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1 Moment Generating Function (MGF)

Definition

Let X be a random variable. We define the mgf of X by

MX(t) = E(exp(tX)) (1)

where t is a dummy variable. Note that MX(t) always exists at t = 0 in which case MX(0) = 1.
When X is a discrete rv with pmf pX(x) then

MX(t) =
∞∑

j=1

exp(txj)pX(xj) (2)

while if X is a continuous rv with pdf fX(x) then

MX(t) =

∫
∞

−∞

exp(tx)fX(x)dx. (3)

The mgf does not have any obvious meaning by itself but it is very useful for distribution theory.
Its most basic property is that it can be used to generate moments of a distribution.

Properties

1. E(Xk) = M
(k)
X (0) where M

(k)
X (t) = dkMX(t)/dtk.

2. V ar(X) = M
(2)
X (0)− [M

(1)
X (0)]2.

3. If X has mgf MX(t) then the mgf of Y = aX + b is exp(bt)MX (at).

4. If X and Y are random variables with identical mgfs then they must have identical probability
distributions.

5. Let X1,X2, . . . ,Xn be independent random variables with mgf MXj
(t), j = 1, 2, . . . , n. Then

the mgf of T = X1 +X2 + . . .+Xn is

MT (t) =
n∏

j=1

MXj
(t). (4)

If Xj are independent and identically distributed then

MT (t) = Mn
X(t). (5)
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2 Some Discrete Distributions

Bernoulli Distribution

A random variable X taking the values X = 1 (success) and X = 0 (failure) with probabilities p
and 1− p, respectively, is said to have the Bernoulli distribution, written as X ∼ Bernoulli(p).

Uniform Distribution

A random variable X taking the n different values {x1, x2, . . . , xn} with equal probability is said to
have the discrete uniform distribution. Its pmf is p(x) = 1/n for x = x1, x2, . . . , xn, where xi 6= xj
for i 6= j. If {x1, x2, . . . , xn} = {1, 2, . . . , n} then E(X) = (n+ 1)/2 and V ar(X) = (n2 − 1)/12.

Binomial Distribution

Consider an experiment of m repeated trials where the following are valid:

1. all trials are statistically independent (in the sense that knowing the outcome of any particular
one of them does not change one’s assessment of chance related to any others);

2. each trial results in only one of two possible outcomes, labeled as “success” and “failure”;

3. and, the probability of success on each trial, denoted by p, remains constant.

Then the random variable X that equals the number of trials that result in a success is said to have
the binomial distribution with parameters m and p, written as X ∼ Bin(m, p). The pmf of X is:

p(x) =

(
m

x

)
px(1− p)m−x (6)

for x = 0, 1, . . . ,m, where

(
m

x

)
=

m!

x!(m− x)!
. (7)

The cdf is:

F (x) =
x∑

i=0

(
m

i

)
pi(1− p)m−i. (8)

The expected value is E(X) = mp and the variance is V ar(X) = mp(1− p).
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Negative Binomial Distribution

Consider again a sequence of trials where the following are valid:

1. all trials are statistically independent (in the sense that knowing the outcome of any particular
one of them does not change one’s assessment of chance related to any others);

2. each trial results in only one of two possible outcomes, labeled as “success” and “failure”;

3. and, the probability of success on each trial, denoted by p, remains constant.

Then the random variable X that equals the number of trials up to including the rth success is
said to have the negative binomial distribution with parameters r and p, written as X ∼ NB(r, p).
The pmf of X is:

p(x) =

(
x− 1

r − 1

)
pr(1− p)x−r (9)

for x = r, r + 1, . . .. The expected value is E(X) = r/p and the variance is V ar(X) = r(1− p)/p2.

Geometric Distribution

The geometric distribution is the special case of the negative binomial for r = 1. If a random
variable X has this distribution then we write X ∼ Geom(p). The pmf of X is:

p(x) = p(1− p)x−1 (10)

for x = 1, 2, . . .. The expected value is E(X) = 1/p and the variance is V ar(X) = (1− p)/p2.

