MATH20802: STATISTICAL METHODS SEMESTER 2 SOLUTIONS TO PROBLEM SHEET 6

1. The hypotheses are: $H_0: \mu_X \leq \mu_Y$ and $H_1: \mu_X > \mu_Y$. The *p*-value is:

$$p\text{-value} = \Pr\left(Z \ge \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}}\right)$$
$$= \Pr\left(Z \ge \frac{137.667 - 127.778}{\sqrt{\frac{10^2}{9} + \frac{\sigma_Y^2}{9}}}\right)$$
$$= \Pr\left(Z \ge \frac{3 \times 9.889}{\sqrt{100 + \sigma_Y^2}}\right).$$

This reduces to $\Pr(Z \ge 2.653) = 0.004$ if $\sigma_Y = 5$, $\Pr(Z \ge 2.098) = 0.018$ if $\sigma_Y = 10$ and $\Pr(Z \ge 1.327) = 0.092$ if $\sigma_Y = 20$.

2. Let μ_X = mean of values relating to message 1 and let μ_Y = mean of values relating to message 2. The hypotheses are: $H_0: \mu_X \leq \mu_Y$ and $H_1: \mu_X > \mu_Y$. The test statistic is:

$$\frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} = \frac{5.6 - 4.1}{\sqrt{\frac{2^2}{9} + \frac{2^2}{9}}} \\ = \frac{3 \times 1.5}{2\sqrt{2}} \\ = 1.591$$

and the table value $z_{0.01} = 2.326$. So there is no evidence against the claim.

3. Let $\mu_X = \text{mean IQ}$ of urban students and let $\mu_Y = \text{mean IQ}$ of rural students. The hypotheses are: $H_0: \mu_X = \mu_Y$ and $H_1: \mu_X \neq \mu_Y$. In the case of equal variances, the test statistic is:

$$\frac{|\bar{x} - \bar{y}|}{\sqrt{s_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}} = \frac{|102.2 - 105.3|}{\sqrt{\frac{(100 - 1)(11.8)^2 + (60 - 1)(10.6)^2}{100 + 60 - 2}} \left(\frac{1}{100} + \frac{1}{60}\right)}$$
$$= \frac{3.1}{1.856}$$
$$= 1.670$$

and the table value $t_{m+n-2,0.025} = t_{158,0.025} = 1.975$. So there is no evidence to suggest that there is a difference between mean IQs. In the case of unequal variances, the test statistic is:

$$\frac{\left|\bar{x} - \bar{y}\right|}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}} = \frac{\left|102.2 - 105.3\right|}{\sqrt{\frac{(11.8)^2}{100} + \frac{(10.6)^2}{60}}} \\ = \frac{3.1}{1.807} \\ = 1.716,$$

$$\nu = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{s_X^2}{m(m-1)} + \frac{s_Y^2}{n(n-1)}}$$

$$= \frac{\left(\frac{(11.8)^2}{100} + \frac{(10.6)^2}{60}\right)^2}{\frac{1}{100-1} \left(\frac{(11.8)^2}{100}\right)^2 + \frac{1}{60-1} \left(\frac{(10.6)^2}{60}\right)^2}$$

$$= 134.9$$

$$\approx 135$$

and the table value $t_{\nu,0.025} = t_{135,0.025} = 1.978$. So again there is no evidence to suggest that there is a difference between mean IQs (consistent with the conclusion above).

4. Let $\mu_X = \text{mean IQ}$ of urban students and let $\mu_Y = \text{mean IQ}$ of rural students. The hypotheses are: $H_0: \mu_X \ge \mu_Y$ and $H_1: \mu_X < \mu_Y$. In the case of equal variances, the test statistic is:

$$\frac{\bar{x} - \bar{y}}{\sqrt{s_p^2 \left(\frac{1}{m} + \frac{1}{n}\right)}} = \frac{102.2 - 105.3}{\sqrt{\frac{(100 - 1)(11.8)^2 + (60 - 1)(10.6)^2}{100 + 60 - 2}} \left(\frac{1}{100} + \frac{1}{60}\right)}$$
$$= -\frac{3.1}{1.856}$$
$$= -1.670$$

and the table value $-t_{m+n-2,0.05} = -t_{158,0.05} = -1.655$. So there is evidence to support the claim that $\mu_X < \mu_Y$. In the case of unequal variances, the test statistic is:

$$\frac{\bar{x} - \bar{y}}{\sqrt{\frac{s_X^2}{m} + \frac{s_Y^2}{n}}} = \frac{102.2 - 105.3}{\sqrt{\frac{(11.8)^2}{100} + \frac{(10.6)^2}{60}}}$$
$$= -\frac{3.1}{1.807}$$
$$= -1.716,$$
$$\nu = \frac{\left(\frac{s_X^2}{m} + \frac{s_Y^2}{n}\right)^2}{\frac{s_X^2}{m(m-1)} + \frac{s_Y^2}{n(n-1)}}$$
$$= \frac{\left(\frac{(11.8)^2}{100} + \frac{(10.6)^2}{60}\right)^2}{\frac{1}{100-1} \left(\frac{(11.8)^2}{100}\right)^2 + \frac{1}{60-1} \left(\frac{(10.6)^2}{60}\right)^2}$$
$$= 134.9$$
$$\approx 135$$

and the table value $-t_{\nu,0.05} = -t_{135,0.05} = -1.656$. So again there is evidence to support the claim that $\mu_X < \mu_Y$ (consistent with the conclusion above).

