.28)

Hence at the normal distribution the sign test is only 64% as efficient as the t-test.
In terms of sample size at the normal distribution, the t-test requires a smaller
sample, 0.64ns, where ns is the sample size of the sign test, to achieve the same
power as the sign test. A cautionary note is needed here because this is asymptotic
efficiency. There have been ample empirical (simulation) studies that give credence
to these numbers.

Example 10.2.3 (ARE(S, t) at the Laplace distribution). For this example, con-
sider Model (10.1.4), where f(x) is the Laplace pdf f(x) = (2b)−1 exp{−|x|/b} for
−∞ < x < ∞ and b > 0. Then τS = (2f(0))−1 = b, while σ2 = E(X2) = 2b2.
Hence the ARE(S, t) is given by

ARE(S, t) =
σ2

τ2
S

=
2b2

b2
= 2. (10.2.29)

So, at the Laplace distribution, the sign test is (asymptotically) twice as efficient
as the t-test. In terms of sample size at the Laplace distribution, the t-test requires
twice as large a sample as the sign test to achieve the same asymptotic power as
the sign test.

Recall from Example 6.3.4 that the sign test is the scores type likelihood ratio
test when the true distribution is the Laplace.

The normal distribution has much lighter tails than the Laplace distribution,
because the two pdfs are proportional to exp{−t2/2σ2} and exp{−|t|/b}, respec-
tively. Based on the last two examples, it seems that the t-test is more efficient
for light-tailed distributions while the sign test is more efficient for heavier-tailed
distributions. This is true in general and we illustrate this in the next example
where we can easily vary the tail weight from light to heavy.

Example 10.2.4 (ARE(S, t) at a family of contaminated normals). Consider the
location Model (10.1.4), where the cdf of εi is the contaminated normal cdf given
in expression (3.4.19). Assume that θ0 = 0. Recall that for this distribution, (1− ε)
proportion of the time the sample is drawn from a N(0, b2) distribution, while ε
proportion of the time the sample is drawn from a N(0, b2σ2

c ) distribution. The
corresponding pdf is given by

f(x) =
1− ε

b
φ
(x

b

)
+

ε

bσc
φ

(
x

bσc

)
, (10.2.30)
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where φ(z) is the pdf of a standard normal random variable. As shown in Section
3.4, the variance of εi is b2(1 + ε(σ2

c − 1)). Also, τs = (b
√

π/2)/[1 − ε + (ε/σc)].
Thus the ARE is

ARE(S, t) =
2

π
[(1 + ε(σ2

c − 1)][1− ε + (ε/σc)]
2. (10.2.31)

For example, the following table (see Exercise 6.2.6) shows the AREs for various
values of ε when σc is set at 3.0:

ε 0 0.01 0.02 0.03 0.05 0.10 0.15 0.25
ARE(S,t) 0.636 0.678 0.718 0.758 0.832 0.998 1.134 1.326

Note: if ε increases over the range of values in the table, then the contamination
effect becomes larger (generally resulting in a heavier-tailed distribution) and as the
table shows, the sign test becomes more efficient relative to the t-test. Increasing
σc has the same effect. It does take, however, with σc = 3, over 10% contamination
before the sign test becomes more efficient than the t-test.

10.2.2 Estimating Equations Based on the Sign Test

In practice, we often want to estimate θ, the median of Xi, in Model (10.2.1). The
associated point estimate based on the sign test can be described with a simple
geometry, which is analogous to the geometry of the sample mean. As Exercise
10.2.6 shows, the sample mean X is such that

X = Argmin

√√√√ n∑
i=1

(Xi − θ)2. (10.2.32)

The quantity
√∑n

i=1(Xi − θ)2 is the Euclidean distance between the vector of
observations X = (X1, X2, . . . , Xn)′ and the vector θ1. If we simply interchange
the square root and the summation symbols, we go from the Euclidean distance to
the L1 distance. Let

θ̂ = Argmin

n∑
i=1

|Xi − θ|. (10.2.33)

To determine θ̂, simply differentiate the quantity on the right side with respect to
θ (as in Chapter 6, define the derivative of |x| to be 0 at x = 0). We then obtain

∂

∂θ

n∑
i=1

|Xi − θ| = −
n∑

i=1

sgn(Xi − θ).

Setting this to 0, we obtain the estimating equations (EE)

n∑
i=1

sgn(Xi − θ) = 0, (10.2.34)
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whose solution is the sample median Q2, (4.4.4).
Because our observations are continuous random variables, we have the identity

n∑
i=1

sgn(Xi − θ) = 2S(θ)− n.

Hence the sample median also solves S(θ) ≈ n/2. Consider again Figure 10.2.2.
Imagine n/2 on the vertical axis. This is halfway in the total drop of S(θ), from n
to 0. The order statistic on the horizontal axis corresponding to n/2 is essentially
the sample median (middle order statistic). In terms of testing, this last equation
says that, based on the data, the sample median is the“most acceptable”hypothesis,
because n/2 is the null expected value of the test statistic. We often think of this
as estimation by the inversion of a test.

We now sketch the asymptotic distribution of the sample median. Assume with-
out loss of generality that the true median of Xi is 0. Suppose −∞ < x < ∞.
Using the fact that S(θ) is nonincreasing and the identity S(θ) ≈ n/2, we have the
following equivalences:

{
√

nQ2 ≤ x} ⇔
{

Q2 ≤
x√
n

}
⇔

{
S

(
x√
n

)
≤ n

2

}
.

Hence we have

P0(
√

nQ2 ≤ x) = P0

[
S

(
x√
n

)
≤ n

2

]
= P−x/

√
n

[
S(0) ≤ n

2

]
= P−x/

√
n

[
S(0)− (n/2)√

n/2
≤ 0

]
→ Φ(0− xτ−1

S ) = P (τSZ ≤ x),

where Z has a standard normal distribution, Notice that the limit was obtained
by invoking the Asymptotic Power Lemma with α = 0.5 and hence zα = 0. Rear-
ranging the last term earlier, we obtain the asymptotic distribution of the sample
median, which we state as a theorem:

Theorem 10.2.3. For the random sample X1, X2, . . . , Xn, assume that Model
(10.2.1) holds. Suppose that f(0) > 0. Let Q2 denote the sample median. Then

√
n(Q2 − θ) → N(0, τ2

S), (10.2.35)

where τS = (2f(0))−1.

In Section 6.2 we defined the ARE between two estimators to be the reciprocal
of their asymptotic variances. For the sample median and mean, this is the same
ratio as that based on sample size determinations of their respective tests given
earlier in expression (10.2.27).
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10.2.3 Confidence Interval for the Median

In Section 4.4, we obtained a confidence interval for the median. In this section, we
derive this confidence interval by inverting the sign test. Based on the monotonicity
of S(θ), the derivation is straightforward, but the technique will prove useful in
subsequent sections of this chapter.

Suppose the random sample X1, X2, . . . , Xn follows the location model (10.2.1).
In this subsection, we develop a confidence interval for the median θ of Xi. Assum-
ing that θ is the true median, the random variable S(θ), (10.2.9), has a binomial
b(n, 1/2) distribution. For 0 < α < 1, select c1 so that Pθ[S(θ) ≤ c1] = α/2. Hence
we have

1− α = Pθ[c1 < S(θ) < n− c1]. (10.2.36)

Recall in our derivation for the t-confidence interval for the mean in Chapter 3,
we began with such a statement and then “inverted” the pivot random variable
t =

√
n(X − μ)/S (S in this expression is the sample standard deviation) to obtain

an equivalent inequality with μ isolated in the middle. In this case, the function
S(θ) does not have an inverse, but it is a decreasing step function of θ and the
inversion can still be performed. As depicted in Figure 10.2.2, c1 < S(θ) < n− c1 if
and only if Yc1+1 ≤ θ < Yn−c1 , where Y1 < Y2 < · · · < Yn are the order statistics of
the sample X1, X2, . . . , Xn. Therefore, the interval [Yc1+1, Yn−c1) is a (1− α)100%
confidence interval for the median θ. Because the order statistics are continuous
random variables, the interval (Yc1+1, Yn−c1) is an equivalent confidence interval.

If n is large, then there is a large sample approximation to c1. We know from
the Central Limit Theorem that S(θ) is approximately normal with mean n/2 and
variance n/4. Then, using the continuity correction, we obtain the approximation

c1 ≈
n

2
− zα/2

√
n

2
− 1

2
, (10.2.37)

where Φ(−zα/2) = α/2; see Exercise 10.2.7. In practice, we use the closest integer
to c1.

Example 10.2.5 (Example 10.2.1, Continued). There are 20 data points in the
Shoshoni basket data. The sample median of the width to the length is 0.5(0.628+
0.654) = 0.641. Because 0.021 = PH0 (S(0.618) ≤ 5), a 95.8% confidence interval
for θ is the interval (y6, y15) = (0.606, 0.672), which includes 0.618, the ratio of the
width to the length, which characterizes the golden rectangle.

Currently, there is not an intrinsic R function for the one-sample sign analysis.
The R function onesampsgn.R, which can be downloaded at the site listed in the
Preface, computes this analysis. For these data, its default 95% confidence interval
is the same as that computed above.

EXERCISES

10.2.1. Sketch Figure 10.2.2 for the Shoshoni basket data found in Example 10.2.1.
Show the values of the test statistic, the point estimate, and the 95.8% confidence
interval of Example 10.2.5 on the sketch.
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10.2.2. Show that the test given by (10.2.6) has asymptotically level α; that is,
show that under H0,

S(θ0)− (n/2)√
n/2

D→ Z,

where Z has a N(0, 1) distribution.

10.2.3. Let θ denote the median of a random variable X . Consider testing

H0 : θ = 0 versus H1 : θ > 0 .

Suppose we have a sample of size n = 25.

(a) Let S(0) denote the sign test statistic. Determine the level of the test: reject
H0 if S(0) ≥ 16.

(b) Determine the power of the test in part (a) if X has N(0.5, 1) distribution.

(c) Assuming X has finite mean μ = θ, consider the asymptotic test of rejecting
H0 if X/(σ/

√
n) ≥ k. Assuming that σ = 1, determine k so the asymptotic

test has the same level as the test in part (a). Then determine the power of
this test for the situation in part (b).

10.2.4. To appreciate the importance of setting the location functional, consider
the length of rivers data set, as taken from Tukey (1977). This data set con-
tains the lengths of 141 American rivers in miles and it can be found in the file
lengthriver.rda.

(a) Suppose the location functional is the median. Obtain the estimate and a
95% confidence interval for it. Use the confidence interval discussed in Section
10.2.3. Interpret it in terms of the data. Use the R function onesampsgn.R

for computation.

(b) Suppose the location functional is the mean. Obtain the estimate and the
95% t-confidence interval for it. Interpret it in terms of the data.

(c) Obtain the boxplot of the data and sketch the estimates and confidence inter-
vals on it. Discuss.

10.2.5. Recall the definition of a scale functional given in Exercise 10.1.4. Show
that the parameter τS defined in Theorem 10.2.2 is a scale functional.

10.2.6. Show that the sample mean solves Equation (10.2.32).

10.2.7. Derive the approximation (10.2.37).

10.2.8. Show that the power function of the sign test is nonincreasing for the
hypotheses

H0 : θ = θ0 versus H1 : θ < θ0. (10.2.38)
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10.2.9. Let X1, X2, . . . , Xn be a random sample that follows the location model
(10.2.1). In this exercise we want to compare the sign tests and t-test of the hy-
potheses (10.2.2); so we assume the random errors εi are symmetrically distributed
about 0. Let σ2 = Var(εi). Hence the mean and the median are the same for this
location model. Assume, also, that θ0 = 0. Consider the large sample version of
the t-test, which rejects H0 in favor of H1 if X/(σ/

√
n) > zα.

(a) Obtain the power function, γt(θ), of the large sample version of the t-test.

(b) Show that γt(θ) is nondecreasing in θ.

(c) Show that γt(θn)→ 1−Φ(zα − σθ∗), under the sequence of local alternatives
(10.2.13).

(d) Based on part (c), obtain the sample size determination for the t-test to detect
θ∗ with approximate power γ∗.

(e) Derive the ARE(S, t) given in (10.2.27).

10.3 Signed-Rank Wilcoxon

Let X1, X2, . . . , Xn be a random sample that follows Model (10.2.1). Inference for θ
based on the sign test is simple and requires few assumptions about the underlying
distribution of Xi. On the other hand, sign procedures have the low efficiency of 0.64
relative to procedures based on the t-test given an underlying normal distribution.
In this section, we discuss a nonparametric procedure that does attain high efficiency
relative to the t-test. We make the additional assumption that the pdf f(x) of εi

in Model (10.2.1) is symmetric; i.e., f(x) = f(−x), for all x such that −∞ < x <
∞. Hence Xi is symmetrically distributed about θ. Thus, by Theorem 10.1.1, all
location parameters are identical.

First, consider the one-sided hypotheses

H0 : θ = 0 versus H1 : θ > 0. (10.3.1)

There is no loss of generality in assuming that the null hypothesis is H0 : θ = 0, for
if it were H0 : θ = θ0, we would consider the sample X1 − θ0, . . . , Xn − θ0. Under
a symmetric pdf, observations Xi that are the same distance from 0 are equilikely
and hence should receive the same weight. A test statistic that does this is the
signed-rank Wilcoxon given by

T =
n∑

i=1

sgn(Xi)R|Xi|, (10.3.2)

where R|Xi| denotes the rank of Xi among |X1|, . . . , |Xn|, where the rankings are
from low to high. Intuitively, under the null hypothesis, we expect half of the Xis to
be positive and half to be negative. Further, the ranks are uniformly distributed on
the integers {1, 2, . . . , n}. Hence values of T around 0 are indicative of H0. On the
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other hand, if H1 is true, then we expect more than half of the Xis to be positive
and further, the positive observations are more likely to receive the higher ranks.
Thus an appropriate decision rule is

Reject H0 in favor of H1 if T ≥ c, (10.3.3)

where c is determined by the level α of the test.

Given α, we need the null distribution of T to determine the critical point c. The
set of integers {−n(n + 1)/2,−[n(n + 1)/2] + 2, . . . , n(n + 1)/2} form the support
of T . Also, from Section 10.2, we know that the signs are iid with support {−1, 1}
and pmf

p(−1) = p(1) =
1

2
. (10.3.4)

A key result is the following lemma:

Lemma 10.3.1. Under H0 and symmetry about 0 for the pdf, the random variables
|X1|, . . . , |Xn| are independent of the random variables sgn(X1), . . . , sgn(Xn).

Proof: Because X1, . . . , Xn is a random sample from the cdf F (x), it suffices to
show that P [|Xi| ≤ x, sgn(Xi) = 1] = P [|Xi| ≤ x]P [sgn(Xi) = 1]. Due to H0 and
the symmetry of f(x), this follows from the following string of equalities

P [|Xi| ≤ x, sgn(Xi) = 1] = P [0 < Xi ≤ x] = F (x) − 1

2

= [2F (x)− 1]
1

2
= P [|Xi| ≤ x]P [sgn(Xi) = 1].

Based on this lemma, the ranks of the |Xi|s are independent of the signs of
the Xis. Note that the ranks are a permutation of the integers 1, 2, . . . , n. By
the lemma this independence is true for any permutation. In particular, suppose
we use the permutation that orders the absolute values. For example, suppose the
observations are −6.1, 4.3, 7.2, 8.0,−2.1. Then the permutation 5, 2, 1, 3, 4 orders
the absolute values; that is, the fifth observation is the smallest in absolute value,
the second observation is the next smallest, etc. This permutation is called the
anti-ranks, which we denote generally by by i1, i2, . . . , in. Using the anti-ranks,
we can write T as

T =
n∑

j=1

j sgn(Xij ), (10.3.5)

where, by Lemma 10.3.1, sgn(Xij ) are iid with support {−1, 1} and pmf (10.3.4).
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Based on this observation, for s such that −∞ < s <∞, the mgf of T is

E[exp{sT}] = E

⎡⎣exp

⎧⎨⎩
n∑

j=1

sj sgn(Xij )

⎫⎬⎭
⎤⎦

=
n∏

j=1

E[exp{sj sgn(Xij )}]

=
n∏

j=1

(
1

2
e−sj +

1

2
esj

)

=
1

2n

n∏
j=1

(
e−sj + esj

)
. (10.3.6)

Because the mgf does not depend on the underlying symmetric pdf f(x), the test
statistic T is distribution free under H0. Although the pmf of T cannot be obtained
in closed form, this mgf can be used to generate the pmf for a specified n; see
Exercise 10.3.1.

Because the sgn(Xij )s are mutually independent with mean zero, it follows that
EH0 [T ] = 0. Further, because the variance of sgn(Xij ) is 1, we have

VarH0(T ) =

n∑
j=1

VarH0(j sgn(Xij )) =

n∑
j=1

j2 = n(n + 1)(2n + 1)/6.

We summarize these results in the following theorem:

Theorem 10.3.1. Assume that Model (10.2.1) is true for the random sample
X1, . . . , Xn. Assume also that the pdf f(x) is symmetric about 0. Then under
H0,

T is distribution free with a symmetric pmf (10.3.7)

EH0 [T ] = 0 (10.3.8)

VarH0(T ) =
n(n + 1)(2n + 1)

6
(10.3.9)

Tq
VarH0 (T )

has an asymptotically N(0, 1) distribution. (10.3.10)

Proof: The first part of (10.3.7) and the expressions (10.3.8) and (10.3.9) were
derived above. The asymptotic distribution of T certainly is plausible and its proof
can be found in more advanced books. To obtain the second part of (10.3.7), we
need to show that the distribution of T is symmetric about 0. But by the mgf of
Y , (10.3.6), we have

E[exp{s(−T )} = E[exp{(−s)T }] = E[exp{sT}].

Hence T and −T have the same distribution, so T is symmetrically distributed
about 0.
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Note that the support of T is much denser than that of the sign test, so the
normal approximation is good even for a sample size of 10.

There is another formulation of T that is convenient. Let T + denote the sum of
the ranks of the positive Xis. Then, because the sum of all ranks is n(n + 1)/2, we
have

T =

n∑
i=1

sgn(Xi)R|Xi| =
∑

Xi>0

R|Xi| −
∑

Xi<0

R|Xi|

= 2
∑

Xi>0

R|Xi| −
n(n + 1)

2

= 2T + − n(n + 1)

2
. (10.3.11)

Hence T + is a linear function of T and thus is an equivalent formulation of the
signed-rank test statistic T . For the record, we note the null mean and variance of
T +:

EH0(T
+) = n(n+1)

4 and VarH0(T
+) = n(n+1)(2n+1)

24 . (10.3.12)

The intrinsic R function wilcox.test computes the signed-rank analysis, re-
turning the test statistic T + and the p-value. If the sample is in the R vector x

then the signed-rank test of the hypotheses (10.3.1) is computed by the R com-
mand wilcox.test(x,alt="greater"). The arguments for the other one-sided
and the two-sided hypotheses are respectively alt="less" and alt="two.sided".
To compute the signed-rank test of the hypotheses H0 : θ = θ0 versus H1 : θ 
= θ0,
use the command wilcox.test(x,alt="two.sided",mu=theta0). Also, the R call
psignrank(y,n) computes the cdf of T + at y.

Example 10.3.1 (Zea mays Data of Darwin). Reconsider the data set discussed
in Example 4.5.1. Recall that Wi is the difference in heights of the cross-fertilized
plant minus the self-fertilized plant in pot i, for i = 1, . . . , 15. Let θ be the location
parameter and consider the one-sided hypotheses

H0 : θ = 0 versus H1 : θ > 0. (10.3.13)

Table 10.3.1 displays the data and the signed ranks.
Adding up the ranks of the positive items in column 5 of Table 10.3.1, we obtain

T + = 96. Using the exact distribution, the R command is 1-psignrank(95,15)),
we obtain the p-value, p̂ = PH0(T

+ ≥ 96) = 0.021. For comparison, the asymptotic
p-value, using the continuity correction is

PH0(T
+ ≥ 96) = PH0(T

+ ≥ 95.5) ≈ P

(
Z ≥ 95.5− 60√

15 · 16 · 31/24

)
= P (Z ≥ 2.016) = 0.022,

which is quite close to the exact value of 0.021.
Suppose the R vector ds contains the paired differences between cross and self-

fertilized. Then the R command wilcox.test(ds,alt="greater") computes the
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Table 10.3.1: Signed Ranks for Darwin Data, Example 10.3.1

Cross- Self- Signed-
Pot Fertilized Fertilized Difference Rank

1 23.500 17.375 6.125 11
2 12.000 20.375 −8.375 −14
3 21.000 20.000 1.000 2
4 22.000 20.000 2.000 4
5 19.125 18.375 0.750 1
6 21.550 18.625 2.925 5
7 22.125 18.625 3.500 7
8 20.375 15.250 5.125 9
9 18.250 16.500 1.750 3

10 21.625 18.000 3.625 8
11 23.250 16.250 7.000 12
12 21.000 18.000 3.000 6
13 22.125 12.750 9.375 15
14 23.000 15.500 7.500 13
15 12.000 18.000 −6.000 −10

value of T + along with the p-value. The computed values are the same as those
computed above.

There is another formulation of T+ which is useful for obtaining the properties
of the Wilcoxon signed-rank test and confidence intervals for θ. Let Xi > 0 and
consider all Xj such that −Xi < Xj < Xi. Thus all the averages (Xi + Xj)/2,
under these restrictions, are positive, including (Xi + Xi)/2. From the restriction,
though, the number of these positive averages is simply the R|Xi|. Doing this for
all Xi > 0, we obtain

T + = #i≤j{(Xj + Xi)/2 > 0}. (10.3.14)

The pairwise averages (Xj + Xi)/2 are often called the Walsh averages. Hence the
signed-rank Wilcoxon can be obtained by counting the number of positive Walsh
averages.

Based on the identity (10.3.14), we obtain the corresponding process. Let

T +(θ) = #i≤j{[(Xj − θ) + (Xi − θ)]/2 > 0} = #i≤j{(Xj + Xi)/2 > θ}. (10.3.15)

The process associated with T +(θ) is much like the sign process, (10.2.9). Let
W1 < W2 < · · · < Wn(n+1)/2 denote the n(n+1)/2 ordered Walsh averages. Then a
graph of T +(θ) would appear as in Figure 10.2.2, except the ordered Walsh averages
would be on the horizontal axis and the largest value on the vertical would be
n(n + 1)/2. Hence the function T +(θ) is a decreasing step function of θ, which
steps down one unit at each Walsh average. This observation greatly simplifies the
discussion on the properties of the signed-rank Wilcoxon.
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Let cα denote the critical value of a level α test of the hypotheses (10.3.1) based
on the signed-rank test statistic T +; i.e., α = PH0(T

+ ≥ cα). Let γSW (θ) =
Pθ(T

+ ≥ cα), for θ ≥ θ0, denote the power function of the test. The translation
property, Lemma 10.2.1, holds for the signed-rank Wilcoxon. Hence, as in Theorem
10.2.1, the power function is a nondecreasing function of θ. In particular, the
signed-rank Wilcoxon test is an unbiased test for the one-sided hypotheses (10.3.1).

10.3.1 Asymptotic Relative Efficiency

We investigate the efficiency of the signed-rank Wilcoxon by first determining its
efficacy. Without loss of generality, we can assume that θ0 = 0. Consider the same
sequence of local alternatives discussed in the last section; i.e.,

H0 : θ = 0 versus H1n : θn = δ√
n
, (10.3.16)

where δ > 0. Contemplate the modified statistic, which is the average of T +(θ),

T
+
(θ) =

2

n(n + 1)
T +(θ). (10.3.17)

Then, by (10.3.12),

E0[T
+
(0)] = 2

n(n+1)
n(n+1)

4 = 1
2 and σ2

T
+(0) = Var0[T

+
(0)] = 2n+1

6n(n+1) . (10.3.18)

Let an = 2/n(n + 1). Note that we can decompose T
+

(θn) into two parts as

T
+
(θn) = anS(θn) + an

∑
i<j

I(Xi + Xj > 2θn) = anS(θn) + anT ∗(θn), (10.3.19)

where S(θ) is the sign process (10.2.9) and

T ∗(θn) =
∑
i<j

I(Xi + Xj > 2θn). (10.3.20)

To obtain the efficacy, we require the mean

μ
T

+(θn) = Eθn [T
+
(0)] = E0[T

+
(−θn)]. (10.3.21)

But by (10.2.14), anE0(S(−θn)) = ann(2−1 − F (−θn)) → 0. Hence we need only
be concerned with the second term in (10.3.19). But note that the Walsh averages
in T ∗(θ) are identically distributed. Thus

anE0(T
∗(−θn)) = an

(
n

2

)
P0(X1 + X2 > −2θn). (10.3.22)
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This latter probability can be expressed as follows:

P0(X1 + X2 > −2θn) = E0[P0(X1 > −2θn −X2|X2)] = E0[1− F (−2θn −X2)]

=

∫ ∞

−∞
[1− F (−2θn − x)]f(x) dx

=

∫ ∞

−∞
F (2θn + x)f(x) dx

≈
∫ ∞

−∞
[F (x) + 2θnf(x)]f(x) dx

=
1

2
+ 2θn

∫ ∞

−∞
f2(x) dx, (10.3.23)

where we have used the facts that X1 and X2 are iid and symmetrically distributed
about 0, and the mean value theorem. Hence

μ
T

+(θn) ≈ an

(
n

2

)(
1

2
+ 2θn

∫ ∞

−∞
f2(x) dx

)
. (10.3.24)

Putting (10.3.18) and (10.3.24) together, we have the efficacy

cT+ = lim
n→∞

μ′
T

+(0)
√

nσ
T

+(0)
=
√

12

∫ ∞

−∞
f2(x) dx. (10.3.25)

In a more advanced text, this development can be made into a rigorous argument
for the following asymptotic power lemma.

Theorem 10.3.2 (Asymptotic Power Lemma). Consider the sequence of hypotheses
(10.3.16). The limit of the power function of the large sample, size α, signed-rank
Wilcoxon test is given by

lim
n→∞

γSR(θn) = 1− Φ(zα − δτ−1
W ), (10.3.26)

where τW = 1/[
√

12
∫∞
−∞ f2(x) dx] is the reciprocal of the efficacy cT+ and Φ(z) is

the cdf of a standard normal random variable.

As shown in Exercise 10.3.10, the parameter τW is a scale functional.
The arguments used in the determination of the sample size in Section 10.2 for

the sign test were based on the asymptotic power lemma; hence, these arguments
follow almost verbatim for the signed-rank Wilcoxon. In particular, the sample size
needed so that a level α signed-rank Wilcoxon test of the hypotheses (10.3.1) can
detect the alternative θ = θ0 + θ∗ with approximate probability γ∗ is

nW =

(
(zα − zγ∗)τW

θ∗

)2

. (10.3.27)

Using (10.2.26), the ARE between the signed-rank Wilcoxon test and the t-test
based on the sample mean is

ARE(T, t) =
nt

nT
=

σ2

τ2
W

. (10.3.28)
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We now derive some AREs between the Wilcoxon and the t-test. As noted
above, the parameter τW is a scale functional and, hence, varies directly with scale
transformations of the form aX , for a > 0. Likewise, the standard deviation σ is
also a scale functional. Therefore, because the AREs are ratios of scale functionals,
they are scale invariant. Hence, for derivations of AREs, we can select a pdf with a
convenient choice of scale. For example, if we are considering an ARE at the normal
distribution, we can work with the N(0, 1) pdf.

Example 10.3.2 (ARE(W, t) at the normal distribution). If f(x) is a N(0, 1) pdf,
then

τ−1
W =

√
12

∫ ∞

−∞

(
1√
2π

exp{−x2/2}
)2

dx

=

√
12√

2
√

2π

∫ ∞

−∞

1√
2π(1/

√
2)

exp{−2−1(x/(1/
√

2))2} dx =

√
3

π

Hence τ2
W = π/3. Since σ = 1, we have

ARE(W, t) =
σ2

τ2
W

=
3

π
= 0.955. (10.3.29)

As discussed above, this ARE holds for all normal distributions. Hence, at the
normal distribution, the Wilcoxon signed-rank test is 95.5% efficient as the t-test.
The Wilcoxon is called a highly efficient procedure.

Example 10.3.3 (ARE(W, t) at a Family of Contaminated Normals). For this
example, suppose that f(x) is the pdf of a contaminated normal distribution. For
convenience, we use the standardized pdf given in expression (10.2.30) with b = 1.
Recall that for this distribution, (1− ε) proportion of the time the sample is drawn
from a N(0, 1) distribution, while ε proportion of the time the sample is drawn from
a N(0, σ2

c ) distribution. Recall that the variance is σ2 = 1 + ε(σ2
c − 1). Note that

the formula for the pdf f(x) is given in expression (3.4.17). In Exercise 10.3.5 it is
shown that ∫ ∞

−∞
f2(x) dx =

(1− ε)2

2
√

π
+

ε2

6
√

π
+

ε(1− ε)

2
√

π
. (10.3.30)

Based on this, an expression for the ARE can be obtained; see Exercise 10.3.5. We
used this expression to determine the AREs between the Wilcoxon and the t-tests
for the situations with σc = 3 and ε varying from 0.00–0.25, displaying them in
Table 10.3.2. For convenience, we have also displayed the AREs between the sign
test and these two tests.

Note that the signed-rank Wilcoxon is more efficient than the t-test even at 1%
contamination and increases to 150% efficiency for 15% contamination.

10.3.2 Estimating Equations Based on Signed-Rank Wilcoxon

For the sign procedure, the estimation of θ was based on minimizing the L1 norm.
The estimator associated with the signed-rank test minimizes another norm, which
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Table 10.3.2: AREs among the sign, the Signed-Rank Wilcoxon, and the t-Tests
for Contaminated Normals with σc = 3 and Proportion of Contamination ε

ε 0.00 0.01 0.02 0.03 0.05 0.10 0.15 0.25
ARE(W, t) 0.955 1.009 1.060 1.108 1.196 1.373 1.497 1.616
ARE(S, t) 0.637 0.678 0.719 0.758 0.833 0.998 1.134 1.326
ARE(W, S) 1.500 1.487 1.474 1.461 1.436 1.376 1.319 1.218

is discussed in Exercises 10.3.7 and 10.3.8. Recall that we also show that the location
estimator based on the sign test could be obtained by inverting the test. Considering
this for the Wilcoxon, the estimator θ̂W solves

T +(θ̂W ) =
n(n + 1)

4
. (10.3.31)

Using the description of the function T +(θ) after its definition, (10.3.15), it

is easily seen that θ̂W = median{(Xi + Xj)/2}; i.e., the median of the Walsh
averages. This is often called the Hodges–Lehmann estimator because of several
seminal articles by Hodges and Lehmann on the properties of this estimator; see
Hodges and Lehmann (1963).

The R function wilcox.test computes the Hodges–Lehmann estimate. To il-
lustrate its computation, consider the Darwin data in Example 10.3.1. Let the R
vector ds contain the paired differences, Cross − Self. The R code segment given
by wilcox.test(ds,conf.int=T) then computes the Hodges–Lehmann estimate
to be 3.1375. So we estimate the difference in heights to be 3.1375 inches.

Once again, we can use practically the same argument that we used for the sign
process to obtain the asymptotic distribution of the Hodges–Lehmann estimator.
We summarize the result in the next theorem.

Theorem 10.3.3. Consider a random sample X1, X2, X3, . . . , Xn which follows
Model (10.2.1). Suppose that f(x) is symmetric about 0. Then

√
n(θ̂W − θ) → N(0, τ2

W ), (10.3.32)

where τW =
(√

12
∫ ∞
−∞ f2(x) dx

)−1

.

Using this theorem, the AREs based on asymptotic variances for the signed-rank
Wilcoxon are the same as those defined above.

10.3.3 Confidence Interval for the Median

Because of the similarity between the processes S(θ) and T +(θ), confidence intervals
for θ based on the signed-rank Wilcoxon follow the same way as do those based on
S(θ). For a given level α, let cW1, an integer, denote the critical point of the signed-
rank Wilcoxon distribution such that Pθ[T

+(θ) ≤ cW1] = α/2. As in Section 10.2.3,
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we then have that

1− α = Pθ[cW1 < T+(θ) < n− cW1]

= Pθ[WcW1+1 ≤ θ < Wm−cW1 ], (10.3.33)

where m = n(n+1)/2 denotes the number of Walsh averages. Therefore, the interval
[WcW1+1, Wm−cW1) is a (1− α)100% confidence interval for θ.

We can use the asymptotic null distribution of T+, (10.3.10), to obtain the
following approximation to cW1. As shown in Exercise 10.3.6,

cW1 ≈
n(n + 1)

4
− zα/2

√
n(n + 1)(2n + 1)

24
− 1

2
, (10.3.34)

where Φ(−zα/2) = α/2. In practice, we use the closest integer to cW1.
In R, this confidence interval is computed by the R function wilcox.test. For

instance, for the Darwin data let the R vector ds contain the paired differences,
Cross − Self. Then the call wilcox.test(ds,conf.int=T,conf.level=.95) com-
putes a 95% confidence interval for the median of the differences. Its computation
results in the interval (0.5000, 5.2125). Hence, with confidence 95%, we estimate
that cross-fertilized zea mays are between 0.5 to 5.2 inches taller than self-fertilized
ones.

10.3.4 Monte Carlo Investigation

The AREs derived in this chapter are asymptotic. In this section, we describe
Monte Carlo techniques which investigate the relative efficency between estimators
for finite sample sizes. Comparisons are performed over families of distributions
and a selection of sample sizes. Each combination of distribution and sample size
is referred to as a situation. We also select a simulation size ns, which is usually
quite large. We next describe a typical simulation to investigate the relative efficency
between two estimators.

For notation, let X1, . . . , Xn be a random sample that follows the location model,
(10.2.1), i.e.,

Xi = θ + ei, i = 1, . . . , n, (10.3.35)

where ei’s are iid with pdf f(x) and f(x) is symmetric about 0. For our discussion,

consider the case of two location estimators of θ, which we denote by θ̂1 and θ̂2.
Since these are location estimators, we further assume without loss of generality
that the true θ = 0.

Let n denote the sample size and let f(x) denote the pdf for a given situation.
Then ns independent random samples of size n are generated from f(x). For the

ith sample, denote the estimates by θ̂1i and θ̂2i, i = 1, . . . , ns. For the estimator θ̂j ,
consider the mean square error over the simulations given by

MSEj =
1

ns

ns∑
i=1

θ̂2
ji, j = 1, 2. (10.3.36)
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As sketched in Exercise 10.3.2, under the assumptions of symmetry and location
estimators, MSEj is a consistent estimator of the variance of θ̂j for a sample of size

n. Hence, the estimate of the relative efficiency (REn) between the estimators θ̂1

and θ̂2 at sample size n is the ratio

̂

REn(θ̂1, θ̂2) =
MSE2

MSE1
. (10.3.37)

To illustrate this discussion, consider a study comparing the Hodges–Lehmann
and sample mean estimators over the family of contaminated normal distributions
with rate of contamination ε and the standard deviation ratio σc, where we are using
the notation of Example 10.3.3. The R function rcn.R is used to generate samples
from a contaminated normal. The following R function aresimcn.R computes the
simulation and returns the estimate of REn:

aresimcn <- function(n,nsims,eps,vc){

chl <- c(); cxbar <- c()

for(i in 1:nsims){

x <- rcn(n,eps,vc)

chl <- c(chl,wilcox.test(x,conf.int=T)$est)

cxbar <- c(cxbar,t.test(x,conf.int=T)$est)

}

aresimcn <- mses(cxbar,0)/mses(chl,0)

return(aresimcn)}

The function mses.R computes the MSEs, (10.3.36). All three functions are at the
site listed in the Preface.

For a specific situation set n = 30 with samples generated from the contami-
nated normal distribution with rate of contamination ε = 0.25 and the standard
deviation ratio σc = 3. From Table 10.3.2, the asymptotic ARE is 1.616. Our run
of the function aresimcn.R using 10,000 simulations at these settings produced the
estimate 1.561 for the relative efficiency at sample size n = 30. This is close to the
asymptotic value. The actual call was aresimcn(30,10000,.25,3). We also ran
the situation with ε = 0.20 and σc = 25. In this case, the estimated RE for samples
of size n = 30 was 40.934; i.e., we estimate that the Hodges–Lehmann estimator is
41% more efficient that the sample mean at this contaminated normal distribution
for a sample size of 30.

EXERCISES

10.3.1. (a) For n = 3, expand the mgf (10.3.6) to show that the distribution of
the signed-rank Wilcoxon is given by

j −6 −4 −2 0 2 4 6

P (T = j) 1
8

1
8

1
8

2
8

1
8

1
8

1
8

(b) Obtain the distribution of the signed-rank Wilcoxon for n = 4.
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10.3.2. Consider the location Model (10.3.35). Assume that the pdf of the random

errors, f(x), is symmetric about 0. Let θ̂ be a location estimator of θ. Assume that

E(θ̂4) exists.

(a) Show that θ̂ is an unbiased estimator of θ.

Hint: Assume without loss of generality that θ = 0; start with E(θ̂) =

E[θ̂(X1, . . . , Xn)]; and use the fact that Xi is symmetrically distributed about
0.

(b) As in Section 10.3.4, suppose we generate ns independent samples of size n

from the pdf f(x) which is symmetric about 0. For the ith sample, let θ̂i be

the estimate of θ. Show that n−1
s

∑ns

i=1 θ̂2
i → V (θ̂), in probability.

10.3.3. Modify the code of the R function aresimcn.R so it samples from the
N(0, 1) distribution. Estimate the RE between the Hodges–Lehmann estimator
and X for the sample sizes n = 15, 25, 50 and 100. Use 10,000 simulations for each
sample size. Compare your results to the asymptotic ARE which is 0.955.

10.3.4. Consider the self rival data presented in Exercise 4.6.5. Recall that it is
a paired design consisting of the pairs (Selfi, Rivali), for i = 1, . . . , 20, where Selfi
and Rivali are the running times for circling the bases for the respective treat-
ments of Self motivation and Rival motivation. The data can be found in the file
selfrival.rda. Let Xi = Selfi − Rivali denote the paired differences and model
these in the location model as Xi = θ + ei. Consider the hypotheses H0 : θ = 0
versus H1 : θ 
= 0.

(a) Obtain the signed-rank test statistic and p-value for these hypotheses. State
the conclusion (in terms of the data) using the level 0.05.

(b) Obtain the t test statistic and p-value and conclude using the level 0.05.

(c) To see the effect that an outlier has on these two analyses, change the 20th
rival time from 17.88 to 178.8. Comment on how the analyses changed due to
the outlier.

(d) Obtain 95% confidence intervals for θ for both analyses for the original data
and the changed data. Comment on how the confidence intervals changed due
to the outlier.

10.3.5. Assume that f(x) has the contaminated normal pdf given in expression
(3.4.17). Derive expression (10.3.30) and use it to obtain ARE(W, t) for this pdf.

10.3.6. Use the asymptotic null distribution of T+, (10.3.10), to obtain the ap-
proximation (10.3.34) to cW1.

10.3.7. For a vector v ∈ Rn, define the function

‖v‖ =

n∑
i=1

R(|vi|)|vi|. (10.3.38)

Show that this function is a norm on Rn; that is, it satisfies the properties



598 Nonparametric and Robust Statistics

1. ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0.

2. ‖av‖ = |a|‖v‖, for all a such that −∞ < a < ∞.

3. ‖u + v‖ ≤ ‖u‖+ ‖v‖, for all u,v ∈ Rn.

For the triangle inequality, use the anti-rank version, that is,

‖v‖ =
n∑

j=1

j|vij |. (10.3.39)

Then use the following fact: If we have two sets of n numbers, for example,
{t1, t2, . . . , tn} and {s1, s2, . . . , sn}, then the largest sum of pairwise products, one
from each set, is given by

∑n
j=1 tij skj , where {ij} and {kj} are the anti-ranks for

the ti and si, respectively, i.e., ti1 ≤ ti2 ≤ · · · ≤ tin and sk1 ≤ sk2 ≤ · · · ≤ skn .

10.3.8. Consider the norm given in Exercise 10.3.7. For a location model, define
the estimate of θ to be

θ̂ = Argminθ‖Xi − θ‖. (10.3.40)

Show that θ̂ is the Hodges–Lehmann estimate, i.e., satisfies (10.4.27).
Hint: Use the anti-rank version (10.3.39) of the norm when differentiating with
respect to θ.

10.3.9. Prove that a pdf (or pmf) f(x) is symmetric about 0 if and only if its mgf
is symmetric about 0, provided the mgf exists.

10.3.10. In Exercise 10.1.4, we defined the term scale functional. Show that the
parameter τW , (10.3.26), is a scale functional.

10.4 Mann–Whitney–Wilcoxon Procedure

Suppose X1, X2, . . . , Xn1 is a random sample from a distribution with a continuous
cdf F (x) and pdf f(x) and Y1, Y2, . . . , Yn2 is a random sample from a distribution
with a continuous cdf G(x) and pdf g(x). For this situation there is a natural null
hypothesis given by H0 : F (x) = G(x) for all x; i.e., the samples are from the same
distribution. What about alternative hypotheses besides the general alternative
not H0? An interesting alternative is that X is stochastically larger than Y ,
which is defined by G(x) ≥ F (x), for all x, with strict inequality for at least one x.
This alternative hypothesis is discussed in the exercises.

For the most part in this section, however, we consider the location model. In
this case, G(x) = F (x−Δ) for some value of Δ. Hence the null hypothesis becomes
H0 : Δ = 0. The parameter Δ is often called the shift between the distributions
and the distribution of Y is the same as the distribution of X + Δ; that is,

P (Y ≤ y) = P (X + Δ ≤ y) = F (y −Δ). (10.4.1)

If Δ > 0, then Y is stochastically larger than X ; see Exercise 10.4.8.
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In the shift case, the parameter Δ is independent of what location functional
is used. To see this, suppose we select an arbitrary location functional for X , say,
T (FX). Then we can write Xi as

Xi = T (FX) + εi, (10.4.2)

where ε1, . . . , εn1 are iid with T (Fε) = 0. By (10.4.1) it follows that

Yj = T (FX) + Δ + εj, j = 1, 2, . . . , n2. (10.4.3)

Hence T (FY ) = T (FX) + Δ. Therefore, Δ = T (FY ) − T (FX) for any location
functional; i.e., Δ is the same no matter what functional is chosen to model location.

Assume then that the shift model, (10.4.1), holds for the two samples. Alterna-
tives of interest are the usual one- and two-sided alternatives. For convenience we
pick on the one-sided hypotheses given by

H0 : Δ = 0 versus H1 : Δ > 0 . (10.4.4)

The exercises consider the other hypotheses. Under H0, the distributions of X
and Y are the same, and we can combine the samples to have one large sample of
n = n1 + n2 observations. Suppose we rank the combined samples from 1 to n and
consider the statistic

W =

n2∑
j=1

R(Yj), (10.4.5)

where R(Yj) denotes the rank of Yj in the combined sample of n items. This
statistic is often called the Mann–Whitney–Wilcoxon (MWW) statistic. Under
H0 the ranks are uniformly distributed between the Xis and the Yjs; however, under
H1 : Δ > 0, the Yjs should get most of the large ranks. Hence an intuitive rejection
rule is given by

Reject H0 in favor of H1 if W ≥ c. (10.4.6)

We now discuss the null distribution of W , which enables us to select c for
the decision rule based on a specified level α. Under H0, the ranks of the Yjs are
equilikely to be any subset of size n2 from a set of n elements. Recall that there are(

n
n2

)
such subsets; therefore, if {r1, . . . , rn2} is a subset of size n2 from {1, . . . , n},

then

P [R(Y1) = r1, . . . , R(Yn2) = rn2 ] =

(
n

n2

)−1

. (10.4.7)

This implies that the statistic W is distribution free under H0. Although the null
distribution of W cannot be obtained in closed form, there are recursive algorithms
which obtain this distribution; see Chapter 2 of the text by Hettmansperger and
McKean (2011). In the same way, the distribution of a single rank R(Yj) is uniformly
distributed on the integers {1, . . . , n}, under H0. Hence we immediately have

EH0(W ) =

n2∑
j=1

EH0 (R(Yj)) =

n2∑
j=1

n∑
i=1

i
1

n
=

n2∑
j=1

n(n + 1)

2n
=

n2(n + 1)

2
.
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The variance is displayed below (10.4.10) and a derivation of a more general case is
given in Section 10.5. It also can be shown that W is asymptotically normal. We
summarize these items in the theorem below.

