MATH20802: STATISTICAL METHODS SEMESTER 2 PROBLEM SHEET 3

- 1. If the random variable $X \sim Bin(n,p)$ show that the sample proportion $\hat{p} = X/n$ is an unbiased estimator of p. Calculate $Var(\hat{p})$ and hence the MSE (\hat{p}) . Is \hat{p} MSE consistent for p?
- 2. Let X_1, X_2, \ldots, X_n be a random sample from a $N(0, \sigma^2)$ distribution. Show that $\sum_{i=1}^n X_i^2/n$ is an unbiased estimator of σ^2 . Show that it is also consistent.
- 3. Let X_1, X_2, \ldots, X_n be a random sample from the distribution

$$f(x) = \begin{cases} \exp(\delta - x), & \text{if } x \ge \delta, \\ 0, & \text{otherwise,} \end{cases}$$

where δ is an unknown parameter. Show that \overline{X} is a biased estimator of δ . Hence, find a linear transformation of \overline{X} which will provide an unbiased estimator of δ . Is your new estimator MSE consistent for δ ?

- 4. When have seen in the notes that the maximum likelihood estimator of the parameter λ in a Poisson distribution is $\hat{\lambda} = \bar{X}$. Find the expected value and the variance of $\hat{\lambda}$ and show that it is a consistent estimator for λ .
- 5. If X_1, X_2, \ldots, X_n is a random sample from the geometric distribution (with parameter p) find the mle of p.
- 6. Among N independent random variable having the Bin(2, p) distribution, n_0 take on the value 0, n_1 take on the value 1 while n_2 take on the value 2. We have $n_0 + n_1 + n_2 = N$. Find the mle of p.
- 7. The proportion p of the breakfast cereal Cocobix bought by men rather than women is unknown. In a random sample of 70 purchases of the cereal it was found that 58 were made by men.
 - (i) Write down the likelihood function L(p).
 - (ii) Find the mle of p and an approximate 95% confidence interval for its true value.
 - (iii) Sketch L(p) for $0 \le p \le 1$ and find the mle of p if we know its true values lies in the interval $1/2 \le p \le 2/3$.