Poisson Distribution

Given a continuous interval (in time, length, etc), assume discrete events occur randomly through-
out the interval. If the interval can be partitioned into subintervals of small enough length such
that

1. the probability of more than one occurrence in a subinterval is zero;

2. the probability of one occurrence in a subinterval is the same for all subintervals and propor-
tional to the length of the subinterval;

3. and, the occurrence of an event in one subinterval has no effect on the occurrence or non-
occurrence in another non-overlapping subinterval,
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If the mean number of occurrences in the interval is λ, the random variable X that equals the
number of occurrences in the interval is said to have the Poisson distribution with parameter λ,
written as X ∼ Po(λ). The pmf of X is:

p(x) =
λx exp(−λ)

x!
(11)

for x = 0, 1, 2, . . .. The cdf is:

F (x) =
x∑

i=0

λi exp(−λ)

i!
. (12)

The expected value is E(X) = λ and the variance is V ar(X) = λ. The Poisson distribution can be
derived as the limiting case of the binomial under the conditions that m → ∞ and p → 0 in such
a manner that mp remains constant, say mp = λ.

3 Some Continuous Distributions

Normal Distribution

If a random variable X has the pdf

f(x) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
, −∞ < x < ∞ (13)

then it is said to have the normal distribution with parameters µ (−∞ < µ < ∞) and σ (σ > 0),
written as X ∼ N(µ, σ2). A normal distribution with µ = 0 and σ = 1 is called the standard
normal distribution. A random variable having the standard normal distribution is denoted by Z.
The normal random variable X has the following properties:

1. if X has the normal distribution with parameters µ and σ then Y = αX + β is normally
distributed with parameters αµ+ β and ασ. In particular, Z = (X − µ)/σ has the standard
normal distribution.

2. the normal pdf is a bell-shaped curve that is symmetric about µ and that attains its maximum
value of:

1√
2πσ

=
0.399

σ
(14)

at x = µ.

3. 68.26% of the total area bounded by the curve lies between µ− σ and µ+ σ.

4. 95.44% is between µ− 2σ and µ+ 2σ.

5. 99.74% is between µ− 3σ and µ+ 3σ.

6. the expected value is E(X) = µ.
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7. the variance is V ar(X) = σ2.

8. the mgf is

MX(t) = exp

(
µt+

σ2t2

2

)
. (15)

9. the cdf for the normal random variable X is

F (x) = Pr(X ≤ x) =
1√
2πσ

∫ x

−∞

exp

{
−(y − µ)2

2σ2

}
dy. (16)

It can be rewritten as

F (x) = Pr

(
X − µ

σ
<

x− µ

σ

)
= Pr

(
Z <

x− µ

σ

)
= Φ

(
x− µ

σ

)
, (17)

where Φ(·) is the cdf for the standard normal random variable:

Φ(z) =
1√
2π

∫ z

−∞

exp

{
−y2

2

}
dy. (18)

10. the 100(1 − α)% percentile of the normal variable X is given by the simple formula:

xα = µ+ σzα, (19)

where zα is the 100(1 − α)% percentile of the standard normal random variable Z.

11. zα = −z1−α.

12. if X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent then aX1 + bX2 + c ∼ N(aµ1+ bµ2+

c, a2σ2
1 + b2σ2

2).

13. if Xi ∼ N(µ, σ2), i = 1, 2, . . . , n are iid then X ∼ N(µ, σ2/n), where

X =
1

n

n∑

i=1

Xi (20)

is the sample mean.

14. if Xi ∼ N(µ, σ2), i = 1, 2, . . . , n are iid then X and S2 are independently distributed, where

S =

√√√√ 1

n− 1

n∑

i=1

(Xi −X)2 (21)

is the sample variance.
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Log–normal Distribution

If a random variable X has the pdf

f(x) =
1√
2πσx

exp

{
−(log x− µ)2

2σ2

}
, x > 0 (22)

then it is said to have the lognormal distribution with parameters µ (−∞ < µ < ∞) and σ (σ > 0),
written as X ∼ LN(µ, σ2). The lognormal random variable X has the following properties:

1. log(X) has the normal distribution with parameters µ and σ.

2. the cdf is

F (x) = Pr(X ≤ x) = Pr(logX ≤ log x) = Φ

(
log x− µ

σ

)
, (23)

where Φ is the cdf of the standard normal distribution.