Theorem 10.4.1. Suppose X1, X2, . . . , Xn1 is a random sample from a distribution
with a continuous cdf F (x) and Y1, Y2, . . . , Yn2 is a random sample from a distribu-
tion with a continuous cdf G(x). Suppose H0 : F (x) = G(x), for all x. If H0 is
true, then

W is distribution free with a symmetric pmf (10.4.8)

EH0 [W ] =
n2(n + 1)

2
(10.4.9)

VarH0(W ) =
n1n2(n + 1)

12
(10.4.10)

W−n2(n+1)/2q
VarH0(W )

has an asymptotically N(0, 1) distribution. (10.4.11)

The only item of the theorem not discussed above is the symmetry of the null
distribution, which we show later. First, consider this example:

Example 10.4.1 (Water Wheel Data Set). In an experiment discussed in Abebe
et al. (2001), mice were placed in a wheel that is partially submerged in water. If
they keep the wheel moving, they avoid the water. The response is the number of
wheel revolutions per minute. Group 1 is a placebo group, while Group 2 consists
of mice that are under the influence of a drug. The data are

Group 1 X 2.3 0.3 5.2 3.1 1.1 0.9 2.0 0.7 1.4 0.3
Group 2 Y 0.8 2.8 4.0 2.4 1.2 0.0 6.2 1.5 28.8 0.7

The data are in the file waterwheel.rda. Comparison boxplots of the data (asked
for in Exercise 10.4.9) show that the two data sets are similar except for the large
outlier in the treatment group. A two-sided hypothesis seems appropriate in this
case. Notice that a few of the data points in the data set have the same value
(are tied). This happens in real data sets. We follow the usual practice and use
the average of the ranks involved to break ties. For example, the observations
x2 = x10 = 0.3 are tied and the ranks involved for the combined data are 2 and
3. Hence we use 2.5 for the ranks of each of these observations. Continuing in
this way, the Wilcoxon test statistic is w =

∑10
j=1 R(yj) = 116.50. The null mean

and variance of W are 105 and 175, respectively. The asymptotic test statistic
is z = (116.5 − 105)/

√
175 = 0.869 with p-value 2*(1-pnorm(0.869)) = 0.3848.

Hence H0 would not be rejected. The test confirms the comparison boxplots of the
data. The t-test based on the difference in means is discussed in Exercise 10.4.9. In
Example 10.4.2, we discuss the R computation.

We next want to derive some properties of the test statistic and then use these
properties to discuss point estimation and confidence intervals for Δ. As in the
last section, another way of writing W proves helpful in these regards. Without
loss of generality, assume that the Yjs are in order. Recall that the distributions
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of Xi and Yj are continuous; hence, we treat the observations as distinct. Thus
R(Yj) = #i{Xi < Yj}+ #i{Yi ≤ Yj}. This leads to

W =

n2∑
j=1

R(Yj) =

n2∑
j=1

#i{Xi < Yj}+

n2∑
j=1

#i{Yi ≤ Yj}

= #i,j{Yj > Xi}+
n2(n2 + 1)

2
. (10.4.12)

Let U = #i,j{Yj > Xi}; then we have W = U + n2(n2 + 1)/2. Hence an equivalent
test for the hypotheses (10.4.4) is to reject H0 if U ≥ c2. It follows immediately
from Theorem 10.4.1 that, under H0, U is distribution free with mean n1n2/2
and variance (10.4.10) and that it has an asymptotic normal distribution. The
symmetry of the null distribution of either U or W can now be easily obtained.
Under H0, both Xi and Yj have the same distribution, so the distributions of U
and U ′ = #i,j{Xi > Yj} must be the same. Furthermore, U + U ′ = n1n2. This
leads to

PH0

(
U − n1n2

2
= u

)
= PH0

(
n1n2 − U ′ − n1n2

2
= u

)
= PH0

(
U ′ − n1n2

2
= −u

)
= PH0

(
U − n1n2

2
= −u

)
,

which yields the desired symmetry result in Theorem 10.4.1.

Example 10.4.2 (Water Wheel, Continued). For the R commands to compute the
Wilcoxon analysis, suppose y and x contain the respective samples on Y and X .
The R call wilcox.test(y,x) computes the Wilcoxon test. The form used is the
statistic U = #i,j{Yj > Xi}. For the data in Example 10.4.1, let the R vectors
grp1 and grp2 contain the samples for group 1 and group 2, respectively. Then the
call and the results are:

wilcox.test(grp2,grp1); W = 61.5, p-value = 0.4053

Note that R uses the label W for U . As a check, 61.5+10(11)/2 = 116.5 =
∑

R(yj),
which agrees with the computation in Example 10.4.1. The R p-value is exact in
the case that there are no ties and if ni < 50, i = 1, 2. Otherwise it is based on the
asymptotic distribution. Notice that the asymptotic p-value differs a little from its
R computed value. The R function pwilcox(u,n1,n2) computes the exact cdf of
U .

Note that if G(x) = F (x−Δ), then Yj −Δ has the same distribution as Xi. So
the process of interest here is

U(Δ) = #i,j{(Yj −Δ) > Xi} = #i,j{Yj −Xi > Δ)}. (10.4.13)

Hence U(Δ) is counting the number of differences Yj − Xi that exceed Δ. Let
D1 < D2 < · · · < Dn1n2 denote the n1n2 ordered differences of Yj − Xi. Then
the graph of U(Δ) is the same as that in Figure 10.2.2, except the Dis are on the
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horizontal axis and the n on the vertical axis is replaced by n1n2; that is, U(Δ) is a
decreasing step function of Δ that steps down one unit at each difference Di, with
the maximum value of n1n2.

We can then proceed as in the last two sections to obtain properties of inference
based on the Wilcoxon. Let the integer cα denote the critical value of a level α
test of the hypotheses (10.2.2) based on the statistic U ; i.e., α = PH0(U ≥ cα).
Let γU (Δ) = PΔ(U ≥ cα), for Δ ≥ 0, denote the power function of the test.
The translation property, Lemma 10.2.1, holds for the process U(Δ). Hence, as in
Theorem 10.2.1, the power function is a nondecreasing function of Δ. In particular,
the Wilcoxon test is an unbiased test for the one-sided hypotheses (10.4.4).

10.4.1 Asymptotic Relative Efficiency

The asymptotic relative efficiency (ARE) of the Wilcoxon follows along similar lines
as for the sign test statistic in Section 10.2.1. Here, consider the sequence of local
alternatives given by

H0 : Δ = 0 versus H1n : Δn = δ√
n
, (10.4.14)

where δ > 0. We also assume that

n1

n → λ1,
n2

n → λ2, where λ1 + λ2 = 1. (10.4.15)

This assumption implies that n1/n2 → λ1/λ2; i.e, the sample sizes maintain the
same ratio asymptotically.

To determine the efficacy of the MWW, consider the average

U(Δ) =
1

n1n2
U(Δ). (10.4.16)

It follows immediately that

μU (0) = E0(U(0)) = 1
2 and σ2

U
(0) = n+1

12n1n2
. (10.4.17)

Because the pairs (Xi, Yj) are iid we have

μU (Δn) = EΔn(U(0)) = E0(U(−Δn)) = P0(Y −X > −Δn). (10.4.18)

The independence of X and Y and the fact
∫∞
−∞ F (x)f(x) dx = 1/2 gives

P0(Y −X > −Δn) = E0(P0[Y > X −Δn|X ])

= E0(1 − F (X −Δn))

= 1−
∫ ∞

−∞
F (x−Δn)f(x) dx

=
1

2
+

∫ ∞

−∞
(F (x) − F (x−Δn))f(x) dx

≈ 1

2
+ Δn

∫ ∞

−∞
f2(x) dx, (10.4.19)
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where we have applied the mean value theorem to obtain the last line. Putting
together (10.4.17) and (10.4.19), we have the efficacy

cU = lim
n→∞

μ′
U

(0)
√

nσU (0)
=
√

12
√

λ1λ2

∫ ∞

−∞
f2(x) dx. (10.4.20)

This derivation can be made rigorous, leading to the following theorem:

Theorem 10.4.2 (Asymptotic Power Lemma). Consider the sequence of hypotheses
(10.4.14). The limit of the power function of the size α Mann–Whitney–Wilcoxon
test is given by

lim
n→∞

γU (Δn) = 1− Φ
(
zα −

√
λ1λ2δτ

−1
W

)
, (10.4.21)

where τW = 1/
√

12
∫∞
−∞ f2(x) dx is the reciprocal of the efficacy cU and Φ(z) is the

cdf of a standard normal random variable.

As in the last two sections, we can use this theorem to establish a relative mea-
sure of efficiency by considering sample size determination. Consider the hypotheses
(10.4.4). Suppose we want to determine the sample size n = n1 + n2 for a level α
MWW test to detect the alternative Δ∗ with approximate power γ∗. By Theorem
10.4.2, we have the equation

γ∗ = γU (
√

nΔ∗/
√

n) ≈ 1− Φ(zα −
√

λ1λ2

√
nΔ∗τ−1

W ). (10.4.22)

This leads to the equation

zγ∗ = zα −
√

λ1λ2δτ
−1
W , (10.4.23)

where Φ(zγ∗) = 1− γ∗. Solving for n, we obtain

nU ≈
(

(zα − zγ∗)τW

Δ∗√λ1λ2

)2

. (10.4.24)

To use this in applications, the sample size proportions λ1 = n1/n and λ2 = n2/n
must be given. As Exercise 10.4.1 points out, the most powerful two-sample designs
have sample size proportions of 1/2, i.e., equal sample sizes.

To use this to obtain the asymptotic relative efficiency between the MWW and
the two-sample pooled t-test, Exercise 10.4.2 shows that the sample size needed for
the two-sample t-tests to attain approximate power γ∗ to detect Δ∗ is given by

nLS ≈
(

(zα − zγ∗)σ

Δ∗√λ1λ2

)2

, (10.4.25)

where σ is the variance of ei. Hence, as in the last section, the asymptotic relative
efficiency between the Wilcoxon test (MWW) and the t-test is the ratio of the
sample sizes (10.4.24) and (10.4.25), which is

ARE(MWW, LS) =
σ2

τ2
W

. (10.4.26)
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Note that this is the same ARE as derived in the last section between the signed-
rank Wilcoxon and the t-test. If f(x) is a normal pdf, then the MWW has efficiency
95.5% relative to the pooled t-test. Thus the MWW tests lose little efficiency at
the normal. On the other hand, it is much more efficient than the pooled t-test at
the family of contaminated normals (with ε > 0), as in Example 10.3.3.

10.4.2 Estimating Equations Based on the Mann–Whitney–

Wilcoxon

As with the signed-rank Wilcoxon procedure in the last section, we invert the test
statistic to obtain an estimate of Δ. As discussed in the next section, this esti-
mate can be defined in terms of minimizing a norm. The estimator θ̂W solves the
estimating equations

U(Δ) = EH0(U) =
n1n2

2
. (10.4.27)

Recalling the description of the process U(Δ) described above, it is clear that the
Hodges–Lehmann estimator is given by

Δ̂U = medi,j{Yj −Xi}. (10.4.28)

The asymptotic distribution of the estimate follows in the same way as in the last
section based on the process U(Δ) and the asymptotic power lemma, Theorem
10.4.2. We avoid sketching the proof and simply state the result as a theorem:

Theorem 10.4.3. Assume that the random variables X1, X2, . . . , Xn1 are iid with
pdf f(x) and that the random variables Y1, Y2, . . . , Yn2 are iid with pdf f(x − Δ).
Then

Δ̂U has an approximate N
(
Δ, τ2

W

(
1

n1
+ 1

n2

))
distribution, (10.4.29)

where τW = (
√

12
∫∞
−∞ f2(x) dx)−1.

As Exercise 10.4.6 shows, provided the Var(εi) = σ2 < ∞, the LS estimate
Y −X of Δ has the following approximate distribution:

Y −X has an approximate N
(
Δ, σ2

(
1

n1
+ 1

n2

))
distribution. (10.4.30)

Note that the ratio of the asymptotic variances of Δ̂U is given by the ratio (10.4.26).
Hence the ARE of the tests agrees with the ARE of the corresponding estimates.

10.4.3 Confidence Interval for the Shift Parameter Δ

The confidence interval for Δ corresponding to the MWW estimate is derived the
same way as the Hodges–Lehmann estimate in the last section. For a given level
α, let the integer c denote the critical point of the MWW distribution such that
PΔ[U(Δ) ≤ c] = α/2. As in Section 10.2.3, we then have

1− α = PΔ[c < U(Δ) < n1n2 − c]

= PΔ[Dc+1 ≤ Δ < Dn1n2−c], (10.4.31)
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where D1 < D2 < · · · < Dn1n2 denote the order differences Yj − Xi. Therefore,
the interval [Dc+1, Dn1n2−c) is a (1 − α)100% confidence interval for Δ. Using the
null asymptotic distribution of the MWW test statistic U , we have the following
approximation for c:

c ≈ n1n2

2
− zα/2

√
n1n2(n + 1)

12
− 1

2
, (10.4.32)

where Φ(−zα/2) = α/2; see Exercise 10.4.7. In practice, we use the closest integer
to c.

Example 10.4.3 (Example 10.4.1, Continued). Returning to Example 10.4.1, the
computation in R (groups are in the vectors grp1 and grp2) yields:

wilcox.test(grp2,grp1,conf.int=T)

95 percent confidence interval: -0.8000273 2.8999445

sample estimate: 0.5000127

Hence, the Hodges–Lehmann estimate of the shift in locations is 0.50 and the con-
fidence interval for the shift is (−0.800, 2.890). Hence, in agreement with the test
statistic, the confidence interval covers the null hypothesis of Δ = 0.

10.4.4 Monte Carlo Investigation of Power

In Section 10.3.4, we discussed a Monte Carlo investigation of the finite sample size
relative efficiency between two location estimators. In this section, we consider finite
sample studies of the power of two tests. As in Section 10.3.4, a Monte Carlo study
comparing the power of two tests would be over specified families of distributions
and sample sizes, each combination of which is a situation of the study. For our
brief presentation, we consider one such situation.

The model is the two-sample location model described by (10.4.2)–(10.4.3) where
Δ is the shift in location between the models. We consider the two-sided hypotheses

H0 : Δ = 0 versus H1 : Δ 
= 0 . (10.4.33)

Our study compares the power of the MWW and two-sample t-test, as defined in
Example 8.3.1, for these hypotheses. For our specific situation we consider equal
sample sizes n1 = n2 = 30 and the contaminated normal distribution with con-
tamination rate ε = 0.20 and standard deviation ratio σc = 10. As the level of
significance, we select α = 0.05. Notice that for a given data set, a level α test
rejects H0 if its p-value is less than or equal to α.

We chose 10,000 simulations. The gist of the algorithm is straightforward. For
each simulation, generate the independent samples; compute each test statistic; and
record whether or not each test rejected. For each test, its empirical power is its
number of rejections divided by the number of simulations. The following R func-
tion wil2powsim.R incorporates this algorithm. The first line of code contains the
settings that were used.

n1=30;n2=30;nsims=10000;eps=.20;vc=10;Delta=seq(-3,3,1) #Settings

wil2powsim <- function(n1,n2,nsims,eps,vc,Delta=0,alpha=.05){
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indwil <-0; indt <- 0

for(i in 1:nsims){

x <- rcn(n1,eps,vc); y <- rcn(n2,eps,vc) + Delta

if(wilcox.test(y,x)$p.value <= alpha){indwil <- indwil + 1}

if(t.test(y,x,var.equal=T)$p.value <= alpha){indt <- indt + 1}

}

powwil <- sum(indwil)/nsims; powt <- sum(indt)/nsims

return(c(powwil,powt))}

Notice that power is computed at the sequence of alternatives Δ = −3,−2, . . . , 3.
For our run, here are the empirical powers:

Δ −3 −2 −1 0 1 2 3
MWW test 0.9993 0.9856 0.6859 0.0527 0.6889 0.9874 0.9988
t-test 0.7245 0.4411 0.1575 0.0465 0.1597 0.4318 0.7296

Clearly for this situation the MWW test is much more powerful than the t-test. It
is not surprising since the contaminated normal distribution has heavy tails and the
t-test is impaired by the high percentage of outliers. Further, this agrees with the
ARE between the MWW and t-tests for contaminated normal distributions. The
empirical powers for Δ = 0 are the empirical levels that are close to the nominal
α = 0.05. For both tests, the powers increase as Δ moves in either direction from
0, as they should.

EXERCISES

10.4.1. By considering the asymptotic power lemma, Theorem 10.4.2, show that
the equal sample size situation n1 = n2 is the most powerful design among designs
with n1 + n2 = n, n fixed, when level and alternatives are also fixed.
Hint: Show that this problem is equivalent to maximizing the function

g(n1) =
n1(n− n1)

n2
,

and then obtain the result.

10.4.2. Consider the asymptotic version of the t-test for the hypotheses (10.4.4)
which is discussed in Example 4.6.2.

(a) Using the setup of Theorem 10.4.2, derive the corresponding asymptotic power
lemma for this test.

(b) Use your result in part (a) to obtain expression (10.4.25).

10.4.3. In the power study presented in Section 10.4.4, the empirical powers at
Δ = 0 are empirical levels. Find 95% confidence intervals for the true levels based
on the empirical levels. Do they contain the nominal level α = 0.05?

10.4.4. In the power study of Section 10.4.4, determine (by simulation) the neces-
sary common sample size so that the Wilcoxon MWW test has approximately 80%
power to detect Δ = 1.
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10.4.5. For the power study of Section 10.4.4, modify the R function wil2powsim.R

to obtain the empirical powers for the N(0, 1) distribution.

10.4.6. Use the Central Limit Theorem to show that expression (10.4.30) is true.

10.4.7. For the cutoff index c of the confidence interval (10.4.31) for Δ, derive the
approximation given in expression (10.4.32).

10.4.8. Let X be a continuous random variable with cdf F (x). Suppose Y = X+Δ,
where Δ > 0. Show that Y is stochastically larger than X .

10.4.9. Consider the data given in Example 10.4.1.

(a) Obtain comparison boxplots of the data.

(b) Show that the difference in sample means is 3.11, which is much larger than
the MWW estimate of shift. What accounts for this discrepancy?

(c) Show that the 95% confidence interval for Δ using t is given by (−2.7, 8.92).
Why is this interval so much larger than the corresponding MWW interval?

(d) Show that the value of the t-test statistic, discussed in Example 4.6.2, for
this data set is 1.12 with p-value 0.28. Although, as with the MWW results,
this p-value would be considered insignificant, it seems lower than warranted
[consider, for example, the comparison boxplots of part (a)]. Why?

10.5 ∗General Rank Scores

Suppose we are interested in estimating the center of a symmetric distribution
using an estimator that corresponds to a distribution-free procedure. By the last
two sections our choice is either the sign test or the signed-rank Wilcoxon test. If
the sample is drawn from a normal distribution, then of the two we would choose
the signed-rank Wilcoxon because it is much more efficient than the sign test at
the normal distribution. But the Wilcoxon is not fully efficient. This raises the
question: Is there is a distribution-free procedure that is fully efficient at the normal
distribution, i.e., has efficiency of 100% relative to the t-test at the normal? More
generally, suppose we specify a distribution. Is there a distribution-free procedure
that has 100% efficiency relative to the mle at that distribution? In general, the
answer to both of these questions is yes. In this section, we explore these questions
for the two-sample location problem since this problem generalizes immediately to
the regression problem of Section 10.7. A similar theory can be developed for the
one-sample problem; see Chapter 1 of Hettmansperger and McKean (2011).

As in the last section, let X1, X2, . . . , Xn1 be a random sample from the contin-
uous distribution with cdf and pdf F (x) and f(x), respectively. Let Y1, Y2, . . . , Yn2

be a random sample from the continuous distribution with cdf and pdf, respectively,
F (x −Δ) and f(x −Δ), where Δ is the shift in location. Let n = n1 + n2 denote
the combined sample sizes. Consider the hypotheses

H0 : Δ = 0 versus H1 : Δ > 0. (10.5.1)
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We first define a general class of rank scores. Let ϕ(u) be a nondecreasing

function defined on the interval (0, 1), such that
∫ 1

0 ϕ2(u) du < ∞. We call ϕ(u)
a score function. Without loss of generality, we standardize this function so that∫ 1

0
ϕ(u) du = 0 and

∫ 1

0
ϕ2(u) du = 1; see Exercise 10.5.1. Next, define the scores

aϕ(i) = ϕ[i/(n + 1)], for i = 1, . . . , n. Then aϕ(1) ≤ aϕ(2) ≤ · · · ≤ aϕ(n). As-
sume that

∑n
i=1 a(i) = 0, (this essentially follows from

∫
ϕ(u) du = 0, see Exercise

10.5.12). Consider the test statistic

Wϕ =

n2∑
j=1

aϕ(R(Yj)), (10.5.2)

where R(Yj) denotes the rank of Yj in the combined sample of n observations. Since
the scores are nondecreasing, a natural rejection rule is given by

Reject H0 in favor of H1 if Wϕ ≥ c. (10.5.3)

Note that if we use the linear score function ϕ(u) =
√

12(u− (1/2)), then

Wϕ =

n2∑
j=1

√
12

(
R(Yj)

n + 1
− 1

2

)
=

√
12

n + 1

n2∑
j=1

(
R(Yj)−

n + 1

2

)

=

√
12

n + 1
W −

√
12n2

2
, (10.5.4)

where W is the MWW test statistic, (10.4.5). Hence the special case of a linear
score function results in the MWW test statistic.

To complete the decision rule (10.5.2), we need the null distribution of the test
statistic Wϕ. But many of its properties follow along the same lines as that of the
MWW test. First, Wϕ is distribution free because, under the null hypothesis, every
subset of ranks for the Yjs is equilikely. In general, the distribution of Wϕ cannot
be obtained in closed form, but it can be generated recursively similarly to the
distribution of the MWW test statistic. Next, to obtain the null mean of Wϕ, use
the fact that R(Yj) is uniform on the integers 1, 2, . . . , n. Because

∑n
i=1 aϕ(i) = 0,

we then have

EH0(Wϕ) =

n2∑
j=1

EH0(aϕ(R(Yj))) =

n2∑
j=1

n∑
i=1

aϕ(i)
1

n
= 0. (10.5.5)

To determine the null variance, first define the quantity s2
a by the equation

EH0 (a
2
ϕ(R(Yj))) =

n∑
i=1

a2
ϕ(i)

1

n
=

1

n

n∑
i=1

a2
ϕ(i) =

1

n
s2

a. (10.5.6)
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As Exercise 10.5.4 shows, s2
a/n ≈ 1. Since EH0(Wϕ) = 0, we have

VarH0(Wϕ) = EH0(W
2
ϕ) =

n2∑
j=1

n2∑
j′=1

EH0 [aϕ(R(Yj))aϕ(R(Yj′))]

=

n2∑
j=1

EH0 [a
2
ϕ(R(Yj))] +

∑∑
j �=j′

EH0 [aϕ(R(Yj))aϕ(R(Yj′ ))]

=
n2

n
s2

a −
n2(n2 − 1)

n(n− 1)
s2

a (10.5.7)

=
n1n2

n(n− 1)
s2

a; (10.5.8)

see Exercise 10.5.2 for the derivation of the second term in expression (10.5.7). In
more advanced books, it is shown that Wϕ is asymptotically normal under H0.
Hence the corresponding asymptotic decision rule of level α is

Reject H0 in favor of H1 if z =
Wϕq

VarH0 (Wϕ)
≥ zα. (10.5.9)

To answer the questions posed in the first paragraph of this section, the efficacy
of the test statistic Wϕ is needed. To proceed along the lines of the last section,
define the process

Wϕ(Δ) =

n2∑
j=1

aϕ(R(Yj −Δ)), (10.5.10)

where R(Yj−Δ) denotes the rank of Yj−Δ among X1, . . . , Xn1 , Y1−Δ, . . . , Yn2−Δ.
In the last section, the process for the MWW statistic was also written in terms of
counts of the differences Yj − Xi. We are not as fortunate here, but as the next
theorem shows, this general process is a simple decreasing step function of Δ.

Theorem 10.5.1. The process Wϕ(Δ) is a decreasing step function of Δ which
steps down at each difference Yj−Xi, i = 1, . . . , n1 and j = 1, . . . , n2. Its maximum
and minimum values are

∑n
j=n1+1 aϕ(j) ≥ 0 and

∑n2

j=1 aϕ(j) ≤ 0, respectively.

Proof: Suppose Δ1 < Δ2 and Wϕ(Δ1) 
= Wϕ(Δ2). Hence the assignment of the
ranks among the Xi and Yj −Δ must differ at Δ1 and Δ2; that is, then there must
be a j and an i such that Yj − Δ2 < Xi and Yj − Δ1 > Xi. This implies that
Δ1 < Yj − Xi < Δ2. Thus Wϕ(Δ) changes values at the differences Yj − Xi. To
show it is decreasing, suppose Δ1 < Yj−Xi < Δ2 and there are no other differences
between Δ1 and Δ2. Then Yj −Δ1 and Xi must have adjacent ranks; otherwise,
there would be more than one difference between Δ1 and Δ2. Since Yj −Δ1 > Xi

and Yj −Δ2 < Xi, we have

R(Yj −Δ1) = R(Xi) + 1 and R(Yj −Δ2) = R(Xi)− 1.

Also, in the expression for Wϕ(Δ), only the rank of the Yj term has changed in the
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interval [Δ1, Δ2]. Therefore, since the scores are nondecreasing,

Wϕ(Δ1)−Wϕ(Δ2) =
∑
k �=j

aϕ(R(Yk −Δ1)) + aϕ(R(Yj −Δ1))

−

⎡⎣∑
k �=j

aϕ(R(Yk −Δ2)) + aϕ(R(Yj −Δ2))

⎤⎦
= aϕ(R(Xi) + 1))− aϕ(R(Xi)− 1)) ≥ 0.

Because Wϕ(Δ) is a decreasing step function and steps only at the differences Yj −
Xi, its maximum value occurs when Δ < Yj−Xi, for all i, j, i.e., when Xi < Yj−Δ,
for all i, j. Hence, in this case, the variables Yj −Δ must get all the high ranks, so

max
Δ

Wϕ(Δ) =
n∑

j=n1+1

aϕ(j).

Note that this maximum value must be nonnegative. For suppose it was strictly
negative, then at least one aϕ(j) < 0 for j = n1 + 1, . . . , n. Because the scores are
nondecreasing, aϕ(i) < 0 for all i = 1, . . . , n1. This leads to the contradiction

0 >

n∑
j=n1+1

aϕ(j) ≥
n∑

j=n1+1

aϕ(j) +

n1∑
j=1

aϕ(j) = 0.

The results for the minimum value are obtained in the same way; see Exercise 10.5.6.

As Exercise 10.5.7 shows, the translation property, Lemma 10.2.1, holds for the
process Wϕ(Δ). Using this result and the last theorem, we can show that the power
function of the test statistic Wϕ for the hypotheses (10.5.1) is nondecreasing. Hence
the test is unbiased.

10.5.1 Efficacy

We next sketch the derivation of the efficacy of the test based on Wϕ. Our arguments
can be made rigorous; see advanced texts. Consider the statistic given by the average

Wϕ(0) =
1

n
Wϕ(0). (10.5.11)

Based on (10.5.5) and (10.5.8), we have

μϕ(0) = E0(Wϕ(0)) = 0 and σ2
ϕ = Var0(Wϕ(0)) = n1n2

n(n−1)n
−2s2

a. (10.5.12)

Notice from Exercise 10.5.4 that the variance of Wϕ(0) is of the order O(n−2). We
have

μϕ(Δ) = EΔ[Wϕ(0)] = E0[Wϕ(−Δ)] =
1

n

n2∑
j=1

E0[aϕ(R(Yj + Δ))]. (10.5.13)
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Suppose that F̂n1 and F̂n2 are the empirical cdfs of the random samples X1, . . . , Xn1

and Y1, . . . , Yn2 , respectively. The relationship between the ranks and empirical cdfs
follows as

R(Yj + Δ) = #k{Yk + Δ ≤ Yj + Δ}+ #i{Xi ≤ Yj + Δ}
= #k{Yk ≤ Yj}+ #i{Xi ≤ Yj + Δ}
= n2F̂n2(Yj) + n1F̂n1(Yj + Δ). (10.5.14)

Substituting this last expression into expression (10.5.13), we get

μϕ(Δ) =
1

n

n2∑
j=1

E0

{
ϕ

[
n2

n + 1
F̂n2(Yj) +

n1

n + 1
F̂n1(Yj + Δ)

]}
(10.5.15)

→ λ2E0 {ϕ [λ2F (Y ) + λ1F (Y + Δ)]} (10.5.16)

= λ2

∫ ∞

−∞
ϕ [λ2F (Y ) + λ1F (Y + Δ)] f(y) dy. (10.5.17)

The limit in expression (10.5.16) is actually a double limit, which follows from

F̂ni(x) → F (x), i = 1, 2, under H0, and the observation that upon substituting F for
the empirical cdfs in expression (10.5.15), the sum contains identically distributed
random variables and, thus, the same expectation. These approximations can be
made rigorous. It follows immediately that

d

dΔ
μϕ(Δ) = λ2

∫ ∞

−∞
ϕ′ [λ2F (Y ) + λ1F (Y + Δ)] λ1f(y + Δ)f(y) dy.

Hence

μ′
ϕ(0) = λ1λ2

∫ ∞

−∞
ϕ′[F (y)]f2(y) dy. (10.5.18)

From (10.5.12),

√
nσϕ =

√
n

√
n1n2

n(n− 1)

1√
n

√
1

n
s2

a →
√

λ1λ2. (10.5.19)

Based on (10.5.18) and (10.5.19), the efficacy of Wϕ is given by

cϕ = lim
n→∞

μ′
ϕ(0)√
nσϕ

=
√

λ1λ2

∫ ∞

−∞
ϕ′[F (y)]f2(y) dy. (10.5.20)

Using the efficacy, the asymptotic power can be derived for the test statistic
Wϕ. Consider the sequence of local alternatives given by (10.4.14) and the level α
asymptotic test based on Wϕ. Denote the power function of the test by γϕ(Δn).
Then it can be shown that

lim
n→∞

γϕ(Δn) = 1− Φ(zα − cϕδ), (10.5.21)

where Φ(z) is the cdf of a standard normal random variable. Sample size deter-
mination based on the test statistic Wϕ proceeds as in the last few sections; see
Exercise 10.5.8.
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10.5.2 Estimating Equations Based on General Scores

Suppose we are using the scores aϕ(i) = ϕ(i/(n + 1)) discussed in Section 10.5.1.
Recall that the mean of the test statistic Wϕ is 0. Hence the corresponding estimator
of Δ solves the estimating equations

Wϕ(Δ̂) ≈ 0. (10.5.22)

By Theorem 10.5.1, Wϕ(Δ̂) is a decreasing step function of Δ. Furthermore, the
maximum value is positive and the minimum value is negative (only degenerate
cases would result in one or both of these as 0); hence, the solution to equation

(10.5.22) exists. Because Wϕ(Δ̂) is a step function, it may not be unique. When
it is not unique, though, as with Wilcoxon and median procedures, there is an
interval of solutions, so the midpoint of the interval can be chosen. This is an
easy equation to solve numerically because simple iterative techniques such as the
bisection method or the method of false position can be used; see the discussion on
page 210 of Hettmansperger and McKean (2011). The asymptotic distribution of
the estimator can be derived using the asymptotic power lemma and is given by

Δ̂ϕ has an approximate N
(
Δ, τ2

ϕ

(
1

n1
+ 1

n2

))
distribution, (10.5.23)

where

τϕ =

[∫ ∞

−∞
ϕ′[F (y)]f2(y) dy

]−1

. (10.5.24)

Hence the efficacy can be expressed as cϕ =
√

λ1λ2τ
−1
ϕ . As Exercise 10.5.9 shows,

the parameter τϕ is a scale parameter. Since the efficacy is cϕ =
√

λ1λ2τ
−1
ϕ , the

efficacy varies inversely with scale. This observation proves helpful in the next
subsection.

10.5.3 Optimization: Best Estimates

We can now answer the questions posed in the first paragraph. For a given pdf
f(x), we show that in general we can select a score function that maximizes the
power of the test and minimizes the asymptotic variance of the estimator. Under
certain conditions we show that estimators based on this optimal score function
have the same efficiency as maximum likelihood estimators (mles); i.e., they obtain
the Rao–Cramér Lower Bound.

As above, let X1, . . . , Xn1 be a random sample from the continuous cdf F (x)
with pdf f(x). Let Y1, . . . , Yn2 be a random sample from the continuous cdf F (x−Δ)
with pdf f(x−Δ). The problem is to choose ϕ to maximize the efficacy cϕ given in
expression (10.5.20). Note that maximizing the efficacy is equivalent to minimizing
the asymptotic variance of the corresponding estimator of Δ.

For a general score function ϕ(u), consider its efficacy given by expression
(10.5.20). Without loss of generality, the relative sample sizes in this expression
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can be ignored, so we consider c∗ϕ = (
√

λ1λ2)
−1cϕ. If we make the change of vari-

ables u = F (y) and then integrate by parts, we get

c∗ϕ =

∫ ∞

−∞
ϕ′[F (y)]f2(y) dy

=

∫ 1

0

ϕ′(u)f(F−1(u)) du

=

∫ 1

0

ϕ(u)

[
−f ′(F−1(u))

f(F−1(u))

]
du. (10.5.25)

Recall that the score function
∫

ϕ2(u) du = 1. Thus we can state the problem
as

max
ϕ

c∗2ϕ = max
ϕ

{∫ 1

0

ϕ(u)

[
−f ′(F−1(u))

f(F−1(u))

]
du

}2

=

⎧⎪⎨⎪⎩max
ϕ

{∫ 1

0 ϕ(u)
[
− f ′(F−1(u))

f(F−1(u))

]
du

}2

∫ 1

0
ϕ2(u) du

∫ 1

0

[
f ′(F−1(u))
f(F−1(u))

]2

du

⎫⎪⎬⎪⎭
∫ 1

0

[
f ′(F−1(u))

f(F−1(u))

]2

du.

The quantity that we are maximizing in the braces of this last expression, how-
ever, is the square of a correlation coefficient, which achieves its maximum value 1.
Therefore, by choosing the score function ϕ(u) = ϕf (u), where

ϕf (u) = −κ
f ′(F−1(u))

f(F−1(u))
, (10.5.26)

and κ is a constant chosen so that
∫

ϕ2
f (u) du = 1, then the correlation coefficient

is 1 and the maximum value is

I(f) =

∫ 1

0

[
f ′(F−1(u))

f(F−1(u))

]2

du, (10.5.27)

which is Fisher information for the location model. We call the score function given
by (10.5.26) the optimal score function.

In terms of estimation, if Δ̂ is the corresponding estimator, then, according to
(10.5.24), it has the asymptotic variance

τ2
ϕ =

[
1

I(f)

](
1

n1
+

1

n2

)
. (10.5.28)

Thus the estimator Δ̂ achieves asymptotically the Rao–Cramér lower bound; that
is, Δ̂ is an asymptotically efficient estimator of Δ. In terms of asymptotic relative
efficiency, the ARE between the estimator Δ̂ and the mle of Δ is 1. Thus we have
answered the second question of the first paragraph of this section.

Now we look at some examples. The initial example assumes that the distri-
bution of εi is normal, which answers the leading question at the beginning of this
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section. First, though, note an invariance that simplifies matters. Suppose Z is
a scale and location transformation of a random variable X ; i.e., Z = a(X − b),
where a > 0 and −∞ < b <∞. Because the efficacy varies indirectly with scale, we
have c2

fZ
= a−2c2

fX
. Furthermore, as Exercise 10.5.9 shows, the efficacy is invariant

to location and, also, I(fZ) = a−2I(fX). Hence the quantity maximized above is
invariant to changes in location and scale. In particular, in the derivation of optimal
scores, only the form of the density is important.

Example 10.5.1 (Normal Scores). Suppose the error random variable εi has a
normal distribution. Based on the discussion in the last paragraph, we can take the
pdf of a N(0, 1) distribution as the form of the density. So consider fZ(z) = φ(z) =
(2π)−1/2 exp{−2−1z2}. Then −φ′(z) = zφ(z). Let Φ(z) denote the cdf of Z. Hence
the optimal score function is

ϕN (u) = −κ
φ′(Φ−1(u))

φ(Φ−1(u))
= Φ−1(u); (10.5.29)

see Exercise 10.5.5, which shows that κ = 1 as well as that
∫

ϕN (u) du = 0. The
corresponding scores, aN (i) = Φ−1(i/(n + 1)), are often called the normal scores.
Denote the process by

WN (Δ) =

n2∑
j=1

Φ−1[R(Yj −Δ)/(n + 1)]. (10.5.30)

The associated test statistic for the hypotheses (10.5.1) is the statistic WN = WN (0).
The estimator of Δ solves the estimating equations

WN (Δ̂N ) ≈ 0. (10.5.31)

Although the estimate cannot be obtained in closed form, this equation is relatively
easy to solve numerically. From the above discussion, ARE(Δ̂N , Y −X) = 1 at the
normal distribution. Hence normal score procedures are fully efficient at the normal
distribution. Actually, a much more powerful result can be obtained for symmet-
ric distributions. It can be shown that ARE(Δ̂N , Y − X) ≥ 1 at all symmetric
distributions.

Example 10.5.2 (Wilcoxon Scores). Suppose the random errors, εi, i = 1, 2, . . . , n,
have a logistic distribution with pdf fZ(z) = exp{−z}/(1 + exp{−z})2. Then the
corresponding cdf is FZ(z) = (1 + exp{−z})−1. As Exercise 10.5.11 shows,

− f ′

Z(z)
fZ(z) = FZ(z)(1− exp{−z}) and F−1

Z (u) = log u
1−u . (10.5.32)

Upon standardization, this leads to the optimal score function,

ϕW (u) =
√

12(u− (1/2)), (10.5.33)

that is, the Wilcoxon scores. The properties of the inference based on Wilcoxon
scores are discussed in Section 10.4. Let Δ̂W = med {Yj − Xi} denote the corre-

sponding estimate. Recall that ARE(Δ̂W , Y −X) = 0.955 at the normal. Hodges

and Lehmann (1956) showed that ARE(Δ̂W , Y − X) ≥ 0.864 over all symmetric
distributions.
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Table 10.5.1: Data for Example 10.5.3

Sample 1 (X) Sample 2 (Y )
Data Ranks Normal Scores Data Ranks Normal Scores
51.9 15 −0.04044 59.2 24 0.75273
56.9 23 0.64932 49.1 14 −0.12159
45.2 11 −0.37229 54.4 19 0.28689
52.3 16 0.04044 47.0 13 −0.20354
59.5 26 0.98917 55.9 21 0.46049
41.4 4 −1.13098 34.9 3 −1.30015
46.4 12 −0.28689 62.2 28 1.30015
45.1 10 −0.46049 41.6 6 −0.86489
53.9 17 0.12159 59.3 25 0.86489
42.9 7 −0.75273 32.7 1 −1.84860
41.5 5 −0.98917 72.1 29 1.51793
55.2 20 0.37229 43.8 8 −0.64932
32.9 2 −1.51793 56.8 22 0.55244
54.0 18 0.20354 76.7 30 1.84860
45.0 9 −0.55244 60.3 27 1.13098

Example 10.5.3. As a numerical illustration, we consider some generated nor-
mal observations. The first sample, labeled X , was generated from a N(48, 102)
distribution, while the second sample, Y , was generated from a N(58, 102) distribu-
tion. The data are displayed in Table 10.5.1, but they can also be found in the file
examp1053.rda. Also in Table 10.5.1, the ranks and the normal scores are exhib-
ited. We consider tests of the two-sided hypotheses H0 : Δ = 0 versus H1 : Δ 
= 0
for the Wilcoxon, normal scores, and Student t procedures. The next segment of R
code returns the results in Table 10.5.2. As we have used the R functions t.test

and wilcox.test in the last section we do not show their results in the segment
but we do show the results for the normal scores. The code assumes that the R
vectors x and y contain the respective samples.

t.test(y,x); wilcox.test(y,x,conf.int=T)

zed=c(x,y); ind=c(rep(0,15),rep(1,15)); rz=rank(z)

phis=qnorm(rz/31); varns= ((15*15)/(30*29))*sum(phis^2)

nstst=sum(ind*phis); stdns=nstst/sqrt(varns)

pns =2*(1-pnorm(abs(stdns)))

nstst; stdns; pns

3.727011; 1.483559; 0.137926

To complete the summary in Table 10.5.2 we need the estimate of Δ based on the
rank-based normal scores process. Kloke and McKean (2014) discuss the use of the
CRAN package Rfit for this computation. If this package is installed in the users
area then the following command computes this estimate of Δ:

rfit(zed~ind,scores=nscores)$coef[2]

5.100012
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Table 10.5.2: Summary of analyses for Example 10.5.3

Method Test Statistic Standardized p-Value Estimate of Δ

Student t Y −X = 5.46 1.47 0.16 5.46
Wilcoxon W = 270 1.53 0.12 5.20
Normal scores WN = 3.73 1.48 0.14 5.15

Notice that the standardized tests statistics and their corresponding p-values are
quite similar and all would result in the same decision regarding the hypotheses.
As shown in the table, the corresponding point estimates of Δ are also alike.

We changed x5 to be an outlier with value 95.5 and then reran the analyses. The
t-analysis was the most affected, for on the changed data, t = 0.63 with a p-value
of 0.53. In contrast, the Wilcoxon analysis was the least affected (z = 1.37 and
p = 0.17). The normal scores analysis was more affected by the outlier than the
Wilcoxon analysis with z = 1.14 and p = 0.25.

Example 10.5.4 (Sign Scores). For our final example, suppose that the ran-
dom errors ε1, ε2, . . . , εn have a Laplace distribution. Consider the convenient
form fZ(z) = 2−1 exp{−|z|}. Then f ′

Z(z) = −2−1sgn(z) exp{−|z|} and, hence,
−f ′

Z(F−1
Z (u))/fZ(F−1

Z (u)) = sgn(z). But F−1
Z (u) > 0 if and only if u > 1/2. The

optimal score function is

ϕS(u) = sgn

(
u− 1

2

)
, (10.5.34)

which is easily shown to be standardized. The corresponding process is

WS(Δ) =

n2∑
j=1

sgn

[
R(Yj −Δ)− n + 1

2

]
. (10.5.35)

Because of the signs, this test statistic can be written in a simpler form, which is
often called Mood’s test; see Exercise 10.5.13.

We can also obtain the associated estimator in closed form. The estimator solves
the equation

n2∑
j=1

sgn

[
R(Yj −Δ)− n + 1

2

]
= 0. (10.5.36)

For this equation, we rank the variables

{X1, . . . , Xn1 , Y1 −Δ, . . . , Yn2 −Δ}.

Because ranks, though, are invariant to a constant shift, we obtain the same ranks
if we rank the variables

X1 −med{Xi}, . . . , Xn1 −med{Xi}, Y1 −Δ−med{Xi}, . . . , Yn2 −Δ−med{Xi}.

Therefore, the solution to equation (10.5.36) is easily seen to be

Δ̂S = med{Yj} −med{Xi}. (10.5.37)
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Other examples are given in the exercises.

EXERCISES

10.5.1. In this section, as discussed above expression (10.5.2), the scores aϕ(i) are

generated by the standardized score function ϕ(u); that is,
∫ 1

0 ϕ(u) du = 0 and∫ 1

0 ϕ2(u) du = 1. Suppose that ψ(u) is a square-integrable function defined on the
interval (0, 1). Consider the score function defined by

ϕ(u) =
ψ(u)− ψ∫ 1

0
[ψ(v)− ψ]2 dv

,

where ψ =
∫ 1

0 ψ(v) dv. Show that ϕ(u) is a standardized score function.

10.5.2. Complete the derivation of the null variance of the test statistic Wϕ by
showing the second term in expression (10.5.7) is true.
Hint: Use the fact that under H0, for j 
= j′, the pair (aϕ(R(Yj)), aϕ(R(Yj′ ))) is
uniformly distributed on the pairs of integers (i, i′), i, i′ = 1, 2, . . . , n, i 
= i′.

10.5.3. For the Wilcoxon score function ϕ(u) =
√

12[u− (1/2)], obtain the value of
sa. Then show that the VH0(Wϕ) given in expression (10.5.8) is the same (except
for standardization) as the variance of the MWW statistic of Section 10.4.

