
MATH20802: STATISTICAL METHODS

SEMESTER 2

SOLUTIONS TO PROBLEM SHEET 3

1. We have E(p̂) = E(X/n) = np/n = p and so p̂ is unbiased. Also V ar(p̂) = V ar(X/n) =
(1/n2)V ar(X) = (1/n2)np(1 − p) = p(1 − p)/n. So, MSE(p̂) = p(1 − p)/n and p̂ is MSE
consistent since p(1− p)/n → 0 as n → ∞.

2. We have E(
∑

n
i=1X

2
i
/n) = (1/n)

∑

n
i=1 E(X2

i
) = (1/n)

∑

n
i=1 σ

2 = σ2 and so
∑

n
i=1X

2
i
/n is an

unbiased estimator of σ2.

Since
∑

n

i=1 X
2
i /σ

2 ∼ χ2
n, we have V ar(

∑

n

i=1X
2
i /σ

2) = 2n which implies V ar(
∑

n

i=1X
2
i /n) =

2σ4/n and this approaches zero as n → ∞. Hence,
∑

n

i=1 X
2
i /n is MSE consistent for σ2.

3. The estimator X̄ is a biased for δ since

E(X̄) = (1/n)E(
n
∑

i=1

Xi)

= (1/n)
n
∑

i=1

E(Xi)

= E(X)

=

∫

∞

δ

x exp(δ − x)dx

= exp(δ)

∫

∞

δ

x exp(−x)dx

= exp(δ)

{

[−x exp(−x)]∞
δ

+

∫

∞

δ

exp(−x)dx

}

= exp(δ) {δ exp(−δ) + [− exp(−x)]∞
δ
}

= exp(δ) {δ exp(−δ) + exp(−δ)}

= δ + 1.

Define a new estimator δ̂2 = X̄ − 1. Since E(δ̂2) = E(X̄ − 1) = δ + 1 − 1 = δ it is unbiased
for δ. To check for consistency, first note that

E(X2) =

∫

∞

δ

x2 exp(δ − x)dx

= exp(δ)

∫

∞

δ

x2 exp(−x)dx

= exp(δ)

{

[

−x2 exp(−x)
]

∞

δ
+ 2

∫

∞

δ

x exp(−x)dx

}

= exp(δ)
{

δ2 exp(−δ) + 2δ exp(−δ) + 2 exp(−δ)
}

= δ2 + 2δ + 2

and

V ar(X) = δ2 + 2δ + 2− (δ + 1)2

= δ2 + 2δ + 2− δ2 − 2δ − 1

= 1.
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So, V ar(δ̂2) = V ar(X̄ − 1) = V ar(X̄) = (1/n)V ar(X) = 1/n and MSE(δ̂2) = 1/n. Hence,
δ̂2 is MSE consistent for δ.

4. If X1,X2, . . . ,Xn are iid from Po(λ) then the mle of λ is λ̂ = X̄ = (1/n)
∑

n

i=1Xi. Since
E(Xi) = λ and V ar(Xi) = λ, we have E(λ̂) = (1/n)

∑

n
i=1 E(Xi) = (1/n)

∑

n
i=1 λ = nλ/n = λ

and V ar(λ̂) = (1/n2)
∑

n

i=1 V ar(Xi) = (1/n2)
∑

n

i=1 λ = nλ/n2 = λ/n. Hence, MSE(λ̂) =
λ/n and λ̂ is a consistent estimator for λ.

5. If X1,X2, . . . ,Xn is a random sample from the geometric distribution with parameter p then
the likelihood function for p is:

L(p) =
n
∏

i=1

(1− p)Xi−1p

= (1− p)
∑

n

i=1
(Xi−1)pn

= (1− p)
∑

n

i=1
Xi−npn

and so the log–likelihood function is:

l(p) = (
n
∑

i=1

Xi − n) log(1− p) + n log p.

The first derivative of l(p) is

dl(p)

dp
= −

∑

n
i=1 Xi − n

1− p
+

n

p

and setting this to zero gives the solution p̂ = n/
∑

n

i=1 xi = 1/X̄ . This is indeed the mle since
the second derivative

d2l(p)

dp2
= −

∑

n

i=1 xi − n

(1− p)2
−

n

p2
< 0.

6. The likelihood function of p is

L(p) =
[

p0(1− p)2
]n0

[2p(1− p)]n1

[

p2(1− p)0
]n2

and so the log–likelihood function is

l(p) = n1 log 2 + (2n0 + n1) log(1− p) + (n1 + 2n2) log p.

The first derivative of l(p) is

dl(p)

dp
=

n1 + 2n2

p
−

2n0 + n1

1− p

and setting this to zero gives the solution p̂ = (n1 + 2n2)/2N . This is indeed the mle since
the second derivative

d2l(p)

dp2
= −

n1 + 2n2

p2
−

2n0 + n1

(1− p)2
< 0.

7. Let p denote the proportion of the breakfast cereal Cocobix bought by men.

2



(i) The likelihood function is

L(p) = p58(1− p)12.

(ii) The log–likelihood function is

l(p) = 58 log p+ 12 log(1− p).

The first derivative of l(p) is

dl(p)

dp
=

58

p
−

12

1− p

and setting this to zero gives the solution p̂ = 29/35. This is indeed the mle since the
second derivative

d2l(p)

dp2
= −

58

p2
−

12

(1− p)2
< 0.

An approximate 95% confidence interval for p is [p̂ ± z0.025
√

p̂(1− p̂)/n] ≡ [29/35 ±
1.96

√

(29/35)(1 − 29/35)/70] ≡ [0.74, 0.92].

(iii) From the figure below, it is clear that the maximum value of L(p) in the range 1/2 ≤
p ≤ 2/3 is at p = 2/3. So, the mle is p̂ = 2/3.
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