MATH20802: STATISTICAL METHODS SEMESTER 2 PROBLEM SHEET 5

- 1. The proportion p of defective items in a large population is unknown. We wish to test $H_0: p = 0.2$ versus $H_1: p \neq 0.2$. Suppose a random sample of 20 items is drawn from the population. Let Y be the number of defective items in the sample. Consider the test which rejects H_0 if and only if $Y \geq 7$ or $Y \leq 1$. Find the power function $\Pi(p)$ of this test when p = 0, 0.2, 0.4, 0.6, 0.8, 1. What is the level of significance of the test?
- 2. In a sequence of Bernoulli trials the probability p of success at each trial is unknown. Let X be the number of trials up to and including the first success (X has the geometric distribution). We wish to test $H_0: p = 0.1$ versus $H_1: p = 0.2$. Consider the test procedure that rejects H_0 if and only if $X \leq 5$. Find the probabilities of a type I error and a type II error of this test.
- 3. Suppose we wish to test $H_0: \mu = 0$ versus $H_1: \mu = 4$ on the basis of a random sample $X_1, X_2, \ldots, X_n \sim N(\mu, 4)$ at the level $\alpha = 0.05$. Find an expression for the probability of a type II error using the usual test procedure.
- 4. Let X_1, X_2, \ldots, X_n be a random sample from the $N(\mu, 4)$ distribution. Show that the power function for a test of $H_0: \mu = 0$ versus $H_1: \mu \neq 0$ at level α is $\pi\left(\mu'\right) = \Phi(-z_{\alpha/2} \mu'\sqrt{n/2}) + 1 \Phi(z_{\alpha/2} \mu'\sqrt{n/2})$, where $\Phi(\cdot)$ is the cdf of the standard normal distribution.
- 5. Suppose we wish to test $H_0: \mu = 100$ versus $H_1: \mu < 100$ on the basis of a random sample $X_1, X_2, \ldots, X_n \sim N(\mu, 20)$ at the level $\alpha = 0.05$. If we require that with probability at least 0.9 the standard test procedure will reject H_0 when in fact the true value of μ is 95, how large should n be?
- 6. A machine manufactures bolts whose diameters have the $N(\mu, \sigma^2)$ distribution. Write down the standard procedure for testing $H_0: \sigma = 10^{-2}$ cm versus $H_1: \sigma > 10^{-2}$ cm at the level $\alpha = 0.05$ based on a random sample of size n = 35. If in fact $\sigma = 2 \times 10^{-2}$ cm express the probability of a type II error in terms of the cdf of a χ^2 random variable.