10.5.4. Recall that the scores have been standardized so that
∫∞
−∞ ϕ2(u) du = 1.

Use this and a Riemann sum to show that n−1s2
a → 1, where s2

a is defined in
expression (10.5.6).

10.5.5. Show that the normal scores, (10.5.29), derived in Example 10.5.1 are

standardized; that is,
∫ 1

0 ϕN (u) du = 0 and
∫ 1

0 ϕ2
N (u) du = 1.

10.5.6. In Theorem 10.5.1, show that the minimum value of Wϕ(Δ) is given by∑n2

j=1 aϕ(j) and that it is nonpositive.

10.5.7. Show that EΔ[Wϕ(0)] = E0[Wϕ(−Δ)].

10.5.8. Consider the hypotheses (10.4.4). Suppose we select the score function
ϕ(u) and the corresponding test based on Wϕ. Suppose we want to determine the
sample size n = n1 + n2 for this test of significance level α to detect the alternative
Δ∗ with approximate power γ∗. Assuming that the sample sizes n1 and n2 are the
same, show that

n ≈
(

(zα − zγ∗)2τϕ

Δ∗

)2

. (10.5.38)

10.5.9. In the context of this section, show the following invariances:

(a) Show that the parameter τϕ, (10.5.24), is a scale functional as defined in
Exercise 10.1.4.
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(b) Show that part (a) implies that the efficacy, (10.5.20), is invariant to the
location and varies indirectly with scale.

(c) Suppose Z is a scale and location transformation of a random variable X ; i.e.,
Z = a(X − b), where a > 0 and −∞ < b <∞. Show that I(fZ) = a−2I(fX).

10.5.10. Consider the scale parameter τϕ, (10.5.24), when normal scores are used;
i.e., ϕ(u) = Φ−1(u). Suppose we are sampling from a N(μ, σ2) distribution. Show
that τϕ = σ.

10.5.11. In the context of Example 10.5.2, obtain the results in expression (10.5.32).

10.5.12. Let the scores a(i) be generated by aϕ(i) = ϕ[i/(n + 1)], for i = 1, . . . , n,

where
∫ 1

0
ϕ(u) du = 0 and

∫ 1

0
ϕ2(u) du = 1. Using Riemann sums, with subintervals

of equal length, of the integrals
∫ 1

0 ϕ(u) du and
∫ 1

0 ϕ2(u) du, show that
∑n

i=1 a(i) ≈ 0
and

∑n
i=1 a2(i) ≈ n.

10.5.13. Consider the sign scores test procedure discussed in Example 10.5.4.

(a) Show that WS = 2W ∗
S − n2, where W ∗

S = #j

{
R(Yj) > n+1

2

}
. Hence W ∗

S is
an equivalent test statistic. Find the null mean and variance of WS .

(b) Show that W ∗
S = #j {Yj > θ∗}, where θ∗ is the combined sample median.

(c) Suppose n is even. Letting W ∗
XS = #i {Xi > θ∗}, show that we can table W ∗

S

in the following 2× 2 contingency table with all margins fixed:

Y X
No. items > θ∗ W ∗

S W ∗
XS

n
2

No. items < θ∗ n2 −W ∗
S n1 −W ∗

XS
n
2

n2 n1 n

Show that the usual χ2 goodness-of-fit is the same as Z2
S , where ZS is the

standardized z-test based on WS . This is often called Mood’s median test;
see Example 10.5.4.

10.5.14. Recall the data discussed in Example 10.5.3.

(a) Obtain the contingency table described in Exercise 10.5.13.

(b) Obtain the χ2 goodness-of-fit test statistic associated with the table and use
it to test at level 0.05 the hypotheses H0 : Δ = 0 versus H1 : Δ 
= 0.

(c) Obtain the point estimate of Δ given in expression (10.5.37).

10.5.15. Optimal signed-rank based methods also exist for the one-sample problem.
In this exercise, we briefly discuss these methods. Let X1, X2, . . . , Xn follow the
location model

Xi = θ + ei, (10.5.39)

where e1, e2, . . . , en are iid with pdf f(x), which is symmetric about 0; i.e., f(−x) =
f(x).
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(a) Show that under symmetry the optimal two-sample score function (10.5.26)
satisfies

ϕf (1− u) = −ϕf (u), 0 < u < 1; (10.5.40)

that is, ϕf (u) is an odd function about 1
2 . Show that a function satisfying

(10.5.40) is 0 at u = 1
2 .

(b) For a two-sample score function ϕ(u) that is odd about 1
2 , define the function

ϕ+(u) = ϕ[(u+1)/2], i.e., the top half of ϕ(u). Note that the domain of ϕ+(u)
is the interval (0, 1). Show that ϕ+(u) ≥ 0, provided ϕ(u) is nondecreasing.

(c) Assume for the remainder of the problem that ϕ+(u) is nonnegative and non-
decreasing on the interval (0, 1). Define the scores a+(i) = ϕ+[i/(n + 1)],
i = 1, 2, . . . , n, and the corresponding statistic

Wϕ+ =

n∑
i=1

sgn(Xi)a
+(R|Xi|). (10.5.41)

Show that Wϕ+ reduces to a linear function of the signed-rank test statistic
(10.3.2) if ϕ(u) = 2u− 1.

(d) Show that Wϕ+ reduces to a linear function of the sign test statistic (10.2.3)
if ϕ(u) = sgn(2u− 1).

Note: Suppose Model (10.5.39) is true and we take ϕ(u) = ϕf (u), where
ϕf (u) is given by (10.5.26). If we choose ϕ+(u) = ϕ[(u+1)/2] to generate the
signed-rank scores, then it can be shown that the corresponding test statistic
Wϕ+ is optimal, among all signed-rank tests.

(e) Consider the hypotheses

H0 : θ = 0 versus H1 : θ > 0.

Our decision rule for the statistic Wϕ+ is to reject H0 in favor of H1 if Wϕ+ ≥
k, for some k. Write Wϕ+ in terms of the anti-ranks, (10.3.5). Show that Wϕ+

is distribution-free under H0.

(f) Determine the mean and variance of Wϕ+ under H0.

(g) Assuming that, when properly standardized, the null distribution is asymp-
totically normal, determine the asymptotic test.

10.6 ∗Adaptive Procedures

In the last section, we presented fully efficient rank-based procedures for testing and
estimation. As with mle methods, though, the underlying form of the distribution
must be known in order to select the optimal rank score function. In practice,
often the underlying distribution is not known. In this case, we could select a score
function, such as the Wilcoxon, which is fairly efficient for moderate- to heavy-tailed
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error distributions. Or if the distribution of the errors is thought to be quite close
to a normal distribution, then the normal scores would be a proper choice. Suppose
we use a technique that bases the score selection on the data. These techniques are
called adaptive procedures. Such a procedure could attempt to estimate the score
function; see, for example, Naranjo and McKean (1997). However, large data sets
are often needed for these. There are other adaptive procedures that attempt to
select a score from a finite class of scores based on some criteria. In this section, we
look at an adaptive testing procedure that retains the distribution-free property.

Frequently, an investigator is tempted to evaluate several test statistics associ-
ated with a single hypothesis and then use the one statistic that best supports his
or her position, usually rejection. Obviously, this type of procedure changes the
actual significance level of the test from the nominal α that is used. However, there
is a way in which the investigator can first look at the data and then select a test
statistic without changing this significance level. For illustration, suppose there are
three possible test statistics, W1, W2, and W3, of the hypothesis H0 with respective
critical regions C1, C2, and C3 such that P (Wi ∈ Ci; H0) = α, i = 1, 2, 3. Moreover,
suppose that a statistic Q, based upon the same data, selects one and only one of
the statistics W1, W2, W3, and that W is then used to test H0. For example, we
choose to use the test statistic Wi if Q ∈ Di, i = 1, 2, 3, where the events defined
by D1, D2, and D3 are mutually exclusive and exhaustive. Now if Q and each Wi

are independent when H0 is true, then the probability of rejection, using the entire
procedure (selecting and testing), is, under H0,

PH0(Q ∈ D1, W1 ∈ C1) + PH0(Q ∈ D2, W2 ∈ C2) + PH0(Q ∈ D3, W3 ∈ C3)

=PH0(Q ∈ D1)PH0(W1 ∈ C1) + PH0(Q ∈ D2)PH0(W2 ∈ C2)

+ PH0(Q ∈ D3)PH0 (W3 ∈ C3)

=α[PH0 (Q ∈ D1) + PH0(Q ∈ D2) + PH0 (Q ∈ D3)] = α.

That is, the procedure of selecting Wi using an independent statistic Q and then
constructing a test of significance level α with the statistic Wi has overall significance
level α.

Of course, the important element in this procedure is the ability to be able to
find a selector Q that is independent of each test statistic W . This can frequently be
done by using the fact that complete sufficient statistics for the parameters, given by
H0, are independent of every statistic whose distribution is free of those parameters.
For illustration, if independent random samples of sizes n1 and n2 arise from two
normal distributions with respective means μ1 and μ2 and common variance σ2,
then the complete sufficient statistics X, Y , and

V =

n1∑
1

(Xi −X)2 +

n2∑
1

(Yi − Y )2

for μ1, μ2, and σ2 are independent of every statistic whose distribution is free of
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μ1, μ2, and σ2, such as the statistics

n1∑
1

(Xi −X)2

n2∑
1

(Yi − Y )2
,

n1∑
1

|Xi −median(Xi)|

n2∑
1

|Yi −median(Yi)|
,

range(X1, X2, . . . , Xn1)

range(Y1, Y2, . . . , Yn2)
.

Thus, in general, we would hope to be able to find a selector Q that is a function
of the complete sufficient statistics for the parameters, under H0, so that it is
independent of the test statistic.

It is particularly interesting to note that it is relatively easy to use this technique
in nonparametric methods by using the independence result based upon complete
sufficient statistics for parameters. For the situations here, we must find complete
sufficient statistics for a cdf, F , of the continuous type. In Chapter 7, it is shown
that the order statistics Y1 < Y2 < · · · < Yn of a random sample of size n from a
distribution of the continuous type with pdf F ′(x) = f(x) are sufficient statistics
for the “parameter” f (or F ). Moreover, if the family of distributions contains all
probability density functions of the continuous type, the family of joint probability
density functions of Y1, Y2, . . . , Yn is also complete. That is, the order statistics
Y1, Y2, . . . , Yn are complete sufficient statistics for the parameters f (or F ).

Accordingly, our selector Q is based upon those complete sufficient statistics, the
order statistics under H0. This allows us to independently choose a distribution-
free test appropriate for this type of underlying distribution, and thus increase the
power of our test.

A statistical test that maintains the significance level close to a desired signif-
icance level α for a wide variety of underlying distributions with good (not neces-
sarily the best for any one type of distribution) power for all these distributions is
described as being robust. As an illustration, the pooled t-test (Student’s t) used to
test the equality of the means of two normal distributions is quite robust provided
that the underlying distributions are rather close to normal ones with common vari-
ance. However, if the class of distributions includes those that are not too close to
normal ones, such as contaminated normal distributions, the test based upon t is
not robust; the significance level is not maintained and the power of the t-test can
be quite low for heavy-tailed distributions. As a matter of fact, the test based on
the Mann–Whitney–Wilcoxon statistic (Section 10.4) is a much more robust test
than that based upon t if the class of distributions includes those with heavy tails.

In the following example, we illustrate a robust, adaptive, distribution-free pro-
cedure in the setting of the two-sample problem.

Example 10.6.1. Let X1, X2, . . . , Xn1 be a random sample from a continuous-
type distribution with cdf F (x) and let Y1, Y2, . . . , Yn2 be a random sample from a
distribution with cdf F (x−Δ). Let n = n1 + n2 denote the combined sample size.
We test

H0 : Δ = 0 versus H1 : Δ > 0,

by using one of four distribution-free statistics, one being the Wilcoxon and the
other three being modifications of the Wilcoxon. In particular, the test statistics
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are

Wi =

n2∑
j=1

ai[R(Yj)], i = 1, 2, 3, 4, (10.6.1)

where

ai(j) = ϕi[j/(n + 1)],

and the four functions are displayed in Figure 10.6.1. The score function ϕ1(u)
is the Wilcoxon. The score function ϕ2(u) is the sign score function. The score
function ϕ3(u) is good for short-tailed distributions, and ϕ4(u) is good for long,
right-skewed distributions with shift alternatives.

u
1

1(u)

u
1

2(u)

u
1

3(u)

u
1

4(u)

Figure 10.6.1: Plots of the score functions ϕ1(u), ϕ2(u), ϕ3(u), and ϕ4(u).

We combine the two samples into one denoting the order statistics of the com-
bined sample by V1 < V2 < · · · < Vn. These are complete sufficient statistics for
F (x) under the null hypothesis. For i = 1, . . . , 4, the test statistic Wi is distribution
free under H0 and, in particular, the distribution of Wi does not depend on F (x).
Therefore, each Wi is independent of V1, V2, . . . , Vn. We use a pair of selector statis-
tics (Q1, Q2), which are functions of V1, V2, . . . , Vn, and hence are also independent
of each Wi. The first is

Q1 =
U .05 −M .5

M .5 − L.05

, (10.6.2)

where U .05, M .5, and L.05 are the averages of the largest 5% of the V s, the middle
50% of the V s, and the smallest 5% of the V s, respectively. If Q1 is large (say 2
or more), then the right tail of the distribution seems longer than the left tail; that
is, there is an indication that the distribution is skewed to the right. On the other
hand, if Q1 < 1

2 , the sample indicates that the distribution may be skewed to the
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left. The second selector statistic is

Q2 =
U .05 − L.05

U .5 − L.5

. (10.6.3)

Large values of Q2 indicate that the distribution is heavy-tailed, while small values
indicate that the distribution is light-tailed. Rules are needed for score selection,
and here we make use of the benchmarks proposed in an article by Hogg et al.
(1975). These rules are tabulated below, along with their benchmarks:

Benchmark Distribution Indicated Score Selected
Q2 > 7 Heavy-tailed symmetric ϕ2

Q1 > 2 and Q2 < 7 Right-skewed ϕ4

Q1 ≤ 2 and Q2 ≤ 2 Light-tailed symmetric ϕ3

Elsewhere Moderate heavy-tailed ϕ1

Hogg et al. (1975) performed a Monte Carlo power study of this adaptive proce-
dure over a number of distributions with different kurtosis and skewness coefficients.
In the study, both the adaptive procedure and the Wilcoxon test maintain their α
level over the distributions, but the Student t does not. Moreover, the Wilcoxon test
has better power than the t-test, as the distribution deviates much from the normal
(kurtosis = 3 and skewness = 0), but the adaptive procedure is much better than
the Wilcoxon for the short-tailed distributions, the very heavy-tailed distributions,
and the highly skewed distributions that are considered in the study.

Remark 10.6.1 (Computation for the Adaptive Procedure). An R implementation
of Hogg’s adaptive procedure as discussed in Example 10.6.1 can be found in the R
package npsm developed by Kloke and McKean (2014); see their Section 3.6. The
R function is hogg.test. For illustration, consider the normal data discussed in
Example 10.5.3. Here are the code and results:

load("examp1053.rda"); hogg.test(y,x)

Scores Selected: Wilcoxon; p.value 0.11984

Hence, for this data, Hogg’s procedure selected Wilcoxon scores. As another ex-
ample, consider the waterwheel data given in Example 10.4.1. In this case the
computation results in:

load("waterwheel.rda"); hogg.test(grp2,grp1)

Scores Selected: bent; p.value 0.63494

The selected score is the bent score which is the score function ϕ4(u) in Hogg’s
procedure. As the boxplot for the combined samples indicates the data are right-
skewed, an indication that the score selection is appropriate.

The adaptive distribution-free procedure that we have discussed is for testing.
Suppose we have a location model and were interested in estimating the shift in
locations Δ. For example, if the true F is a normal cdf, then a good choice for
the estimator of Δ would be the estimator based on the normal scores procedure
discussed in Example 10.5.1. The estimators, though, are not distribution free and,
hence, the above reasoning does not hold. Also, the combined sample observations
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X1, . . . , Xn1 , Y1, . . . , Yn2 are not identically distributed. There are adaptive proce-

dures based on residuals X1, . . . , Xn1 , Y1 − Δ̂, . . . , Yn2 − Δ̂, where Δ̂ is an initial
estimator of Δ; see page 237 of Hettmansperger and McKean (2011) for discussion
and Section 7.6 of Kloke and McKean (2014) for an R implementation.

EXERCISES

10.6.1. In Exercises 10.6.2 and 10.6.3, the student is asked to apply the adaptive
procedure described in Example 10.6.1 to real data sets. The hypotheses of interest
are

H0 : Δ = 0 versus H1 : Δ > 0,

where Δ = μY − μX . The four distribution-free test statistics are

Wi =

n2∑
j=1

ai[R(Yj)], i = 1, 2, 3, 4, (10.6.4)

where
ai(j) = ϕi[j/(n + 1)],

and the score functions are given by

ϕ1(u) = 2u− 1, 0 < u < 1

ϕ2(u) = sgn(2u− 1), 0 < u < 1

ϕ3(u) =

⎧⎨⎩ 4u− 1 0 < u ≤ 1
4

0 1
4 < u ≤ 3

4
4u− 3 3

4 < u < 1

ϕ4(u) =

{
4u− (3/2) 0 < u ≤ 1

2
1/2 1

2 < u < 1.

Note that we have adjusted the fourth score ϕ4(u) in Figure 10.6.1 so that it inte-
grates to 0 over the interval (0, 1).

The theory of Section 10.5 states that, under H0, the distribution of Wi is
asymptotically normal with mean 0 and variance

VarH0(Wi) =
n1n2

n− 1

⎡⎣ 1

n

n∑
j=1

a2
i (j)

⎤⎦ .

Note, however, that the scores have not been standardized, so their squares integrate
to 1 over the interval (0, 1). Hence, do not replace the term in brackets by 1. If
n1 = n2 = 15, find VarH0(Wi), for i = 1, . . . , 4.

10.6.2. Consider the data in Example 10.5.3 and the hypotheses

H0 : Δ = 0 versus H1 : Δ > 0,

where Δ = μY − μX . Apply the adaptive procedure described in Example 10.6.1
with the tests defined in Exercise 10.6.1 to test these hypotheses. Obtain the p-value
of the test.
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10.6.3. Let F (x) be a distribution function of a distribution of the continuous type
that is symmetric about its median θ. We wish to test H0 : θ = 0 against H1 : θ > 0.
Use the fact that the 2n values, Xi and −Xi, i = 1, 2, . . . , n, after ordering, are
complete sufficient statistics for F , provided that H0 is true.

(a) As in Exercise 10.5.15, determine the one-sample signed-rank test statistics
corresponding to the two-sample score functions ϕ1(u), ϕ2(u), and ϕ3(u) de-
fined in the last exercise. Use the asymptotic test statistics. Note that these
score functions are odd about 1

2 ; hence, their top halves serve as score func-
tions for signed-rank statistics.

(b) We are assuming symmetric distributions in this problem; hence, we use only
Q2 as our score selector. If Q2 ≥ 7, then select ϕ2(u); if 2 < Q2 < 7, then
select ϕ1(u); and finally, if Q2 ≤ 2, then select ϕ3(u). Construct this adaptive
distribution-free test.

(c) Use your adaptive procedure on Darwin’s Zea mays data; see Example 10.3.1.
Obtain the p-value.

10.7 Simple Linear Model

In this section, we consider the simple linear model and briefly develop the rank-
based procedures for it.

Suppose the responses Y1, Y2, . . . , Yn follow the model

Yi = α + β(xi − x) + εi , i = 1, 2, . . . , n, (10.7.1)

where ε1, ε2, . . . , εn are iid with continuous cdf F (x) and pdf f(x). In this model, the
variables x1, x2, . . . , xn are considered fixed. Often x is referred to as a predictor
of Y . Also, the centering, using x, is for convenience (without loss of generality)
and we do not use it in the examples of this section. The parameter β is the slope
parameter, which is the expected change in Y (provided expectations exist) when
x increases by one unit. A natural null hypothesis is

H0 : β = 0 versus H1 : β 
= 0. (10.7.2)

Under H0, the distribution of Y is free of x.
In Chapter 3 of Hettmansperger and McKean (2011), rank-based procedures

for linear models are presented from a geometric point of view; see also Exercises
10.9.11–10.9.12 of Section 10.9. Here, it is easier to present a development which
parallels the preceding sections. Hence we introduce a rank test of H0 and then
invert the test to estimate β. Before doing this, though, we present an example that
shows that the two-sample location problem of Section 10.4 is a regression problem.

Example 10.7.1. As in Section 10.4, let X1, X2, . . . , Xn1 be a random sample from
a distribution with a continuous cdf F (x − α), where α is a location parameter.
Let Y1, Y2, . . . , Yn2 be a random sample with cdf F (x − α − Δ). Hence Δ is the
shift between the cdfs of Xi and Yj . Redefine the observations as Zi = Xi, for
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i = 1, . . . , n1, and Zn1+i = Yi, for i = n1 + 1, . . . , n, where n = n1 + n2. Let ci be
0 or 1 depending on whether 1 ≤ i ≤ n1 or n1 + 1 ≤ i ≤ n. Then we can write the
two sample location models as

Zi = α + Δci + εi, (10.7.3)

where ε1, ε2, . . . , εn are iid with cdf F (x). Hence the shift in locations is the slope
parameter from this viewpoint.

Suppose the regression model (10.7.1) holds and, further, that H0 is true. Then
we would expect that Yi and xi − x are not related and, in particular, that they
are uncorrelated. Hence one could consider

∑n
i=1(xi − x)Yi as a test statistic. As

Exercise 9.6.11 of Chapter 9 shows, if we additionally assume that the random
errors εi are normally distributed, this test statistic, properly standardized, is the
likelihood ratio test statistic. Reasoning in the same way, for a specified score
function we would expect that aϕ(R(Yi)) and xi − x are uncorrelated, under H0.
Therefore, consider the test statistic

Tϕ =

n∑
i=1

(xi − x)aϕ(R(Yi)), (10.7.4)

where R(Yi) denotes the rank of Yi among Y1, . . . , Yn and aϕ(i) = ϕ(i/(n+1)) for a
nondecreasing score function ϕ(u) that is standardized, so that

∫
ϕ(u) du = 0 and∫

ϕ2(u) du = 1. Values of Tϕ close to 0 indicate H0 is true.
Assume H0 is true. Then Y1, . . . , Yn are iid random variables. Hence any per-

mutation of the integers {1, 2, . . . , n} is equilikely to be the ranks of Y1, . . . , Yn. So
the distribution of Tϕ is free of F (x). Note that the distribution does depend on
x1, x2, . . . , xn. Thus, tables of the distribution are not available, although with high-
speed computing, this distribution can be generated. Because R(Yi) is uniformly
distributed on the integers {1, 2, . . . , n}, it is easy to show that the null expectation
of Tϕ is zero. The null variance follows that of Wϕ of Section 10.5, so we have left
the details for Exercise 10.7.4. To summarize, the null moments are given by

EH0(Tϕ) = 0 and VarH0(Tϕ) = 1
n−1s2

a

n∑
i=1

(xi − x)2, (10.7.5)

where s2
a is the mean sum of the squares of the scores (10.5.6). Also, it can be shown

that the test statistic is asymptotically normal. Therefore, an asymptotic level α
decision rule for the hypotheses (10.7.2) with the two-sided alternative is given by

Reject H0 in favor of H1 if |z| =
∣∣∣∣∣ Tϕq

VarH0 (Tϕ)

∣∣∣∣∣ ≥ zα/2. (10.7.6)

The associated process is given by

Tϕ(β) =

n∑
i=1

(xi − x)aϕ(R(Yi − xiβ)). (10.7.7)
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Hence the corresponding estimate of β is given by β̂ϕ, which solves the estimating
equations

Tϕ(β̂ϕ) ≈ 0. (10.7.8)

Similar to Theorem 10.5.1, it can be shown that Tϕ(β) is a decreasing step function
of β that steps down at each sample slope (Yj − Yi)/(xj − xi), for i 
= j. Thus the
estimate exists. It cannot be obtained in closed form, but simple iterative techniques
can be used to find the solution. In the regression problem, though, prediction of Y
is often of interest, which also requires an estimate of α. Notice that such an estimate
can be obtained as a location estimate based on residuals. This is discussed in some
detail in Section 3.5.2 of Hettmansperger and McKean (2011). For our purposes,
we consider the median of the residuals; that is, we estimate α as

α̂ = med{Yi − β̂ϕ(xi − x)}. (10.7.9)

Remark 10.7.1 (Computation). The Wilcoxon estimates of slope and intercept are
computed by several packages. We recommend the CRAN package Rfit developed
by Kloke and McKean (2012). Chapter 4 of the book by Kloke and McKean (2014)
discusses the use of Rfit for the simple regression model (10.7.1). Rfit has code
for many score functions, including the Wilcoxon scores, normal scores, as well as
scores appropriate for skewed error distributions. The computations in this section
are performed by Rfit. Also, the minitab command rregr obtains the Wilcoxon
fit. Terpstra and McKean (2005) have written a collection of R functions, ww, which
obtains the fit using Wilcoxon scores.

Example 10.7.2 (Telephone Data). Consider the regression data discussed in Ex-
ercise 9.6.3. Recall that the responses (y) for this data set are the numbers of
telephone calls (tens of millions) made in Belgium for the years 1950–1973, while
time in years serves as the predictor variable (x). The data are plotted in Figure
10.7.1. The data are in the file telephone.rda. For this example, we use Wilcoxon
scores to fit Model (10.7.1). The code and partial results (including the plot with
overlaid fits) are:

fitls <- lm(numcall~year); fitrb <- rfit(numcall~year)

fitls$coef; fitrb$coef # Result -26.0, 0.504; -7.1, 0.145

plot(numcall~year,xlab="Year",ylab="Number of calls")

abline(fitls); abline(fitrb,lty=2)

legend(50,15,c("LS-Fit","Wilcoxon-Fit"),lty=c(1,2))

Thus, the Wilcoxon fitted value is Ŷϕ,i = −7.1 + 0.145xi which is plotted in Figure

10.7.1. The least squares fit ŶLS,i = −26.0 + 0.504xi, is also plotted. Note that the
Wilcoxon fit is much less sensitive to the outliers than the least squares fit.

The outliers in this data set were recording errors; see page 25 of Rousseeuw
and Leroy (1987) for more discussion.

Similar to Lemma 10.2.1, a translation property holds for the process T (β) given
by

Eβ [T (0)] = E0[T (−β)]; (10.7.10)



628 Nonparametric and Robust Statistics
N

um
be

r 
of

 c
al

ls

0

5

10

15

20

50 55 60

Year

65 70

LS–Fit

Wilcoxon–Fit

Figure 10.7.1: Plot of telephone data, Example 10.7.2, overlaid with Wilcoxon
and LS fits.

see Exercise 10.7.2. Further, as Exercise 10.7.5 shows, this property implies that
the power curve for the one-sided tests of H0 : β = 0 are monotone, assuring the
unbiasedness of the tests based on Tϕ.

We can now derive the efficacy of the process. Let μT (β) = Eβ [T (0)] and
σ2

T (0) = Var0[T (0)]. Expression (10.7.5) gives the result for σ2
T (0). Recall that for

the mean μT (β), we need its derivative at 0. We freely use the relationship between
rankings and the empirical cdf and then approximate this empirical cdf with the
true cdf. Hence

μT (β) = Eβ [T (0)] = E0[T (−β)] =

n∑
i=1

(xi − x)E0[aϕ(R(Yi + xiβ))]

=

n∑
i=1

(xi − x)E0

[
ϕ

(
nF̂n(Yi + xiβ)

n + 1

)]

≈
n∑

i=1

(xi − x)E0[ϕ(F (Yi + xiβ))]

=

n∑
i=1

(xi − x)

∫ ∞

−∞
ϕ(F (y + xiβ))f(y) dy. (10.7.11)
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Differentiating this last expression, we have

μ′
T (β) =

n∑
i=1

(xi − x)xi

∫ ∞

−∞
ϕ′(F (y + xiβ))f(y + xiβ)f(y) dy,

which yields

μ′
T (0) =

n∑
i=1

(xi − x)2
∫ ∞

−∞
ϕ′(F (y))f2(y) dy. (10.7.12)

We need one assumption on the x1, x2, . . . , xn; namely, n−1
∑n

i=1(xi − x)2 → σ2
x,

where 0 < σ2
x < ∞. Recall that (n − 1)−1s2

a → 1. Therefore, the efficacy of the
process T (β) is given by

cT = lim
n→∞

μ′
T (0)√

nσT (0)
= lim

n→∞

∑n
i=1(xi − x)2

∫∞
−∞ ϕ′(F (y))f2(y) dy

√
n
√

(n− 1)−1s2
a

√∑n
i=1(xi − x)2

= σx

∫ ∞

−∞
ϕ′(F (y))f2(y) dy. (10.7.13)

Using this, an asymptotic power lemma can be derived for the test based on Tϕ;
see expression (10.7.17) of Exercise 10.7.6. Based on this, it can be shown that the

asymptotic distribution of the estimator β̂ϕ is given by

β̂ϕ has an approximate N

(
β, τ2

ϕ/
n∑

i=1

(xi − x)2

)
distribution, (10.7.14)

where the scale parameter τϕ is τϕ = (
∫∞
−∞ ϕ′(F (y))f2(y) dy)−1. Koul et al. (1987)

developed a consistent estimator of the scale parameter τ , which is the default
estimate in the package Rfit. This can be used to compute a confidence interval
for the slope parameter, as illustrated in Example 10.7.3.

Remark 10.7.2. The least squares (LS) estimates for Model (10.7.1) were discussed
in Section 9.6 in the case that the random errors ε1, ε2, . . . , εn are iid with a N(0, σ2)
distribution. In general, for Model (10.7.1), the asymptotic distribution of the LS

estimator of β, say β̂LS, is:

β̂LS has an approximate N

(
β, σ2/

n∑
i=1

(xi − x)2

)
distribution, (10.7.15)

where σ2 is the variance of εi. Based on (10.7.14) and (10.7.15), it follows that the
ARE between the rank-based and LS estimators is given by

ARE(β̂ϕ, β̂LS) =
σ2

τ2
ϕ

. (10.7.16)

Hence, if Wilcoxon scores are used, this ARE is the same as the ARE between the
Wilcoxon and t-procedures in the one- and two-sample location models.
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Example 10.7.3 (Distance of Punts). Rasmussen (1992), page 562, presents a data
set concerning distance of punts along with several predictors. The actual response
is the average distance in feet of 10 punts for each of 13 punters. As a predictor, we
consider the average hang-time in seconds (the time the punted football is in the
air). The data are in the file punter.rda. Based on the plot (see Exercise 10.7.1),
the simple linear model seems reasonable as an initial fit. Next is the code and
partial results of the Wilcoxon fit:

fit <- rfit(distance~hangtime); summary(fit)

Estimate Std. Error t.value p.value

(Intercept) -18.180 51.201 -0.3551 0.729254

hangtime 41.010 12.882 3.1834 0.008708 **

The second line of the summary table gives the Wilcoxon estimate of the slope
(41.01) and the standard error of the estimate (12.89). Hence, we predict that the
football travels an additional 41 feet for each additional second of hang-time. An
approximate 95% confidence interval for the true slope, using the t-critical with 11
degrees of freedom is (12.66, 69.36). So with approximate confidence of 95% the
slope differs from 0.

EXERCISES

10.7.1. Consider the data on football punts in Example 10.7.3.

(a) Obtain the scatterplot of distance versus hang-time and overlay the Wilcoxon
fit.

(b) As a second predictor consider overall strength of the kicker which is in the
variable strength. Obtain the scatterplot of distance versus strength and
overlay the Wilcoxon fit. What is the meaning of the slope parameter for this
predictor. Answer using a 95% confidence interval for the slope.

10.7.2. Establish expression (10.7.10). To do this, note first that the expression is
the same as

Eβ

[
n∑

i=1

(xi − x)aϕ(R(Yi))

]
= E0

[
n∑

i=1

(xi − x)aϕ(R(Yi + xiβ))

]
.

Show that the cdfs of Yi (under β) and Yi + (xi − x)β (under 0) are the same.

10.7.3. Suppose we have a two-sample model given by (10.7.3). Assuming Wilcoxon
scores, show that the test statistic (10.7.4) is equivalent to the Wilcoxon test statistic
found in expression (10.4.5).

10.7.4. Show that the null variance of the test statistic Tϕ is the value given in
(10.7.5).

10.7.5. Show that the translation property (10.7.10) implies that the power curve
for either one-sided test based on the test statistic Tϕ of H0 : β = 0 is monotone.
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10.7.6. Consider the sequence of local alternatives given by the hypotheses

H0 : β = 0 versus H1n : β = βn = β1√
n
,

where β1 > 0. Let γ(β) be the power function discussed in Exercise 10.7.5 for an
asymptotic level α test based on the test statistic Tϕ. Using the mean value theorem
to approximate μT (βn), sketch a proof of the limit

lim
n→∞

γ(βn) = 1− Φ(zα − cT β1). (10.7.17)

10.8 Measures of Association

In the last section, we discussed the simple linear regression model in which the
random variables, Y s, were the responses or dependent variables, while the xs were
the independent variables and were thought of as fixed. Regression models occur in
several ways. In an experimental design, the values of the independent variables are
prespecified and the responses are observed. Bioassays (dose–response experiments)
are examples. The doses are fixed and the responses are observed. If the experimen-
tal design is performed in a controlled environment (for example, all other variables
are controlled), it may be possible to establish cause and effect between x and Y .
On the other hand, in observational studies both the xs and Y s are observed. In the
regression setting, we are still interested in predicting Y in terms of x, but usually
cause and effect between x and Y are precluded in such studies (other variables
besides x may be changing).

In this section, we focus on observational studies but are interested in the
strength of the association between Y and x. So both X and Y are treated as
random variables in this section and the underlying distribution of interest is the
bivariate distribution of the pair (X, Y ). We assume that this bivariate distribution
is continuous with cdf F (x, y) and pdf f(x, y).

Hence, let (X, Y ) be a pair of random variables. A natural null model (baseline
model) is that there is no relationship between X and Y ; that is, the null hypothesis
is given by H0 : X and Y are independent. Alternatives, though, depend on which
measure of association is of interest. For example, if we are interested in the cor-
relation between X and Y , we use the correlation coefficient ρ (Section 9.7) as our
measure of the association. A two-sided alternative in this case is H1 : ρ 
= 0. Re-
call that independence between X and Y implies that ρ = 0, but that the converse
is not true. However, the contrapositive is true; that is, ρ 
= 0 implies that X and
Y are dependent. So, in rejecting H0, we conclude that X and Y are dependent.
Furthermore, the size of ρ indicates the strength of the correlation between X and
Y .

10.8.1 Kendall’s τ

The first measure of association that we consider in this section is a measure of the
monotonicity between X and Y . Monotonicity is an easily understood association
between X and Y . Let (X1, Y1) and (X2, Y2) be independent pairs with the same
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bivariate distribution (discrete or continuous). We say these pairs are concordant if
sgn{(X1−X2)(Y1−Y2)} = 1 and are discordant if sgn{(X1−X2)(Y1−Y2)} = −1.
The variables X and Y have an increasing relationship if the pairs tend to be
concordant and a decreasing relationship if the pairs tend to be discordant. A
measure of this is given by Kendall’s τ ,

τ = P [sgn {(X1−X2)(Y1−Y2)} = 1]−P [sgn{(X1−X2)(Y1−Y2)} = −1]. (10.8.1)

As Exercise 10.8.1 shows, −1 ≤ τ ≤ 1. Positive values of τ indicate increasing
monotonicity, negative values indicate decreasing monotonicity, and τ = 0 reflects
neither. Furthermore, as the following theorem shows, if X and Y are independent,
then τ = 0.

Theorem 10.8.1. Let (X1, Y1) and (X2, Y2) be independent pairs of observations of
(X, Y ), which has a continuous bivariate distribution. If X and Y are independent,
then τ = 0.

Proof: Let (X1, Y1) and (X2, Y2) be independent pairs of observations with the same
continuous bivariate distribution as (X, Y ). Because the cdf is continuous, the sign
function is either −1 or 1. By independence, we have

P [sgn(X1 −X2)(Y1 − Y2) = 1] = P [{X1 > X2} ∩ {Y1 > Y2}]
+ P [{X1 < X2} ∩ {Y1 < Y2}]

= P [X1 > X2]P [Y1 > Y2]

+ P [X1 < X2]P [Y1 < Y2]

=

(
1

2

)2

+

(
1

2

)2

=
1

2
.

Likewise, P [sgn(X1 −X2)(Y1 − Y2) = −1] = 1
2 ; hence, τ = 0.

Relative to Kendall’s τ as the measure of association, the two-sided hypotheses
of interest here are

H0 : τ = 0 versus H1 : τ 
= 0. (10.8.2)

As Exercise 10.8.1 shows, the converse of Theorem 10.8.1 is false. However, the
contrapositive is true; i.e., τ 
= 0 implies that X and Y are dependent. As with the
correlation coefficient, in rejecting H0, we conclude that X and Y are dependent.

Kendall’s τ has a simple unbiased estimator. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn)
be a random sample of the cdf F (x, y). Define the statistic

K =

(
n

2

)−1 ∑
i<j

sgn {(Xi −Xj)(Yi − Yj)}. (10.8.3)

Note that for all i 
= j, the pairs (Xi, Yi) and (Xj , Yj) are identically distributed.

Thus E(K) =
(
n
2

)−1(n
2

)
E[sgn {(X1 −X2)(Y1 − Y2)}] = τ .

In order to use K as a test statistic of the hypotheses (10.8.2), we need its
distribution under the null hypothesis. Under H0, τ = 0, so EH0 (K) = 0. The
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null variance of K is given by expression (10.8.6); see, for instance, page 205 of
Hettmansperger (1984). If all pairs (Xi, Yi), (Xj , Yj) of the sample are concordant
then K = 1, indicating a strictly increasing monotone relationship. On the other
hand, if all pairs are discordant then K = −1. Thus the range of K is contained in
the interval [−1, 1]. Also, the summands in expression (10.8.3) are either ±1. From
the proof of Theorem 10.8.1, the probability that a summand is 1 is 1/2, which does
not depend on the underlying distribution. Hence the statistic K is distribution-
free under H0. The null distribution of K is symmetric about 0. This is easily seen
from the fact that for each concordant pair there is an obvious discordant pair (just
reverse an inequality on the Y s) and the fact that concordant and discordant pairs
are equilikely under H0. Also, it can be shown that K is asymptotically normal
under H0. We summarize these results, without proof, in a theorem.

Theorem 10.8.2. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample on the
bivariate random vector (X, Y ) with continuous cdf F (x, y). Under the null hypoth-
esis of independence between X and Y , i.e., F (x, y) = FX(x)FY (y), for all (x, y)
in the support of (X, Y ), the test statistic K satisfies the following properties:

K is distribution free with a symmetric pmf (10.8.4)

EH0 [K] = 0 (10.8.5)

VarH0(K) =
2

9

2n + 5

n(n− 1)
(10.8.6)

Kq
VarH0 (K)

has an asymptotic N(0, 1) distribution. (10.8.7)

Most statistical computing packages compute Kendall’s τ . For instance, the R
function cor.test(x,y,method=c("kendall"),exact=T) obtains K and the test
discussed above when x and y are the vectors of the X and Y observations, respec-
tively. The computation of the p-value is with the exact distribution. We illustrate
this test in the next example.

Based on the asymptotic distribution, a large sample level α test for the hy-
potheses (10.8.2) is to reject H0 if ZK > zα/2, where

ZK =
K√

2(2n + 5)/9n(n− 1)
. (10.8.8)

Example 10.8.1 (Olympic Race Times). Table 10.8.1 displays the winning times
for two races in the Olympics beginning with the 1896 Olympics through the 1980
Olympics. The data were taken from Hettmansperger (1984) and can be found in
the data set olym1500mara.rda. The times in seconds are for the 1500 m and the
marathon. The entries in the table for the marathon race are the actual times minus
2 hours. In Exercise 10.8.2 the reader is asked to create a scatterplot of the times
for the two races. The plot shows a strongly increasing monotone trend with one
obvious outlier (1968 Olympics). The following R code computes Kendall’s τ . We
have summarized the results with the estimate of Kendall’s τ and the p-value of the
test of no association. This p-value is based on the exact distribution.

cor.test(m1500,marathon,method="kendall",exact=T)
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Table 10.8.1: Data for Example 10.8.1

Year 1500 m Marathon∗ Year 1500 m Marathon∗

1896 373.2 3530 1936 227.8 1759
1900 246.0 3585 1948 229.8 2092
1904 245.4 5333 1952 225.2 1383
1906 252.0 3084 1956 221.2 1500
1908 243.4 3318 1960 215.6 916
1912 236.8 2215 1964 218.1 731
1920 241.8 1956 1968 214.9 1226
1924 233.6 2483 1972 216.3 740
1928 233.2 1977 1976 219.2 595
1932 231.2 1896 1980 218.4 663
∗ Actual marathon times are 2 hours + entry.

p-value = 3.319e-06; estimates: tau 0.6947368

The test results show strong evidence to reject the hypothesis of the independence
of the winning times of the races.

10.8.2 Spearman’s Rho

As above, assume that (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a random sample from
a bivariate continuous cdf F (x, y). The population correlation coefficient ρ is a
measure of linearity between X and Y . The usual estimate is the sample correlation
coefficient given by

r =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
; (10.8.9)

see Section 9.7. A simple rank analog is to replace Xi by R(Xi), where R(Xi)
denotes the rank of Xi among X1, . . . , Xn, and likewise Yi by R(Yi), where R(Yi)
denotes the rank of Yi among Y1, . . . , Yn. Upon making this substitution, the de-
nominator of the above ratio is a constant. This results in the statistic

rS =

∑n
i=1(R(Xi)− n+1

2 )(R(Yi)− n+1
2 )

n(n2 − 1)/12
, (10.8.10)

which is called Spearman’s rho. The statistic rS is a correlation coefficient, so
the inequality −1 ≤ rS ≤ 1 is true. Further, as the following theorem shows,
independence implies that the mean of rS is 0.

Theorem 10.8.3. Suppose (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is a sample on (X, Y ),
where (X, Y ) has the continuous cdf F (x, y). If X and Y are independent, then
E(rS) = 0.
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Proof: Under independence, Xi and Yj are independent for all i and j; hence,
in particular, R(Xi) is independent of R(Yi). Furthermore, R(Xi) is uniformly
distributed on the integers {1, 2, . . . , n}. Therefore, E(R(Xi)) = (n + 1)/2, which
leads to the result.

Thus the measure of association rS can be used to test the null hypothe-
sis of independence similar to Kendall’s K. Under independence, because the
Xis are a random sample, the random vector (R(X1), . . . , R(Xn)) is equilikely
to assume any permutation of the integers {1, 2, . . . , n} and, likewise, the vector
of the ranks of the Yis. Furthermore, under independence, the random vector
[R(X1), . . . , R(Xn), R(Y1), . . . , R(Yn)] is equilikely to assume any of the (n!)2 vec-
tors (i1, i2, . . . , in, j1, j2, . . . , jn), where (i1, i2, . . . , in) and (j1, j2, . . . , jn) are per-
mutations of the integers {1, 2, . . . , n}. Hence, under independence, the statistic
rS is distribution-free. The distribution is discrete and tables of it can be found,
for instance, in Hollander and Wolfe (1999). Similar to Kendall’s statistic K, the
distribution is symmetric about zero and it has an asymptotic normal distribution
with asymptotic variance 1/(n− 1); see Exercise 10.8.7 for a proof of the null vari-
ance of rs. A large sample level α test is to reject independence between X and Y
if |zS | > zα/2, where zS =

√
n− 1rs. We record these results in a theorem, without

proof.

Theorem 10.8.4. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample on the
bivariate random vector (X, Y ) with continuous cdf F (x, y). Under the null hypoth-
esis of independence between X and Y , i.e., F (x, y) = FX(x)FY (y), for all (x, y)
in the support of (X, Y ), the test statistic rS satisfies the following properties:

rS is distribution-free, symmetrically distributed about 0 (10.8.11)

EH0 [rS ] = 0 (10.8.12)

VarH0(rS) =
1

n− 1
(10.8.13)

rSq
VarH0(rS)

is asymptotically N(0, 1). (10.8.14)

Example 10.8.2 (Example 10.8.1, Continued). For the data in Example 10.8.1,
the R code for the analysis based on Spearman’s ρ is:

cor.test(m1500,marathon,method="spearman")

p-value = 2.021e-06; sample estimates: rho 0.9052632

The result is highly significant. For comparison, the value of the asymptotic test
statistic is ZS = 0.905

√
19 = 3.94 with the p-value for a two-sided test is 0.00008;

so, the results are quite similar.