5. Let μ_X = mean starting salary of women and let μ_Y = mean starting salary of men.

Company	1	2	3	4	5	6	$\overline{7}$	8
Woman's salary (x_i)	52	53.2	78	75	62.5	72	39	49
Man's salary (y_i)	54	55.5	78	81	64.5	70	42	51
d_i	-2	-2.3	0	-6	-2	2	-3	-2

The hypotheses are: $H_0: \mu_X = \mu_Y$ and $H_1: \mu_X \neq \mu_Y$. The test statistic is:

$$\frac{\sqrt{n} |\bar{d}|}{S_d} = \frac{\sqrt{8} \times |-1.913|}{2.299} \\ = 2.352.$$

and the table value $t_{n-1,0.05} = t_{7,0.05} = 1.895$. So there is evidence to suggest that there are differences in starting salaries between women and men.

6. Let μ_X = mean marriage rate in 1987 and let μ_Y = mean marriage rate in 1989.

Country	1987 Rate (x_i)	1989 Rate (y_i)	d_i
Belgium	5.8	6.4	-0.6
Finland	5.4	5.1	0.3
Greece	6.3	6.0	0.3
Israel	6.9	7.0	-0.1
New Zealand	6.0	6.1	-0.1
Norway	5.0	4.9	0.1
Switzerland	6.6	6.8	-0.2
United States	9.9	9.7	0.2
Yugoslavia	7.0	6.7	0.3

The hypotheses are: $H_0: \mu_X \leq \mu_Y$ and $H_1: \mu_X > \mu_Y$. The test statistic is:

$$\frac{\sqrt{n} | \bar{d} |}{S_d} = \frac{\sqrt{9} \times 0.022}{0.303} \\ = 0.220.$$

and the table value $t_{n-1,0.05} = t_{8,0.05} = 1.860$. So there is no evidence against the hypothesis that 1987 rates are no greater than that for 1989.

7. Let $p_X = \text{smoking proportion in 1986}$ and let $p_Y = \text{smoking proportion at the time of ACS}$ poll. The hypotheses are: $H_0: p_X \leq p_Y$ and $H_1: p_X > p_Y$. The test statistic is:

$$\frac{\bar{x} - \bar{y}}{\sqrt{\frac{\bar{x}(1-\bar{x})}{m} + \frac{\bar{y}(1-\bar{y})}{n}}} = \frac{\frac{640}{2000} - \frac{738}{2500}}{\sqrt{\frac{\frac{640}{2000}\left(1 - \frac{640}{2000}\right)}{2000} + \frac{\frac{738}{2500}\left(1 - \frac{738}{2500}\right)}{2500}}} \\ = \frac{0.0248}{0.014} \\ = 1.790.$$

and the table value $z_{0.05} = 1.645$. So there is evidence to suggest that the smoking rate has decreased since 1986.

8. Let p_X = survival probability for hospital A and let p_Y = survival probability for hospital B. The hypotheses are: $H_0: p_X = p_Y$ and $H_1: p_X \neq p_Y$. The *p*-value is:

$$p\text{-value} = Pr\left(|Z| \ge \frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{\bar{x}(1-\bar{x})}{m} + \frac{\bar{y}(1-\bar{y})}{n}}}\right)$$

$$= Pr\left(|Z| \ge \frac{|\frac{72}{480} - \frac{30}{360}|}{\sqrt{\frac{\frac{72}{480}(1 - \frac{72}{480})}{480} + \frac{\frac{30}{360}(1 - \frac{30}{360})}}}\right)$$
$$= Pr\left(|Z| > \frac{0.067}{0.022}\right)$$
$$= Pr\left(|Z| > 3.05\right)$$
$$= 2\left\{1 - \Phi(3.05)\right\}$$
$$= 0.002.$$

So there is evidence against the hypothesis that the survival probabilities are the same.

9. Let σ_X^2 = variance for caliper A and let p_Y = variance for caliper B. The hypotheses are: $H_0: \sigma_X = \sigma_Y$ and $H_1: \sigma_X \neq \sigma_Y$. The test statistic is:

$$\frac{s_X^2}{s_Y^2} = \frac{831}{592} = 1.404$$

and the table values are $F_{m-1,n-1,0.025} = F_{9,9,0.025} = 4.026$ and $F_{m-1,n-1,0.975} = F_{9,9,0.975} = 0.248$. So there is no evidence to suggest that the calpers have different variability.

10. The hypotheses are: $H_0: \sigma_X = \sigma_Y$ and $H_1: \sigma_X > \sigma_Y$. The test statistic is:

$$\frac{s_X^2}{s_Y^2} = \frac{(2.3)^2}{(1.1)^2} \\ = 4.372$$

and the table value is $F_{m-1,n-1,0.05} = F_{8,8,0.05} = 3.438$. So there is no evidence to suggest that the new oven has lesser variability than the current one.