MATH20802: STATISTICAL METHODS
SEMESTER 2
SOLUTIONS TO PROBLEM SHEET 3

1. We have E(p) = E(X/n) = np/n = p and so p is unbiased. Also Var(p) = Var(X/n) =
(1/n*)Var(X) = (1/n*)np(1 — p) = p(1 —p)/n. So, MSE(p) = p(1 —p)/n and p is MSE
consistent since p(1 — p)/n — 0 as n — oc.

2. We have E(3X1 X2/n) = (1/n) X", E(X2) = (1/n) X" 0% = 0% and so 3.1 ;| X?/n is an
unbiased estimator of o2.
Since 31, X2/0? ~ x2, we have Var(31, X?/0?) = 2n which implies Var(31, X2/n) =
20* /n and this approaches zero as n — oco. Hence, 3°1 | X2/n is MSE consistent for o2.

3. The estimator X is a biased for § since
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Define a new estimator d, = X — 1. Since E(§y) = E(X —1) =0+ 1 — 1 = § it is unbiased
for §. To check for consistency, first note that
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So, Var(8y) = Var(X —1) = Var(X) = (1/n)Var(X) = 1/n and MSE(by) = 1/n. Hence,
do is MSE consistent for §.
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4. If X1, Xo,..., Xy are iid from Po(A) then the mle of Ais A = X = (1/n) X", X;. Since
E(X;) = X and Var(X;) = X, we have E(A) = (1/n) E(X; ) =(1/n)YX i A=n\/n=A\
and Var(\) = (1/n?) X", Var(X;) = (1/n2) z:l)‘ = n/\/ = M/n. Hence, MSE()\) =
A/n and A is a consistent estimator for A.

5. If X1, Xo,..., X, is a random sample from the geometric distribution with parameter p then
the likelihood function for p is:
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and so the log—likelihood function is:

p) = (3 X:—n)log(l - p) +nlogp.
1=1

The first derivative of I(p) is
di(p) P Xi—n n
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and setting this to zero gives the solution p = n/>"" ; x; = 1/X. This is indeed the mle since
the second derivative
d*1(p) Yrhixi—n on
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6. The likelihood function of p is
Lp) = [P-p?]" 2ot -p)" [P0 -p)°]"
and so the log-likelihood function is
l(p) = mnilog2+ (2ng+ n1)log(l —p) + (n1 + 2n2) logp.
The first derivative of I(p) is
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and setting this to zero gives the solution p = (nj + 2n2)/2N. This is indeed the mle since
the second derivative
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7. Let p denote the proportion of the breakfast cereal Cocobix bought by men.



(i) The likelihood function is

L(p) = pP1-p)"~
(ii) The log-likelihood function is
l(p) = 58logp+ 12log(1l — p).
The first derivative of I(p) is
dp) _ s 12
dp p l-=p

and setting this to zero gives the solution p = 29/35. This is indeed the mle since the
second derivative
d?1(p) 58 12

- 2 _* o
dp? p? (1—p)2<

An approximate 95% confidence interval for p is [p = zg.025/p(1 — p)/n] = [29/35 +
1.964/(29/35)(1 — 29/35)/70] = [0.74,0.92].

(iii) From the figure below, it is clear that the maximum value of L(p) in the range 1/2 <
p <2/3isat p=2/3. So, the mle is p = 2/3.
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