If the samples have a strictly increasing monotone relationship, then it is easy to
see that rS = 1; while if they have a strictly decreasing monotone relationship, then
rS = −1. Like Kendall’s K statistic, rS is an estimate of a population parameter,
but, except for when X and Y are independent, it is a more complicated expression
than τ . It can be shown (see Kendall, 1962) that

E(rS) =
3

n + 1
[τ + (n− 2)(2γ − 1)], (10.8.15)
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where γ = P [(X2 −X1)(Y3 − Y1) > 0]. For large n, E(rS) ≈ 6(γ − 1/2), which is a
harder parameter to interpret than the measure of concordance τ .

Spearman’s rho is based on Wilcoxon scores; hence, it can easily be extended to
other rank score functions. Some of these measures are discussed in the exercises.

Remark 10.8.1 (Confidence Intervals). Distribution-free confidence intervals for
Kendall’s τ exist; see, Section 8.5 of Hollander and Wolfe (1999). As outlined in
Exercise 10.8.6, it is easy to construct percentile bootstrap confidence intervals for
both parameters. The R function cor.boot.ci in the CRAN package npsm obtains
such confidence intervals; see Section 4.8 of Kloke and McKean (2014) for discussion.
It also requires the CRAN package boot developed by Canty and Ripley (2017).
We used this function to compute confidence intervals for τ and ρS :

library(boot); library(npsm)

cor.boot.ci(m1500,marathon,method="spearman"); # (0.719,0.955)

cor.boot.ci(m1500,marathon,method="kendall"); # (0.494,0.845)

EXERCISES

10.8.1. Show that Kendall’s τ satisfies the inequality −1 ≤ τ ≤ 1.

10.8.2. Consider Example 10.8.1. Let Y = winning times of the 1500 m race for a
particular year and let X = winning times of the marathon for that year. Obtain
a scatterplot of Y versus X , and determine the outlying point.

10.8.3. Consider the last exercise as a regression problem. Suppose we are inter-
ested in predicting the 1500 m winning time based on the marathon winning time.
Assume a simple linear model and obtain the least squares and Wilcoxon (Section
10.7) fits of the data. Overlay the fits on the scatterplot obtained in Exercise 10.8.2.
Comment on the fits. What does the slope parameter mean in this problem?

10.8.4. With regards to Exercise 10.8.3, a more interesting predicting problem is
the prediction of winning time of either race based on year.

(a) Make a scatterplot of the winning 1500 m race time versus year. Assume a
simple linear model (does the assumption make sense?) and obtain the least
squares and Wilcoxon (Section 10.7) fits of the data. Overlay the fits on the
scatterplot. Comment on the fits. What does the slope parameter mean in this
problem? Predict the winning time for 1984. How close was your prediction
to the true winning time?

(b) Same as part (a), except use the winning time of the marathon for that year.

10.8.5. Spearman’s rho is a rank correlation coefficient based on Wilcoxon scores.
In this exercise we consider a rank correlation coefficient based on a general score
function. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sample from a bivariate
continuous cdf F (x, y). Let a(i) = ϕ(i/(n+1)), where

∑n
i=1 a(i) = 0. In particular,
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a = 0. As in expression (10.5.6), let s2
a =

∑n
i=1 a2(i). Consider the rank correlation

coefficient,

ra =
1

s2
a

n∑
i=1

a(R(Xi))a(R(Yi)). (10.8.16)

(a) Show that ra is a correlation coefficient on the items

{(a[R(X1)], a[R(Y1)]), (a[R(X2)], a[R(Y2)]), . . . , (a[R(Xn)], a[R(Yn)])}.

(b) For the score function ϕ(u) =
√

12(u− (1/2)), show that ra = rS , Spearman’s
rho.

(c) Obtain ra for the sign score function ϕ(u) = sgn(u − (1/2)). Call this rank
correlation coefficient rqc. (The subscript qc is obvious from Exercise 10.8.8.)

10.8.6. Write an R function that computes a percentile bootstrap confidence inter-
val for Kendall’s τ . Run your function for the data discussed in Example 10.8.1 and
compare your answer with the confidence interval for Kendall’s τ given in Remark
10.8.1.
Note: The following R code obtains resampled vectors of x and y:

ind = 1:length(x); mat=cbind(x,y); inds=sample(ind,n,replace=T)

mats=mat[inds,]; xs=mats[,1]; ys=mats[,2]

10.8.7. Consider the general score rank correlation coefficient ra defined in Exercise
10.8.5. Consider the null hypothesis H0 : X and Y are independent.

(a) Show that EH0(ra) = 0.

(b) Based on part (a) and H0, as a first step in obtaining the variance under H0,
show that the following expression is true:

VarH0(ra) =
1

s4
a

n∑
i=1

n∑
j=1

EH0 [a(R(Xi))a(R(Xj))]EH0 [a(R(Yi))a(R(Yj))].

(c) To determine the expectation in the last expression, consider the two cases
i = j and i 
= j. Then using uniformity of the distribution of the ranks, show
that

VarH0(ra) =
1

s4
a

1

n− 1
s4

a =
1

n− 1
. (10.8.17)

10.8.8. Consider the rank correlation coefficient given by rqc in part (c) of Exer-
cise 10.8.5. Let Q2X and Q2Y denote the medians of the samples X1, . . . , Xn and
Y1, . . . , Yn, respectively. Now consider the four quadrants:

I = {(x, y) : x > Q2X , y > Q2Y }
II = {(x, y) : x < Q2X , y > Q2Y }

III = {(x, y) : x < Q2X , y < Q2Y }
IV = {(x, y) : x > Q2X , y < Q2Y }.
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Show essentially that

rqc =
1

n
{#(Xi, Yi) ∈ I + #(Xi, Yi) ∈ III −#(Xi, Yi) ∈ II −#(Xi, Yi) ∈ IV }.

(10.8.18)
Hence, rqc is referred to as the quadrant count correlation coefficient.

10.8.9. Set up the asymptotic test of independence using rqc of the last exer-
cise. Then use it to test for independence between the 1500 m race times and the
marathon race times of the data in Example 10.8.1.

10.8.10. Obtain the rank correlation coefficient when normal scores are used; that
is, the scores are a(i) = Φ−1(i/(n + 1)), i = 1, . . . , n. Call it rN . Set up the
asymptotic test of independence using rN of the last exercise. Then use it to test
for independence between the 1500 m race times and the marathon race times of
the data in Example 10.8.1.

10.8.11. Suppose that the hypothesis H0 concerns the independence of two random
variables X and Y . That is, we wish to test H0 : F (x, y) = F1(x)F2(y), where F, F1,
and F2 are the respective joint and marginal distribution functions of the continuous
type, against all alternatives. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a random sam-
ple from the joint distribution. Under H0, the order statistics of X1, X2, . . . , Xn and
the order statistics of Y1, Y2, . . . , Yn are, respectively, complete sufficient statistics
for F1 and F2. Use rS , rqc, and rN to create an adaptive distribution-free test of H0.

Remark 10.8.2. It is interesting to note that in an adaptive procedure it would
be possible to use different score functions for the Xs and Y s. That is, the order
statistics of the X values might suggest one score function and those of the Y s
another score function. Under the null hypothesis of independence, the resulting
procedure would produce an α level test.

10.9 Robust Concepts

In this section, we introduce some of the concepts in robust estimation. We intro-
duce these concepts for the location model discussed in Sections 10.1–10.3 of this
chapter and then apply them to the simple linear regression model of Section 10.7.
In a review article, McKean (2004) presents three introductory lectures on robust
concepts.

10.9.1 Location Model

In a few words, we say an estimator is robust if it is not sensitive to outliers in the
data. In this section, we make this more precise for the location model. Suppose
then that X1, X2, . . . , Xn is a random sample which follows the location model as
given in Definition 10.1.2; i.e.,

Xi = θ + εi , i = 1, 2, . . . , n, (10.9.1)
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where θ is a location parameter (functional) and εi has cdf F (t) and pdf f(t). Let
FX(t) and fX(t) denote the cdf and pdf of X , respectively. Then FX(t) = F (t− θ)
and fX(t) = f(t− θ).

To illustrate the robust concepts, we use the location estimators discussed in
Sections 10.1–10.3: the sample mean, the sample median, and the Hodges–Lehmann
estimator. It is convenient to define these estimators in terms of their estimating
equations. The estimating equation of the sample mean is given by

n∑
i=1

(Xi − θ) = 0; (10.9.2)

i.e., the solution to this equation is θ̂ = X . The estimating equation for the sample
median is given in expression (10.2.34), which, for convenience, we repeat:

n∑
i=1

sgn(Xi − θ) = 0. (10.9.3)

Recall from Section 10.2 that the sample median minimizes the L1-norm. So in
this section, we denote it as θ̂L1 = med Xi. Finally, the estimating equation for the
Hodges–Lehmann estimator is given by expression (10.4.27). For this section, we
denote the solution to this equation by

θ̂HL = medi≤j

{
Xi + Xj

2

}
. (10.9.4)

Suppose, in general, then that we have a random sample X1, X2, . . . , Xn, which
follows the location model (10.9.1) with location parameter θ. Let θ̂ be an estimator

of θ. Hopefully, θ̂ is not unduly influenced by an outlier in the sample, that is, a
point that is at a distance from the other points in the sample. For a realization of
the sample, this sensitivity to outliers is easy to measure. We simply add an outlier
to the data set and observe the change in the estimator.

More formally, let xn = (x1, x2, . . . , xn) be a realization of the sample, let x be
the additional point, and denote the augmented sample by x′

n+1 = (x′
n, x). Then a

simple measure is the rate of change in the estimate due to x relative to the mass
of x, (1/(n + 1)); i.e.,

S(x; θ̂) =
θ̂(xn+1)− θ̂(xn)

1/(n + 1)
. (10.9.5)

This is called the sensitivity curve of the estimate θ̂.
As examples, consider the sample mean and median. For the sample mean, it is

easy to see that

S(x; X) =
xn+1 − xn

1/(n + 1)
= x− xn. (10.9.6)

Hence the relative change in the sample mean is a linear function of x. Thus, if
x is large, then the change in sample mean is also large. Actually, the change is
unbounded in x. Thus the sample mean is quite sensitive to the size of the outlier.
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In contrast, consider the sample median in which the sample size n is odd. In
this case, the sample median is θ̂L1,n = x(r), where r = (n + 1)/2. When the
additional point x is added, the sample size becomes even and the sample median
θ̂L1,n+1 is the average of the middle two order statistics. If x varies between these

two order statistics, then there is some change between the θ̂L1,n and θ̂L1,n+1. But
once x moves beyond these middle two order statistics, there is no change. Hence
S(x; θ̂L1,n) is a bounded function of x. Therefore, θ̂L1,n is much less sensitive to an
outlier than the sample mean.

Because the Hodges–Lehmann estimator θ̂HL, (10.9.4), is also a median, its
sensitivity curve is also bounded. Exercise 10.9.2 provides a numerical illustration
of these sensitivity curves.

Influence Functions

One problem with the sensitivity curve is its dependence on the sample. In earlier
chapters, we compared estimators in terms of their variances which are functions of
the underlying distribution. This is the type of comparison we want to make here.

Recall that the location model (10.9.1) is the model of interest, where FX(t) =
F (t− θ) is the cdf of X and F (t) is the cdf of ε. As discussed in Section 10.1, the
parameter θ is a function of the cdf FX(x). It is convenient, then, to use functional
notation θ = T (FX), as in Section 10.1. For example, if θ is the mean, then T (FX)
is defined as

T (FX) =

∫ ∞

−∞
xdFX(x) =

∫ ∞

−∞
xfX(x) dx, (10.9.7)

while if θ is the median, then T (FX) is defined as

T (FX) = F−1
X

(
1

2

)
. (10.9.8)

It was shown in Section 10.1 that for a location functional, T (FX) = T (F ) + θ.
Estimating equations (EE) such as those defined in expressions (10.9.2) and

(10.9.3) are often quite intuitive, for example, based on likelihood equations or
methods such as least squares. On the other hand, functionals are more of an ab-
stract concept. But often the estimating equations naturally lead to the functionals.
We outline this next for the mean and median functionals.

Let Fn be the empirical distribution function of the realized sample x1, x2, . . . , xn.
That is, Fn is the cdf of the distribution which puts mass n−1 on each xi; see (10.1.1).
Note that we can write the estimating equation (10.9.2), which defines the sample
mean as

n∑
i=1

(xi − θ)
1

n
= 0. (10.9.9)

This is an expectation using the empirical distribution. Since Fn → FX in proba-
bility, it would seem that this expectation converges to∫ ∞

−∞
[x− T (FX)]fX(x) dx = 0. (10.9.10)
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The solution to the above equation is, of course, T (FX) = E(X).
Likewise, we can write the estimating equation (EE), (10.9.3), which defines the

sample median, as
n∑

i=1

sgn(Xi − θ)
1

n
= 0. (10.9.11)

The corresponding equation for the functional θ = T (FX) is the solution of the
equation ∫ ∞

−∞
sgn[y − T (FX)]fX(y) dy = 0. (10.9.12)

Note that this can be written as

0 = −
∫ T (FX )

−∞
fX(y) dy +

∫ ∞

T (FX )

fX(y) dy = −FX [T (FX)] + 1− FX [T (FX)].

Hence FX [T (FX)] = 1/2 or T (FX) = F−1
X (1/2). Thus T (FX) is the median of the

distribution of X .
Now we want to consider how a given functional T (FX) changes relative to some

perturbation. The analog of adding an outlier to F (t) is to consider a point-mass
contamination of the cdf FX(t) at a point x. That is, for ε > 0, let

Fx,ε(t) = (1− ε)FX(t) + εΔx(t), (10.9.13)

where Δx(t) is the cdf with all its mass at x; i.e.,

Δx(t) =

{
0 t < x
1 t ≥ x.

(10.9.14)

The cdf Fx,ε(t) is a mixture of two distributions. When sampling from it, (1−ε)100%
of the time an observation is drawn from FX(t), while ε100% of the time x (an
outlier) is drawn. So x has the flavor of the outlier in the sensitivity curve. As
Exercise 10.9.4 shows, Fx,ε(t) is in an ε neighborhood of FX(t); that is, for all x,
|Fx,ε(t)−FX(t)| ≤ ε. Hence the functional at Fx,ε(t) should also be close to T (FX).
The concept for functionals, corresponding to the sensitivity curve, is the function

IF(x; θ̂) = lim
ε→0

T (Fx,ε)− T (FX)

ε
, (10.9.15)

provided the limit exists. The function IF(x; θ̂) is called the influence function of

the estimator θ̂ at x. As the notation suggests, it can be thought of as a derivative
of the functional T (Fxε) with respect to ε evaluated at 0, and we often determine
it this way. Note that for ε small,

T (Fx,ε) ≈ T (FX) + ε IF(x; θ̂);

hence, the change of the functional due to point-mass contamination is approxi-
mately directly proportional to the influence function. We want estimators, whose
influence functions are not sensitive to outliers. Further, as mentioned above, for
any x, Fx,ε(t) is close to FX(t). Hence, at least, the influence function should be a
bounded function of x.
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Definition 10.9.1. The estimator θ̂ is said to be robust if |IF(x; θ̂)| is bounded
for all x.

Hampel (1974) proposed the influence function and discussed its important prop-
erties, a few of which we list below. First, however, we determine the influence
functions of the sample mean and median.

For the sample mean, recall Section 3.4.1 on mixture distributions. The function
Fx,ε(t) is the cdf of the random variable U = I1−εX + [1− I1−ε]W , where X , I1−ε,
and W are independent random variables, X has cdf FX(t), W has cdf Δx(t), and
I1−ε is b(1, 1− ε). Hence

E(U) = (1 − ε)E(X) + εE(W ) = (1− ε)E(X) + εx.

Denote the mean functional by Tμ(FX) = E(X). In terms of Tμ(F ), we have just
shown that

Tμ(Fx,ε) = (1− ε)Tμ(FX) + εx.

Therefore,
∂Tμ(Fx,ε)

∂ε
= −Tμ(F ) + x.

Hence the influence function of the sample mean is

IF(x; X) = x− μ, (10.9.16)

where μ = E(X). The influence function of the sample mean is linear in x and,
hence, is an unbounded function of x. Therefore, the sample mean is not a robust
estimator. Another way to derive the influence function is to differentiate implicitly
equation (10.9.10) when this equation is defined for Fx,ε(t); see Exercise 10.9.6.

Example 10.9.1 (Influence Function of the Sample Median). In this example, we

derive the influence function of the sample median, θ̂L1 . In this case, the functional
is Tθ(F ) = F−1(1/2), i.e., the median of F . To determine the influence function, we
first need to determine the functional at the contaminated cdf Fx,ε(t), i.e., determine
F−1

x,ε (1/2). As shown in Exercise 10.9.8, the inverse of the cdf Fx,ε(t) is given by

F−1
x,ε (u) =

⎧⎨⎩ F−1
(

u
1−ε

)
u < F (x)

F−1
(

u−ε
1−ε

)
u ≥ F (x),

(10.9.17)

for 0 < u < 1. Hence, letting u = 1/2, we get

Tθ(Fx,ε) = F−1
x,ε (1/2) =

⎧⎨⎩ F−1
X

(
1/2
1−ε

)
F−1

X

(
1
2

)
< x

F−1
X

(
(1/2)−ε

1−ε

)
F−1

X

(
1
2

)
> x.

(10.9.18)

Based on (10.9.18) the partial derivative of F−1
x,ε (1/2) with respect to ε is seen to be

∂Tθ(Fx,ε)

∂ε
=

⎧⎨⎩
(1/2)(1−ε)−2

fX [F−1
X ((1/2)/(1−ε))]

F−1
X

(
1
2

)
< x

(−1/2)(1−ε)−2

fX [F−1
X ({(1/2)−ε}/{1−ε})] F−1

X

(
1
2

)
> x.

(10.9.19)
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Evaluating this partial derivative at ε = 0, we arrive at the influence function of the
median:

IF(x; θ̂L1) =

{
1

2fX (θ) θ < x
−1

2fX (θ) θ > x

}
=

sgn(x− θ)

2f(θ)
, (10.9.20)

where θ is the median of FX . Because this influence function is bounded, the sample
median is a robust estimator.

As derived on p. 46 of Hettmansperger and McKean (2011), the influence func-

tion of the Hodges–Lehmann estimator, θ̂HL, at the point x is given by:

IF(x; θ̂HL) =
FX(x) − 1/2∫∞
−∞ f2

X(t)dt
. (10.9.21)

Since a cdf is bounded, the Hodges–Lehmann estimator is robust.
We now list three useful properties of the influence function of an estimator.

Note that for the sample mean, E[IF(X ; X)] = E[X ] − μ = 0. This is true in

general. Let IF(x) = IF(x; θ̂) denote the influence function of the estimator θ̂ with
functional θ = T (FX). Then

E[IF(X)] = 0, (10.9.22)

provided expectations exist; see Huber (1981) for a discussion. Hence, for the second
property, we have

Var[IF(X)] = E[IF2(X)], (10.9.23)

provided the squared expectation exists. A third property of the influence function
is the asymptotic result

√
n[θ̂ − θ] =

1√
n

n∑
i=1

IF(Xi) + op(1). (10.9.24)

Assume that the variance (10.9.23) exists, then because IF(X1), . . . , IF(Xn) are iid
with finite variance, the simple Central Limit Theorem and (10.9.24) imply that

√
n[θ̂ − θ]

D→ N(0, E[IF2(X)]). (10.9.25)

Thus we can obtain the asymptotic distribution of the estimator from its influence
function. Under general conditions, expression (10.9.24) holds, but often the verifi-
cation of the conditions is difficult and the asymptotic distribution can be obtained
more easily in another way; see Huber (1981) for a discussion. In this chapter,
though, we use (10.9.24) to obtain asymptotic distributions of estimators. Suppose

(10.9.24) holds for the estimators θ̂1 and θ̂2, which are both estimators of the same

functional, say, θ. Then, letting IFi denote the influence function of θ̂i, i = 1, 2, we
can express the asymptotic relative efficiency between the two estimators as

ARE(θ̂1, θ̂2) =
E[IF2

2(X)]

E[IF2
1(X)]

. (10.9.26)

As an example, we consider the sample median.
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Example 10.9.2 (Asymptotic Distribution of the Sample Median). The influence

function for the sample median θ̂L1 is given by (10.9.20). Since E[sgn2(X− θ)] = 1,
by expression (10.9.25) the asymptotic distribution of the sample median is

√
n[θ̂ − θ]

D→ N
(
0, [2fX(θ]−2

)
,

where θ is the median of the pdf fX(t). This agrees with the result given in Section
10.2.

Breakdown Point of an Estimator

The influence function of an estimator measures the sensitivity of an estimator to
a single outlier, sometimes called the local sensitivity of the estimator. We next
discuss a measure of global sensitivity of an estimator. That is, what proportion of
outliers can an estimator tolerate without completely breaking down?

To be precise, let x′ = (x1, x2, . . . , xn) be a realization of a sample. Suppose we
corrupt m points of this sample by replacing x1, . . . , xm by x∗

1, . . . , x
∗
m, where these

points are large outliers. Let xm = (x∗
1, . . . , x

∗
m, xm+1, . . . , xn) denote the corrupted

sample. Define the bias of the estimator upon corrupting m data points to be

bias(m,xn, θ̂) = sup |θ̂(xm)− θ̂(xn)|, (10.9.27)

where the sup is taken over all possible corrupted samples xm. If this bias is infinite,
we say that the estimator has broken down. The smallest proportion of corruption
an estimator can tolerate until its breakdown is called its finite sample breakdown
point. More precisely, if

ε∗n = min
m
{m/n : bias(m,xn, θ̂) = ∞}, (10.9.28)

then ε∗n is called the finite sample breakdown point of θ̂. If the limit

ε∗n → ε∗ (10.9.29)

exists, we call ε∗ the breakdown point of θ̂.

To determine the breakdown point of the sample mean, suppose we corrupt
one data point, say, without loss of generality, the first data point. The corrupted
sample is then x′ = (x∗

1, x2, . . . , xn). Denote the sample mean of the corrupted
sample by x∗. Then it is easy to see that

x∗ − x =
1

n
(x∗

1 − x1).

Hence bias(1,xn, x) is a linear function of x∗
1 and can be made as large (in absolute

value) as desired by taking x∗
1 large (in absolute value). Therefore, the finite sample

breakdown of the sample mean is 1/n. Because this goes to 0 as n → ∞, the
breakdown point of the sample mean is 0.
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Example 10.9.3 (Breakdown Value of the Sample Median). Next consider the
sample median. Let xn = (x1, x2, . . . , xn) be a realization of a random sample. If
the sample size is n = 2k, then it is easy to see that in a corrupted sample xn when
x(k) tends to −∞, the median also tends to −∞. Hence the breakdown value of the
sample median is k/n, which tends to 0.5. By a similar argument, when the sample
size is n = 2k + 1, the breakdown value is (k + 1)/n and it also tends to 0.5 as the
sample size increases. Hence we say that the sample median is a 50% breakdown
estimate. For a location model, 50% breakdown is the highest possible breakdown
point for an estimate. Thus the median achieves the highest possible breakdown
point.

In Exercise 10.9.10, the reader is asked to show that the Hodges–Lehmann esti-
mate has the breakdown point of 0.29.

10.9.2 Linear Model

In Sections 9.6 and 10.7, respectively, we presented the least squares (LS) procedure
and a rank-based (Wilcoxon) procedure for fitting simple linear models. In this
section, we briefly compare these procedures in terms of their robustness properties.

Recall that the simple linear model is given by

Yi = α + βxci + εi, i = 1, 2, . . . , n , (10.9.30)

where ε1, ε2, . . . , εn are continuous random variable that are iid. In this model, we
have centered the regression variables; that is, xci = xi−x, where x1, x2, . . . , xn are
considered fixed. The parameter of interest in this section is the slope parameter
β, the expected change (provided expectations exist) when the regression variable
increases by one unit. The centering of the xs allows us to consider the slope
parameter by itself. The results we present are invariant to the intercept parameter
α. Estimates of α are discussed at the end of this section. With this in mind, define
the random variable ei to be εi + α. Then we can write the model as

Yi = βxci + ei, i = 1, 2, . . . , n, (10.9.31)

where e1, e2, . . . , en are iid with continuous cdf F (x) and pdf f(x). We often refer
to the support of Y as the Y -space. Likewise, we refer to the range of X as the
X-space. The X-space is often referred to as the factor space.

Least Squares and Wilcoxon Procedures

The first procedure is least squares (LS). The estimating equation for β is given by
expression (9.6.4) of Chapter 9. Using the fact that

∑
i xci = 0, this equation can

be reexpressed as
n∑

i=1

(Yi − xciβ)xci = 0. (10.9.32)

This is the estimating equation (EE) for the LS estimator of β, which we use in
this section. It is often called the normal equation. It is easy to see that the LS
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estimator is

β̂LS =

∑n
i=1 xciYi∑n
i=1 x2

ci

, (10.9.33)

which agrees with expression (9.6.5) of Chapter 9. The geometry of the LS estimator
is discussed in Remark 9.6.2.

For our second procedure, we consider the estimate of slope discussed in Section
10.7. This is a rank-based estimate based on an arbitrary score function. In this
section, we restrict our discussion to the linear (Wilcoxon) scores; i.e., the score
function is given by ϕW (u) =

√
12[u − (1/2)], where the subscript W denotes the

Wilcoxon score function. The estimating equation of the rank-based estimator of β
is given by expression (10.7.8), which for the Wilcoxon score function is

n∑
i=1

aW (R(Yi − xciβ))xci = 0, (10.9.34)

where aW (i) = ϕW [i/(n+1)]. This equation is the analog of the LS normal equation.
See Exercise 10.9.12 for a geometric interpretation.

Influence Functions

To determine the robustness properties of these procedures, first consider a prob-
ability model corresponding to Model (10.9.31), in which X , in addition to Y , is
a random variable. Assume that the random vector (X, Y ) has joint cdf and pdf,
H(x, y) and h(x, y), respectively, and satisfies

Y = βX + e, (10.9.35)

where the random variable e has cdf and pdf F (t) and f(t), respectively, and e and
X are independent. Since we have centered the xs, we also assume that E(X) = 0.
As Exercise 10.9.13 shows,

P (Y ≤ t|X = x) = F (t− βx), (10.9.36)

and, hence, Y and X are independent if and only if β = 0.
The functional for the LS estimator easily follows from the LS normal equation

(10.9.32). Let Hn denote the empirical cdf of the pairs (x1, y1), (x2, y2), . . . , (xn, yn);
that is, Hn is the cdf corresponding to the discrete distribution, which puts probabil-
ity (mass) of 1/n on each point (xi, yi). Then the LS estimating equation, (10.9.32),
can be expressed as an expectation with respect to this distribution as

n∑
i=1

(yi − xciβ)xci
1

n
= 0. (10.9.37)

For the probability model, (10.9.35), it follows that the functional TLS(H) corre-
sponding to the LS estimate is the solution to the equation∫ ∞

−∞

∫ ∞

−∞
[y − TLS(H)x]xh(x, y) dxdy = 0. (10.9.38)
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To obtain the functional corresponding to the Wilcoxon estimate, recall the
association between the ranks and the empirical cdf; see (10.5.14). For Wilcoxon
scores, we have

aW (R(Yi − xciβ)) = ϕW

[
n

n + 1
Fn(Yi − xciβ)

]
. (10.9.39)

Based on the Wilcoxon estimating equations, (10.9.34), and expression (10.9.39),
the functional TW (H) corresponding to the Wilcoxon estimate satisfies the equation∫ ∞

−∞

∫ ∞

−∞
ϕW {F [y − TW (H)x]}xh(x, y) dxdy = 0. (10.9.40)

We next derive the influence functions of the LS and Wilcoxon estimators of
β. In regression models, we are concerned about the influence of outliers in both
the Y - and X-spaces. Consider then a point-mass distribution with all its mass at
the point (x0, y0), and let Δ(x0,y0)(x, y) denote the corresponding cdf. Let ε denote
the probability of sampling from this contaminating distribution, where 0 < ε < 1.
Hence, consider the contaminated distribution with cdf

Hε(x, y) = (1 − ε)H(x, y) + εΔ(x0,y0)(x, y). (10.9.41)

Because the differential is a linear operator, we have

dHε(x, y) = (1− ε)dH(x, y) + εdΔ(x0,y0)(x, y), (10.9.42)

where dH(x, y) = h(x, y) dxdy; that is, d corresponds to the second mixed partial
∂2/∂x ∂y.

By (10.9.38), the LS functional Tε at the cdf Hε(x, y) satisfies the equation

0 = (1− ε)

∫ ∞

−∞

∫ ∞

−∞
x(y−xTε)h(x, y) dxdy + ε

∫ ∞

−∞

∫ ∞

−∞
x(y−xTε) dΔ(x0,y0)(x, y).

(10.9.43)
To find the partial derivative of Tε with respect to ε, we simply implicitly differen-
tiate expression (10.9.43) with respect to ε, which yields

0 = −
∫ ∞

−∞

∫ ∞

−∞
x(y − Tεx)h(x, y) dxdy

+ (1− ε)

∫ ∞

−∞

∫ ∞

−∞
x(−x)

∂Tε

∂ε
h(x, y) dxdy

+

∫ ∞

−∞

∫ ∞

−∞
x(y − xTε) dΔ(x0,y0)(x, y) + εB, (10.9.44)

where the expression for B is not needed since we are evaluating this partial at
ε = 0. Notice that at ε = 0, y − Tεx = y − Tx = y − βx. Hence, at ε = 0, the first
expression on the right side of (10.9.44) is 0, while the second expression becomes
−E(X2)(∂T/∂ε), where the partial is evaluated at 0. Finally, the third expression
is the expected value of the point-mass distribution Δ(x0,y0), which is, of course,
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x0(y0 − βx0). Therefore, solving for the partial ∂Tε/∂ε and evaluating at ε = 0, we
see that the influence function of the LS estimator is given by

IF(x0, y0; β̂LS) =
(y0 − βx0)x0

E(X2)
. (10.9.45)

Note that the influence function is unbounded in both the Y - and X-spaces. Hence
the LS estimator is unduly sensitive to outliers in both spaces. It is not robust.

Based on expression (10.9.40), the Wilcoxon functional at the contaminated
distribution satisfies the equation

0 = (1 − ε)

∫ ∞

−∞

∫ ∞

−∞
xϕW [F (y − xTε)]h(x, y) dxdy

+ ε

∫ ∞

−∞

∫ ∞

−∞
xϕW [F (y − xTε)] dΔ(x0,y0)(x, y) (10.9.46)

[technically, the cdf F should be replaced by the actual cdf of the residual, but the
result is the same; see page 477 of Hettmansperger and McKean (2011)]. Proceeding
to implicitly differentiate this expression with respect to ε, we obtain

0 = −
∫ ∞

−∞

∫ ∞

−∞
xϕW [F (y − xTε)]h(x, y) dxdy

+ (1− ε)

∫ ∞

−∞

∫ ∞

−∞
xϕ′

W [F (y − Tεx)]f(y − Tεx)(−x)
∂Tε

∂ε
h(x, y) dxdy

+

∫ ∞

−∞

∫ ∞

−∞
xϕW [F (y − xTε)] dΔ(x0,y0)(x, y) + εB, (10.9.47)

where the expression for B is not needed since we are evaluating this partial at
ε = 0. When ε = 0, then Y − TX = e and the random variables e and X are
independent. Hence, upon setting ε = 0, expression (10.9.47) simplifies to

0 = −E[ϕ′
W (F (e))f(e)]E(X2)

∂Tε

∂ε

∣∣∣∣
ε=0

+ ϕW [F (y0 − x0β)]x0. (10.9.48)

Since ϕ′(u) =
√

12, we finally obtain, as the influence function of the Wilcoxon
estimator,

IF(x0, y0; β̂W ) =
τϕW [F (y0 − βx0)]x0

E(X2)
, (10.9.49)

where τ = 1/[
√

12
∫

f2(e) de]. Note that the influence function is bounded in the
Y -space, but it is unbounded in the X-space. Thus, unlike the LS estimator, the
Wilcoxon estimator is robust against outliers in the Y -space, but like the LS esti-
mator, it is sensitive to outliers in the X-space. Weighted versions of the Wilcoxon
estimator, though, have bounded influence in both the Y - and X-spaces; see the dis-
cussion of the HBR estimator in Chapter 3 of Hettmansperger and McKean (2011).
Exercises 10.9.18 and 10.9.19 asks for derivations, respectively, of the asymptotic
distributions of the LS and Wilcoxon estimators, using their influence functions.
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Breakdown Points

Breakdown for the regression model is based on the corruption of the sample in
Model (10.9.31), that is, the sample (xc1, Y1), . . . , (xcn, Yn). Based on the influence
functions for both the LS and Wilcoxon estimators, it is clear that corrupting one
xi breaks down both estimators. This is shown in Exercise 10.9.14. Hence the
breakdown point of each estimator is 0. The HBR estimator (weighted version of
the Wilcoxon estimator) has bounded influence in both spaces and can achieve 50%
breakdown; see Chang et al. (1999) and Hettmansperger and McKean (2011).

Intercept

In practice, the linear model usually contains an intercept parameter; that is, the
model is given by (10.9.30) with intercept parameter α. Notice that α is a location
parameter of the random variables Yi − βxci. This suggests an estimate of location
on the residuals Yi − β̂xci. For LS, we take the sample mean of the residuals; i.e.,

α̂LS = n−1
n∑

i=1

(Yi − β̂LSxci) = Y , (10.9.50)

because the xcis are centered. For the Wilcoxon fit, several choices seem appropriate.
We use the median of the Wilcoxon residuals. That is, let

α̂W = med1≤i≤n{Yi − β̂W xci}. (10.9.51)

For the Wilcoxon fit of the regression model, computation is discussed in Remark
10.7.1. As there, we recommend the CRAN package Rfit developed by Kloke and
McKean (2014). The R package1 hbrfit computes the high breakdown HBR fit.

EXERCISES

10.9.1. Consider the location model as defined in expression (10.9.1). Let

θ̂ = Argminθ‖X− θ1‖2LS,

where ‖ · ‖2LS is the square of the Euclidean norm. Show that θ̂ = x.

10.9.2. Obtain the sensitivity curves for the sample mean, the sample median and
the Hodges–Lehmann estimator for the following data set. Evaluate the curves at
the values −300 to 300 in increments of 10 and graph the curves on the same plot.
Compare the sensitivity curves.

−9 58 12 −1 −37 0 11 21
18 −24 −4 −53 −9 9 8

Note that the R command wilcox.test(x,conf.int=T)$est computes the Hodges
Lehmann estimate for the R vector x.

1Downloadable at https://github.com/kloke/

https://github.com/kloke/
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10.9.3. Consider the influence function for the Hodges–Lehmann estimator given
in expression (10.9.21). Show for it that property (10.9.22) is true. Next, evaluate
expression (10.9.23) and, hence, obtain the asymptotic distribution of the estimator
as given in expression (10.9.25). Does it agree with the result derived in Section
10.3?

10.9.4. Let Fx,ε(t) be the point-mass contaminated cdf given in expression (10.9.13).
Show that

|Fx,ε(t)− FX(t)| ≤ ε,

for all t.

10.9.5. Suppose X is a random variable with mean 0 and variance σ2. Recall that
the function Fx,ε(t) is the cdf of the random variable U = I1−εX + [1 − I1−ε]W ,
where X , I1−ε, and W are independent random variables, X has cdf FX(t), W
has cdf Δx(t), and I1−ε has a binomial(1, 1− ε) distribution. Define the functional
Var(FX) = Var(X) = σ2. Note that the functional at the contaminated cdf Fx,ε(t)
has the variance of the random variable U = I1−εX + [1 − I1−ε]W . To derive the
influence function of the variance, perform the following steps:

(a) Show that E(U) = εx.

(b) Show that Var(U) = (1− ε)σ2 + εx2 − ε2x2.

(c) Obtain the partial derivative of the right side of this equation with respect to
ε. This is the influence function.

Hint: Because I1−ε is a Bernoulli random variable, I2
1−ε = I1−ε. Why?

10.9.6. Often influence functions are derived by differentiating implicitly the defin-
ing equation for the functional at the contaminated cdf Fx,ε(t), (10.9.13). Consider
the mean functional with the defining equation (10.9.10). Using the linearity of the
differential, first show that the defining equation at the cdf Fx,ε(t) can be expressed
as

0 =

∫ ∞

−∞
[t− T (Fx,ε)]dFx,ε(t) = (1 − ε)

∫ ∞

−∞
[t− T (Fx,ε)]fX(t) dt

+ ε

∫ ∞

−∞
[t− T (Fx,ε)] dΔ(t). (10.9.52)

Recall that we want ∂T (Fx,ε)/∂ε. Obtain this by implicitly differentiating the above
equation with respect to ε.

10.9.7. In Exercise 10.9.5, the influence function of the variance functional was de-
rived directly. Assuming that the mean of X is 0, note that the variance functional,
V (FX), also solves the equation

0 =

∫ ∞

−∞
[t2 − V (FX)]fX(t) dt.
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(a) Determine the natural estimator of the variance by writing the defining equa-
tion at the empirical cdf Fn(t), for X1 −X, . . . , Xn −X iid with cdf FX(t),
and solving for V (Fn).

(b) As in Exercise 10.9.6, write the defining equation for the variance functional
at the contaminated cdf Fx,ε(t).

(c) Then derive the influence function by implicit differentiation of the defining
equation in part (b).

10.9.8. Show that the inverse of the cdf Fx,ε(t) given in expression (10.9.17) is
correct.

10.9.9. Let IF(x) be the influence function of the sample median given by (10.9.20).
Determine E[IF(X)] and Var[IF(X)].

10.9.10. Let x1, x2, . . . , xn be a realization of a random sample. Consider the
Hodges–Lehmann estimate of location given in expression (10.9.4). Show that the
breakdown point of this estimate is 0.29.
Hint: Suppose we corrupt m data points. We need to determine the value of m that
results in corruption of one-half of the Walsh averages. Show that the corruption
of m data points leads to

p(m) = m +

(
m

2

)
+ m(n−m)

corrupted Walsh averages. Hence the finite sample breakdown point is the “correct”
solution of the quadratic equation p(m) = n(n + 1)/4.

10.9.11. For any n× 1 vector v, define the function ‖v‖W by

‖v‖W =

n∑
i=1

aW (R(vi))vi, (10.9.53)

where R(vi) denotes the rank of vi among v1, . . . , vn and the Wilcoxon scores are
given by aW (i) = ϕW [i/(n + 1)] for ϕW (u) =

√
12[u − (1/2)]. By using the corre-

spondence between order statistics and ranks, show that

‖v‖W =
n∑

i=1

a(i)v(i), (10.9.54)

where v(1) ≤ · · · ≤ v(n) are the ordered values of v1, . . . , vn. Then, by establishing
the following properties, show that the function (10.9.53) is a pseudo-norm on
Rn.

(a) ‖v‖W ≥ 0 and ‖v‖W = 0 if and only if v1 = v2 = · · · = vn.

Hint: First, because the scores a(i) sum to 0, show that

n∑
i=1

a(i)v(i) =
∑
i<j

a(i)[v(i) − v(j)] +
∑
i>j

a(i)[v(i) − v(j)],

where j is the largest integer in the set {1, 2, . . . , n} such that a(j) < 0.
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(b) ‖cv‖W = |c|‖v‖W , for all c ∈ R.

(c) ‖v + w‖W ≤ ‖v‖W + ‖w‖W , for all v,w ∈ Rn.

Hint: Determine the permutations, say, ik and jk of the integers {1, 2, . . . , n},
which maximize

∑n
k=1 cik

djk
for the two sets of numbers {c1, . . . , cn} and

{d1, . . . , dn}.
10.9.12. Remark 9.6.2 discusses the geometry of the LS estimate of β. There is an
analogous geometry for the Wilcoxon estimate. Using the norm ‖ · ‖W defined in
expression (10.9.53) of the last exercise, let

β̂∗ = Argmin ‖Y −Xcβ‖W ,

where Y′ = (Y1, . . . , Yn) and X′
c = (xc1, . . . , xcn). Thus β̂∗ minimizes the distance

between Y and the space spanned by the vector Xc.

(a) Using expression (10.9.54), show that β̂∗ satisfies the Wilcoxon estimating

equation (10.9.34). That is, β̂∗ = β̂W .

(b) Let ŶW = Xcβ̂W and Y − ŶW denote the Wilcoxon vectors of fitted values
and residuals, respectively. Sketch a figure analogous to the LS Figure 9.6.3
but with these vectors on it. Note that your figure may not contain a right
angle.

(c) For the Wilcoxon regression procedure, determine a vector (not 0) that is

orthogonal to ŶW .

10.9.13. For Model (10.9.35), show that equation (10.9.36) holds. Then show that
Y and X are independent if and only if β = 0. Hence independence is based on the
value of a parameter. This is a case where normality is not necessary to have this
independence property.

10.9.14. Consider the telephone data discussed in Example 10.7.2 and given in the
rda-file telephone.rda. It is easily seen in Figure 10.7.1 that there are seven outliers
in the Y –space. Based on the estimates discussed in this example, the Wilcoxon
estimate of slope is robust to these outliers, while the LS estimate is highly sensitive
to them.

(a) For this data set, change the last value of x from 73 to 173. Notice the drastic
change in the LS fit.

(b) Obtain the Wilcoxon estimate for the changed data in part (a). Notice that
it has a drastic change also. To obtain the Wilcoxon fit, see Remark 10.7.1
on computation.

(c) Using the Wilcoxon estimates of Example 10.7.2, change the the value of Y
at x = 173 to the predicted value of Y based on the Wilcoxon estimates of
Example 10.7.2. Note that this point is a “good” point at the outlying x;
that is, it fits the model. Now determine the Wilcoxon and LS estimates.
Comment on them.
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10.9.15. For the pseudo-norm ‖v‖W defined in expression (10.9.53), establish the
identity

‖v‖W =

√
3

2(n + 1)

n∑
i=1

n∑
j=1

|vi − vj |, (10.9.55)

for all v ∈ Rn. Thus we have shown that

β̂W = Argmin

n∑
i=1

n∑
j=1

|(yi − yj)− β(xci − xcj)|. (10.9.56)

Note that the formulation of β̂W given in expression (10.9.56) allows an easy way to
compute the Wilcoxon estimate of slope by using an L1 (least absolute deviations)
routine. Terpstra and McKean (2005) used this identity, (10.9.55), to develop R
functions for the computation of the Wilcoxon fit.

10.9.16. Suppose the random variable e has cdf F (t). Let ϕ(u) =
√

12[u− (1/2)],
0 < u < 1, denote the Wilcoxon score function.

(a) Show that the random variable ϕ[F (ei)] has mean 0 and variance 1.

(b) Investigate the mean and variance of ϕ[F (ei)] for any score function ϕ(u)

which satisfies
∫ 1

0
ϕ(u) du = 0 and

∫ 1

0
ϕ2(u) du = 1.

10.9.17. In the derivation of the influence function, we assumed that x was ran-
dom. For inference, though, we consider the case that x is given. In this case, the
variance of X , E(X2), which is found in the influence function, is replaced by its
estimate, namely, n−1

∑n
i=1 x2

ci. With this in mind, use the influence function of
the LS estimator of β to derive the asymptotic distribution of the LS estimator;
see the discussion around expression (10.9.24). Show that it agrees with the exact
distribution of the LS estimator given in expression (9.6.9) under the assumption
that the errors have a normal distribution.

10.9.18. As in the last problem, use the influence function of the Wilcoxon esti-
mator of β to derive the asymptotic distribution of the Wilcoxon estimator. For
Wilcoxon scores, show that it agrees with expression (10.7.14).