3. the 100(1 − α)% percentile is

xα = exp (µ+ σzα) , (24)

where zα is the 100(1 − α)% percentile of the standard normal distribution.

4. the expected value is:

E(X) = exp

(
µ+

σ2

2

)
. (25)

5. the variance is:

V ar(X) =
{
exp

(
σ2
)
− 1

}
exp

(
2µ + σ2

)
. (26)

Uniform Distribution

If a random variable X has the pdf

f(x) =

{
1

b−a , if a < x < b,

0, otherwise
(27)

then it is said to have the uniform distribution over the interval (a, b), written as X ∼ Uni(a, b).
The uniform random variable X has the following properties:

1. the cdf is

F (x) =





0, if x ≤ a,
x−a
b−a , if a < x < b,

1, x ≥ b.

(28)

2. the expected value is E(X) = (a+ b)/2.

3. the variance is V ar(X) = (b− a)2/12.

4. the mgf is MX(t) = {exp(bt)− exp(at)}/((b − a)t).
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Exponential Distribution

If a random variable X has the pdf

f(x) = λ exp (−λx) , x ≥ 0, λ > 0 (29)

then it is said to have the exponential distribution with parameter λ, written as X ∼ Exp(λ). This
parameter λ represents the mean number of events per unit time, e.g. the rate of arrivals or the
rate of failure. The exponential random variable X has the following properties:

1. closely related to the Poisson distribution – if X describes say the time between two failures
then the number of failures per unit time has the Poisson distribution with parameter λ.

2. the cdf is

F (x) = λ

∫ x

0
exp (−λy) dy = 1− exp (−λx) . (30)

3. the 100(1 − α)% percentile is

xα = − 1

λ
log(α). (31)

4. the expected value is:

E(X) =
1

λ
. (32)

5. the variance is:

V ar(X) =
1

λ2
. (33)

6. the mgf is:

MX(t) =
λ

λ− t
. (34)

Gamma Distribution

If a random variable X has the pdf

f(x) =
λaxa−1 exp(−λx)

Γ(a)
, x ≥ 0, a > 0, λ > 0 (35)

then it is said to have the gamma distribution with parameters a and λ, written as X ∼ Ga(a, λ).
Here,

Γ(a) =

∫
∞

0
xa−1 exp(−x)dx (36)

is the gamma function. It satisfies the recurrence relation

Γ(a+ 1) = aΓ(a). (37)

If a is a positive integer Γ(a) = (a−1)!. The gamma random variable X has the following properties:
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1. if a = 1 then X is an exponential random variable with λ = 1.

2. the cdf is

F (x) =
λa

Γ(a)

∫ x

0
ya−1 exp(−λy)dy. (38)

3. the expected value is E(X) = a/λ.

4. the variance is V ar(X) = a/λ2.

5. the mgf is:

MX(t) =

(
λ

λ− t

)a

. (39)

Beta Distribution

If a random variable X has the pdf

f(x) =
Γ(a1 + a2)

Γ(a1)Γ(a2)
xa1−1(1− x)a2−1, 0 ≤ x ≤ 1, a1 > 0, a2 > 0 (40)

then it is said to have the beta distribution with parameters a1 and a2, written as X ∼ B(a1, a2).
The beta random variable X has the following properties:

1. If a1 = 1 and a2 = 1 then X has the uniform distribution on (0, 1).

2. the cdf is

F (x) =
Γ(a1 + a2)

Γ(a1)Γ(a2)

∫ x

0
ya1−1(1− y)a2−1dy. (41)

3. the expected value is:

E(X) =
a1

a1 + a2
. (42)

4. the variance is:

V ar(X) =
a1a2

(a1 + a2)2(a1 + a2 + 1)
. (43)

Gumbel Distribution

If a random variable X has the pdf

f(x) =
1

σ
exp

[
−x− µ

σ
− exp

{
−x− µ

σ

}]
, −∞ < x < ∞, (44)

then it is said to have the Gumbel distribution with parameters µ (−∞ < µ < ∞) and σ (σ > 0),
written as X ∼ Gum(µ, σ). The Gumbel random variable X has the following properties:

9



1. the cdf is

F (x) = exp

[
− exp

{
−x− µ

σ

}]
. (45)