10.9.19. Use the results of the last two exercises to find the asymptotic relative
efficiency (ARE) between the Wilcoxon and LS estimators of β.
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Chapter 11

Bayesian Statistics

11.1 Bayesian Procedures

To understand the Bayesian inference, let us review Bayes Theorem, (1.4.3), in a
situation in which we are trying to determine something about a parameter of a
distribution. Suppose we have a Poisson distribution with parameter θ > 0, and we
know that the parameter is equal to either θ = 2 or θ = 3. In Bayesian inference, the
parameter is treated as a random variable Θ. Suppose, for this example, we assign
subjective prior probabilities of P (Θ = 2) = 1

3 and P (Θ = 3) = 2
3 to the two

possible values. These subjective probabilities are based upon past experiences,
and it might be unrealistic that Θ can only take one of two values, instead of a
continuous θ > 0 (we address this immediately after this introductory illustration).
Now suppose a random sample of size n = 2 results in the observations x1 = 2,
x2 = 4. Given these data, what are the posterior probabilities of Θ = 2 and
Θ = 3? By Bayes Theorem, we have

P (Θ = 2|X1 = 2, X2 = 4)

=
P (Θ = 2 and X1 = 2, X2 = 4)

P (X1 = 2, X2 = 4|Θ = 2)P (Θ = 2) + P (X1 = 2, X2 = 4|Θ = 3)P (Θ = 3)

=
(1
3 ) e−222

2!
e−224

4!

(1
3 ) e−222

2!
e−224

4! + (2
3 ) e−332

2!
e−334

4!

= 0.245.

Similarly,

P (Θ = 3|X1 = 2, X2 = 4) = 1− 0.245 = 0.755.

That is, with the observations x1 = 2, x2 = 4, the posterior probability of Θ = 2
was smaller than the prior probability of Θ = 2. Similarly, the posterior probability
of Θ = 3 was greater than the corresponding prior. That is, the observations
x1 = 2, x2 = 4 seemed to favor Θ = 3 more than Θ = 2; and that seems to agree
with our intuition as x = 3. Now let us address in general a more realistic situation
in which we place a prior pdf h(θ) on a support that is a continuum.

655
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11.1.1 Prior and Posterior Distributions

We now describe the Bayesian approach to the problem of estimation. This approach
takes into account any prior knowledge of the experiment that the statistician has
and it is one application of a principle of statistical inference that may be called
Bayesian statistics. Consider a random variable X that has a distribution of
probability that depends upon the symbol θ, where θ is an element of a well-defined
set Ω. For example, if the symbol θ is the mean of a normal distribution, Ω may
be the real line. We have previously looked upon θ as being a parameter, albeit
an unknown parameter. Let us now introduce a random variable Θ that has a
distribution of probability over the set Ω; and just as we look upon x as a possible
value of the random variable X , we now look upon θ as a possible value of the
random variable Θ. Thus, the distribution of X depends upon θ, an experimental
value of the random variable Θ. We denote the pdf of Θ by h(θ) and we take
h(θ) = 0 when θ is not an element of Ω. The pdf h(θ) is called the prior pdf of Θ.
Moreover, we now denote the pdf of X by f(x|θ) since we think of it as a conditional
pdf of X , given Θ = θ. For clarity in this chapter, we use the following summary
of this model:

X |θ ∼ f(x|θ)
Θ ∼ h(θ). (11.1.1)

Suppose that X1, X2, . . . , Xn is a random sample from the conditional distri-
bution of X given Θ = θ with pdf f(x|θ). Vector notation is convenient in this
chapter. Let X′ = (X1, X2, . . . , Xn) and x′ = (x1, x2, . . . , xn). Thus we can write
the joint conditional pdf of X, given Θ = θ, as

L(x | θ) = f(x1|θ)f(x2|θ) · · · f(xn|θ). (11.1.2)

Thus the joint pdf of X and Θ is

g(x, θ) = L(x | θ)h(θ). (11.1.3)

If Θ is a random variable of the continuous type, the joint marginal pdf of X is
given by

g1(x) =

∫ ∞

−∞
g(x, θ) dθ. (11.1.4)

If Θ is a random variable of the discrete type, integration would be replaced by
summation. In either case, the conditional pdf of Θ, given the sample X, is

k(θ|x) =
g(x, θ)

g1(x)
=

L(x | θ)h(θ)

g1(x)
. (11.1.5)

The distribution defined by this conditional pdf is called the posterior distribu-
tion and (11.1.5) is called the posterior pdf. The prior distribution reflects the
subjective belief of Θ before the sample is drawn, while the posterior distribution is
the conditional distribution of Θ after the sample is drawn. Further discussion on
these distributions follows an illustrative example.
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Example 11.1.1. Consider the model

Xi|θ ∼ iid Poisson(θ)

Θ ∼ Γ(α, β), α and β are known.

Hence the random sample is drawn from a Poisson distribution with mean θ and
the prior distribution is a Γ(α, β) distribution. Let X′ = (X1, X2, . . . , Xn). Thus,
in this case, the joint conditional pdf of X, given Θ = θ, (11.1.2), is

L(x | θ) =
θx1e−θ

x1!
· · · θ

xne−θ

xn!
, xi = 0, 1, 2, . . . , i = 1, 2, . . . , n,

and the prior pdf is

h(θ) =
θα−1e−θ/β

Γ(α)βα
, 0 < θ <∞.

Hence the joint mixed continuous-discrete pdf is given by

g(x, θ) = L(x | θ)h(θ) =

[
θx1e−θ

x1!
· · · θ

xne−θ

xn!

] [
θα−1e−θ/β

Γ(α)βα

]
,

provided that xi = 0, 1, 2, 3, . . . , i = 1, 2, . . . , n, and 0 < θ < ∞, and is equal to
zero elsewhere. Then the marginal distribution of the sample, (11.1.4), is

g1(x) =

∫ ∞

0

θ
P

xi+α−1e−(n+1/β)θ

x1! · · ·xn!Γ(α)βα
dθ =

Γ

(
n∑
1

xi + α

)
x1! · · ·xn!Γ(α)βα(n + 1/β)

P
xi+α

.

(11.1.6)
Finally, the posterior pdf of Θ, given X = x, (11.1.5), is

k(θ|x) =
L(x | θ)h(θ)

g1(x)
=

θ
P

xi+α−1e−θ/[β/(nβ+1)]

Γ
(∑

xi + α
)

[β/(nβ + 1)]
P

xi+α
, (11.1.7)

provided that 0 < θ <∞, and is equal to zero elsewhere. This conditional pdf is of
the gamma type, with parameters α∗ =

∑n
i=1 xi + α and β∗ = β/(nβ + 1). Notice

that the posterior pdf reflects both prior information (α, β) and sample information
(
∑n

i=1 xi).

In Example 11.1.1, notice that it is not really necessary to determine the marginal
pdf g1(x) to find the posterior pdf k(θ|x). If we divide L(x | θ)h(θ) by g1(x), we
must get the product of a factor that depends upon x but does not depend upon θ,
say c(x), and

θ
P

xi+α−1e−θ/[β/(nβ+1)].

That is,

k(θ|x) = c(x)θ
P

xi+α−1e−θ/[β/(nβ+1)],
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provided that 0 < θ < ∞ and xi = 0, 1, 2, . . . , i = 1, 2, . . . , n. However, c(x) must
be that “constant” needed to make k(θ|x) a pdf, namely,

c(x) =
1

Γ
(∑

xi + α
)

[β/(nβ + 1)]
P

xi+α
.

Accordingly, we frequently write that k(θ|x) is proportional to L(x | θ)h(θ); that is,
the posterior pdf can be written as

k(θ|x) ∝ L(x | θ)h(θ). (11.1.8)

Note that in the right-hand member of this expression, all factors involving con-
stants and x alone (not θ) can be dropped. For illustration, in solving the problem
presented in Example 11.1.1, we simply write

k(θ|x) ∝ θ
P

xie−nθθα−1e−θ/β

or, equivalently,
k(θ|x) ∝ θ

P
xi+α−1e−θ/[β/(nβ+1)],

0 < θ < ∞, and is equal to zero elsewhere. Clearly, k(θ|x) must be a gamma pdf
with parameters α∗ =

∑
xi + α and β∗ = β/(nβ + 1).

There is another observation that can be made at this point. Suppose that there
exists a sufficient statistic Y = u(X) for the parameter so that

L(x | θ) = g[u(x)|θ]H(x),

where now g(y|θ) is the pdf of Y , given Θ = θ. Then we note that

k(θ|x) ∝ g[u(x)|θ]h(θ)

because the factor H(x) that does not depend upon θ can be dropped. Thus, if a
sufficient statistic Y for the parameter exists, we can begin with the pdf of Y if we
wish and write

k(θ|y) ∝ g(y|θ)h(θ), (11.1.9)

where now k(θ|y) is the conditional pdf of Θ given the sufficient statistic Y = y. In
the case of a sufficient statistic Y , we also use g1(y) to denote the marginal pdf of
Y ; that is, in the continuous case,

g1(y) =

∫ ∞

−∞
g(y|θ)h(θ) dθ.

11.1.2 Bayesian Point Estimation

Suppose we want a point estimator of θ. From the Bayesian viewpoint, this really
amounts to selecting a decision function δ, so that δ(x) is a predicted value of θ
(an experimental value of the random variable Θ) when both the computed value x
and the conditional pdf k(θ|x) are known. Now, in general, how would we predict
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an experimental value of any random variable, say W , if we want our prediction to
be “reasonably close” to the value to be observed? Many statisticians would predict
the mean, E(W ), of the distribution of W ; others would predict a median (perhaps
unique) of the distribution of W ; and some would have other predictions. However,
it seems desirable that the choice of the decision function should depend upon a loss
function L[θ, δ(x)]. One way in which this dependence upon the loss function can
be reflected is to select the decision function δ in such a way that the conditional
expectation of the loss is a minimum. A Bayes estimate is a decision function δ
that minimizes

E{L[Θ, δ(x)]|X = x} =

∫ ∞

−∞
L[θ, δ(x)]k(θ|x) dθ

if Θ is a random variable of the continuous type. That is,

δ(x) = Argmin

∫ ∞

−∞
L[θ, δ(x)]k(θ|x) dθ. (11.1.10)

The associated random variable δ(X) is called a Bayes estimator of θ. The usual
modification of the right-hand member of this equation is made for random variables
of the discrete type. If the loss function is given by L[θ, δ(x)] = [θ − δ(x)]2, then
the Bayes estimate is δ(x) = E(Θ|x), the mean of the conditional distribution of Θ,
given X = x. This follows from the fact that E[(W − b)2], if it exists, is a minimum
when b = E(W ). If the loss function is given by L[θ, δ(x)] = |θ − δ(x)|, then a
median of the conditional distribution of Θ, given X = x, is the Bayes solution.
This follows from the fact that E(|W −b|), if it exists, is a minimum when b is equal
to any median of the distribution of W .

It is easy to generalize this to estimate a specified function of θ, say, l(θ). For
the loss function L[θ, δ(x)], a Bayes estimate of l(θ) is a decision function δ that
minimizes

E{L[l(Θ), δ(x)]|X = x} =

∫ ∞

−∞
L[l(θ), δ(x)]k(θ|x) dθ.

The random variable δ(X) is called a Bayes estimator of l(θ).
The conditional expectation of the loss, given X = x, defines a random variable

that is a function of the sample X. The expected value of that function of X, in
the notation of this section, is given by∫ ∞

−∞

{∫ ∞

−∞
L[θ, δ(x)]k(θ|x) dθ

}
g1(x) dx =

∫ ∞

−∞

{∫ ∞

−∞
L[θ, δ(x)]L(x|θ) dx

}
h(θ)dθ,

in the continuous case. The integral within the braces in the latter expression is,
for every given θ ∈ Θ, the risk function R(θ, δ); accordingly, the latter expression
is the mean value of the risk, or the expected risk. Because a Bayes estimate δ(x)
minimizes ∫ ∞

−∞
L[θ, δ(x)]k(θ|x) dθ

for every x for which g(x) > 0, it is evident that a Bayes estimate δ(x) minimizes
this mean value of the risk. We now give two illustrative examples.
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Example 11.1.2. Consider the model

Xi|θ ∼ iid binomial, b(1, θ)

Θ ∼ beta(α, β), α and β are known;

that is, the prior pdf is

h(θ) =

{
Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1 0 < θ < 1

0 elsewhere.,

where α and β are assigned positive constants. We seek a decision function δ that
is a Bayes solution. The sufficient statistic is Y =

∑n
1 Xi, which has a b(n, θ)

distribution. Thus the conditional pdf of Y given Θ = θ is

g(y|θ) =

{ (
n
y

)
θy(1− θ)n−y y = 0, 1, . . . , n

0 elsewhere.

Thus, by (11.1.9), the conditional pdf of Θ, given Y = y at points of positive
probability density, is

k(θ|y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1, 0 < θ < 1.

That is,

k(θ|y) =
Γ(n + α + β)

Γ(α + y)Γ(n + β − y)
θα+y−1(1− θ)β+n−y−1, 0 < θ < 1,

and y = 0, 1, . . . , n. Hence the posterior pdf is a beta density function with param-
eters (α + y, β +n− y). We take the squared-error loss, i.e., L[θ, δ(y)] = [θ− δ(y)]2,
as the loss function. Then, the Bayesian point estimate of θ is the mean of this beta
pdf, which is

δ(y) =
α + y

α + β + n
.

It is very instructive to note that this Bayes estimator can be written as

δ(y) =

(
n

α + β + n

)
y

n
+

(
α + β

α + β + n

)
α

α + β
,

which is a weighted average of the maximum likelihood estimate y/n of θ and the
mean α/(α+β) of the prior pdf of the parameter. Moreover, the respective weights
are n/(α+β +n) and (α+β)/(α+β +n). Note that for large n, the Bayes estimate
is close to the maximum likelihood estimate of θ and that, furthermore, δ(Y ) is a
consistent estimator of θ. Thus we see that α and β should be selected so that not
only is α/(α + β) the desired prior mean, but the sum α + β indicates the worth of
the prior opinion relative to a sample of size n. That is, if we want our prior opinion
to have as much weight as a sample size of 20, we would take α + β = 20. So if our
prior mean is 3

4 , we have that α and β are selected so that α = 15 and β = 5.
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Example 11.1.3. For this example, we have the normal model,

Xi|θ ∼ iidN(θ, σ2), where σ2 is known

Θ ∼ N(θ0, σ
2
0), where θ0 and σ2

0 are known.

Then Y = X is a sufficient statistic. Hence an equivalent formulation of the model
is

Y |θ ∼ N(θ, σ2/n), where σ2 is known

Θ ∼ N(θ0, σ
2
0), where θ0 and σ2

0 are known.

Then for the posterior pdf, we have

k(θ|y) ∝ 1√
2πσ/

√
n

1√
2πσ0

exp

[
− (y − θ)2

2(σ2/n)
− (θ − θ0)

2

2σ2
0

]
.

If we eliminate all constant factors (including factors involving only y), we have

k(θ|y) ∝ exp

[
− [σ2

0 + (σ2/n)]θ2 − 2[yσ2
0 + θ0(σ

2/n)]θ

2(σ2/n)σ2
0

]
.

This can be simplified by completing the square to read (after eliminating factors
not involving θ)

k(θ|y) ∝ exp

⎡⎢⎢⎢⎣−
(

θ − yσ2
0 + θ0(σ

2/n)

σ2
0 + (σ2/n)

)2

2(σ2/n)σ2
0

[σ2
0 + (σ2/n)]

⎤⎥⎥⎥⎦ .

That is, the posterior pdf of the parameter is obviously normal with mean

yσ2
0 + θ0(σ

2/n)

σ2
0 + (σ2/n)

=

(
σ2

0

σ2
0 + (σ2/n)

)
y +

(
σ2/n

σ2
0 + (σ2/n)

)
θ0 (11.1.11)

and variance (σ2/n)σ2
0/[σ2

0 +(σ2/n)]. If the squared-error loss function is used, this
posterior mean is the Bayes estimator. Again, note that it is a weighted average
of the maximum likelihood estimate y = x and the prior mean θ0. As in the
last example, for large n, the Bayes estimator is close to the maximum likelihood
estimator and δ(Y ) is a consistent estimator of θ. Thus the Bayesian procedures
permit the decision maker to enter his or her prior opinions into the solution in a
very formal way such that the influences of these prior notions are less and less as
n increases.

In Bayesian statistics, all the information is contained in the posterior pdf k(θ|y).
In Examples 11.1.2 and 11.1.3, we found Bayesian point estimates using the squared-
error loss function. It should be noted that if L[δ(y), θ] = |δ(y) − θ|, the absolute
value of the error, then the Bayes solution would be the median of the posterior
distribution of the parameter, which is given by k(θ|y). Hence the Bayes estimator
changes, as it should, with different loss functions.
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11.1.3 Bayesian Interval Estimation

If an interval estimate of θ is desired, we can find two functions u(x) and v(x) so
that the conditional probability

P [u(x) < Θ < v(x)|X = x] =

∫ v(x)

u(x)

k(θ|x) dθ

is large, for example, 0.95. Then the interval u(x) to v(x) is an interval estimate
of θ in the sense that the conditional probability of Θ belonging to that interval is
equal to 0.95. These intervals are often called credible or probability intervals,
so as not to confuse them with confidence intervals.

Example 11.1.4. Consider Example 11.1.3, where X1, X2, . . . , Xn is a random
sample from a N(θ, σ2) distribution, where σ2 is known, and the prior distribution
is a normal N(θ0, σ

2
0) distribution. The statistic Y = X is sufficient. Recall that

the posterior pdf of Θ given Y = y was normal with mean and variance given near
expression (11.1.11). Hence a credible interval is found by taking the mean of the
posterior distribution and adding and subtracting 1.96 of its standard deviation;
that is, the interval

yσ2
0 + θ0(σ

2/n)

σ2
0 + (σ2/n)

± 1.96

√
(σ2/n)σ2

0

σ2
0 + (σ2/n)

forms a credible interval of probability 0.95 for θ.

Example 11.1.5. Recall Example 11.1.1, where X′ = (X1, X2, . . . , Xn) is a random
sample from a Poisson distribution with mean θ and a Γ(α, β) prior, with α and
β known, is considered. As given by expression (11.1.7), the posterior pdf is a
Γ(y + α, β/(nβ + 1)) pdf, where y =

∑n
i=1 xi. Hence, if we use the squared-error

loss function, the Bayes point estimate of θ is the mean of the posterior

δ(y) =
β(y + α)

nβ + 1
=

nβ

nβ + 1

y

n
+

αβ

nβ + 1
.

As with the other Bayes estimates we have discussed in this section, for large n
this estimate is close to the maximum likelihood estimate and the statistic δ(Y )
is a consistent estimate of θ. To obtain a credible interval, note that the posterior

distribution of 2(nβ+1)
β Θ is χ2(2(

∑n
i=1 xi +α)). Based on this, the following interval

is a (1− α)100% credible interval for θ:(
β

2(nβ + 1)
χ2

1−(α/2)

[
2

(
n∑

i=1

xi + α

)]
,

β

2(nβ + 1)
χ2

α/2

[
2

(
n∑

i=1

xi + α

)])
,

(11.1.12)
where χ2

1−(α/2)(2(
∑n

i=1 xi + α)) and χ2
α/2(2(

∑n
i=1 xi + α)) are the lower and upper

χ2 quantiles for a χ2 distribution with 2(
∑n

i=1 xi + α) degrees of freedom.
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11.1.4 Bayesian Testing Procedures

As above, let X be a random variable with pdf (pmf) f(x|θ), θ ∈ Ω. Suppose we
are interested in testing the hypotheses

H0 : θ ∈ ω0 versus H1 : θ ∈ ω1,

where ω0 ∪ ω1 = Ω and ω0 ∩ ω1 = φ. A simple Bayesian procedure to test these
hypotheses proceeds as follows. Let h(θ) denote the prior distribution of the prior
random variable Θ; let X′ = (X1, X2, . . . , Xn) denote a random sample on X ; and
denote the posterior pdf or pmf by k(θ|x). We use the posterior distribution to
compute the following conditional probabilities:

P (Θ ∈ ω0|x) and P (Θ ∈ ω1|x).

In the Bayesian framework, these conditional probabilities represent the truth of
H0 and H1, respectively. A simple rule is to

Accept H0 if P (Θ ∈ ω0|x) ≥ P (Θ ∈ ω1|x);

otherwise, accept H1; that is, accept the hypothesis that has the greater conditional
probability. Note that the condition ω0 ∩ ω1 = φ is required, but ω0 ∪ ω1 = Ω is
not necessary. More than two hypotheses may be tested at the same time, in which
case a simple rule would be to accept the hypothesis with the greater conditional
probability. We finish this subsection with a numerical example.

Example 11.1.6. Referring again to Example 11.1.1, where X′ = (X1, X2, . . . , Xn)
is a random sample from a Poisson distribution with mean θ, suppose we are inter-
ested in testing

H0 : θ ≤ 10 versus H1 : θ > 10. (11.1.13)

Suppose we think θ is about 12, but we are not quite sure. Hence we choose the
Γ(10, 1.2) pdf as our prior, which is shown in the left panel of Figure 11.1.1. The
mean of the prior is 12, but as the plot shows, there is some variability (the variance
of the prior distribution is 14.4). The data for the problem are

11 7 11 6 5 9 14 10 9 5
8 10 8 10 12 9 3 12 14 4

(these are the values of a random sample of size n = 20 taken from a Poisson
distribution with mean 8; of course, in practice we would not know the mean is 8).

The value of the sufficient statistic is y =
∑20

i=1 xi = 177. Hence, from Example
11.1.1, the posterior distribution is a Γ(177 + 10, 1.2/[20(1.2) + 1]) = Γ(187, 0.048)
distribution, which is shown in the right panel of Figure 11.1.1. Note that the
data have moved the mean to the left of 12 to 187(0.048) = 8.976, which is the
Bayes estimate (under squared-error loss) of θ. Using R, we compute the posterior
probability of H0 as

P [Θ ≤ 10|y = 177] = P [Γ(187, 0.048) ≤ 10] = pgamma(10, 187, 1/0.048) = 0.9368.
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Figure 11.1.1: Prior (left panel) and posterior (right panel) pdfs of Example 11.1.6

Thus P [Θ > 10|y = 177] = 1−0.9368 = 0.0632; consequently, our rule would accept
H0.

The 95% credible interval, (11.1.12), is (7.77, 10.31), which also contains 10; see
Exercise 11.1.7 for details.

11.1.5 Bayesian Sequential Procedures

Finally, we should observe what a Bayesian would do if additional data were col-
lected beyond x1, x2, . . . , xn. In such a situation, the posterior distribution found
with the observations x1, x2, . . . , xn becomes the new prior distribution, additional
observations give a new posterior distribution, and inferences would be made from
that second posterior. Of course, this can continue with even more observations.
That is, the second posterior becomes the new prior, and the next set of observa-
tions yields the next posterior from which the inferences can be made. Clearly, this
gives Bayesians an excellent way of handling sequential analysis. They can continue
taking data, always updating the previous posterior, which has become a new prior
distribution. Everything a Bayesian needs for inferences is in that final posterior
distribution obtained by this sequential procedure.

EXERCISES

11.1.1. Let Y have a binomial distribution in which n = 20 and p = θ. The prior
probabilities on θ are P (θ = 0.3) = 2/3 and P (θ = 0.5) = 1/3. If y = 9, what are
the posterior probabilities for θ = 0.3 and θ = 0.5?



11.1. Bayesian Procedures 665

11.1.2. Let X1, X2, . . . , Xn be a random sample from a distribution that is b(1, θ).
Let the prior of Θ be a beta one with parameters α and β. Show that the posterior
pdf k(θ|x1, x2, . . . , xn) is exactly the same as k(θ|y) given in Example 11.1.2.

11.1.3. Let X1, X2, . . . , Xn denote a random sample from a distribution that is
N(θ, σ2), where −∞ < θ < ∞ and σ2 is a given positive number. Let Y = X denote
the mean of the random sample. Take the loss function to be L[θ, δ(y)] = |θ− δ(y)|.
If θ is an observed value of the random variable Θ that is N(μ, τ2), where τ2 > 0
and μ are known numbers, find the Bayes solution δ(y) for a point estimate θ.

11.1.4. Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution
with mean θ, 0 < θ < ∞. Let Y =

∑n
1 Xi. Use the loss function L[θ, δ(y)] =

[θ− δ(y)]2. Let θ be an observed value of the random variable Θ. If Θ has the prior
pdf h(θ) = θα−1e−θ/β/Γ(α)βα, for 0 < θ < ∞, zero elsewhere, where α > 0, β > 0
are known numbers, find the Bayes solution δ(y) for a point estimate for θ.

11.1.5. Let Yn be the nth order statistic of a random sample of size n from a
distribution with pdf f(x|θ) = 1/θ, 0 < x < θ, zero elsewhere. Take the loss
function to be L[θ, δ(y)] = [θ − δ(yn)]2. Let θ be an observed value of the random
variable Θ, which has the prior pdf h(θ) = βαβ/θβ+1, α < θ < ∞, zero elsewhere,
with α > 0, β > 0. Find the Bayes solution δ(yn) for a point estimate of θ.

11.1.6. Let Y1 and Y2 be statistics that have a trinomial distribution with param-
eters n, θ1, and θ2. Here θ1 and θ2 are observed values of the random variables Θ1

and Θ2, which have a Dirichlet distribution with known parameters α1, α2, and
α3; see expression (3.3.10). Show that the conditional distribution of Θ1 and Θ2 is
Dirichlet and determine the conditional means E(Θ1|y1, y2) and E(Θ2|y1, y2).

11.1.7. For Example 11.1.6, obtain the 95% credible interval for θ. Next obtain the
value of the mle for θ and the 95% confidence interval for θ discussed in Chapter 6.

11.1.8. In Example 11.1.2, let n = 30, α = 10, and β = 5, so that δ(y) = (10+y)/45
is the Bayes estimate of θ.

(a) If Y has a binomial distribution b(30, θ), compute the risk E{[θ − δ(Y )]2}.

(b) Find values of θ for which the risk of part (a) is less than θ(1− θ)/30, the risk
associated with the maximum likelihood estimator Y/n of θ.

11.1.9. Let Y4 be the largest order statistic of a sample of size n = 4 from a
distribution with uniform pdf f(x; θ) = 1/θ, 0 < x < θ, zero elsewhere. If the prior
pdf of the parameter g(θ) = 2/θ3, 1 < θ < ∞, zero elsewhere, find the Bayesian
estimator δ(Y4) of θ, based upon the sufficient statistic Y4, using the loss function
|δ(y4)− θ|.

11.1.10. Refer to Example 11.2.3; suppose we select σ2
0 = dσ2, where σ2 was known

in that example. What value do we assign to d so that the variance of posterior is
two-thirds the variance of Y = X, namely, σ2/n?
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11.2 More Bayesian Terminology and Ideas

Suppose X′ = (X1, X2, . . . , Xn) represents a random sample with likelihood L(x|θ)
and we assume a prior pdf h(θ). The joint marginal pdf of X is given by

g1(x) =

∫ ∞

−∞
L(x|θ)h(θ)dθ.

This is often called the pdf of the predictive distribution of X because it provides
the best description of the probabilities about X given the likelihood and the prior.
An illustration of this is provided in expression (11.1.6) of Example 11.1.1. Again
note that this predictive distribution is highly dependent on the probability models
for X and Θ.

In this section, we consider two classes of prior distributions. The first class is
the class of conjugate priors defined by:

Definition 11.2.1. A class of prior pdfs for the family of distributions with pdfs
f(x|θ), θ ∈ Ω, is said to define a conjugate family of distributions if the
posterior pdf of the parameter is in the same family of distributions as the prior.

As an illustration, consider Example 11.1.5, where the pmf of Xi given θ was
Poisson with mean θ. In this example, we selected a gamma prior and the resulting
posterior distribution was of the gamma family also. Hence the gamma pdf forms
a conjugate class of priors for this Poisson model. This was true also for Example
11.1.2 where the conjugate family was beta and the model was a binomial, and for
Example 11.1.3, where both the model and the prior were normal.

To motivate our second class of priors, consider the binomial model, b(1, θ),
presented in Example 11.1.2. Thomas Bayes (1763) took as a prior the beta dis-
tribution with α = β = 1, namely h(θ) = 1, 0 < θ < 1, zero elsewhere, because he
argued that he did not have much prior knowledge about θ. However, we note that
this leads to the estimate of(

n

n + 2

)( y

n

)
+

(
2

n + 2

)(
1

2

)
.

We often call this a shrinkage estimate because the estimate y/n is pulled a lit-
tle toward the prior mean of 1/2, although Bayes tried to avoid having the prior
influence the inference.

Haldane (1948) did note, however, that if a prior beta pdf exists with α = β = 0,
then the shrinkage estimate would reduce to the mle y/n. Of course, a beta pdf
with α = β = 0 is not a pdf at all, for it would be such that

h(θ) ∝ 1

θ(1 − θ)
, 0 < θ < 1,

zero elsewhere, and ∫ 1

0

c

θ(1− θ)
dθ
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does not exist. However, such priors are used if, when combined with the likelihood,
we obtain a posterior pdf which is a proper pdf. By proper, we mean that it
integrates to a positive constant. In this example, we obtain the posterior pdf of

f(θ|y) ∝ θy−1(1− θ)n−y−1,

which is proper provided y > 0 and n − y > 0. Of course, the posterior mean is
y/n.

Definition 11.2.2. Let X′ = (X1, X2, . . . , Xn) be a random sample from the dis-
tribution with pdf f(x|θ). A prior h(θ) ≥ 0 for this family is said to be improper
if it is not a pdf, but the function k(θ|x) ∝ L(x|θ)h(θ) can be made proper.

A noninformative prior is a prior that treats all values of θ the same, that is,
uniformly. Continuous noninformative priors are often improper. As an example,
suppose we have a normal distribution N(θ1, θ2) in which both θ1 and θ2 > 0 are
unknown. A noninformative prior for θ1 is h1(θ1) = 1, −∞ < θ1 < ∞. Clearly,
this is not a pdf. An improper prior for θ2 is h2(θ2) = c2/θ2, 0 < θ2 < ∞, zero
elsewhere. Note that log θ2 is uniformly distributed between −∞ < log θ2 < ∞.
Hence, in this way, it is a noninformative prior. In addition, assume the parameters
are independent. Then the joint prior, which is improper, is

h1(θ1)h2(θ2) ∝ 1/θ2, −∞ < θ1 <∞, 0 < θ2 <∞. (11.2.1)

Using this prior, we present the Bayes solution for θ1 in the next example.

Example 11.2.1. Let X1, X2, . . . , Xn be a random sample from a N(θ1, θ2) distri-
bution. Recall that X and S2 = (n− 1)−1

∑n
i=1(Xi −X)2 are sufficient statistics.

Suppose we use the improper prior given by (11.2.1). Then the posterior distribution
is given by

k12(θ1, θ2|x, s2) ∝
(

1

θ2

)(
1√

2πθ2

)n

exp

[
−1

2

{
(n− 1)s2 + n(x− θ1)

2
}

/θ2

]
∝

(
1

θ2

)n
2 +1

exp

[
−1

2

{
(n− 1)s2 + n(x− θ1)

2
}

/θ2

]
.

To get the conditional pdf of θ1, given x and s2, we integrate out θ2

k1(θ1|x, s2) =

∫ ∞

0

k12(θ1, θ2|x, s2)dθ2.

To carry this out, let us change variables z = 1/θ2 and θ2 = 1/z, with Jacobian
−1/z2. Thus

k1(θ1|x, s2) ∝
∫ ∞

0

z
n
2 +1

z2
exp

[
−

{
(n− 1)s2 + n(x− θ1)

2

2

}
z

]
dz.

Referring to a gamma distribution with α = n/2 and β = 2/{(n−1)s2+n(x−θ1)
2},

this result is proportional to

k1(θ1|x, s2) ∝ {(n− 1)s2 + n(x− θ1)
2}−n/2.
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Let us change variables to get more familiar results; namely, let

t =
θ1 − x

s/
√

n
and θ1 = x + ts/

√
n,

with Jacobian s/
√

n. This conditional pdf of t, given x and s2, is then

k(t|x, s2) ∝ {(n− 1)s2 + (st)2}−n/2

∝ 1

[1 + t2/(n− 1)][(n−1)+1]/2
.

That is, the conditional pdf of t = (θ1−x)/(s/n), given x and s2, is a Student t with
n− 1 degrees of freedom. Since the mean of this pdf is 0 (assuming that n > 2), it
follows that the Bayes estimator of θ1, under squared-error loss, is X , which is also
the mle.

Of course, from k1(θ1|x, s2) or k(t|x, s2), we can find a credible interval for θ1.
One way of doing this is to select the highest density region (HDR) of the pdf
θ1 or that of t. The former is symmetric and unimodal about θ1 and the latter
about zero, but the latter’s critical values are tabulated; so we use the HDR of that
t-distribution. Thus, if we want an interval having probability 1− α, we take

−tα/2 <
θ1 − x

s/
√

n
< tα/2

or, equivalently,
x− tα/2s/

√
n < θ1 < x + tα/2s/

√
n.

This interval is the same as the confidence interval for θ1; see Example 4.2.1. Hence,
in this case, the improper prior (11.2.1) leads to the same inference as the traditional
analysis.

Example 11.2.2. Usually in a Bayesian analysis, noninformative priors are not
used if prior information exists. Let us consider the same situation as in Example
11.2.1, where the model was a N(θ1, θ2) distribution. Suppose now we consider the
precision θ3 = 1/θ2 instead of variance θ2. The likelihood becomes(

θ3

2π

)n/2

exp

[
−1

2

{
(n− 1)s2 + n(x− θ1)

2
}

θ3

]
,

so that it is clear that a conjugate prior for θ3 is Γ(α, β). Further, given θ3, a
reasonable prior on θ1 is N(θ0,

1
n0θ3

), where n0 is selected in some way to reflect
how many observations the prior is worth. Thus the joint prior of θ1 and θ3 is

h(θ1, θ3) ∝ θα−1
3 e−θ3/β(n0θ3)

1/2e−(θ1−θ0)
2θ3n0/2.

If this is multiplied by the likelihood function, we obtain the posterior joint pdf of
θ1 and θ3, namely,

k(θ1, θ3|x, s2) ∝ θ
α+ n

2 + 1
2−1

3 exp

[
−1

2
Q(θ1)θ3

]
,
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where

Q(θ1) =
2

β
+ n0(θ1 − θ0)

2 + [(n− 1)s2 + n(x− θ1)
2]

= (n0 + n)

[(
θ1 −

n0θ0 + nx

n0 + n

)2
]

+ D,

with

D =
2

β
+ (n− 1)s2 + (n−1

0 + n−1)−1(θ0 − x)2.

If we integrate out θ3, we obtain

k1(θ1|x, s2) ∝
∫ ∞

0

k(θ1, θ3|x, s2)dθ3

∝ 1

[Q(θ1)][2α+n+1]/2
.

To get this in a more familiar form, change variables by letting

t =
θ1 − n0θ0+nx

n0+n√
D/[(n0 + n)(2α + n)]

,

with Jacobian
√

D/[(n0 + n)(2α + n)]. Thus

k2(t|x, s2) ∝ 1[
1 + t2

2α+n

](2α+n+1)/2
,

which is a Student t distribution with 2α+n degrees of freedom. The Bayes estimate
(under squared-error loss) in this case is

n0θ0 + nx

n0 + n
.

It is interesting to note that if we define “new” sample characteristics as

nk = n0 + n

xk =
n0θ0 + nx

n0 + n

s2
k =

D

2α + n
,

then

t =
θ1 − xk

sk/
√

nk
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has a t-distribution with 2α + n degrees of freedom. Of course, using these degrees
of freedom, we can find tγ/2 so that

xk ± tγ/2
sk√
nk

is an HDR credible interval estimate for θ1 with probability 1−γ. Naturally, it falls
upon the Bayesian to assign appropriate values to α, β, n0, and θ0. Small values of
α and n0 with a large value of β would create a prior, so that this interval estimate
would differ very little from the usual one.

Finally, it should be noted that when dealing with symmetric, unimodal pos-
terior distributions, it was extremely easy to find the HDR interval estimate. If,
however, that posterior distribution is not symmetric, it is more difficult and often
the Bayesian would find the interval that has equal probabilities on each tail.

EXERCISES

11.2.1. Let X1, X2 be a random sample from a Cauchy distribution with pdf

f(x; θ1, θ2) =

(
1

π

)
θ2

θ2
2 + (x− θ1)2

, −∞ < x < ∞,

where −∞ < θ1 < ∞, 0 < θ2. Use the noninformative prior h(θ1, θ2) ∝ 1.

(a) Find the posterior pdf of θ1, θ2, other than the constant of proportionality.

(b) Evaluate this posterior pdf if x1 = 1, x2 = 4 for θ1 = 1, 2, 3, 4 and θ2 =
0.5, 1.0, 1.5, 2.0.

(c) From the 16 values in part (b), where does the maximum of the posterior pdf
seem to be?

(d) Do you know a computer program that can find the point (θ1, θ2) of maximum?

11.2.2. Let X1, X2, . . . , X10 be a random sample of size n = 10 from a gamma
distribution with α = 3 and β = 1/θ. Suppose we believe that θ has a gamma
distribution with α = 10 and β = 2.

(a) Find the posterior distribution of θ.

(b) If the observed x = 18.2, what is the Bayes point estimate associated with
square-error loss function?

(c) What is the Bayes point estimate using the mode of the posterior distribution?

(d) Comment on an HDR interval estimate for θ. Would it be easier to find one
having equal tail probabilities?

Hint: Can the posterior distribution be related to a chi-square distribution?
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11.2.3. Suppose for the situation of Example 11.2.2, θ1 has the prior distribution
N(75, 1/(5θ3)) and θ3 has the prior distribution Γ(α = 4, β = 0.5). Suppose the
observed sample of size n = 50 resulted in x = 77.02 and s2 = 8.2.

(a) Find the Bayes point estimate of the mean θ1.

(b) Determine an HDR interval estimate with 1− γ = 0.90.

11.2.4. Let f(x|θ), θ ∈ Ω, be a pdf with Fisher information, (6.2.4), I(θ). Consider
the Bayes model

X |θ ∼ f(x|θ) , θ ∈ Ω

Θ ∼ h(θ) ∝
√

I(θ). (11.2.2)

(a) Suppose we are interested in a parameter τ = u(θ). Use the chain rule to
prove that √

I(τ) =
√

I(θ)

∣∣∣∣∂θ

∂τ

∣∣∣∣ . (11.2.3)

(b) Show that for the Bayes model (11.2.2), the prior pdf for τ is proportional to√
I(τ).

The class of priors given by expression (11.2.2) is often called the class of Jeffreys’
priors; see Jeffreys (1961). This exercise shows that Jeffreys’ priors exhibit an
invariance in that the prior of a parameter τ , which is a function of θ, is also
proportional to the square root of the information for τ .

11.2.5. Consider the Bayes model

Xi|θ , i = 1, 2, . . . , n ∼ iid with distribution Γ(1, θ), θ > 0

Θ ∼ h(θ) ∝ 1

θ
.

(a) Show that h(θ) is in the class of Jeffreys’ priors.

(b) Show that the posterior pdf is

h(θ|y) ∝
(

1

θ

)n+2−1

e−y/θ,

where y =
∑n

i=1 xi.

(c) Show that if τ = θ−1, then the posterior k(τ |y) is the pdf of a Γ(n, 1/y)
distribution.

(d) Determine the posterior pdf of 2yτ . Use it to obtain a (1 − α)100% credible
interval for θ.

(e) Use the posterior pdf in part (d) to determine a Bayesian test for the hypothe-
ses H0 : θ ≥ θ0 versus H1 : θ < θ0, where θ0 is specified.
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11.2.6. Consider the Bayes model

Xi|θ , i = 1, 2, . . . , n ∼ iid with distribution Poisson (θ), θ > 0

Θ ∼ h(θ) ∝ θ−1/2.

(a) Show that h(θ) is in the class of Jeffreys’ priors.

(b) Show that the posterior pdf of 2nθ is the pdf of a χ2(2y + 1) distribution,
where y =

∑n
i=1 xi.

(c) Use the posterior pdf of part (b) to obtain a (1−α)100% credible interval for
θ.

(d) Use the posterior pdf in part (d) to determine a Bayesian test for the hypothe-
ses H0 : θ ≥ θ0 versus H1 : θ < θ0, where θ0 is specified.

11.2.7. Consider the Bayes model

Xi|θ , i = 1, 2, . . . , n ∼ iid with distribution b(1, θ), 0 < θ < 1.

(a) Obtain the Jeffreys’ prior for this model.

(b) Assume squared-error loss and obtain the Bayes estimate of θ.

11.2.8. Consider the Bayes model

Xi|θ , i = 1, 2, . . . , n ∼ iid with distribution b(1, θ), 0 < θ < 1

Θ ∼ h(θ) = 1.

(a) Obtain the posterior pdf.

(b) Assume squared-error loss and obtain the Bayes estimate of θ.

11.2.9. Let X1,X2, . . . ,Xn be a random sample from a multivariate normal normal
distribution with mean vector μ = (μ1, μ2, . . . , μk)′ and known positive definite
covariance matrix Σ. Let X be the mean vector of the random sample. Suppose
that μ has a prior multivariate normal distribution with mean μ0 and positive
definite covariance matrix Σ0. Find the posterior distribution of μ, given X = x.
Then find the Bayes estimate E(μ |X = x).

11.3 Gibbs Sampler

From the preceding sections, it is clear that integration techniques play a significant
role in Bayesian inference. Hence, we now touch on some of the Monte Carlo
techniques used for integration in Bayesian inference.

The Monte Carlo techniques discussed in Chapter 5 can often be used to ob-
tain Bayesian estimates. For example, suppose a random sample is drawn from a
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N(θ, σ2), where σ2 is known. Then Y = X is a sufficient statistic. Consider the
Bayes model

Y |θ ∼ N(θ, σ2/n)

Θ ∼ h(θ) ∝ b−1 exp{−(θ − a)/b}/(1 + exp{−[(θ − a)/b]})2, −∞ < θ < ∞,

a and b > 0 are known, (11.3.1)

i.e., the prior is a logistic distribution. Thus the posterior pdf is

k(θ|y) =

1√
2πσ/

√
n

exp
{
− 1

2
(y−θ)2

σ2/n

}
b−1e−(θ−a)/b/(1 + e−[(θ−a)/b])2∫∞

−∞
1√

2πσ/
√

n
exp

{
− 1

2
(y−θ)2

σ2/n

}
b−1e−(θ−a)/b/(1 + e−[(θ−a)/b])2 dθ

.

Assuming squared-error loss, the Bayes estimate is the mean of this posterior distri-
bution. Its computation involves two integrals, which cannot be obtained in closed
form. We can, however, think of the integration in the following way. Consider the
likelihood f(y|θ) as a function of θ; that is, consider the function

w(θ) = f(y|θ) =
1√

2πσ/
√

n
exp

{
−1

2

(y − θ)2

σ2/n

}
.

We can then write the Bayes estimate as

δ(y) =

∫∞
−∞ θw(θ)b−1e−(θ−a)/b/(1 + e−[(θ−a)/b])2 dθ∫ ∞
−∞ w(θ)b−1e−(θ−a)/b/(1 + e−[(θ−a)/b])2 dθ

=
E[Θw(Θ)]

E[w(Θ)]
, (11.3.2)

where the expectation is taken with Θ having the logistic prior distribution.
The estimation can be carried out by simple Monte Carlo. Independently, gen-

erate Θ1, Θ2, . . . ,Θm from the logistic distribution with pdf as in (11.3.1). This
generation is easily computed because the inverse of the logistic cdf is given by
a + b log{u/(1− u)}, for 0 < u < 1. Then form the random variable,

Tm =
m−1

∑m
i=1 Θiw(Θi)

m−1
∑m

i=1 w(Θi)
. (11.3.3)

By the Weak Law of Large Numbers (Theorem 5.1.1) and Slutsky’s Theorem (The-
orem 5.2.4), Tm → δ(y), in probability. The value of m can be quite large. Thus
simple Monte Carlo techniques enable us to compute this Bayes estimate. Note that
we can bootstrap this sample to obtain a confidence interval for E[Θw(Θ)]/E[w(Θ)];
see Exercise 11.3.2.

Besides simple Monte Carlo methods, there are other more complicated Monte
Carlo procedures that are useful in Bayesian inference. For motivation, consider
the case in which we want to generate an observation that has pdf fX(x), but this
generation is somewhat difficult. Suppose, however, that it is easy to generate both
Y , with pdf fY (y), and an observation from the conditional pdf fX|Y (x|y). As the
following theorem shows, if we do these sequentially, then we can easily generate
from fX(x).