2. the 100(1 − α)% percentile is

xα = µ− σ log log

(
1

1− α

)
. (46)

3. the expected value is:

E(X) = µ+ 0.57722σ. (47)

4. the variance is:

V ar(X) = 1.64493σ2 . (48)

Fréchet Distribution

If a random variable X has the pdf

f(x) =
λ

σ

(
σ

x

)λ+1

exp

{
−
(
σ

x

)λ
}
, x ≥ 0, (49)

then it is said to have the Fréchet distribution with parameters σ (σ > 0) and λ (λ > 0), written
as X ∼ Frechet(λ, σ). The Fréchet random variable X has the following properties:

1. log(X) has the Gumbel distribution.

2. the cdf is

F (x) = exp

{
−
(
σ

x

)λ
}
. (50)

3. the 100(1 − α)% percentile is

xα = σ

{
log

(
1

1− α

)}
−1/λ

. (51)

4. the expected value is:

E(X) = σΓ

(
1− 1

λ

)
, λ > 1. (52)

5. the variance is:

V ar(X) = σ2
{
Γ

(
1− 2

λ

)
− Γ2

(
1− 1

λ

)}
, λ > 2. (53)
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Weibull Distribution

If a random variable X has the pdf

f(x) =
λ

σ

(
x

σ

)λ−1

exp

{
−
(
x

σ

)λ
}
, x ≥ 0, (54)

then it is said to have the Weibull distribution with parameters σ (σ > 0) and λ (λ > 0), written
as X ∼ We(λ, σ). The weibull random variable X has the following properties:

1. the special case for σ = 1 and λ = 1 is the exponential distribution.

2. − log(X) has the Gumbel distribution.

3. the cdf is

F (x) = 1− exp

{
−
(
x

σ

)λ
}
. (55)

4. the 100(1 − α)% percentile is

xα = σ

{
log

(
1

α

)}1/λ

. (56)

5. the expected value is:

E(X) = σΓ

(
1 +

1

λ

)
. (57)

6. the variance is:

V ar(X) = σ2
{
Γ

(
1 +

2

λ

)
− Γ2

(
1 +

1

λ

)}
. (58)

4 Parameter Estimation

The objective of statistics is to make inferences about a population based on the information
contained in a sample. The usual procedure is to firstly hypothesize a probability model to describe
the variation observed in the data. Such a model will contain parameters whose values need to be
estimated using the sample data. Sometimes these parameters correspond to those which are of
direct interest, such as the mean and variance of a normal distribution or the probability p in a
binomial distribution. In other circumstances we require estimates of the model parameters in order
that we can fit the model to the data and then use it to make inferences about other population
parameters, such as the minimum or maximum value in a fixed size sample.
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General Framework

Let X1,X2, . . . ,Xn be a random sample from the distribution F (x; θ) where θ is a parameter
whose values is unknown. A point estimator of θ, denoted by θ̂ is a real single–valued function
of the sample X1,X2, . . . ,Xn while the value it assumes for a set of actual data x1, x2, . . . , xn is
a called a point estimate of θ, i.e. θ̂ = h(X1,X2, . . . ,Xn) which assumes the numerical values
h(x1, x2, . . . , xn) thus giving a single number or point that estimates the target parameter. Clearly,
θ̂ = h(X) is a random variable with a probability distribution called its sampling distribution.
Note that θ maybe a vector of t parameters in which case we require t separate estimators. For
example, the normal pdf depends on two parameter µ and σ.

We would like an estimator θ̂ of θ such that:

1. the sampling distribution of θ̂ is centered about the target parameter, θ. In other words, we
would like the expected value of θ̂ to equal θ. So, if θ̂1 and θ̂2 are two estimators of θ one would
like to choose

g1(θ̂1)

θ̂1θ = E(θ̂1)

rather than
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g2(θ̂2)

θ̂2
E(θ̂2) θ

2. the spread of the sampling distribution of θ̂ to be as small as possible. So, if θ̂3 and θ̂4 are two
estimators of θ with densities

g4(θ̂4)

g3(θ̂3)

θ=E(θ̂3)=E(θ̂4)

we would prefer θ̂4 because it has smaller variance.
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Definitions

1. θ̂ is an unbiased estimator of θ if E(θ̂) = θ. Otherwise, θ̂ is said to be biased.

2. The bias of a point estimator θ̂ is given by bias(θ̂) = E(θ̂)− θ.

3. The mean squared error of a point estimator θ̂ is given by E(θ̂ − θ)2 and is denoted by
MSE(θ̂).

Properties

1. Certain biased estimators can be modified to obtain unbiased estimators, e.g. if E(θ̂) = kθ then
θ̂/k is unbiased for θ.

2. If limn→∞ bias(θ̂) = 0 then θ̂ is said to be asymptotically unbiased.

3. MSE(θ̂) = V ar(θ̂) + [bias(θ̂)]2. Prove this.

4. If E(θ̂) = θ then MSE(θ̂) = V ar(θ̂).

5. Given two estimators θ̂1 and θ̂2 of estimator θ̂ we prefer to use the estimator with the smallest
MSE, i.e. θ̂1 if MSE(θ̂1) < MSE(θ̂2), otherwise choose θ̂2.

6. We say that θ̂ is a consistent estimator of θ if limn→∞MSE(θ̂) = 0. Since MSE(θ̂) =
V ar(θ̂) + [bias(θ̂)]2, we require both V ar(θ̂) and bias(θ̂) to approach zero as n → ∞.

5 Likelihood Function

Let x1, x2, . . . , xn be a random sample of observations taken on corresponding iid random variables
X1,X2, . . . ,Xn. If the Xi’s are all discrete with the pmf p(x; θ) then we define the likelihood
function as

L(θ;x1, x2, . . . , xn) = p(x1; θ)p(x2; θ) · · · p(xn; θ). (59)

If the Xi’s are all continuous with the pdf f(x; θ) then we define the likelihood function as

L(θ;x1, x2, . . . , xn) = f(x1; θ)f(x2; θ) · · · f(xn; θ). (60)
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6 Maximum Likelihood Estimator

Definition

Let L(θ) be the likelihood function for a given random sample x1, x2, . . . , xn. The maximum

likelihood estimator (MLE) of θ is the value that maximizes L(θ). It can be found by standard
techniques in calculus. The usual approach is to take the log–likelihood:

l(θ) = logL(θ) =
n∑

i=1

log p(xi; θ) (61)

in the discrete case,

l(θ) = logL(θ) =
n∑

i=1

log f(xi; θ) (62)

in the continuous case, and solving the equation

∂l(θ)

∂θ
= 0 (63)

for θ = θ̂, making sure that

∂2l(θ)

∂θ2

∣∣∣∣∣
θ=θ̂

< 0. (64)

Then θ̂ is said to be the MLE of θ. If θ = (θ1, θ2, . . . , θp) is a vector then one will need to solve the
equations

∂l(θ)

∂θ1
= 0, (65)

∂l(θ)

∂θ2
= 0, (66)

... (67)

∂l(θ)

∂θp
= 0 (68)

simultaneously for θ1 = θ̂1, θ2 = θ̂2, . . ., θp = θ̂p.

Properties

1. If θ̂ is the mle of θ and g(·) is a one–to–one function g(θ̂) is the mle of g(θ). This is known as
the invariance principle.

2. An mle is a consistent estimator, i.e. if θ̂ is the mle of θ then limn→∞MSE(θ̂) = 0.

3. θ̂ is approximately normally distributed for large n.
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7 Central Limit Theorem (CLT)

The central limit theorem says that if X1,X2, . . . ,Xn are random observations from a distribution
with expected value µ and variance σ2, then the the distribution of

Z =
X − µ

σ/
√
n

(69)

approaches the standard normal as n → ∞, where

X =
1

n

n∑

i=1

Xi, (70)

is the sample mean. If Xis have the normal distribution then Z will be exactly standard normal.

8 Sampling Distributions

There are three important distributions (continuous distributions) used to model the random be-
havior of various statistics. They are the Chi-squared, the t, and the F distributions.