674 Bayesian Statistics

Theorem 11.3.1. Suppose we generate random variables by the following algo-
rithm:

1. Generate Y ∼ fY (y),

2. Generate X ∼ fX|Y (x|Y ).

Then X has pdf fX(x).

Proof: To avoid confusion, let T be the random variable generated by the algorithm.
We need to show that T has pdf fX(x). Probabilities of events concerning T are
conditional on Y and are taken with respect to the cdf FX|Y . Recall that proba-
bilities can always be written as expectations of indicator functions and, hence, for
events concerning T , are conditional expectations. In particular, for any t ∈ R,

P [T ≤ t] = E[FX|Y (t)]

=

∫ ∞

−∞

[∫ t

−∞
fX|Y (x|y) dx

]
fY (y) dy

=

∫ t

−∞

[∫ ∞

−∞
fX|Y (x|y)fY (y) dy

]
dx

=

∫ t

−∞

[∫ ∞

−∞
fX,Y (x, y) dy

]
dx

=

∫ t

−∞
fX(x) dx.

Hence the random variable generated by the algorithm has pdf fX(x), as was to be
shown.

In the situation of this theorem, suppose we want to determine E[W (X)], for
some function W (x), where E[W 2(X)] < ∞. Using the algorithm of the theorem,
generate independently the sequence (Y1, X1), (Y2, X2), . . . , (Ym, Xm), for a specified
value of m, where Yi is drawn from the pdf fY (y) and Xi is generated from the pdf
fX|Y (x|Y ). Then by the Weak Law of Large Numbers,

W =
1

m

m∑
i=1

W (Xi)
P→

∫ ∞

−∞
W (x)fX(x) dx = E[W (X)].

Furthermore, by the Central Limit Theorem,
√

m(W − E[W (X)]) converges in
distribution to a N(0, σ2

W ) distribution, where σ2
W = Var(W (X)). If w1, w2, . . . , wm

is a realization of such a random sample, then an approximate (1− α)100% (large
sample) confidence interval for E[W (X)] is

w ± zα/2
sW√

m
, (11.3.4)

where s2
W = (m− 1)−1

∑m
i=1(wi − w)2.

To set ideas, we present the following simple example.
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Example 11.3.1. Suppose the random variable X has pdf

fX(x) =

{
2e−x(1− e−x) 0 < x <∞
0 elsewhere.

(11.3.5)

Suppose Y and X |Y have the respective pdfs

fY (y) =

{
2e−2y 0 < x <∞
0 elsewhere

(11.3.6)

fX|Y (x|y) =

{
e−(x−y) y < x <∞
0 elsewhere.

(11.3.7)

Suppose we generate random variables by the following algorithm:

1. Generate Y ∼ fY (y) as in expression (11.3.6).

2. Generate X ∼ fX|Y (x|Y ) as in expression (11.3.7).

Then, by Theorem 11.3.1, X has the pdf (11.3.5). Furthermore, it is easy to generate
from the pdfs (11.3.6) and (11.3.7) because the inverses of the respective cdfs are
given by F−1

Y (u) = −2−1 log(1− u) and F−1
X|Y (u) = − log(1− u) + Y .

As a numerical illustration, the R function condsim1 (found at the site listed
in the Preface) uses this algorithm to generate observations from the pdf (11.3.5).
Using this function, we performed m = 10,000 simulations of the algorithm. The
sample mean and standard deviation were x = 1.495 and s = 1.112. Hence a 95%
confidence interval for E(X) is (1.473, 1.517), which traps the true value E(X) =
1.5; see Exercise 11.3.4.

For the last example, Exercise 11.3.3 establishes the joint distribution of (X, Y )
and shows that the marginal pdf of X is given by (11.3.5). Furthermore, as shown in
this exercise, it is easy to generate from the distribution of X directly. In Bayesian
inference, though, we are often dealing with conditional pdfs, and theorems such as
Theorem 11.3.1 are quite useful.

The main purpose of presenting this algorithm is to motivate another algorithm,
called the Gibbs Sampler, which is useful in Bayes methodology. We describe it
in terms of two random variables. Suppose (X, Y ) has pdf f(x, y). Our goal is to
generate two streams of iid random variables, one on X and the other on Y . The
Gibbs sampler algorithm is:

Algorithm 11.3.1 (Gibbs Sampler). Let m be a positive integer, and let X0, an
initial value, be given. Then for i = 1, 2, 3, . . . , m,

1. Generate Yi|Xi−1 ∼ f(y|x).

2. Generate Xi|Yi ∼ f(x|y).

Note that before entering the ith step of the algorithm, we have generated Xi−1.
Let xi−1 denote the observed value of Xi−1. Then, using this value, generate se-
quentially the new Yi from the pdf f(y|xi−1) and then draw (the new) Xi from the
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pdf f(x|yi), where yi is the observed value of Yi. In advanced texts, it is shown that

Yi
D→ Y ∼ fY (y)

Xi
D→ X ∼ fX(x), (11.3.8)

as i →∞, and

1

m

m∑
i=1

W (Xi)
P→ E[W (X)], as m →∞. (11.3.9)

Note that the Gibbs sampler is similar but not quite the same as the algorithm
given by Theorem 11.3.1. Consider the sequence of generated pairs

(X1, Y1), (X2, Y2), . . . , (Xk, Yk), (Xk+1, Yk+1).

Note that to compute (Xk+1, Yk+1), we need only the pair (Xk, Yk) and none of the
previous pairs from 1 to k− 1. That is, given the present state of the sequence, the
future of the sequence is independent of the past. In stochastic processes such a
sequence is called a Markov chain. Under general conditions, the distribution of
Markov chains stabilizes (reaches an equilibrium or steady-state distribution) as the
length of the chain increases. For the Gibbs sampler, the equilibrium distributions
are the limiting distributions in the expression (11.3.8) as i→∞. How large should
i be? In practice, usually the chain is allowed to run to some large value i before
recording the observations. Furthermore, several recordings are run with this value
of i and the resulting empirical distributions of the generated random observations
are examined for their similarity. Also, the starting value for X0 is needed; see
Casella and George (1992) for a discussion. The theory behind the convergences
given in the expression (11.3.8) is beyond the scope of this text. There are many
excellent references on this theory. A discussion from an elementary level can be
found in Casella and George (1992). An informative overview can be found in
Chapter 7 of Robert and Casella (1999); see also Lehmann and Casella (1998). We
next provide a simple example.

Example 11.3.2. Suppose (X, Y ) has the mixed discrete-continuous pdf given by

f(x, y) =

{ 1
Γ(α)

1
x!y

α+x−1e−2y y > 0; x = 0, 1, 2, . . .

0 elsewhere,
(11.3.10)

for α > 0. Exercise 11.3.5 shows that this is a pdf and obtains the marginal pdfs.
The conditional pdfs, however, are given by

f(y|x) ∝ yα+x−1e−2y (11.3.11)

and

f(x|y) ∝ e−y yx

x!
. (11.3.12)

Hence the conditional densities are Γ(α+x, 1/2) and Poisson (y), respectively. Thus
the Gibbs sampler algorithm is, for i = 1, 2, . . . , m,

1. Generate Yi|Xi−1 ∼ Γ(α + Xi−1, 1/2).

2. Generate Xi|Yi ∼ Poisson(Yi).



11.3. Gibbs Sampler 677

In particular, for large m and n > m,

Y = (n−m)−1
n∑

i=m+1

Yi
P→ E(Y ) (11.3.13)

X = (n−m)−1
n∑

i=m+1

Xi
P→ E(X). (11.3.14)

In this case, it can be shown (see Exercise 11.3.5) that both expectations are equal
to α. The R function gibbser2.s, found at the site listed in the Preface, computes
this Gibbs sampler. Using this routine, the authors obtained the following results
upon setting α = 10, m = 3000, and n = 6000:

Sample Sample Approximate 95%
Parameter Estimate Estimate Variance Confidence Interval

E(Y ) = α = 10 y 10.027 10.775 (9.910, 10.145)
E(X) = α = 10 x 10.061 21.191 (9.896, 10.225)

where the estimates y and x are the observed values of the estimators in expressions
(11.3.13) and (11.3.14), respectively. The confidence intervals for α are the large
sample confidence intervals for means discussed in Example 4.2.2, using the sample
variances found in the fourth column of the above table. Note that both confidence
intervals trapped α = 10.

EXERCISES

11.3.1. Suppose Y has a Γ(1, 1) distribution while X given Y has the conditional
pdf

f(x|y) =

{
e−(x−y) 0 < y < x < ∞
0 elsewhere.

Note that both the pdf of Y and the conditional pdf are easy to simulate.

(a) Set up the algorithm of Theorem 11.3.1 to generate a stream of iid observations
with pdf fX(x).

(b) State how to estimate E(X).

(c) Using your algorithm found in part (a), write an R function to estimate E(X).

(d) Using your program, obtain a stream of 2000 simulations. Compute your
estimate of E(X) and find an approximate 95% confidence interval.

(e) Show that X has a Γ(2, 1) distribution. Did your confidence interval trap the
true value 2?

11.3.2. Carefully write down the algorithm to obtain a bootstrap percentile con-
fidence interval for E[Θw(Θ)]/E[w(Θ)], using the sample Θ1, Θ2, . . . ,Θm and the
estimator given in expression (11.3.3). Write R code for this bootstrap.
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11.3.3. Consider Example 11.3.1.

(a) Show that E(X) = 1.5.

(b) Obtain the inverse of the cdf of X and use it to show how to generate X
directly.

11.3.4. Obtain another 10,000 simulations similar to those discussed at the end of
Example 11.3.1. Use your simulations to obtain a confidence interval for E(X).

11.3.5. Consider Example 11.3.2.

(a) Show that the function given in expression (11.3.10) is a joint, mixed discrete-
continuous pdf.

(b) Show that the random variable Y has a Γ(α, 1) distribution.

(c) Show that the random variable X has a negative binomial distribution with
pmf

p(x) =

{
(α+x−1)!
x!(α−1)! 2−(α+x) x = 0, 1, 2, . . .

0 elsewhere.

(d) Show that E(X) = α.

11.3.6. Write an R function (or use gibbser2.s) for the Gibbs sampler discussed in
Example 11.3.2. Run your function for α = 10, m = 3000, and n = 6000. Compare
your results with those of the authors tabled in the example.

11.3.7. Consider the following mixed discrete-continuous pdf for a random vector
(X, Y ) (discussed in Casella and George, 1992):

f(x, y) ∝
{ (

n
x

)
yx+α−1(1 − y)n−x+β−1 x = 0, 1, . . . , n, 0 < y < 1

0 elsewhere,

for α > 0 and β > 0.

(a) Show that this function is indeed a joint, mixed discrete-continuous pdf by
finding the proper constant of proportionality.

(b) Determine the conditional pdfs f(x|y) and f(y|x).

(c) Write the Gibbs sampler algorithm to generate random samples on X and Y .

(d) Determine the marginal distributions of X and Y .

11.3.8. Write an R function for the Gibbs sampler of Exercise 11.3.7. Run your
program for α = 10, β = 4, m = 3000, and n = 6000. Obtain estimates (and confi-
dence intervals) of E(X) and E(Y ) and compare them with the true parameters.
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11.4 Modern Bayesian Methods

The prior pdf has an important influence in Bayesian inference. We need only
consider the different Bayes estimators for the normal model based on different
priors, as shown in Examples 11.1.3 and 11.2.1. One way of having more control
over the prior is to model the prior in terms of another random variable. This is
called the hierarchical Bayes model, and it is of the form

X |θ ∼ f(x|θ)
Θ|γ ∼ h(θ|γ)

Γ ∼ ψ(γ). (11.4.1)

With this model we can exert control over the prior h(θ|γ) by modifying the pdf
of the random variable Γ. A second methodology, empirical Bayes, obtains an
estimate of γ and plugs it into the posterior pdf. We offer the reader a brief introduc-
tion of these procedures in this section. There are several good books on Bayesian
methods. In particular, Chapter 4 of Lehmann and Casella (1998) discusses these
procedures in some detail.

Consider first the hierarchical Bayes model given by (11.4.1). The parameter γ
can be thought of a nuisance parameter. It is often called a hyperparameter. As
with regular Bayes, the inference focuses on the parameter θ; hence, the posterior
pdf of interest remains the conditional pdf k(θ|x).

These discussions often involve several pdfs; hence, we frequently use g as a
generic pdf. It will always be clear from its arguments what distribution it repre-
sents. Keep in mind that the conditional pdf f(x|θ) does not depend on γ; hence,

g(θ, γ|x) =
g(x, θ, γ)

g(x)

=
g(x|θ, γ)g(θ, γ)

g(x)

=
f(x|θ)h(θ|γ)ψ(γ)

g(x)
.

Therefore, the posterior pdf is given by

k(θ|x) =

∫ ∞
−∞ f(x|θ)h(θ|γ)ψ(γ) dγ∫ ∞

−∞
∫∞
−∞ f(x|θ)h(θ|γ)ψ(γ) dγdθ

. (11.4.2)

Furthermore, assuming squared-error loss, the Bayes estimate of W (θ) is

δW (x) =

∫∞
−∞

∫∞
−∞ W (θ)f(x|θ)h(θ|γ)ψ(γ) dγdθ∫ ∞

−∞
∫∞
−∞ f(x|θ)h(θ|γ)ψ(γ) dγdθ

. (11.4.3)

Recall that we defined the Gibbs sampler in Section 11.3. Here we describe it
to obtain the Bayes estimate of W (θ). For i = 1, 2, . . . , m, where m is specified, the
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ith step of the algorithm is

Θi|x, γi−1 ∼ g(θ|x, γi−1)

Γi|x, θi ∼ g(γ|x, θi).

Recall from our discussion in Section 11.3 that

Θi
D→ k(θ|x)

Γi
D→ g(γ|x),

as i →∞. Furthermore, the arithmetic average

1

m

m∑
i=1

W (Θi)
P→ E[W (Θ)|x] = δW (x) as m →∞. (11.4.4)

In practice, to obtain the Bayes estimate of W (θ) by the Gibbs sampler, we
generate by Monte Carlo the stream of values (θ1, γ1), (θ2, γ2) . . . . Then choosing
large values of m and n∗ > m, our estimate of W (θ) is the average,

1

n∗ −m

n∗∑
i=m+1

W (θi). (11.4.5)

Because of the Monte Carlo generation these procedures are often called MCMC,
for Markov Chain Monte Carlo procedures. We next provide two examples.

Example 11.4.1. Reconsider the conjugate family of normal distributions dis-
cussed in Example 11.1.3, with θ0 = 0. Here we use the model

X |Θ ∼ N

(
θ,

σ2

n

)
, σ2 is known

Θ|τ2 ∼ N(0, τ2)

1

τ2
∼ Γ(a, b), a and b are known. (11.4.6)

To set up the Gibbs sampler for this hierarchical Bayes model, we need the condi-
tional pdfs g(θ|x, τ2) and g(τ2|x, θ). For the first, we have

g(θ|x, τ2) ∝ f(x|θ)h(θ|τ2)ψ(τ−2).

As we have been doing, we can ignore standardizing constants; hence, we need
only consider the product f(x|θ)h(θ|τ2). But this is a product of two normal pdfs
which we obtained in Example 11.1.3. Based on those results, g(θ|x, τ2) is the pdf
of a N({τ2/[(σ2/n) + τ2]}x, (τ2σ2)/[σ2 + nτ2]). For the second pdf, by ignoring
standardizing constants and simplifying, we obtain

g

(
1

τ2
|x, θ

)
∝ f(x|θ)g(θ|τ2)ψ(1/τ2)

∝ 1

τ
exp

{
−1

2

θ2

τ2

}(
1

τ2

)a−1

exp

{
− 1

τ2

1

b

}
∝

(
1

τ2

)a+(1/2)−1

exp

{
− 1

τ2

[
θ2

2
+

1

b

]}
, (11.4.7)
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which is the pdf of a Γ{a + (1/2), [(θ2/2) + (1/b)]−1} distribution. Thus the Gibbs
sampler for this model is given by:

Θi|x, τ2
i−1 ∼ N

(
τ2
i−1

(σ2/n) + τ2
i−1

x,
τ2
i−1σ

2

σ2 + nτ2
i−1

)
1

τ2
i

|x, Θi ∼ Γ

(
a +

1

2
,

(
θ2

i

2
+

1

b

)−1
)

, (11.4.8)

for i = 1, 2, . . . , m. As discussed above, for a specified values of large m and n∗ >
m, we collect the chain’s values ((Θm, τm), (Θm+1, τm+1), . . . , (Θn∗ , τn∗)) and then
obtain the Bayes estimate of θ (assuming squared-error loss):

θ̂ =
1

n∗ −m

n∗∑
i=m+1

Θi. (11.4.9)

The conditional distribution of Θ given x and τi−1, though, suggests the second
estimate given by

θ̂∗ =
1

n∗ −m

n∗∑
i=m+1

τ2
i

τ2
i + (σ2/n)

x. (11.4.10)

Example 11.4.2. Lehmann and Casella (1998, p. 257) presented the following
hierarchical Bayes model:

X |λ ∼ Poisson(λ)

Λ|b ∼ Γ(1, b)

B ∼ g(b) = τ−1b−2 exp{−1/bτ}, b > 0, τ > 0.

For the Gibbs sampler, we need the two conditional pdfs, g(λ|x, b) and g(b|x, λ).
The joint pdf is

g(x, λ, b) = f(x|λ)h(λ|b)ψ(b). (11.4.11)

Based on the pdfs of the model, (11.4.11), for the first conditional pdf we have

g(λ|x, b) ∝ e−λ λx

x!

1

b
e−λ/b

∝ λx+1−1e−λ[1+(1/b)], (11.4.12)

which is the pdf of a Γ(x + 1, b/[b + 1]) distribution.

For the second conditional pdf, we have

g(b|x, λ) ∝ 1

b
e−λ/bτ−1b−2e−1/(bτ)

∝ b−3 exp

{
−1

b

[
1

τ
+ λ

]}
.
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In this last expression, making the change of variable y = 1/b which has the Jacobian
db/dy = −y−2, we obtain

g(y|x, λ) ∝ y3 exp

{
−y

[
1

τ
+ λ

]}
y−2

∝ y2−1 exp

{
−y

[
1 + λτ

τ

]}
,

which is easily seen to be the pdf of the Γ(2, τ/[λτ + 1]) distribution. Therefore,
the Gibbs sampler is, for i = 1, 2, . . . , m, where m is specified,

Λi|x, bi−1 ∼ Γ (x + 1, bi−1/[1 + bi−1])

Bi = Y −1
i , where Yi|x, λi ∼ Γ (2, τ/[λiτ + 1]) .

As a numerical illustration of the last example, suppose we set τ = 0.05 and
observe x = 6. The R function1 hierarch1.s computes the Gibbs sampler given in
the example. It requires specification of the value of i at which the Gibbs sample
commences and the length of the chain beyond this point. We set these values at
m = 1000 and n∗ = 4000, respectively, i.e., the length of the chain used in the
estimate is 3000. To see the effect that varying τ has on the Bayes estimator, we
performed five Gibbs samplers, with these results:

τ 0.040 0.045 0.050 0.055 0.060

δ̂ 6.600 6.490 6.530 6.500 6.440

There is some variation. As discussed in Lehmann and Casella (1998), in general,
there is less effect on the Bayes estimator due to variability of the hyperparameter
than in regular Bayes due to the variance of the prior.

11.4.1 Empirical Bayes

The empirical Bayes model consists of the first two lines of the hierarchical Bayes
model; i.e.,

X|θ ∼ f(x|θ)
Θ|γ ∼ h(θ|γ).

Instead of attempting to model the parameter γ with a pdf as in hierarchical Bayes,
empirical Bayes methodology estimates γ based on the data as follows. Recall that

g(x, θ|γ) =
g(x, θ, γ)

ψ(γ)

=
f(x|θ)h(θ|γ)ψ(γ)

ψ(γ)

= f(x|θ)h(θ|γ).

1Downloadable at the site listed in the Preface
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Consider, then, the likelihood function

m(x|γ) =

∫ ∞

−∞
f(x|θ)h(θ|γ) dθ. (11.4.13)

Using the pdf m(x|γ), we obtain an estimate γ̂ = γ̂(x), usually by the method
of maximum likelihood. For inference on the parameter θ, the empirical Bayes
procedure uses the posterior pdf k(θ|x, γ̂).

We illustrate the empirical Bayes procedure with the following example.

Example 11.4.3. Consider the same situation discussed in Example 11.4.2, except
assume that we have a random sample on X ; i.e., consider the model

Xi|λ, i = 1, 2, . . . , n ∼ iid Poisson(λ)

Λ|b ∼ Γ(1, b).

Let X = (X1, X2, . . . , Xn)′. Hence,

g(x|λ) =
λnx

x1! · · ·xn!
e−nλ,

where x = n−1
∑n

i=1 xi. Thus, the pdf we need to maximize is

m(x|b) =

∫ ∞

0

g(x|λ)h(λ|b) dλ

=

∫ ∞

0

1

x1! · · ·xn!
λnx+1−1e−nλ 1

b
e−λ/b dλ

=
Γ(nx + 1)[b/(nb + 1)]nx+1

x1! · · ·xn!b
.

Taking the partial derivative of log m(x|b) with respect to b, we obtain

∂ log m(x|b)
∂b

= −1

b
+ (nx + 1)

1

b(bn + 1)
.

Setting this equal to 0 and solving for b, we obtain the solution

b̂ = x. (11.4.14)

To obtain the empirical Bayes estimate of λ, we need to compute the posterior pdf
with b̂ substituted for b. The posterior pdf is

k(λ|x, b̂) ∝ g(x|λ)h(λ|̂b)
∝ λnx+1−1e−λ[n+(1/bb)], (11.4.15)

which is the pdf of a Γ(nx + 1, b̂/[nb̂ + 1]) distribution. Therefore, the empirical
Bayes estimator under squared-error loss is the mean of this distribution; i.e.,

λ̂ = [nx + 1]
b̂

nb̂ + 1
= x, (11.4.16)

since b̂ = x. Thus, for the above prior, the empirical Bayes estimate agrees with
the mle.
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We can use our solution of this last example to obtain the empirical Bayes
estimate for Example 11.4.2 also, for in this earlier example, the sample size is 1.
Thus, the empirical Bayes estimate for λ is x. In particular, for the numerical case
given at the end of Example 11.4.2, the empirical Bayes estimate has the value 6.

EXERCISES

11.4.1. Consider the Bayes model

Xi|θ ∼ iid Γ

(
1,

1

θ

)
Θ|β ∼ Γ(2, β).

By performing the following steps, obtain the empirical Bayes estimate of θ.

(a) Obtain the likelihood function

m(x|β) =

∫ ∞

0

f(x|θ)h(θ|β) dθ.

(b) Obtain the mle β̂ of β for the likelihood m(x|β).

(c) Show that the posterior distribution of Θ given x and β̂ is a gamma distribu-
tion.

(d) Assuming squared-error loss, obtain the empirical Bayes estimator.

11.4.2. Consider the hierarchical Bayes model

Y ∼ b(n, p), 0 < p < 1

p|θ ∼ h(p|θ) = θpθ−1, θ > 0

θ ∼ Γ(1, a), a > 0 is specified. (11.4.17)

(a) Assuming squared-error loss, write the Bayes estimate of p as in expression
(11.4.3). Integrate relative to θ first. Show that both the numerator and
denominator are expectations of a beta distribution with parameters y + 1
and n− y + 1.

(b) Recall the discussion around expression (11.3.2). Write an explicit Monte
Carlo algorithm to obtain the Bayes estimate in part (a).

11.4.3. Reconsider the hierarchical Bayes model (11.4.17) of Exercise 11.4.2.

(a) Show that the conditional pdf g(p|y, θ) is the pdf of a beta distribution with
parameters y + θ and n− y + 1.

(b) Show that the conditional pdf g(θ|y, p) is the pdf of a gamma distribution

with parameters 2 and
[

1
a − log p

]−1
.
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(c) Using parts (a) and (b) and assuming squared-error loss, write the Gibbs
sampler algorithm to obtain the Bayes estimator of p.

11.4.4. For the hierarchical Bayes model of Exercise 11.4.2, set n = 50 and a = 2.
Now, draw a θ at random from a Γ(1, 2) distribution and label it θ∗. Next, draw a
p at random from the distribution with pdf θ∗pθ∗−1 and label it p∗. Finally, draw
a y at random from a b(n, p∗) distribution.

(a) Setting m at 3000, obtain an estimate of θ∗ using your Monte Carlo algorithm
of Exercise 11.4.2.

(b) Setting m at 3000 and n∗ at 6000, obtain an estimate of θ∗ using your Gibbs
sampler algorithm of Exercise 11.4.3. Let p3001, p3002, . . . , p6000 denote the
stream of values drawn. Recall that these values are (asymptotically) simu-
lated values from the posterior pdf g(p|y). Use this stream of values to obtain
a 95% credible interval.

11.4.5. Write the Bayes model of Exercise 11.4.2 as

Y ∼ b(n, p), 0 < p < 1

p|θ ∼ h(p|θ) = θpθ−1, θ > 0.

Set up the estimating equations for the mle of g(y|θ), i.e., the first step to obtain
the empirical Bayes estimator of p. Simplify as much as possible.

11.4.6. Example 11.4.1 dealt with a hierarchical Bayes model for a conjugate family
of normal distributions. Express that model as

X|Θ ∼ N

(
θ,

σ2

n

)
, σ2 is known

Θ|τ2 ∼ N(0, τ2).

Obtain the empirical Bayes estimator of θ.
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Appendix A

Mathematical Comments

A.1 Regularity Conditions

These are the regularity conditions referred to in Sections 6.4 and 6.5 of the text.
A discussion of these conditions can be found in Chapter 6 of Lehmann and Casella
(1998).

Let X have pdf f(x; θ), where θ ∈ Ω ⊂ Rp. For these assumptions, X can be
either a scalar random variable or a random vector in Rk. As in Section 6.4, let
I(θ) = [Ijk] denote the p× p information matrix given by expression (6.4.4). Also,
we will denote the true parameter θ by θ0.

Assumptions A.1.1. Additional regularity conditions for Sections 6.4 and 6.5.

(R6): There exists an open subset Ω0 ⊂ Ω such that θ0 ∈ Ω0 and all third partial
derivatives of f(x; θ) exist for all θ ∈ Ω0.

(R7) The following equations are true (essentially, we can interchange expectation
and differentiation):

Eθ

[
∂

∂θj
log f(x ; θ)

]
= 0, for j = 1, . . . , p

Ijk(θ) = Eθ

[
− ∂2

∂θj∂θk
log f(x ; θ)

]
, for j, k = 1, . . . , p.

(R8) For all θ ∈ Ω0, I(θ) is positive definite.

(R9) There exist functions Mjkl(x) such that∣∣∣∣ ∂3

∂θj∂θkθl
log f(x ; θ)

∣∣∣∣ ≤ Mjkl(x), for all θ ∈ Ω0,

and
Eθ0

[Mjkl] <∞, for all j, k, l ∈ 1, . . . , p.

687
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A.2 Sequences

The following is a short review of sequences of real numbers. In particular the
liminf and limsup of sequences are discussed. As a supplement to this text, the
authors offer a mathematical primer which can be downloaded at the site listed in
the Preface. In addition to the following review of sequences, it contains a brief
review of infinite series, and differentiable and integrable calculus including double
integration. Students that need a review of these concepts can freely download this
supplement.

Let {an} be a sequence of real numbers. Recall from calculus that an → a
(limn→∞ an = a) if and only if

for every ε > 0, there exists an N0 such that n ≥ N0 =⇒ |an − a| < ε. (A.2.1)

Let A be a set of real numbers that is bounded from above; that is, there exists
an M ∈ R such that x ≤ M for all x ∈ A. Recall that a is the supremum of A if
a is the least of all upper bounds of A. From calculus, we know that the supremum
of a set bounded from above exists. Furthermore, we know that a is the supremum
of A if and only if, for all ε > 0, there exists an x ∈ A such that a − ε < x ≤ a.
Similarly, we can define the infimum of A.

We need three additional facts from calculus. The first is the Sandwich Theorem.

Theorem A.2.1 (Sandwich Theorem). Suppose for sequences {an}, {bn}, and
{cn} that cn ≤ an ≤ bn, for all n, and that limn→∞ bn = limn→∞ cn = a. Then
limn→∞ an = a.

Proof: Let ε > 0 be given. Because both {bn} and {cn} converge, we can choose N0

so large that |cn − a| < ε and |bn − a| < ε, for n ≥ N0. Because cn ≤ an ≤ bn, it is
easy to see that

|an − a| ≤ max{|cn − a|, |bn − a|},

for all n. Hence, if n ≥ N0, then |an − a| < ε.

The second fact concerns subsequences. Recall that {ank
} is a subsequence of

{an} if the sequence n1 ≤ n2 ≤ · · · is an infinite subset of the positive integers.
Note that nk ≥ k.

Theorem A.2.2. The sequence {an} converges to a if and only if every subsequence
{ank

} converges to a.

Proof: Suppose the sequence {an} converges to a. Let {ank
} be any subsequence.

Let ε > 0 be given. Then there exists an N0 such that |an − a| < ε, for n ≥ N0.
For the subsequence, take k′ to be the first index of the subsequence beyond N0.
Because for all k, nk ≥ k, we have that nk ≥ nk′ ≥ k′ ≥ N0, which implies that
|ank

− a| < ε. Thus, {ank
} converges to a. The converse is immediate because a

sequence is also a subsequence of itself.

Finally, the third theorem concerns monotonic sequences.
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Theorem A.2.3. Let {an} be a nondecreasing sequence of real numbers; i.e., for
all n, an ≤ an+1. Suppose {an} is bounded from above; i.e., for some M ∈ R,
an ≤ M for all n. Then the limit of an exists.

Proof: Let a be the supremum of {an}. Let ε > 0 be given. Then there exists an
N0 such that a− ε < aN0 ≤ a. Because the sequence is nondecreasing, this implies
that a− ε < an ≤ a, for all n ≥ N0. Hence, by definition, an → a.

Let {an} be a sequence of real numbers and define the two subsequences

bn = sup{an, an+1, . . .}, n = 1, 2, 3 . . . (A.2.2)

cn = inf{an, an+1, . . .}, n = 1, 2, 3 . . . . (A.2.3)

It is obvious that {bn} is a nonincreasing sequence. Hence, if {an} is bounded from
below, then the limit of bn exists. In this case, we call the limit of {bn} the limit
supremum (limsup) of the sequence {an} and write it as

lim
n→∞

an = lim
n→∞

bn. (A.2.4)

Note that if {an} is not bounded from below, then limn→∞ an = −∞. Also, if
{an} is not bounded from above, we define limn→∞ an = ∞. Hence, the lim of any
sequence always exists. Also, from the definition of the subsequence {bn}, we have

an ≤ bn, n = 1, 2, 3, . . . . (A.2.5)

On the other hand, {cn} is a nondecreasing sequence. Hence, if {an} is bounded
from above, then the limit of cn exists. We call the limit of {cn} the limit infimum
(liminf) of the sequence {an} and write it as

lim
n→∞

an = lim
n→∞

cn. (A.2.6)

Note that if {an} is not bounded from above, then limn→∞ an = ∞. Also, if {an} is
not bounded from below, limn→∞ an = −∞. Hence, the lim of any sequence always
exists. Also, from the definition of the subsequences {cn} and {bn}, we have

cn ≤ an ≤ bn, n = 1, 2, 3, . . . . (A.2.7)

Also, because cn ≤ bn for all n, we have

lim
n→∞

an ≤ lim
n→∞

an. (A.2.8)

Example A.2.1. Here are two examples. More are given in the exercises.

1. Suppose an = −n for all n = 1, 2, . . . . Then bn = sup{−n,−n − 1, . . .} =
−n → −∞ and cn = inf{−n,−n− 1, . . .} = −∞ → −∞. So, limn→∞ an =
limn→∞ an = −∞.
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2. Suppose {an} is defined by

an =

{
1 + 1

n if n is even
2 + 1

n if n is odd.

Then {bn} is the sequence {3, 2+(1/3), 2+(1/3), 2+(1/5), 2+(1/5), . . .}, which
converges to 2, while {cn} ≡ 1, which converges to 1. Thus, limn→∞ an = 1
and limn→∞ an = 2.

It is useful that the limn→∞ and limn→∞ of every sequence exists. Also, the
sandwich effects of expressions (A.2.7) and (A.2.8) lead to the following theorem.

Theorem A.2.4. Let {an} be a sequence of real numbers. Then the limit of
{an} exists if and only if limn→∞ an = limn→∞ an, in which case, limn→∞ an =
limn→∞ an = limn→∞ an.

Proof: Suppose first that limn→∞ an = a. Because the sequences {cn} and {bn}
are subsequences of {an}, Theorem A.2.2 implies that they converge to a also.
Conversely, if limn→∞ an = limn→∞ an, then expression (A.2.7) and the Sandwich
Theorem, A.2.1, imply the result.

Based on this last theorem, we have two interesting applications that are fre-
quently used in statistics and probability. Let {pn} be a sequence of probabilities
and let bn = sup{pn, pn+1, . . .} and cn = inf{pn, pn+1, . . .}. For the first application,
suppose we can show that limn→∞ pn = 0. Then, because 0 ≤ pn ≤ bn, the Sand-
wich Theorem implies that limn→∞ pn = 0. For the second application, suppose we
can show that limn→∞ pn = 1. Then, because cn ≤ pn ≤ 1, the Sandwich Theorem
implies that limn→∞ pn = 1.

We list some other properties in a theorem and ask the reader to provide the
proofs in Exercise A.2.2:

Theorem A.2.5. Let {an} and {dn} be sequences of real numbers. Then

lim
n→∞

(an + dn) ≤ lim
n→∞

an + lim
n→∞

dn (A.2.9)

lim
n→∞

an = − lim
n→∞

(−an). (A.2.10)

EXERCISES

A.2.1. Calculate the lim and lim of each of the following sequences:

(a) For n = 1, 2, . . ., an = (−1)n
(
2− 4

2n

)
.

(b) For n = 1, 2, . . ., an = ncos(πn/2).

(c) For n = 1, 2, . . ., an = 1
n + cos πn

2 + (−1)n.

A.2.2. Prove properties (A.2.9) and (A.2.10).
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A.2.3. Let {an} and {dn} be sequences of real numbers. Show that

lim
n→∞

(an + dn) ≥ lim
n→∞

an + lim
n→∞

dn.

A.2.4. Let {an} be a sequence of real numbers. Suppose {ank
} is a subsequence of

{an}. If {ank
} → a0 as k →∞, show that limn→∞ an ≤ a0 ≤ limn→∞ an.
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Appendix B

R Primer

The package R can be downloaded at CRAN (https://cran.r-project.org/). It is
freeware and there are versions for most platforms including Windows, Mac, and
Linux. To install R simply follow the directions at CRAN. Installation should only
take a few minutes. For more information on R, there are free downloadable manuals
on its use at the CRAN website. There are many reference texts that the reader
can consult, including the books by Venables and Ripley (2002), Verzani (2014),
Crawley (2007), and Chapter 1 of Kloke and McKean (2014).

Once R is installed, in Windows, click on the R icon to begin an R session. The
R prompt is a >. To exit R, type q(), which results in the query Save workspace

image? [y/n/c]:. Upon typing y, the workspace will be saved for the next session.
R has a built-in help (documentation) system. For example, to obtain help on the
mean function, simply type help(mean). To exit help, type q. We would recommend
using R while working through the sections in this primer.

B.1 Basics

The commands of R work on numerical data, character strings, or logical types. To
separate commands on the same line, use semicolons. Also, anything to the right of
the symbol # is disregarded by R; i.e., to the right of # can be used for comments.
Here are some arithmetic calculations:

> 8+6 - 7*2

[1] 0

> (150/3) + 7^2 -1 ; sqrt(50) - 50^(1/2)

[1] 98

[1] 0

> (4/3)*pi*5^3 # The volume of a sphere with radius 5

693

https://cran.r-project.org
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[1] 523.5988

> 2*pi*5 # The circumference of a sphere with radius 5

[1] 31.41593

Results can be saved for later calculation by either the assignment function <- or
equivalently the equal symbol =. Names can be a mixture of letters, numbers, or
symbols. For example:

> r <- 10 ; Vol <- (4/3)*pi*r^3 ; Vol

[1] 4188.79

> r = 100 ; circum = 2*pi*r ; circum

[1] 628.3185

Variables in R include scalars, vectors, or matrices. In the last example the variables
r and Vol are scalars. Scalars can be combined into vectors with the c function. Fur-
ther, arithmetic functions on vectors are performed componentwise. For instance,
here are two ways to compute the volumes of spheres with radii 5, 6, . . . , 9.

> r <- c(5,6,7,8,9) ; Vol <- (4/3)*pi*r^3 ; Vol

[1] 523.5988 904.7787 1436.7550 2144.6606 3053.6281

> r <- 5:9 ; Vol <- (4/3)*pi*r^3 ; Vol

[1] 523.5988 904.7787 1436.7550 2144.6606 3053.6281

Components of a vector are referred to by using brackets. For example, the 5th
component of the vector vec is vec[5]. Matrices can be formed from vectors using
the commands rbind (combine rows) and cbind (combine columns) on vectors. To
illustrate let A and B be the matrices

A =

[
1 4
3 2

]
and B =

[
1 3 5 7
2 4 6 8

]
.

Then AB, A−1, and B′A are computed by

> c1 <- c(1,3) ; c2 <- c(4,2); a <- cbind(c1,c2)

> r1 <- c(1,3,5,7); r2 <- c(2,4,6,8); b <- rbind(r1,r2)

> a%*%b; solve(a) ; t(b)%*%a

[,1] [,2] [,3] [,4]

[1,] 9 19 29 39

[2,] 7 17 27 37

[,1] [,2]

c1 -0.2 0.4

c2 0.3 -0.1



B.1. Basics 695

c1 c2

[1,] 7 8

[2,] 15 20

[3,] 23 32

[4,] 31 44

Brackets are also used to refer to elements of matrices. Let amat be a 4× 4 matrix.
Then the (2, 3) element is amat[2,3] and the upper right corner 2× 2 submatrix is
amat[1:2,3:4]. This last item is an example of subsetting of a matrix. Subsetting
is easy in R. For example, the following commands obtain the negative, positive,
and elements of 0 for a vector x:

> x = c(-2,0,3,4,-7,-8,11,0); xn = x[x<0]; xn

[1] -2 -7 -8

> xp = x[x>0]; xp

[1] 3 4 11

> x0 = x[x==0]; x0

[1] 0 0

For R vectors x and y of the same length, the plot of y versus x is obtained by
the command plot(y ~ x). The following segment of R code obtains plots found
in Figure 2.1.1 of the volume and circumference of the sphere versus the radius
for a sequence of radii from 0 to 8 in steps of 0.1. The first plot is a simple plot;
the second plot adds some labeling and a title; the third plot draws a curve of the
relationship; and the fourth plot shows the relationship between the circumference
of the circle versus the radius.

par(mfrow=c(2,2)) # This sets up a 2 by 2 page of plots

r <- seq(0,8,.1); Vol <- (4/3)*pi*r^3 ; plot(Vol ~ r) # Plot 1

title("Simple Plot")

plot(Vol ~ r,xlab="Radius",ylab="Volume") # Plot 2

title("Volume vs Radius")

plot(Vol ~ r,pch=" ",xlab="Radius",ylab="Volume")

lines(Vol ~ r) # Plot 3

title("Curve")

circum <- 2*pi*r

plot(circum ~ r,pch=" ",xlab="Radius",ylab="Circumference")

lines(circum ~ r); title("Circumference vs Radius") # Plot 4
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Figure 2.1.1: Spherical Plots discussed in Text.

B.2 Probability Distributions

For many distributions, R has functions that obtain probabilities, compute quan-
tiles, and generate random variates. Here are two common examples. Let X be a
random variable with a N(μ, σ2) distribution. In R, let mu and sig denote the mean
and standard deviation of X , respectively. Then the R commands and meanings
are:

pnorm(x,mu,sig) P (X ≤ x).
qnorm(p,mu,sig) P (X ≤ q) = p.
dnorm(x,mu,sig) f(x), where f is the pdf of X .
rnorm(n,mu,sig) n variates generated from distribution of X .

As a numerical illustration, suppose the height of a male is normally distributed
with mean 70 inches and standard deviation 4 inches.

> 1-pnorm(72,70,4) # Prob. man exceeds 6 foot in ht.

[1] 0.3085375

> qnorm(.90,70,4) # The upper 10th percentile in ht.

[1] 75.12621

> dnorm(72,70,4) # value of density at 72
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[1] 0.08801633

> rnorm(6,70,4) # sample of size 6 on X

[1] 72.12486 75.25811 71.26661 63.36465 74.19436 69.71513

For the next figure, 2.2.2, we generate 100 variates, histogram the sample, and
overlay the plot of the density of X on the histogram. Note the pr=T argument in
the histogram. This scales the histogram to have area 1.

> x = rnorm(100,70,4); x=sort(x)

> hist(x,pr=T,main="Histogram of Sample")

> y = dnorm(x,70,4)

> lines(y~x)
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Figure 2.2.2: Histogram of a Random Sample from a N(70, 42) distribution over-
laid with the pdf of this normal.

For a discrete random variable the pdf is the probability mass function (pmf).
Suppose X is binomial with 100 trials and 0.6 as the probability of success.
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> pbinom(55,100,.6) # Probability of at most 55 successes

[1] 0.1789016

> dbinom(55,100,.6) # Probability of exactly 55 successes

[1] 0.04781118

Most other well known distributions are in core R. For example, here is the
probability that a χ2 random variable with 30 degrees of freedom exceeds 2 standard
deviations form its mean, along with a Γ-distribution confirmation.

> mu=30; sig=sqrt(2*mu); 1-pchisq(mu+2*sig,30)

[1] 0.03471794

> 1-pgamma(mu+2*sig,15,1/2)

[1] 0.03471794

The sample command returns a random sample from a vector. It can ei-
ther be sampling with replacement (replace=T) or sampling without replacement
(replace=F). Here are samples of size 12 from the first 20 positive integers.

> vec = 1:20

> sample(vec,12,replace=T)

[1] 14 20 7 17 6 6 11 11 9 1 10 14

> sample(vec,12,replace=F)

[1] 12 1 14 5 4 11 3 17 16 19 20 15

B.3 R Functions

The syntax for R functions is the same as the syntax in R. This easily allows for
the development of packages, a collection of R functions, for specific tasks. The
schematic for an R function is

name-function <- function(arguments){

... body of function ...

}

Example B.3.1. Consider a process where a measurement is taken over time. At
each time n, n = 1, 2, . . ., the measurement xn is observed but only the sample
mean xn = (1/n)

∑n
i=1 xi of the measurements at time n is recorded and the point

(n, xn) is added to the running plot of sample means. How is this possible? There
is a simple update formula for the sample mean that is easily derived. It is given by

xn+1 =
n

n + 1
xn +

1

n + 1
xn+1; (B.3.1)
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hence, the sample mean for the sequence x1, . . . , xn+1 can be expressed as a linear
combination of the sample mean at time n and the (n + 1)st measurement. The
following R function codes this update formula:

mnupdate <- function(n,xbarn,xnp1){

# Input: n is sample size; xbarn is mean of sample of size n;

# xnp1 is (n+1) (new) observation

# Output: mean of sample of size (n+1)

mnupdate <- (n/(n+1))*xbarn + xnp1/(n+1)

return(mnupdate)

}

To run this function we first source it in R. If the function is in the file mnupdate.R
in the current directory then the source command is source("mnupdate.R"). It
can also be copied and pasted into the current R session. Here is an execution of it:

> source("mnupdate.R")

> x = c(3,5,12,4); n=4; xbarn = mean(x);

> x; xbarn #Old sample and its mean

[1] 3 5 12 4

[1] 6

> xp1 = 30 # New observation

> mnupdate(n,xbarn,xp1) # Mean of updated sample

[1] 10.8

B.4 Loops

Occasionally in the text, we use a loop in an R program to compute a result. Usually
it is a simple for loop of the form

for(i in 1:n){

... R code often as a function of i ...

# For the n-iterations of the loop, i runs through

# the values i=1, i=2, ... , i=n.

}

For example, the following code segment produces a table of squares, cubes, square-
roots, and cube-roots, for the integers from 1 to n.

# set n at some value

tab <- c() # Initialize the table

for(i in 1:n){

tab <- rbind(tab,c(i,i^2,i^3,i^(1/2),i^(1/3)))

}

tab
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B.5 Input and Output

Many texts on R, including the references cited above, have information on input
and output (I/O) in R. We only discuss several ways which are useful for the R
discussion in our text. For output, we discuss two commands. The first writes an
array (matrix) to a text file. Suppose amat is a matrix with p columns. Then the
command write(t(amat),ncol=p,file="amatrix.dat") writes the matrix amat

to the text file amatrix.dat in the current directory. Simply put the “Path” before
the file as file="Path/amatrix.dat" to send it to another directory. The second
way writes out variables to an R object file called an “rda” file. The variables can
include scalars, vectors, matrices, and strings. For example the next line of code
writes to an rda file the scalars avar and bscale and the matrix amat along with
an information string.

info <- "This file contains the variable ....."

save(avar,bscale,amat,info,file="try.rda")

The command load("try.rda") will load these variables (names and values) into
the current session. Most of the data sets discussed in the text are in rda files.

For input, we have already discussed the c and load functions. The c function
is tedious, though, and a much easier way is to use the scan function. For example,
the following lines of code assign the vector (1, 2, 3) to x:

x <- scan()

1 2

3

The separator between values is white space and the empty line after the data
signals the end of x’s values. Note that this allows data to be copied and pasted
into R. A matrix can also be scanned similarly by using the read.table function;
for example, the following command inputs the above matrix A with column header
“c1” and “c2”:

a <- read.table(header = TRUE, text = "

c1 c2

1 4

3 2

")

Notice that copy and paste is also easily used with this command. If the matrix A
is in the file amat.dat with no header, it can be read in as

a <- matrix(scan("amat.dat"),ncol=2,byrow=T)

B.6 Packages

An R package is a collection of R functions designed for specified tasks. For example,
in Chapter 10, the packages Rfit and npsm are discussed that compute rank-based
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robust and nonparametric procedures. There are thousands of free packages avail-
able to users at the site CRAN. The package hmcpkg contains all the R functions
and R data sets discussed in this text. It can be downloaded at the site:

http://www.stat.wmich.edu/mckean/hmchomepage/Pkg/

Once it is installed on your computer use the library command as shown next to use
the package in an R session. The next segment of code prints out the first 3 lines
of the baseball data set discussed in Example 4.2.4. The attach command allows us
to access the variables of the data set, as we show for the variable height.

library(hmcpkg)

head(bb,3)

hand height weight hitind hitpitind average

1 1 74 218 1 0 3.330

2 0 75 185 1 1 0.286

3 1 77 219 2 0 3.040

attach(bb); head(height,4) # accessing the variable height

[1] 74 75 77 73

In Example 1.3.3, the derivation of the probability that in a group of n people at
least 2 have the same birthday is given. The R function bday, included in the
package, computes this probability. The following segment of code computes it for
a group of size 10.

library(hmcpkg)

bday(10)

[1] 0.1169482

http://www.stat.wmich.edu/mckean/hmchomepage/Pkg/
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Appendix C

Lists of Common

Distributions

In this appendix, we provide a short list of common distributions. For each distribu-
tion, we note the expression where the pmf or pdf is defined in the text, the formula
for the pmf or pdf, its mean and variance, and its mgf. The first list contains
common discrete distributions, and the second list contains common continuous
distributions.
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List of Common Discrete Distributions

Bernoulli (3.1.1)
0 < p < 1 p(x) = px(1− p)1−x, x = 0, 1

μ = p, σ2 = p(1− p)
m(t) = [(1− p) + pet], −∞ < t <∞

Binomial (3.1.2)
0 < p < 1 p(x) =

(
n
x

)
px(1− p)n−x, x = 0, 1, 2, . . . , n

n = 1, 2, . . .
μ = np, σ2 = np(1− p)
m(t) = [(1− p) + pet]n, −∞ < t < ∞

Geometric (3.1.4)
0 < p < 1 p(x) = p(1− p)x, x = 0, 1, 2, . . .

μ = q
p , σ2 = 1−p

p2

m(t) = p[1− (1− p)et]−1, t < − log(1 − p)

Hypergeometric (N, D, n) (3.1.7)

n = 1, 2, . . . ,min{N, D} p(x) =
(N−D

n−x )(D
x)

(N
n)

, x = 0, 1, 2, . . . , n

μ = nD
N , σ2 = nD

N
N−D

N
N−n
N−1

The above pmf is the probability of obtaining x Ds
in a sample of size n, without replacement.

Negative Binomial (3.1.3)

0 < p < 1 p(x) =
(
x+r−1

r−1

)
pr(1− p)x, x = 0, 1, 2, . . .

r = 1, 2, . . .

μ = rq
p , σ2 = r(1−p)

p2

m(t) = pr[1− (1 − p)et]−r, t < − log(1− p)

Poisson (3.2.1)

m > 0 p(x) = e−m mx

x! , x = 0, 1, 2, . . .
μ = m, σ2 = m
m(t) = exp{m(et − 1)}, −∞ < t < ∞
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List of Common Continuous Distributions

beta (3.3.9)

α > 0 f(x) = Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1, 0 < x < 1

β > 0

μ = α
α+β , σ2 = αβ

(α+β+1)(α+β)2

m(t) = 1 +
∑∞

i=1

(∏k−1
j=0

α+j
α+β+j

)
ti

i! , −∞ < t <∞

Cauchy (1.9.2)
f(x) = 1

π
1

x2+1 , −∞ < x < ∞
Neither the mean nor the variance exists.
The mgf does not exist.

Chi-squared, χ2(r) (3.3.7)

r > 0 f(x) = 1
Γ(r/2)2r/2 x(r/2)−1e−x/2, x > 0

μ = r, σ2 = 2r

m(t) = (1− 2t)−r/2, t < 1
2

χ2(r) ⇔ Γ(r/2, 2)
r is called the degrees of freedom.

Exponential (3.3.6)
λ > 0 f(x) = λe−λx, x > 0

μ = 1
λ , σ2 = 1

λ2

m(t) = [1− (t/λ)]−1, t < λ
Exponential(λ) ⇔ Γ(1, 1/λ)

F , F (r1, r2) (3.6.6)

r1 > 0 f(x) = Γ[(r1+r2)/2](r1/r2)
r1/2

Γ(r1/2)Γ(r2/2)
(x)r1/2−1

(1+r1x/r2)(r1+r2)/2 , x > 0

r2 > 0 > 0

If r2 > 2, μ = r2

r2−2 . If r > 4, σ2 = 2
(

r2

r2−2

)2
r1+r2−2
r1(r2−4) .

The mgf does not exist.
r1 is called the numerator degrees of freedom.
r2 is called the denominator degrees of freedom.

Gamma, Γ(α, β) (3.3.2)

α > 0 f(x) = 1
Γ(α)βα xα−1e−x/β, x > 0

β > 0
μ = αβ, σ2 = αβ2

m(t) = (1− βt)−α, t < 1
β
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Continuous Distributions, Continued

Laplace (2.2.4)

−∞ < θ < ∞ f(x) = 1
2 e−|x−θ|, −∞ < x < ∞

μ = θ, σ2 = 2
m(t) = etθ 1

1−t2 , −1 < t < 1

Logistic (6.1.8)

−∞ < θ < ∞ f(x) = exp{−(x−θ)}
(1+exp{−(x−θ)})2 , −∞ < x < ∞

μ = θ, σ2 = π2

3
m(t) = etθΓ(1 − t)Γ(1 + t), −1 < t < 1

Normal, N(μ, σ2) (3.4.6)

−∞ < μ < ∞ f(x) = 1√
2πσ

exp
{
− 1

2

(
x−μ

σ

)2
}

, −∞ < x <∞
σ > 0

μ = μ, σ2 = σ2

m(t) = exp{μt + (1/2)σ2t2}, −∞ < t < ∞

t, t(r) (3.6.2)

r > 0 f(x) = Γ[(r+1)/2]√
πrΓ(r/2)

1
(1+x2/r)(r+1)/2 , −∞ < x <∞

If r > 1, μ = 0. If r > 2, σ2 = r
r−2 .

The mgf does not exist.
The parameter r is called the degrees of freedom.

Uniform (1.7.4)
−∞ < a < b < ∞ f(x) = 1

b−a , a < x < b

μ = a+b
2 , σ2 = (b−a)2

12

m(t) = ebt−eat

(b−a)t , −∞ < t < ∞



Appendix D

Tables of Distributions

Prior to the current age of computing, probability tables for certain distributions
were part of many text books in probability and statistics. These are not needed
any longer. Most statistical computing packages offer easy-to-use calls to determine
these probabilities and quantiles. This is certainly true of the language R as we have
discussed through out this text. Also, many hand calculators have such functions.

Tables for the following distributions are presented:

Table I Selected quantiles for chi-square distributions.

Table II Cumulative distribution function for the standard normal random
variable.

Table III Selected quantiles for t-distributions.

Table IV Selected quantiles for F -distributions.
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Table I
Chi-Square Distribution

The following table presents selected quantiles of chi-square distribution, i.e., the
values x such that

P (X ≤ x) =

∫ x

0

1

Γ(r/2)2r/2
wr/2−1e−w/2 dw,

for selected degrees of freedom r. The R function chistable.s generates this table.

P (X ≤ x)
r 0.010 0.025 0.050 0.100 0.900 0.950 0.975 0.990
1 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635
2 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210
3 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345
4 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277
5 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086
6 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812
7 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475
8 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090
9 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666

10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209
11 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725
12 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217
13 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688
14 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141
15 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578
16 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000
17 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409
18 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805
19 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191
20 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566
21 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932
22 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289
23 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638
24 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980
25 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314
26 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642
27 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963
28 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278
29 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588
30 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892
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Table II
Normal Distribution

The following table presents the standard normal distribution. The probabilities
tabled are

P (Z ≤ z) = Φ(z) =

∫ z

−∞

1√
2π

e−w2/2 dw.

Note that only the probabilities for z ≥ 0 are tabled. To obtain the probabilities
for z < 0, use the identity Φ(−z) = 1 − Φ(z). At the bottom of the table, some
useful quantiles of the standard normal distribution are displayed. The R function
normaltable.s generates this table.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998

α 0.400 0.300 0.200 0.100 0.050 0.025 0.020 0.010 0.005 0.001
zα 0.253 0.524 0.842 1.282 1.645 1.960 2.054 2.326 2.576 3.090

zα/2 0.842 1.036 1.282 1.645 1.960 2.241 2.326 2.576 2.807 3.291
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Table III
t-Distribution

The following table presents selected quantiles of the t-distribution, i.e., the values
t such that

P (T ≤ t) =

∫ t

−∞

Γ[(r + 1)/2]√
πrΓ(r/2)(1 + w2/r)(r+1)/2

dw,

for selected degrees of freedom r. The last row gives the standard normal quantiles.

P (T ≤ t)
r 0.900 0.950 0.975 0.990 0.995 0.999
1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144
11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552
21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450
26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385
∞ 1.282 1.645 1.960 2.326 2.576 3.090
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Table IV
F -Distribution

Upper 0.05 Critical Points

The following table presents selected 0.95 and 0.99 quantiles of the F -distribution,
i.e., for α = 0.05, 0.01, the values Fα(r1, r2) such that

α = P (X ≥ Fα(r1, r2)) =

∫ ∞

Fα(r1,r2)

Γ[(r1 + r2)/2](r1/r2)
r1/2wr1/2−1

Γ(r1/2)Γ(r2/2)(1 + r1w/r2)(r1+r2)/2
dw,

where r1 and r2 are the numerator and denominator degrees of freedom, respectively.
The R function fp1.r generates this table.

F0.05(r1, r2)
r1

r2 1 2 3 4 5 6 7 8 9
1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88



712 Tables of Distributions

Table IV
F -Distribution, Continued
Upper 0.05 Critical Points

Generated by the R function fp2.r.

F0.05(r1, r2)
r1

r2 10 15 20 25 30 40 60 120 ∞
1 241.88 245.95 248.01 249.26 250.10 251.14 252.20 253.25 254.31
2 19.40 19.43 19.45 19.46 19.46 19.47 19.48 19.49 19.50
3 8.79 8.70 8.66 8.63 8.62 8.59 8.57 8.55 8.53
4 5.96 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 4.74 4.62 4.56 4.52 4.50 4.46 4.43 4.40 4.36
6 4.06 3.94 3.87 3.83 3.81 3.77 3.74 3.70 3.67
7 3.64 3.51 3.44 3.40 3.38 3.34 3.30 3.27 3.23
8 3.35 3.22 3.15 3.11 3.08 3.04 3.01 2.97 2.93
9 3.14 3.01 2.94 2.89 2.86 2.83 2.79 2.75 2.71

10 2.98 2.85 2.77 2.73 2.70 2.66 2.62 2.58 2.54
11 2.85 2.72 2.65 2.60 2.57 2.53 2.49 2.45 2.40
12 2.75 2.62 2.54 2.50 2.47 2.43 2.38 2.34 2.30
13 2.67 2.53 2.46 2.41 2.38 2.34 2.30 2.25 2.21
14 2.60 2.46 2.39 2.34 2.31 2.27 2.22 2.18 2.13
15 2.54 2.40 2.33 2.28 2.25 2.20 2.16 2.11 2.07
16 2.49 2.35 2.28 2.23 2.19 2.15 2.11 2.06 2.01
17 2.45 2.31 2.23 2.18 2.15 2.10 2.06 2.01 1.96
18 2.41 2.27 2.19 2.14 2.11 2.06 2.02 1.97 1.92
19 2.38 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 2.35 2.20 2.12 2.07 2.04 1.99 1.95 1.90 1.84
21 2.32 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 2.30 2.15 2.07 2.02 1.98 1.94 1.89 1.84 1.78
23 2.27 2.13 2.05 2.00 1.96 1.91 1.86 1.81 1.76
24 2.25 2.11 2.03 1.97 1.94 1.89 1.84 1.79 1.73
25 2.24 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 2.22 2.07 1.99 1.94 1.90 1.85 1.80 1.75 1.69
27 2.20 2.06 1.97 1.92 1.88 1.84 1.79 1.73 1.67
28 2.19 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 2.18 2.03 1.94 1.89 1.85 1.81 1.75 1.70 1.64
30 2.16 2.01 1.93 1.88 1.84 1.79 1.74 1.68 1.62
40 2.08 1.92 1.84 1.78 1.74 1.69 1.64 1.58 1.51
60 1.99 1.84 1.75 1.69 1.65 1.59 1.53 1.47 1.39

120 1.91 1.75 1.66 1.60 1.55 1.50 1.43 1.35 1.25
∞ 1.83 1.67 1.57 1.51 1.46 1.39 1.32 1.22 1.00
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Table IV
F -Distribution, Continued
Upper 0.01 Critical Points

The R function fp3.r generates this table.

F0.01(r1, r2)
r1

r2 1 2 3 4 5 6 7 8 9
1 4052.2 4999.5 5403.4 5624.6 5763.7 5859.0 5928.4 5981.1 6022.5
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41
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Table IV
F -Distribution, Continued
Upper 0.01 Critical Points

The R function fp4.r generates this table.

F0.01(r1, r2)
r1

r2 10 15 20 25 30 40 60 120 ∞
1 6055.9 6157.3 6208.7 6239.8 6260.7 6286.8 6313.0 6339.4 6365.9
2 99.40 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 27.23 26.87 26.69 26.58 26.50 26.41 26.32 26.22 26.13
4 14.55 14.20 14.02 13.91 13.84 13.75 13.65 13.56 13.46
5 10.05 9.72 9.55 9.45 9.38 9.29 9.20 9.11 9.02
6 7.87 7.56 7.40 7.30 7.23 7.14 7.06 6.97 6.88
7 6.62 6.31 6.16 6.06 5.99 5.91 5.82 5.74 5.65
8 5.81 5.52 5.36 5.26 5.20 5.12 5.03 4.95 4.86
9 5.26 4.96 4.81 4.71 4.65 4.57 4.48 4.40 4.31

10 4.85 4.56 4.41 4.31 4.25 4.17 4.08 4.00 3.91
11 4.54 4.25 4.10 4.01 3.94 3.86 3.78 3.69 3.60
12 4.30 4.01 3.86 3.76 3.70 3.62 3.54 3.45 3.36
13 4.10 3.82 3.66 3.57 3.51 3.43 3.34 3.25 3.17
14 3.94 3.66 3.51 3.41 3.35 3.27 3.18 3.09 3.00
15 3.80 3.52 3.37 3.28 3.21 3.13 3.05 2.96 2.87
16 3.69 3.41 3.26 3.16 3.10 3.02 2.93 2.84 2.75
17 3.59 3.31 3.16 3.07 3.00 2.92 2.83 2.75 2.65
18 3.51 3.23 3.08 2.98 2.92 2.84 2.75 2.66 2.57
19 3.43 3.15 3.00 2.91 2.84 2.76 2.67 2.58 2.49
20 3.37 3.09 2.94 2.84 2.78 2.69 2.61 2.52 2.42
21 3.31 3.03 2.88 2.79 2.72 2.64 2.55 2.46 2.36
22 3.26 2.98 2.83 2.73 2.67 2.58 2.50 2.40 2.31
23 3.21 2.93 2.78 2.69 2.62 2.54 2.45 2.35 2.26
24 3.17 2.89 2.74 2.64 2.58 2.49 2.40 2.31 2.21
25 3.13 2.85 2.70 2.60 2.54 2.45 2.36 2.27 2.17
26 3.09 2.81 2.66 2.57 2.50 2.42 2.33 2.23 2.13
27 3.06 2.78 2.63 2.54 2.47 2.38 2.29 2.20 2.10
28 3.03 2.75 2.60 2.51 2.44 2.35 2.26 2.17 2.06
29 3.00 2.73 2.57 2.48 2.41 2.33 2.23 2.14 2.03
30 2.98 2.70 2.55 2.45 2.39 2.30 2.21 2.11 2.01
40 2.80 2.52 2.37 2.27 2.20 2.11 2.02 1.92 1.80
60 2.63 2.35 2.20 2.10 2.03 1.94 1.84 1.73 1.60

120 2.47 2.19 2.03 1.93 1.86 1.76 1.66 1.53 1.38
∞ 2.32 2.04 1.88 1.77 1.70 1.59 1.47 1.32 1.00
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Lehmann, E. L. and Scheffé, H. (1950), Completeness, similar regions, and unbiased
estimation, Sankhya, 10, 305–340.



718 References

Marsaglia, G. and Bray, T. A. (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260–264.

McKean, J. W. (2004), Robust analyses of linear models, Statistical Science, 19,
562–570.

McKean, J. W. and Vidmar, T. J. (1994), A comparison of two rank-based methods
for the analysis of linear models, American Statistician, 48, 220–229.

McKean, J. W., Vidmar, T. J. and Sievers, G. (1989), A Robust Two-Stage Multiple
Comparison Procedure with Application to a Random Drug Screen, Biometrics
45, 1281-1297.

McLachlan, G. J. and Krishnan, T. (1997), The EM Algorithm and Extensions, New
York: John Wiley & Sons.

Minitab (1991), MINITAB Reference Manual, Valley Forge, PA: Minitab, Inc.

Mosteller, F. and Tukey, J. W. (1977), Data Reduction and Regression, Reading,
MA: Addison-Wesley.

Naranjo, J. D. and McKean, J. W. (1997), Rank regression with estimated scores,
Statistics and Probability Letters, 33, 209–216.

Nelson, W. (1982), Applied Lifetime Data Analysis, New York: John Wiley & Sons.

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996), Applied
Linear Statistical Models, 4th Ed., Chicago: Irwin.

Parzen, E. (1962), Stochastic Processes, San Francisco: Holden-Day.

Randles, R. H. and Wolfe, D. A. (1979), Introduction to the Theory of Nonparamet-
ric Statistics, New York: John Wiley and Sons.

Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Ed., New
York: John Wiley & Sons.

Rasmussen, S. (1992), An Introduction to Statistics with Data Analysis, Belmont,
CA: Brroks/Cole.

Robert, C. P. and Casella, G. (1999), Monte Carlo Statistical Methods, New York:
Springer-Verlag.

Rousseeuw, P. J. and Leroy, A. M. (1987), Robust Regression and Outlier Detection,
New York: John Wiley & Sons.
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Appendix F

Answers to Selected

Exercises

Chapter 1

1.2.1 (a) {0, 1, 2, 3, 4}, {2}; (b) (0, 3),
{x : 1 ≤ x < 2};
(c) {(x, y) : 1 < x < 2, 1 < y < 2}.

1.2.2 (a) {x : 0 < x ≤ 5/8}.

1.2.3 C1 ∩ C2 = {mary, mray}.

1.2.4 (c) (∪An)c = ∩AC
n ; (∩An)c = ∪AC

n .

1.2.6 (a) {x : 0 < x < 3},
(b) {(x, y) : 0 < x2 + y2 < 4}.

1.2.7 (a) {x : x = 2}, (b) φ,
(c) {(x, y) : x = 0, y = 0}.

1.2.8 (a) 80
81 , (b) 1.

1.2.9 11
16 , 0, 1.

1.2.10 8
3 , 0, π

2 .

1.2.11 (a) 1
2 , (b) 0, (c) 2

9 .

1.2.12 (a) 1
6 , (b) 0.

1.2.14 10.

1.3.2 1
4 , 1

13 , 1
52 , 4

13 .

1.3.3 31
32 , 3

64 , 1
32 , 63

64 .

1.3.4 0.3.

1.3.5 e−4, 1− e−4, 1.

1.3.6 1
2 .

1.3.10 (a)
(
6
4

)
/
(
16
4

)
, (b)

(
10
4

)
/
(
16
4

)
.

1.3.11 1−
(
990
5

)
/
(
1000

5

)
.

1.3.13 (b) 1−
(
10
3

)
/
(
20
3

)
.

1.3.15 (a) 1−
(
48
5

)
/
(
50
5

)
.

1.3.16 n = 23.

1.3.19 13 · 12
(
4
3

)(
4
2

)
/
(
52
5

)
.

1.3.22 (a) 0 ≤∑3
i=1 pi ≤ 1, (b) no.

1.4.3 9
47 .

1.4.4 2 13
52

12
51

26
50

25
49 .

1.4.6 111
143 .

1.4.8 (a) 0.022, (b) 5
11 .

1.4.9 5
14 .

1.4.10 3
7 , 4

7 .

1.4.12 (c) 0.88.

1.4.14 (a) 0.1764.

1.4.15 4(0.7)3(0.3).

1.4.16 0.75.
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722 Answers to Selected Exercises

1.4.18 (a) 6
11 .

1.4.20 1
7 .

1.4.21 (a) 1−
(

5
6

)6
, (b) 1− e−1.

1.4.23 3
4 .

1.4.25 43
64 .

1.4.27 (a)
∑20

x=1 4/[20(25− (x− 1))]
(b) x=1:20;sum(4/((25-x+1)*20))
(c) Download ex1427.R

1.4.28 5·4·5·4·3
10·9·8·7·6 .

1.4.29 13
4 .

1.4.30 2
3 .

1.4.31 0.518, 0.491.

1.4.32 No.

1.5.1 9
13 , 1

13 , 1
13 , 1

13 , 1
13 .

1.5.2 (a) 1
2 , (b) 1

21 .

1.5.3 1
5 , 1

5 , 1
5 .

1.5.5 (a)
(13

x )( 39
5−x)

(52
5 )

, x = 0, 1, 2, 3, 4, 5,

(b)
[(

39
5

)
+

(
13
1

)(
39
4

)]
/
(
52
5

)
.

1.5.7 3
4 .

1.5.8 For the plot download ex158.R
(a) 1

4 , (b) 0, (c) 1
4 , (d) 0.

1.6.2 (a) pX(x) = 1
10 , x = 1, 2, . . . , 10,

(b) 4
10 .

1.6.3 (a)
(

5
6

)x−1 1
6 x = 1, 2, 3, . . . ,

(c) 6
11 .

1.6.4 6
36 , x = 0; 12−2x

36 , x = 1, 2, 3, 4, 5 .

1.6.5 (a) Download dex165.R.

1.6.7 1
3 , y = 3, 5, 7.

1.6.8
(

1
2

) 3
√

y
, y = 1, 8, 27, . . . .

1.7.1 F (x) =
√

x
10 , 0 ≤ x < 100;

f(x) = 1
20

√
x

, 0 < x < 100.

1.7.3 5
8 ; 7

8 ; 3
8 .

1.7.5 e−2 − e−3.

1.7.6 (a) 1
27 , 1; (b) 2

9 , 25
36 .

1.7.8 (a)1; (b) 2
3 ; (c) 2.

1.7.9 (b) 3
√

1/2 ; (c) 0.

1.7.10 4
√

0.2 .

1.7.12 (a) 1− (1− x)3 , 0 ≤ x < 1 ;
(b) 1− 1

x , 1 ≤ x < ∞ .

1.7.13 xe−x , 0 < x <∞ ; mode is 1.

1.7.14 7
12 .

1.7.17 1
2 .

1.7.19 −
√

2 .

1.7.20 (b) fy(y) = 1/(5 + y)1.2.
(c) dlife <-
function(y){1/(5+y)^(1.2)}.

1.7.21 (a) f(x) = (5/3)e−x/[1+(2/3)e−x](7/2).
(b) f=function(x)
{(1+(2/3)exp(-x))^(-5/2)}

1.7.22 1
27 , 0 < y < 27 .

1.7.24 1
π(1+y2) ,−∞ < y < ∞ .

1.7.25 cdf 1− e−y , 0 ≤ y <∞ .

1.7.26 pdf 1
3
√

y , 0 < y < 1,
1

6
√

y , 1 < y < 4.

1.8.3 2, 86.4,−160.8.

1.8.4 3, 11, 27.

1.8.5 log 100.5−log 50.5
50 .

1.8.6 (a) 3
4 ;(b) 1

4 , 1
2 .

1.8.7 3
20 .
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1.8.8 $7.80.

1.8.9 (a) 2; (b) pdf is 2
y3 , 1 < y <∞;

(c) 2.

1.8.10 7
3 .

1.8.12 (a) 1
2 ; (c) 1

2 .

1.8.13 P [G = −p0] = 1
3 , P [G = 1 −

p0] = 2
3

1
2 ,

. . . ,P [G = 50− p0] = 2
3

1
2 (0.0045).

1.8.14 Range of G: {2 − p0, 5 − p0, 8 −
p0}, Probs: 3

10 , 6
10 , 1

10 .

1.9.1 (a) 1.5 , 0.75; (b) 0.5, 0.05;
(c) 2, does not exist.

1.9.2 et

2−et , t < log 2; 2; 2.

1.9.12 10; 0; 2;−30.

1.9.14 (a) − 2
√

2
5 ; (b) 0; (c) 2

√
2

5 .

1.9.16 1
2p ; 3

2 ; 5
2 ; 5; 50.

1.9.18 31
12 ; 167

144 .

1.9.19 E(Xr) = (r+2)!
2 .

1.9.20 odd moments are 0, E(X2n) =
(2n)!.

1.9.24 5
8 ; 37

192 .

1.9.27 (1− βt)−1, β, β2.

1.10.3 0.84.

1.10.4 P (|X | ≥ 5) = 0.0067.

Chapter 2

2.1.1 15
64 ; 0; 1

2 ; 1
2 .

2.1.2 1
4 .

2.1.7 ze−z, 0 < z < ∞.

2.1.8 − log z, 0 < z < 1.

2.1.9
(
13
x

)(
13
y

)(
26

13−x−y

)
/
(
52
13

)
,

x and y nonnegative integers
such that x + y ≤ 13.

2.1.11 15
2 x2

1(1 − x2
1), 0 < x1 < 1;

5x4
2, 0 < x2 < 1.

2.1.14 2
3 ; 1

2 ; 2
3 ; 1

2 ; 4
9 ; yes ; 11

3 .

2.1.15 et1+t2

(2−et1 )(2−et2 ) , ti < log 2.

2.1.16 (1− t2)
−1(1− t1 − t2)

−2, t2 < 1,
t1 + t2 < 1; no.

2.2.2
1 2 3 4 6 9
1
36

4
36

6
36

4
36

12
36

9
36 .

2.2.3 e−y1−y2 , 0 < yi < ∞.

2.2.4 8y1y
3
2 , 0 < yi < 1.

2.2.6 (a) y1e
−y1 , 0 < y1 < ∞;

(b) (1− t1)
−2, t1 < 1.

2.3.1 3x1+2
6x1+3 ;

6x2
1+6x1+1

2(6x1+3)2 .

2.3.2 (a) 2, 5;
(b) 10x1x

2
2, 0 < x1 < x2 < 1;

(c) 12
25 ; (d) 449

1536 .

2.3.3 (a) 3x2

4 ;
3x2

2

80 ;

(b) pdf is 7(4/3)7y6, 0 < y < 3
4 ;

(c) E(X) = E(Y ) = 21
32 ;

Var(X1) = 553
15360 > Var(Y ) = 7

1024 .

2.3.8 x + 1, 0 < x < ∞.

2.3.9 (a)
(
13
x1

)(
13
x2

)(
26

5−x1−x2

)
/
(
52
5

)
, x1, x2

nonnegative integers,x1 + x2 ≤ 5;
(c)

(
13
x2

)(
26

5−x1−x2

)
/
(

39
5−x1

)
,

x2 ≤ 5− x1.

2.3.11 (a) 1
x1

, 0 < x2 < x1 < 1;

(b) 1− log 2.

2.3.12 (b) e−1.

2.5.1 (a) 1; (b) −1; (c) 0.

2.5.2 (a) 7√
804

.

2.5.8 1, 2, 1, 2, 1.
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2.5.9 1
2 .

2.4.4 5
81 .

2.4.5 7
8 .

2.4.6 2; 2.

2.4.8 2(1−y3)
3(1−y2) , 0 < y < 1.

2.4.9 1
2 .

2.4.12 4
9 .

2.4.13 4; 4.

2.6.1 (g) 2+3y+3z
3+6y+6z .

2.6.2 (a) 1
6 ; 0;

(b) (1−t1)
−1(1−t2)

−1(1−t3)
−1; yes.

2.6.3 pdf is 12(1− y)11, 0 < y < 1.

2.6.4 pmf is y3−(y−1)3

63 .

2.6.6 σ1(ρ12 − ρ13ρ23)/σ2(1− ρ2
23);

σ1(ρ13 − ρ12ρ23)/σ3(1 − ρ2
23).

2.6.9 (a) 3
4 .

2.7.1 joint pdf y2y
2
3e

−y3 , 0 < y1 < 1,
0 < y2 < 1, 0 < y3 < ∞.

2.7.2 1
2
√

y , 0 < y < 1.

2.7.3 1
4
√

y , 0 < y < 1; 1
8
√

y , 1 ≤ y < 9.

2.7.7 24y2y
2
3y

3
4 , 0 < yi < 1.

2.7.8 (a) 9
16 ; 6

16 ; 1
16 ; (b)

(
3
4 + 1

4et
)6

.

2.8.2 8
3 ; 2

9 .

2.8.3 7.

2.8.5 2.5; 0.25.

2.8.7 −5; 30.6.

2.8.8 σ1√
σ2
1+σ2

2

.

2.8.10 0.265.

2.8.12 22.5; 65.25.

2.8.13 μ2σ1√
σ2
1σ2

2+μ2
1σ2

2+μ2
2σ2

1

.

2.8.15 0.801.

Chapter 3

3.1.1 40
81 .

3.1.4 1-pbinom(34,40,7/8)=0.6162.

3.1.5 P (X ≥ 20) = 0.0009.

3.1.6 5.

3.1.11 3
16 .

3.1.13 65
81 .

3.1.15
(

1
3

) (
2
3

)x−3
, x = 3, 4, 5, . . . .

3.1.16 5
72 .

3.1.18 (a) Negative binomial, parame-
ters r and T/N .

3.1.19 (b) Code: ps=c(.3,.2,.2,.2,.1)
coll=c()
for(i in 1:10000)
{coll<-c(coll,multitrial(ps))}
table(coll)/10000

3.1.20 (a) -$2.40

3.1.22 1
6 .

3.1.23 24
625 .

3.1.25 (a) 11
6 ; (b) x1

2 ; (c) 11
6 .

3.1.26 25
4 .

3.1.30 (a) 0.0853; (b) 0.2637; (c) 0.0861,
0.2639.

3.2.1 0.09.

3.2.4 4xe−4/x!, x = 0, 1, 2 . . . .

3.2.5 0.84., 0.9858.

3.2.11 About 6.7.

3.2.13 8.

3.2.14 2.

3.2.16 (a) e−2 exp{(1 + et1)et2}.
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3.3.1 (a) 0.05.; (b) 0.9592

3.3.2 0.831; 12.8.

3.3.3 (b) 0.1355

3.3.4 χ2(4).

3.3.6 pdf is 3e−3y, 0 < y < ∞.

3.3.7 2; 0.95.

3.3.14 (a) 0.0839; (b) 0.2424

3.3.15 11
16 .

3.3.16 χ2(2).

3.3.18 α
α+β ; αβ

(α+β+1)(α+β)2 .

3.3.19 (a) 20; (b) 1260; (c) 495.

3.3.20 10
243 .

3.3.24 (a) (1− 6t)−8, t < 1
6 ;

(b) Γ(α = 8, β = 6).

3.4.2 0.067; 0.685.

3.4.3 1.645.

3.4.4 71.4; 189.4.

3.4.8 0.598.

3.4.10 0.774.

3.4.11 (a)
√

2
π ; π−2

π .

3.4.12 0.90.

3.4.13 0.477.

3.4.14 0.461.

3.4.15 N(0, 1).

3.4.16 0.433.

3.4.17 0; 3.

3.4.22 N(0, 2).

3.4.25 (a) 0.04550; (b) 0.1649

3.4.28 Mean is
√

2/π(α/
√

1 + α2).

3.4.29 0.24.

3.4.30 0.159.

3.4.31 0.159.

3.4.33 χ2(2).

3.5.1 (a) 0.574; (b) 0.735.

3.5.2 (a) 0.264; (b) 0.440; (c) 0.433;
(d) 0.643.

3.5.7 4
5 .

3.5.8 (38.2, 43.4).

3.5.17 0.05.

3.6.1 0.05.

3.6.2 1.761.

3.6.5 (d) 0.0734; (e) 0.0546

3.6.6 1.732; 0.1817

3.6.10 1
4.74 ; 3.33.

3.6.13 (a) f(y) = ey[1 + (1/s)ey]−(s+1).

3.7.1 E(X) = (1− β)−α, if β < 1.

3.7.2 Download dloggamma.R.

Chapter 4

4.1.1 (b) 101.15; (c) 55.5; θ log 2
(d) 70.11.

4.1.2 (b) 201, 293.9, 17.14, 11.72;
(c) 0.269; (d) 0.207

4.1.3 9.5.

4.1.10 (e) 0.65; 0.95.

4.1.11 (e) 0.92; 0.97

4.2.1 (79.21, 83.19), 90%.

4.2.2 (51.82, 150.48)

4.2.4 (6.46, 24.69).

4.2.5 (0.143, 0.365).

4.2.6 24 or 25.

4.2.7 (3.7, 5.7).

4.2.8 160.

4.2.9 (a) 1.31σ; (b) 1.49σ.
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4.2.10 c =
√

n
n+1 ; k = 1.50.

4.2.13 ind=rep(0,numb);
for(i in 1:numb){if
(ci[i,1]*c[i,2]<0){ind[i]=1}}

4.2.14
(

5x
24 , 5x

16

)
.

4.2.16 6765.

4.2.17 (3.19, 3.61).

4.2.18 (b) (3.625, 29.101).

4.2.21 (−3.32, 1.72).

4.2.26 135 or 136.

4.3.1 (c) (0.1637, 0.3642).

4.3.3 (0.4972, 0.6967).

4.3.4 (c) (0.197, 1.05).

4.4.2 (a) 0.00697; (b) 0.0244; (c) 0.0625

4.4.5 (a) 4, 23, 67, 99, 301.

4.4.5 1− (1 − e−3)4.

4.4.6 (a) 1
8 .

4.4.10 Weibull.

4.4.11 5
16 .

4.4.12 pdf: (2z1)(4z3
2)(6z5

3),
0 < zi < 1.

4.4.13 7
12 .

4.4.17 (a) 48y5
3y4, 0 < y3 < y4 < 1;

(b)
6y5

3

y6
4

, 0 < y3 < y4; (c) 6
7y4.

4.4.18 1
4 .

4.4.19 6uv(u + v), 0 < u < v < 1.

4.4.24 14.

4.4.25 (a) 15
16 ; (b) 675

1024 ; (c) (0.8)4.

4.4.26 0.824.

4.4.27 8.

4.4.28 (a) 1.13σ; (b) 0.92σ.

4.4.30 (40, 124), 88%.

4.4.32 (180, 190) and (195, 210).

4.5.3 1−
(

3
4

)θ
+ θ

(
3
4

)θ
log

(
3
4

)
, θ = 1, 2.

4.5.4 0.17; 0.78.

4.5.8 n = 19 or 20.

4.5.9 γ
(

1
2

)
= 0.062; γ

(
1
12

)
= 0.920.

4.5.10 n ≈ 73; c ≈ 42.

4.5.12 (a) 0.051; (b) 0.256; 0.547; 0.780.

4.5.13 (a) 0.154; (b) 0.154.

4.5.14 (1) 0.11514; (2) 0.0633.

4.6.5 (b) t = −3.0442, p-value = 0.0033.

4.6.6 (b) t = 2.034, p-value = 0.06065.

4.7.1 p-value = 0.0184.

4.7.2 8.37 > 7.81; reject.

4.7.4 b ≤ 8 or b ≥ 32.

4.7.5 2.44 < 11.3 ; do not reject H0.

4.7.6 6.40 < 9.49 ; do not reject H0.

4.7.7 χ2 = 49.731, p-value = 1.573e− 09.

4.7.8 k = 3.

4.8.5 F−1(u) = log[u/(1− u)].

4.8.7 For 0 < u < (1/2) :
F−1(u) = log[2u].
For (1/2) < u < 1 :
F−1(u) = log[2(1− u)].

4.8.8 F−1(u) = log[− log(1− u)].

4.8.18 (a) F−1(u) = u1/β;
(b) e.g., dominated by a
uniform pdf.

4.9.4 (a) β log 2.

4.9.8 Use sx = 20.41; sy = 18.59.

4.9.10 (a) y − x = 9.67;
20 possible permutations;
(c) Pn

n /nn.
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4.9.11 μ0; n
−1

∑n
i=1(xi − x)2.

4.10.1 8.

4.10.4 (a) Beta(n− j + 1, j);
(b) Beta(n− j + i− 1, j − i + 2).

4.10.5 10!
1!3!4!v1v

3
2(1− v1 − v2)

4,
0 < v2, v1 + v2 < 1.

Chapter 5

5.1.9 No; Yn − 1
n .

5.2.1 Degenerate at μ.

5.2.2 Gamma(α = 1, β = 1).

5.2.3 Gamma(α = 1, β = 1).

5.2.4 Gamma(α = 2, β = 1).

5.2.7 Degenerate at β.

5.2.9 0.682.
pchisq(60,50)
- pchisq(40,50)=.686

5.2.10 Download function cdistplt4.

5.2.11 (a) 1-pbinom(55,60,.95)=0.820
(b) 0.815.

5.2.14 Degenerate at μ2 + σ2

σ1
(x− μ1).

5.2.15 (b) N(0, 1).

5.2.17 (b) N(0, 1).

5.2.20 1
5 .

5.3.2 0.954.

5.3.3 0.604.

5.3.4 0.840.

5.3.5 0.728.

5.3.7 0.08.

5.3.9 0.267.

Chapter 6

6.1.1 (a) θ̂ = X/4. (c) 5.03

6.1.2 (a) −n/ log(
∏n

i=1 Xi).
(b)Y1 = min{X1, . . . , Xn}.

6.1.4 (a) Yn = max{X1, . . . , Xn}.
(b) (2n + 1)/(2n).

(c)
√

1/2Yn.

6.1.5 (a) X = θU1/2, U is unf(0, 1).
(b) 7.7, 5.4.

6.1.6 1− exp{−2/X}.

6.1.7 p̂ = 53
125 ,∑5

x=3

(
5
x

)
p̂x(1− p̂)5−x., 0.3597.

6.1.8 (b) −0.534.

6.1.9 x2e−x/2., 0.2699.

6.1.10 max
{

1
2 , X

}
.

6.2.7 (a) 4
θ2 .

(c)
√

n(θ̂ − θ)
D→ N(0, θ2/4).

(d) 5.03± 0.99.

6.2.8 (a) 1
2θ2 .

6.2.13 (b) θ̂ = 3.547.
(c) (2.39, 4.92), Yes.

6.2.14 (a) F (x) = 1− [θ3/(x + θ)3].
(b) g=function(n,t){u=runif(n)
t*((1-u)^(-1/3)-1)}

6.3.1 (b) Test-Stat = 17.28, Reject

6.3.2 γ(θ) = P [χ2(2n) < (θ0/θ)c1]
+P [χ2(2n) > (θ0/θ)c2].

6.3.8 Reject if 2
∑n

i=1 Yi < χ2
1−α/2(2n)

or
2
∑n

i=1 Yi > χ2
α/2(2n).

6.3.16 (a)
(

1
3x

)nx
(

2
3(1−x)

)n−nx

.

6.3.17 (a) χ2
W = {

√
nI(X)(X − θ0)}2.

(b) Download waldpois.R.
(c) χ2

W = 6.90, p− value = 0.0172.

6.3.18
(

x/α
β0

)nα

× exp
{
−∑n

i=1 xi

(
1
β0
− α

x

)}
.
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6.4.1 (a) 0.300, 0.225, 0.350, 0.125.
(b) CI for p2: (0.167, 0.283)

6.4.2 (a) x, y,
1

n+m

[∑n
i=1(xi − x)2 +

∑m
i=1(yi − y)2

]
.

(b) nx+my
n+m ,[∑n

i=1(xi − θ̂1)
2 +

∑m
i=1(yi − θ̂1)

2
]

(n + m)−1.

6.4.3 θ̂1 = min{Xi}, 1
n

∑n
i=1(Xi − θ̂1).

6.4.4 θ̂1 = min{Xi},
n/ log

[∏n
i=1 Xi/θ̂n

1

]
.

6.4.5 (Y1 + Yn)/2, (Yn − Y1)/2; no.

6.4.6 (a) X + 1.282
√

n−1
n S;

(b) Φ

(
c−X√

(n−1)/nS

)
.

6.4.7 (a) mle is 0.7263, p̂ = 0.76
A run of BS: (0.629, 0.828).
Via p̂ : (0.642, 0.878).

6.4.8 (a) mle is 64.83, x(45) = 64.6

6.4.9 If y1

n1
≤ y2

n2
, then p̂1 = y1

n1
and

p̂2 = y2

n2
; else, p̂1 = p̂2 = y1+y2

n1+n2
.

6.5.1 t = −8.64, p− value = 0.0001.

6.5.2 (81.30004, 81.30156).

6.5.3 (b) (−0.0249, 0.1749).

6.5.6 (b) c
Pn

i=1 X2
iP

m
i=1 Y 2

i
.

6.5.7 F = X
Y

.

6.5.8 (b) F = x/y = 0.3389, Reject.

6.5.9 c
[max{−X1,Xn1}]n1 [max{−Y1,Yn2}]n2

[max{−X1,−Y1,Xn1 ,Yn2}]n1+n2
,

χ2(2).

6.6.8 The R function mixnormal, at site
listed in the Preface
produced these results:
(first row are initial estimates, sec-
ond row are the estimates after 500
iterations):

μ1 μ2 σ1 σ2 π

105.00 130.00 15.00 25.00 0.600

98.76 133.96 9.88 21.50 0.704

Chapter 7

7.1.4 1
3 , 2

3 .

7.1.5 δ1(y).

7.1.6 b = 0, does not exist.

7.1.7 does not exist.

7.2.8
∏n

i=1[Xi(1−Xi)].

7.2.9 (a) n!θ−r

(n−r)!e
− 1

θ [
Pr

i=1 yi+(n−r)yr].

(b) r−1[
∑r

i=1 yi + (n− r)yr].

7.3.2 60y2
3(y5 − y3)/θ5;

0 < y3 < y5 < θ;
6y5/5; θ2/7; θ2/35.

7.3.3 1
θ2 e−y1/θ, 0 < y2 < y1 <∞;

y1/2; θ2/2.

7.3.5 n−1
∑n

i=1 X2
i ; n−1

∑n
i=1 Xi;

(n + 1)Yn/n.

7.3.6 6X.

7.4.2 (a) X ; (b) X

7.4.3 Y/n.

7.4.5 Y1 − 1
n .

7.4.7 (a) Yes; (b) yes.

7.4.8 (a) E(X) = 0.

7.4.9 (a) max{−Y1, 0.5Yn}; (b) yes;
(c) yes.

7.5.1 Y1 =
∑n

i=1 Xi; Y1/4n; yes.

7.5.4 x/α.

7.5.9 x.

7.5.11 (b) Y1/n; (c) θ; (d) Y1/n.

7.6.1 X
2 − 1

n .

7.6.2 Y 2/(n2 + 2n).
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7.6.3 (a) 0.8413; (b) 0.7702 (c) Our run
0.0584.

7.6.4 (a) 49.4; (b) Our run: 4.405

7.6.6 (a)
(

n−1
n

)Y
(
1 + Y

n−1

)
;

(b)
(

n−1
n

)nX
(
1 + nX

n−1

)
;

(c) N
(
θ, θ

n

)
.

7.6.9 1− e−2/X ; 1−
(
1− 2/X

n

)n−1

.

7.6.10 (b) X ; (c) X; (d) 1/X.

7.7.3 Yes.

7.7.5 (a) Γ[(n−1)/2]
Γ[n/2]

√
n−1

2 S.

(b) Download bootse6.R
10.1837; Our run: 1.156828

7.7.6 (b) Y1+Yn

2 ; (n+1)(Yn−Y1)
2(n−1) .

7.7.7 (a) K = (Γ((n − 1)/2)/Γ(n/2))

×
√

((n− 1)/2)
mvue = Φ−1(p)KS + x
(c) 59.727; Our run 3.291479.

7.7.9 (a) 1
n−1

∑n
h=1(Xih −Xi)

× (Xjh −Xj);

(b)
∑n

i=1 aiX i.

7.7.10
(∑n

i=1 xi,
∑n

i=1
1
xi

)
.

7.8.3 Y1, ;
∑n

i=1(Yi − Y1)/n.

7.9.13 (a) Γ(3n, 1/θ), no;
(c) (3n− 1)/Y ;
(e) Beta(3, 3n− 3).

Chapter 8

8.1.4
∑10

i=1 x2
i ≥ 18.3; yes; yes.

8.1.5
∏n

i=1 xi ≥ c.

8.1.6 3
∑10

i=1 x2
i + 2

∑10
i=1 xi ≥ c.

8.1.7 About 96; 76.7.

8.1.8
∏n

i=1[xi(1− xi)] ≥ c.

8.1.9 About 39; 15.

8.1.10 0.08; 0.875.

8.2.1 (1− θ)9(1 + 9θ).

8.2.2 1− 15
16θ4 , 1 < θ.

8.2.3 1− Φ
(

3−5θ
2

)
.

8.2.4 About 54; 5.6.

8.2.7 Reject H0 if x ≥ 77.564.

8.2.8 About 27; reject H0 if x ≤ 24.

8.2.10 Γ(n, θ);
Reject H0 if

∑n
i=1 xi ≥ c.

8.2.12 (b) 6
32 ; (c) 1

32 .
(d) reject if y = 0;
if y = 1, reject with probability 1

5 .

8.3.1 (b) t = −2.2854, p = 0.02393;
(c) (−0.5396− 0.0388).

8.3.5 (d) n = 90.

8.3.6 78; 0.7608.

8.3.10 Under H1, (θ4/θ3)F has
an F (n− 1, m− 1) distribution.

8.3.12 Reject H0 if |y3 − θ0| ≥ c.

8.3.14 (a)
∏n

i=1(1 − xi) ≥ c.

8.3.17 (b) F = 1.34; p = 0.088.

8.4.1 5.84n− 32.42; 5.84n + 41.62.

8.4.2 0.04n− 1.66; 0.04n + 1.20.

8.4.4 0.025, 29.7,−29.7.

8.5.5 (9y− 20x)/30 ≤ c ⇒ (x, y) ∈ 2nd.

8.5.7 2w2
1 + 8w2

2 ≥ c ⇒ (w1, w2) ∈ II.

Chapter 9

9.2.3 6.39.

9.2.6 (b) F = 1.1433, p = 0.3451.

9.2.7 7.875 > 4.26; reject H0.

9.2.8 10.224 > 4.26; reject H0.
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9.3.2 2r + 4θ.

9.3.3 (a) 5m/3; (b) 0.6174; 0.9421;
(c) 7

9.4.1 None. For B − C: (−0.199, 10.252).

9.4.2 No significant differences.

9.4.3 (a) CI’s of form: (4.2.14) using
α/k.

9.4.4 (a)(−0.103, 0.0214)
(b) χ2 = 24.4309, p = 0.00367,
(−0.103, 0.021).

9.5.6 7.00; 9.98.

9.5.8 4.79; 22.82; 30.73.

9.5.10 (a) 7.624 > 4.46, reject HA;
(b) 15.538 > 3.84, reject HB .

9.5.11 8; 0; 0; 0; 0;−3; 1; 2;−2;
2;−2; 2; 2;−2; 2;−2; 0; 0; 0; 0.

9.6.1 N(α∗, σ2(n−1 + x2/
∑

(xi− x)2)).

9.6.2 (a) 6.478+4.483x; (d) (−0.026, 8.992).

9.6.3 (a) −983.8868 + 0.5041x.

9.6.8 PI: (3.27, 3.70)

9.6.10 β̂ = n−1
∑

i Yi/xi;
γ̂ = n−1

∑
i[(Yi/xi)−n−1

∑
j(Yj/xj)]

2.

9.6.14 â = 5
3 .

9.7.2 Reject H0.

9.7.6 Lower Bound: tanh
[

1
2 log 1+r

1−r −
zα/2√
n−3

]
.

9.7.7 (a) 0.710, (0.555, 0.818);
(b) Pitchers: 0.536, (0.187, 0.764).

9.8.2 2; μ′Aμ; μ1 = μ2 = 0.

9.8.3 (b) A2 = A; tr(A) = 2;
μ′Aμ/8 = 6.

9.8.4 (a)
∑

σ2
i /n2.

9.8.5 (a) [1 + (n− 1)ρ](σ2/n).

9.9.1 Dependent.

9.9.3 0, 0, 0, 0.

9.9.4
∑n

i=1 aij = 0.

Chapter 10

10.2.3 (a) 0.1148; (b) 0.7836.

10.2.4 (a) 425; (380, 500);
(b) 591.18; (508.96, 673.41).

10.2.9 (a) P (Z > zα − (σ/
√

n)θ),
where E(Z) = 0 and Var(Z) = 1;
(c) Use the Central Limit Theo-
rem;

(d)
[

(zα−zγ∗)σ

θ∗

]2

.

10.4.2 1− Φ[zα −
√

λ1λ2(δ/σ)].

10.4.3 Conf.Int for MWW: (0.0483, 00571).

10.4.4 Our run: n1 = n2 = 39 yielded
0.8025 power.

10.3.4 (a) T+ = 174, p-value = 0.0083.
(b) t = 3.0442, p-value = 0.0067.

10.5.3 n(n−1)
n+1 .

10.7.1 (b) (0.156, 0.695).

10.5.14 (a) W ∗
S = 9; W ∗

XS = 6; (b) 1.2;
(c) 9.5.

10.8.3 ŷLS = 205.9 + 0.015x;
ŷW = 211.0 + 0.010x.

10.8.4 (a) ŷLS = 265.7−0.765(x−1900);
ŷW = 246.9− 0.436(x− 1900);
(b) ŷLS = 3501.0−38.35(x−1900);
ŷW = 3297.0− 35.52(x− 1900).

10.8.9 rqc = 16/17 = 0.941
(zeroes were excluded).

10.8.10 rN = 0.835; z = 3.734.

10.9.4 Cases: t < y and t > y.

10.9.5 (c) y2 − σ2.

10.9.7 (a)n−1
∑n

i=1(Yi − Y )2;
(c) y2 − σ2.
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10.9.9 0; [4f2(θ)]−1.

10.9.14 ŷLS = 3.14 + .028x;
ŷW = 0.214 + .020x.

Chapter 11

11.1.1 0.45; 0.55.

11.1.3 [yτ2 + μσ2/n]/(τ2 + σ2/n).

11.1.4 β(y + α)/(nβ + 1).

11.1.6 y1+α1

n+α1+α2+α3
; y2+α2

n+α1+α2+α3
.

11.1.8 (a)
(
θ − 10+30θ

45

)2
+(

1
45

)2
30θ(1− θ).

11.1.9 6
√

2, y4 < 1; 6
√

2y4, 1 ≤ y4.

11.2.1 (a)
θ2
2

[θ2
2+(x1−θ1)2][θ2

2+(x2−θ1)2]
.

11.2.3 (a) 76.84; (b) (76.25, 77.43).

11.2.5 (a) I(θ) = θ−2; (d) χ2(2n).

11.2.8 (a) beta(nx + 1, n + 1− nx).

11.3.1 (a) Let U1 and U2 be iid
uniform(0,1):

1. Draw Y = − log(1− U1)

2. Draw X = Y − log(1− U2).

11.3.3 (b) F−1
X (u) = − log(1−√u),

0 < u < 1.

11.3.7 (b) f(x|y) is a b(n, y) pmf;
f(y|x) is a beta(x + α, n − x + β)
pdf.

11.4.1 (b) β̂ = 1
2x ; (d) θ̂ = 1

x .

11.4.2 (a) δ(y) =R 1
0 [ a

1−a log p ]
2
py(1−p)n−y dpR

1
0 [ a

1−a log p ]2py−1(1−p)n−y dp
.
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F -distribution, 213
distribution of 1/F , 217
mean, 214
relationship with t-distribution, 217

X-space, 645
Y -space, 645
σ-field, 12
mn-rule, 16
pth-quantile, 257
q − q-plot, 260
t-distribution, 211

asymptotic distribution, 330
mean, 212
mixture generalization, 221
relationship with F -distribution, 217
relationship with Cauchy distribu-

tion, 217
variance, 212

Abebe, A., 600
Absolutely continuous, 49
Accept–reject algorithm

generation
gamma, 299
normal, 299

Adaptive procedures, 620
Additive model, 531
Adjacent points, 259
Algorithm

accept–reject, 298
bisection, 249
EM, 405
Gibbs sampler, 675
Newton’s method, 372

Alternative hypothesis, 267, 469
Analysis of variance, 517

additive model, 531
interaction, 535
one-way, 517
two-way, 531

Ancillary statistic, 457
ANOVA, see Analysis of variance

two-way model
interaction, 535

Anti-ranks, 587

Arithmetic mean, 82
Arnold, S. F., 201
Assumptions

mle regularity condition (R5), 368
mle regularity conditions (R0)–(R2),

356
mle regularity conditions (R3)–(R4),

362
Asymptotic distribution

general scores
regression, 629

general scores estimator, 612
Hodges–Lehmann, 594
Mann–Whitney–Wilcoxon estimator

for shift, 604
sample median, 583, 644

Asymptotic Power Lemma, 578
general scores, 611

regression, 629
Mann–Whitney–Wilcoxon, 603
sign test, 578
signed-rank Wilcoxon, 592

Asymptotic relative efficiency (ARE), 370
influence functions, 643
Mann–Whitney–Wilcoxon and t-test,

603
median and mean, 370
sign and t-test, 580
signed-rank Wilcoxon and t-test, 592
Wilcoxon and LS simple regression,

629
Asymptotic representation

influence function, 643
mle, 371

Asymptotically efficient, 370

Bandwidth, 233
Bar chart, 231
Barplot, 231
Basu’s theorem, 462
Bayes point estimator, 659
Bayes’ theorem, 26
Bayesian sequential procedure, 664
Bayesian statistics, 656
Bayesian tests, 663

733
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Bernoulli distribution, 155
mean, 155
variance, 155

Bernoulli experiment, 155
Bernoulli trials, 155
Best critical region, 470

Neyman–Pearson Theorem, 472
Beta distribution, 181

generation, 303
mean, 181
relationship with binomial, 185
variance, 181

Big O notation, 335
Bigler, E., 237
Binomial coefficient, 17
Binomial distribution, 156

additive property, 159
arcsin approximation, 346
continuity correction, 345
mean, 157
mgf, 157
mixture generalization, 221
normal approximation, 344
Poisson approximation, 337
relationship with beta, 185
variance, 157

Birthday problem, 16
Bisection algorithm, 249
Bivariate normal distribution, 198
Bonferroni Procedure, 526
Bonferroni procedure, 526
Bonferroni’s inequality, 20
Boole’s inequality, 19
Bootstrap, 303

hypotheses test
for Δ = μY − μX , 309

hypotheses testing
for μ, 311

nonparametric, 445
parametric, 445
percentile confidence interval

for θ, 305
standard errors, 444
standardized confidence interval, 313

Borel σ-field, 23
Bounded in probability, 333

implied by convergence in distribu-
tion, 333

Box, G. E. P., 296
Boxplot, 259

adjacent points, 259
lower fence, 259
potential outliers, 259
upper fence, 259

Bray, T. A., 297, 303
Breakdown point, 644

sample mean, 644
sample median, 645

Breiman, L., 336
Burr distribution, 222

hazard function, 223

Canty, A., 636
Capture-recapture, 165
Carmer, S.G., 528
Casella, G., 300, 386, 393, 452, 457, 676,

678, 679, 681, 682
Cauchy distribution, 60, 67, 73

mgf does not exist, 73
relationship with t-distribution, 217

cdf, see Cumulative distribution function
(cdf)

n-variate, 134
joint, 86

Censoring, 56
Central Limit Theorem, 342

n-variate, 351
normal approximation to binomial,

344
statement of, 240

Characteristic function, 74
Chebyshev’s inequality, 79
Chi-square distribution, 178

kth moment, 179
additive property, 180
mean, 178
normal approximation, 338
relationship with multivariate nor-

mal distribution, 202
relationship with normal, 192
variance, 178

Chi-square tests, 283
Chung, K. L., 70, 322
Combinations, 17
Complement, 4
Complete likelihood function, 405
Complete sufficient statistic, 433

exponential class, 435
Completeness, 431

Lehmann and Scheffé theorem, 432
Composite hypothesis, 270
Compounding, 220
Concordant pairs, 632
Conditional distribution

n-variate, 136
continuous, 110
discrete, 110

Conditional probability, 24
Confidence coefficient, 239
Confidence interval, 31, 238

μ1 − μ2
t-interval, 243
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large sample, 242
σ2, 247
σ2

1/σ2
2 , 248

p1 − p2
large sample, 244

based on Mann–Whitney–Wilcoxon,
605

based on signed-rank Wilcoxon, 595
binomial exact interval, 250
bootstrap

standardized, 313
confidence coefficient, 239
confidence level, 239
discrete random variable, 249
equivalence with hypotheses testing,

277
large sample, mle, 371
mean

t, 239
large sample, 240

median, 584
distribution-free, 262

percentile bootstrap interval for θ,
305

pivot, 239
Poisson exact interval, 251
proportion

large sample, 241
quantile ξp

distribution-free, 261
Confidence level, 239
Conjugate family of distributions, 666
Conover,W. J., 496
Consistent, 324
Contaminated normal distribution, 194
Contaminated point-mass distribution, 641
Contingency tables, 287
Continuity correction, 345
Continuity theorem of probability, 19
Contour, 202
Contours, 198
Convergence

bounded in probability, 333
distribution, 327

n-variate, 351
same as limiting distribution, 327
Central Limit Theorem, 342
Delta (Δ) method, 335
implied by convergence in proba-

bility, 332
implies bounded in probability, 333
mgf, 336

mgf
n-variate, 351

probability, 322
consistency, 324

implies convergence in distribution,
332

random vector, 349
Slutsky’s Theorem, 333

Convex function, 81
strictly, 81

Convolution, 108
Correlation coefficient, 126

sample, 552
Countable, 3

set, 3
Countable intersection, 6
Countable union, 6
Counting rule, 16

mn-rule, 16
combinations, 17
permutations, 16

Covariance, 125
linear combinations, 151

Coverage, 317
Craig, A. T., 564
Credible interval, 662

highest density region (HDR), 668
Crimin, K., 600
Critical region, 268, 469
Cumulant generating function, 77
Cumulative distribution function (cdf),

39
n-variate, 134
bivariate, 86
empirical cdf, 570
joint, 86
properties, 41

CUSUMS, 506

D’Agostino, R. B., 259
Data

Zea mays, 267, 272, 589
squeaky hip replacements, 228
AZT doses, 282
baseball, 243
Bavarian sulfur dioxide concentra-

tions, 229, 240
Boeing airplanes, 227
Olympic race times, 633, 635
Punt distance, 630
punter.rda, 630
R data

aztdoses.rda, 282
bb.rda, 236, 243, 554
beta30.rda, 375
braindata.rda, 237
conductivity.rda, 537
crimealk.rda, 291
darwin.rda, 272
earthmoon.rda, 401
elasticmod.rda, 519
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ex6111.rda, 360
ex763data.rda, 445
examp1053.rda, 615
exercise8316.rda, 499
fastcars.rda, 528
genexpd.rda, 402
lengthriver.rda, 585
lifetimemotor.rda, 235
mix668.rda, 411
normal50.rda, 395
olym1500mara.rda, 545, 633
punter.rda, 630
quailldl.rda, 521
regr1.rda, 548
scotteyehair.rda, 231, 288
sec951.rda, 539
sec95set2.rda, 539
sect76data.rda, 444
selfrival.rda, 281
shoshoni.rda, 574
speedlight.rda, 238
sulfurdio.rda, 229
telephone.rda, 548, 627
tempbygender.rda, 497
waterwheel.rda, 600

Salk polio vaccine, 244
self and rival times, 281
Shoshoni rectangles, 574
squeaky hip replacement, 228, 241
telephone, 548, 627
two-sample generated, 615
two-sample, variances, 500
water wheel, 600, 605

Davison, A. C., 304, 306
Decision function, 414
Decision rule, 268, 414
Degenerate distribution, 76
Delta (Δ) method, 335, 346

n-variate, 353
arcsin approximation to binomial, 346
square-root transformation to Pois-

son, 348
theorem, 335

DeMorgans laws, 6
Density estimation, 233
Devore, J.L., 519
Dirichlet distribution, 182, 665
Discordant pairs, 632
Disjoint events, 5
Disjoint union, 5, 12
Dispersion of a distribution, 52
Distribution, 47, 259

F -distribution, 213
noncentral, 524

log F -family, 467

t-distribution, 211
Bernoulli, 155
beta, 181
binomial, 156
bivariate normal, 198
Burr, 222
Cauchy, 60, 67, 73
chi-square, 178

noncentral, 523
contaminated normal, 194
contaminated point-mass, 641
convergence, 327
degenerate, 76
Dirchlet, 182
Dirichlet, 665
distribution of kth order statistic,

255
double exponential, 106
extreme-valued, 301
geometric distribution, 160
Gompertz, 186
hypergeometric, 47, 162
joint distribution of (j, k)th order statis-

tic, 256
Laplace, 77, 106, 260
loggamma, 219
logistic, 217, 262, 358
marginal, 90
marginal pdf, 91
mixture distribution, 218
multinomial distribution, 160
multivariate normal, 201
negative binomial, 678
negative binomial distribution, 159
noncentral t, 492
normal, 188
of a random variable, 37
order statistics, joint, 254
Pareto, 222
point-mass, 641
Poisson, 168
predictive, 666
Rayleigh, 186
shifted exponential, 327
skewed contaminated normal, 494
skewed normals, 197
standard normal, 187
Studentized range, 527
trinomial, 161
truncated normal, 195
uniform, 50
Waring, 224
Weibull, 185

Distribution free, 261
Distribution free test, 573
Distributions
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exponential, 176
gamma, 174
mixtures of Continuous and discrete,

56
Distributive laws, 6
Double exponential distribution, 106
DuBois, C., 574

Efficacy, 579
general scores, 611

regression, 629
Mann–Whitney–Wilcoxon, 603
sign test, 579
signed-rank, 592

Efficiency, 367
asymptotic, 370
confidence intervals, 239

Efficiency of estimator, 367
Efficient estimator, 366

multiparameter, 389
Efron, B., 303, 304, 307, 311
EM Algorithm, 405
Empirical Bayes, 679, 682
Empirical cdf, 570

simple linear model, 646
Empirical rule, 191
Empty set, 5
Equal in distribution, 40
Equilikely case, 15
Estimate, 226
Estimating equations (EE)

based on normal scores, 614
based on sign test, 582
based on signed-rank Wilcoxon test,

594
general scores, 612

regression, 627
linear model

LS, 645
Wilcoxon, 646

location
L1, 639
based on LS, 639

Mann–Whitney–Wilcoxon, 604
maximun likelihood (mle), 227
mle, univariate, 357
simple linear model

LS, 542
Estimation, 31
Estimator, 226

induced, 570
maximum likelihood estimator (mle),

227
method of moments, 165
point estimator, 226

Euclidean norm, 348, 547
Event, 2

Exhaustive, 12
Expectation, 61

n-variate, 135
conditional, 111
conditional distribution

n-variate, 137
conditional identity, 114
continuous, 61
discrete, 61
function of a random variable, 62
function of several variables, 93
independence, 122
linear combination, 151
random matrix, 140
random vector, 97

Expected value, 61
Experiment, 1
Exponential class, 435
Exponential distribution, 176

memoryless property, 185
Exponential family

uniformly most powerful test, 484
Exponential family of distributions

multiparameter, 448
random vector, 450

Extreme-valued
distribution, 301

Factor space, 645
Factorial moment, 76
Fair game, 62
Finite sample breakdown point, 644
First Stage Analysis, 526
Fisher information, 363

Bernoulli distribution, 364
beta(θ, 1) distribution, 367
location family, 364
multiparameter, 388

location and scale family, 390
multinomial distribution, 391
normal distribution, 389
variance, normal distribution, 393

Poisson distribution, 367
Fisher’s PLSD, 528
Fisher, D. M., 623
Fitted value, 542

LS, 542
Five-number summary, 258

boxplot of, 259
Frequency, 2
Function

cdf, 39
n-variate, 134
joint, 86

characteristic function, 74
convex, 81
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cumulant generating function, 77
decision, 414
gamma, 173
influence, 641
likelihood, 355
loss, 414
marginal

n-variate, 136
marginal pdf, 91
marginal pmf, 90
mgf, 70

n-variate, 138
mgf several variables, 96
minimax decision, 415
pdf, 50

n-variate, 134
joint, 87

pmf, 46
n-variate, 135

power, 470
probability function, 12
quadratic form, 515
risk, 414
score, 364
sensitivity curve, 639
set function, 7

Functional, 569, 640
location, 570, 640
scale, 572
simple linear

LS, 646
Wilcoxon, 647

symmetric error distribution, 571

Game, 62
fair, 62

Gamma distribution, 174
additive property, 177
mean, 175
mgf, 174
Monte Carlo generation, 294
relationship with Poisson, 183
variance, 175

Gamma function, 173
Stirling’s Formula, 331

General rank scores, 608
General rank scores test statistic, 608
General scores test statistic

linear model, 626
Gentle, J. E., 300, 303
Geometric distribution, 160

memoryless property, 166
Geometric mean, 82, 439
Geometric series, 8
George, E. I., 676, 678
Gibbs sampler, 675

Gini’s mean difference, 265
Gompertz distribution, 186
Goodness-of-fit test, 285
Grand mean, 517
Graybill, F. A., 391

Haas, J. V., 600
Haldane, J. B. .S., 666
Hampel, F. R., 642
Hardy, G. H., 334
Harmonic mean, 82
Hazard function, 175

Burr distribution, 223
exponential, 186
linear, 186
Pareto distribution, 223

Hettmansperger, T. P., 248, 382, 383,
467, 496, 548, 569, 599, 607,
612, 624, 625, 627, 633, 643,
648, 649

Hewitt, E., 81
Hierarchical Bayes, 679
Highest density region (HDR), 668
Hinges, 258
Hinkley, D. V., 304, 306
Histogram, 230
Hodges, J. L., 594, 614
Hodges–Lehmann estimator, 594
Hogg, R. V., 564, 623
Hollander, M., 635, 636
Hsu, J. C., 529
Huber, P. J., 365, 643
Hypergeometric distribution, 47, 162
Hyperparameter, 679
Hypotheses testing, 267

alternative hypothesis, 267
Bayesian, 663
binomial proportion p, 269

power function, 269
bootstrap

for μ, 311
bootstrap test

for Δ = μY − μX , 309
chi-square tests, 283

for independence, 288
goodness-of-fit test, 285
homogeneity, 287

composite hypothesis, 270
critical region, 268
decision rule, 268
distribution free, 573
equivalence with confidence intervals,

277
for μ1 − μ2

t-test, 278
general rank scores, 608
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general scores
regression, 626

likelihood ratio test, see Likelihood
ratio test

Mann–Whitney–Wilcoxon test, 599
mean

t-test, 272
large sample, 271
large sample, power function, 271
two-sided, large sample, 276

median, 573
Neyman–Pearson Theorem, 472
null hypothesis, 267
observed significance level (p-value),

279
one-sided hypotheses, 275
permutation tests, 310
power, 269
power function, 269
randomized tests, 279
sequential probability ratio test, 502
signed-rank Wilcoxon, 587
significance level, 271
simple hypothesis, 270
size of test, 268
test, 268
two-sided hypotheses, 275
Type I error, 268
Type II error, 268
uniformly most powerful critical re-

gion, 479
uniformly most powerful test, 479

Idempotent, 559
Identity

conditional expectation, 114
iid, 140, 152
Improper prior distributions, 667
Inclusion exclusion formula, 20
Independence

n-variate, 137
expectation, 122
mgf, 122
random variables

bivariate, 118
Independent, 28

events, 28
mutually, 29

Independent and identically distributed,
140

Induced estimator, 570
Inequality

Bonferroni’s inequality, 20
Boole’s inequality, 19
Chebyshev’s, 79
conditional variance, 114
correlation coefficient, 133

Jensen’s, 81
Markov’s, 79
Rao–Cramér lower bound, 365

Infimum, 688
Influence function, 641

Hodges–Lehmann estimate, 643
sample mean, 642
sample median, 643
simple linear

LS, 648
Wilcoxon, 648

Instrumental pdf, 298
Interaction parameters, 535
Interquatile range, 52
Intersection, 5

countable intersection, 6

Jacobian, 55
n-variate, 144
bivariate, 102

Jeffreys’ priors, 671
Jeffreys, H., 671
Jensen’s inequality, 81
Johnson, M. E., 496
Johnson, M. M., 496
Joint sufficient statistics, 447

factorization theorem, 447
Jointly complete and sufficient statistics,

449
Jones, M. C., 233

Kendall’s τ , 632
estimator, 632

null properties, 633
Kennedy, W. J., 300, 303
Kernel

rectangular, 233
Kitchens, L.J., 528
Kloke, J. D., 244, 291, 521, 569, 615, 623,

624, 627, 636, 649
Krishnan, T., 404, 409
Kurtosis, 76

Laplace distribution, 77, 106, 260
Law of total probability, 26
Least squares (LS), 541
Lehmann and Scheffé theorem, 432
Lehmann, E. L., 233, 277, 334, 383, 386,

389, 393, 398, 423, 452, 457,
487, 488, 594, 614, 676, 679,
681, 682

Leroy, A. M., 627
Likelihood function, 227, 355
Likelihood principle, 417
Likelihood ratio test, 377

asymptotic distribution, 379
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beta(θ,1) distribution, 381
exponential distribution, 377
for independence, 553
Laplace distribution, 381
multiparameter, 396

asymptotic distribution, 398
multinomial distribution, 398
normal distribution, 396
two-sample normal distribution, 401
variance of normal distribution, 401

normal distribution, mean, 378
relationship to Wald test, 380
two-sample

normal, means, 488
normal, variances, 495, 496

Limit infimum (liminf), 331, 689
Limit supremum (limsup), 331, 689
Linear combinations, 151
Linear discriminant function, 512
Linear model, 540, 645

matrix formulation, 547
simple, 625

Little o notation, 335
Local alternatives, 577, 602
Location and scale distributions, 259
Location and scale invariant statistics,

459
Location family, 364
Location functional, 570
Location model, 242, 571, 572

t-distribution, 217
normal, 191
shift (Δ), 598

Location parameter, 191
Location-invariant statistic, 458
Loggamma distribution, 219
Logistic distribution, 217, 262, 358
Loss function, 414

absolute-error, 416
goalpost, 416
squared-error loss, 416

Lower control limit, 505
Lower fence, 259

Main effect hypotheses, 532
Mann–Whitney–Wilcoxon statistic, 599
Mann–Whitney–Wilcoxon test, 599

null properties, 600
Marginal distribution, 90

continuous, 91
Markov chain, 676
Markov Chain Monte Carlo (MCMC),

680
Markov’s inequality, 79
Marsaglia, G., 297, 303

Maximum likelihood estimator (mle), 226,
227, 357

multiparameter, 387
asymptotic normality, 369
asymptotic representation, 371
binomial distribution, 228
consistency, 359
exponential distribution, 227
logistic distribution, 357
multiparameter

N(μ, σ2) distribution, 387
Laplace distribution, 387
multinomial distribution, 391
Pareto distribution, 394

normal distribution, 228
of g(θ), 358
one-step, 373
relationship to sufficient statistic, 427
uniform distribution, 230

McKean, J. W., 244, 248, 291, 382, 383,
467, 496, 521, 528, 548, 569,
599, 600, 607, 612, 615, 620,
623–625, 627, 636, 638, 643, 648,
649, 653

McLachlan, G. J., 404, 409
Mean, 61, 68

n-variate, 141
arithmetic mean, 82
conditional, 111

linear identity, 128
geometric mean, 82
grand, 517
harmonic mean, 82
sample mean, 152

Mean profile plots, 531
Median, 51, 76, 572

breakdown point, 645
confidence interval

distribution-free, 262
of a random variable, 51
sample median, 257

Method of moments estimator, 165
mgf, see Moment generating function
Midrange

sample midrange, 257
Miller, R. G., 529
Minimal sufficient statistics, 455
Minimax criterion, 415
Minimax principle, 415
Minimax test, 509
Minimum chi-square estimates, 286
Minimum mean-squared-error estimator,

415
Minimum variance unbiased estimator,

see MVUE
Minitab command
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rregr, 627
Mixture distribution, 218, 408

mean, 218
variance, 219

Mixtures of Continuous and discrete dis-
tributions, 56

mle, see Maximum likelihood estimator
(mle)

Mode, 58
Model

linear, 540, 645
location, 191, 242, 571

median, 572
normal location, 191
simple linear, 625

Moment, 72
mth, 72
about μ, 76
factorial moment, 76
kurtosis, 76
skewness, 76

Moment generating function (mgf), 70
n-variate, 138
binomial distribution, 157
Cauchy distribution (mgf does not

exist), 73
convergence, 336
independence, 122
multivariate normal, 201
normal, 188
Poisson distribution, 169
quadratic form, 557
several variables, 96
standard normal, 187
transformation technique, 107

Monotone likelihood ratio, 483
relationship to uniformly most pow-

erful test, 483
regular exponential family, 484

Monotone sets, 7
nondecreasing, 7
nonincreasing, 7

Monte Carlo, 292, 595, 672
generation

beta, 303
gamma, 294, 299
normal, 296
normal via Cauchy, 299
Poisson, 295

integration, 295
sequential generation, 674
situation, 595

Monte Hall problem, 36
Mood’s median test, 616, 618
Mosteller, F., 258
Muller, M, 296

multinomial distribution, 160
Multiple Comparison

Bonferroni, 526
Tukey-Kramer, 528

Multiple comparison
Tukey, 527

Multiple Comparison Problem, 526
Bonferroni procedure, 526

Multiple Comparison Procedure
Fisher, 528
Tukey, 527

Multiplication rule, 16, 25
mn-rule, 16
for probabilities, 25

Multivariate normal distribution, 201
conditional distribution, 204
marginal distributions, 203
mgf, 201
relationship with chi-square distri-

bution, 202
Mutually exclusive, 12
Mutually independent events, 29
MVUE, 413

μ, 454
binomial distribution, 440
exponential class of distributions, 438
exponential distribution, 428
Lehmann and Scheffé theorem, 432
multinomial, 450
multivariate normal, 451
Poisson distribution, 438
shifted exponential distribution, 434

Naranjo, J. D., 620
Negative binomial distribution, 159, 678

as a mixture, 220
mgf, 159

Newton’s method, 372
Neyman’s factorization theorem, 422
Neyman–Pearson Theorem, 472
Noncentral F -distribution, 524
Noncentral t-distribution, 492
Noncentral chi-square distribution, 523
Noninformative prior distributions, 667
Nonparametric, 230
Nonparametric estimate of pmf, 230
Nonparametric estimators, 570
Norm, 348

Euclidean, 348
pseudo-norm, 651

Normal distribution, 188
approximation to chi-square distri-

bution, 338
distribution of sample mean, 193
empirical rule, 191
mean, 188
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mgf, 188
points of inflection, 189
relationship with chi-square, 192
variance, 188

Normal equations, 645
Normal scores, 614
Null hypothesis, 267, 469

Observed likelihood function, 405
Observed significance level, 280
One-sided hypotheses, 275
One-step mle estimator, 373
One-way ANOVA, 517

First Stage, 526
Multiple Comparison Problem, 526
Second Stage, 526

Optimal score function, 613
Order statistics, 254

ith-order statistic, 254
distribution of kth order statistic,

255
joint distribution of (j, k)th, 256
joint pdf, 254

Ordinal, 231
Outlier, 216

p-value, 280
Parameter, 156, 191, 225

location, 191
scale, 191
shape, 191

Pareto distribution, 222
hazard function, 223

Partition, 12
Pearson residuals, 289
Percentile, 51, see quantile
Permutation, 16
Permutation tests, 310
Plot

q − q-plot, 260
boxplot, 259
mean profile plots, 531
scatterplot, 540

pnbinom, 159
Point estimator, 226, see Estimator

μ1 − μ2, 241
p1 − p2, 244
asymptotically efficient, 370
Bayes, 659
consistent, 324
efficiency, 367
efficient, 366
five-number summary, 258
median, 257, 572
midrange, 257
MVUE, see MVUE

pooled estimator of variance, 242
quantile, 258
quartiles, 258
range, 257
robust, 642
sample mean, 152
unbiased, 226

Point-mass distribution, 641
Poisson distribution, 168

additive property, 171
approximation to binomial distribu-

tion, 337
compound or mixture, 220
limiting distribution, 340
mean, 170
mgf, 169
Monte Carlo generation, 295
relationship with gamma, 183
square-root transformation, 348
variance, 170

Poisson process
axioms, 168

Pooled estimator of variance, 242
Positive definite, 201
Positive semi-definite, 142, 200
Posterior, 27

distribution, 656
relation to sufficiency, 658

probabilities, 27
Potential outliers, 259
Power function, 269, 470
Power of test, 269
Precision, 668
Predicted value, 542

LS, 542
Prediction interval, 245
Predictive distribution, 666
Predictor, 625
Principal components, 206

nth, 207
first, 206

Prior, 27, 655
distributions, 656

conjugate family, 666
improper, 667
noninformative, 667
proper, 667

Jeffreys’ class, 671
probabilities, 27, 655

Probability
bounded, 333
conditional, 24
convergence, 322
equilikely case, 15

Probability density function (pdf), 50
n-variate, 134
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conditional, 110
joint, 87
marginal, 91

n-variate, 136
Probability function, 12
Probability interval, 662
Probability mass function (pmf), 46

n-variate, 135
conditional, 110
joint, 86
marginal, 90

Process, 574
general scores, 609

regression, 626
Mann–Whitney–Wilcoxon, 601
sign, 574
signed-rank, 590

Proper prior distributions, 667
Pseudo-norm, 651

Quadrant count statistic, 637
Quadratic form, 515

matrix formulation, 556
Quantile, 51

absolutely continuous case, 52
confidence interval

distribution-free, 261
sample quantile, 258

Quartile, 51
Quartiles

interquartile range, 52
of a random variable, 51
sample quartiles, 258

R function
abgame, 31
aresimcn, 596
barplot, 231
bday, 17
binomci, 250
binpower, 270
bootse1, 444
bootse2, 445
boottestonemean, 311
boottesttwo, 310
boxplot, 259
cdistplt, 338
chiqsq.test, 285
cipi, 549
condsim1, 675
consistmean, 324
cor, 633
cor.boot, 636
cor.boot.ci, 636
cor.test, 554, 633, 635
density, 233

dgeom, 160
dhyper, 162
eigen, 557
empalphacn, 298
fivenum, 258
getcis, 246
gibbser2, 677
hierarch1, 682
hist, 232
hogg.test, 623
interaction.plot, 537
lm, 537, 627
mcpbon, 527
mean, 228
mlelogistic, 373
mses, 596
multitrial, 165
onesampsgn, 262, 584
oneway.test, 519
p2pair, 400
pbeta, 181
pbinom, 157
pchisq, 178
percentciboot, 305
pf, 214
pgamma, 175
piest, 293
piest2, 296
pnbinom, 159
pnorm, 189
poisrand, 295
poissonci, 251
ppois, 170
prop.test, 228, 241
pt, 211
ptukey, 527
qqnorm, 261
qqplotc4s2, 261
quantile, 258
rcauchy, 246
rcn, 596
rexp, 402
rfit, 615, 627
rscn, 494
seq, 196
simplegame, 65
t.test, 240, 277
tpowerg, 492
var, 228
wil2powsim, 605
wilcox.test, 589, 601
ww, 627
zpower, 277

R package
boot, 636
hbrfit, 649
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npsm, 623, 636
Rfit, 615

Randles, R. H., 569, 623
Random sample, 152, 226

likelihood function, 227
realizations, 226
sample size, 226
statistic, 226

Random variable, 37
continuous, 37, 49
discrete, 37, 45
equal in distribution, 40
vector, 85

Random vector, 85
n-variate, 134
continuous, 87
discrete, 86

Random-walk procedure, 505
Randomized tests, 279
Range

sample range, 257
Rank-based procedures, 569
Rao, C. R., 386, 398, 409, 410
Rao–Blackwell theorem, 427
Rao–Cramér lower bound, 365, 613

for unbiased estimator, 366
Rasmussen, S., 630
Rayleigh distribution, 186
Relative frequency, 2
Residual, 542

LS, 542
Residual plot, 544
Residuals

residual plot, 544
Ripley, B., 636
Risk function, 414, 659
Robert, C. P., 300, 676
Robust estimator, 642
Robustness of power, 494
Robustness of validity, 494
Rousseeuw, P. J., 627
Rutledge, J. N., 237

Sample mean, 152
consistency, 322
consistent, 324
distribution under normality, 214
variance, 152

Sample median, 257
Sample midrange, 257
Sample proportion

consistency, 326
Sample quantile, 258

same as percentile, 258
Sample quartiles, 258
Sample range, 257

Sample size, 226
Sample size determination, 580

t-test, 580
general scores, 617
Mann–Whitney–Wilcoxon, 603
sign test, 580
two-sample t, 603

Sample space, 1
Sample variance

consistent, 325
distribution under normality, 214

Sandwich theorem, 688
Scale functional, 572
Scale parameter, 191

dispersion, 52
spread, 52

Scale-invariant statistic, 458
Scatter plot, 540
Scheffé, H., 457
Schultz, R., 237
Score function, 364, 608

normal scores, 614
optimal, 613
two-sample sign, 616

Scores test, 380
beta(θ,1) distribution, 381
Laplace distribution, 381
relationship to Wald test, 380

Seber, G. A. F., 511, 512
Second Stage Analysis, 526
Sensitivity curve, 639
Sequences, 688
Sequential probability ratio test, 502

error bounds, 504
Serfling, R. J., 348, 353
Set, 3

subset, 5
Set function, 7
Shape parameter, 191
Sheather, S. J., 233
Shewart, W., 505
Shift, in location, 598
Shifted exponential distribution, 327
Shrinkage estimate, 666
Sievers, G., 528
Sign statistic, 573
Sign test, 573

power function, 576
Signed-rank Wilcoxon, 586

Walsh average identity, 589
Signed-rank Wilcoxon test, 587

null properties, 588
Significance level, 271
Simple hypothesis, 270
Simulation, 31
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Size of test, 268, 470
Skewed contaminated normal distribution,

494
Skewed distribution, 51
Skewed normal distributions, 197
Skewness, 76
Slutsky’s Theorem, 333
Spearman’s rho, 634

null properties, 635
Spectral decomposition, 200, 557
Spread of a distribution, 52
Square root of positive semi-definite ma-

trix, 200
Standard deviation, 69
Standard error

X, 239
p̂, 241

Standard normal distribution, 187
mean, 188
mgf, 187
variance, 188

Stapleton, J. H., 559
Statistic, 226
Stephens, M. A., 259
Stigler, S. M., 238
Stirling’s formula, 331
Stochastic order, 59
Stromberg, K., 81
Studentized range distribution, 527
Subset, 5
Sufficiency

relation to posterior distribution, 658
Sufficient statistic, 421

Γ(2, θ) distribution, 421
joint, see Joint sufficient statistics
Lehmann and Scheffé theorem, 432
minimal sufficient statistics, 455
Neyman’s factorization theorem, 422
normal

σ2 known, 423
Rao–Blackwell theorem, 427
relationship to mle, 427
relationship to uniformly most pow-

erful test, 482
shifted exponential distribution, 422

Support, 46
n-variate, 135
continuous random vector, 88
discrete, 46
discrete random vector, 87

Supremum, 688
Swanson, M.R., 528

Terpstra, J. T., 627, 653
Test, 268

t, 272

Theorem
asymptotic normality of mles, 369
Asymptotic Power Lemma, 578
Basu’s theorem, 462
Bayes’ theorem, 26
Boole’s Inequality, 19
Central Limit Theorem, 342

n-variate, 351
Chebyshev’s inequality, 79
Cochran’s Theorem, 566
consistency of mle, 359
continuity theorem of probability, 19
Delta (Δ) method, 335
Jensen’s inequality, 81
Lehmann and Scheffé, 432
Markov’s inequality, 79
mle of g(θ), 358
Neyman’s factorization theorem, 422
Neyman–Pearson, 472
quadratic form

expectation, 556
Rao–Blackwell, 427
Rao–Cramér lower bound, 365
Sandwich theorem, 688
Slutsky’s, 333
Student’s theorem, 214
Weak Law of Large Numbers, 322

Tibshirani, R. J., 304, 307, 311
Tolerance interval, 317
Total variation, 206
Trace of a matrix, 555
Transformation, 47

n-variate, 144
not one-to-one, 146

bivariate, 100
continuous, 102
discrete, 100

univariate
continuous, 53, 55
discrete, 47

Translation property, 575
general scores, 610
Mann–Whitney–Wilcoxon, 602
sign process, 575
signed-rank process, 591

Trinomial distribution, 161
Truncated normal distribution, 195
Tucker, H. G., 50, 323, 351
Tukey’s MCP, 527
Tukey, J. W., 258, 259
Tukey-Kramer procedure, 528
Two-sided hypotheses, 275
Two-way ANOVA, 531

additive model, 531
Two-way model, 535
Type I error, 268, 469
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Type II error, 268, 469

Unbiased, 152
Unbiased test, 473

best test, 474
mlr tests, 483
two-sided alternative, 488

Unbiasedness, 226
Uniform distribution, 50
Uniformly most powerful critical region,

479
Uniformly most powerful test, 479

regular exponential family, 484
relationship to monotone likelihood

ratio, 483
relationship to sufficiency, 482

Union, 5
countable union, 6

Upper control limit, 505
Upper fence, 259

Variance, 68
n-variate, 141
conditional, 111

linear identity, 128
conditional inequality, 114
linear combination, 152
sum iid, 152

Variance-covariance matrix, 141
Venn diagram, 4
Verzani, J., 282
Vidmar, T. J., 528, 600

Wald test, 380
beta(θ,1) distribution, 381
Laplace distribution, 381
relation to likelihood ratio test, 380
relationship to scores test, 380

Walsh averages, 590
Waring distribution, 224
Weak Law of Large Numbers, 322

n-variate, 350
Weibull distribution, 185
Wilcoxon

signed-rank, 586
Willerman, L., 237
Wolfe, D. A., 569, 635
Wolfe, D.A., 636
Zipf’s law, 223
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