Chi-squared Distribution

If a random variable X has the pdf

f(x) =
1

2Γ(ν/2)

(
x

2

)(ν/2)−1

exp

{
−x

2

}
, x ≥ 0, ν > 0 (71)

then it is said to have the chi-squared distribution with parameter ν. The parameter is termed the
number of degrees of freedom (df). The chi-squared random variable X has the following properties:

1. if X1,X2, . . . ,Xn are random observations from a normal distribution with parameters µ and
σ, then the statistic

1

σ2

n∑

i=1

(Xi −X)2 ∼ χ2
n−1, (72)

where

X =
1

n

n∑

i=1

Xi (73)

is the sample mean.

2. the 100(1 − α)% percentile of a chi-squared distribution is usually denoted by χ2
ν,α.

3. the expected value is E(X) = ν.
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4. the variance is V ar(X) = 2ν.

5. the mgf is MX(t) = (1− 2t)−ν/2.

6. if Z ∼ N(0, 1) then Z2 ∼ χ2
1.

7. if X1 ∼ χ2
a and X2 ∼ χ2

b then X1 +X2 ∼ χ2
a+b.

8. if Zi ∼ N(0, 1), i = 1, 2, . . . , n are independent then

n∑

i=1

Z2
i ∼ χ2

n. (74)

If Xi ∼ N(µ, σ2), i = 1, 2, . . . , n are independent then

n∑

i=1

(
Xi − µ

σ

)2

∼ χ2
n. (75)

Student’s t Distribution

If a random variable X has the pdf

f(x) =
Γ(ν+1

2 )√
νπΓ(ν2 )

(
1 +

x2

ν

)
−(ν+1)/2

, −∞ < x < ∞, ν > 0 (76)

then it is said to have the Student’s t distribution with parameter ν. The parameter is again
termed the number of degrees of freedom (df). The Student’s t random variable X has the following
properties:

1. if Z ∼ N(0, 1) and U ∼ χ2
ν are independent

Z√
U/ν

∼ tν . (77)

2. if X1,X2, . . . ,Xn are random observations from a normal distribution with parameters µ and
σ, then the statistic

X − µ

S/
√
n

∼ tn−1, (78)

where

X =
1

n

n∑

i=1

Xi (79)

is the sample mean and

S =

√√√√ 1

n− 1

n∑

i=1

(Xi −X)2 (80)

is the sample variance.
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3. the 100(1 − α)% percentile of a t distribution is usually denoted by tν,α.

4. tν,α = −tν,1−α.

5. the expected value is E(X) = 0.

6. the variance is V ar(X) = ν/(ν − 1).

7. as ν → ∞, tν → N(0, 1).

F Distribution

If a random variable X has the pdf

f(x) =
Γ(ν1+ν2

2 )

Γ(ν12 )Γ(
ν2
2 )

ν
ν1/2
1 ν

ν2/2
2 x(ν1/2)−1(ν2 + ν1x)

−(ν1+ν2)/2, x ≥ 0 (81)

then it is said to have the F distribution with parameters ν1 (ν1 > 0) and ν2 (ν2 > 0). Both
parameters are termed the number of degrees of freedom. The F random variable X has the
following properties:

1. if X1 andX2 are independent chi-squared random variables with ν1 and ν2 degrees of freedom,
respectively, then the statistic

X1/ν1
X2/ν2

∼ Fν1,ν2 . (82)

2. Consider the two independent random samples: X11, X12, . . ., X1n1
∼ N(µ1, σ

2
1) and X21,

X22, . . ., X2n2
∼ N(µ2, σ

2
2). Then

S2
1/σ

2
1

S2
2/σ

2
2

∼ Fn1−1,n2−1, (83)

where

X1 =
1

n1

n1∑

i=1

X1i, (84)

X2 =
1

n2

n2∑

i=1

X2i, (85)

S2
1 =

1

n1 − 1

n1∑

i=1

(X1i −X1)
2 (86)

and

S2
2 =

1

n2 − 1

n2∑

i=1

(X2i −X2)
2. (87)
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3. if X ∼ Fν1,ν2 then 1/X ∼ Fν2,ν1 .

4. the 100(1 − α)% percentile of an F distribution is usually denoted by Fν1,ν2,α.

5. Fν1,ν2,1−α = 1/Fν2,ν1,α.

6. the expected value is:

E(X) =
ν2

ν2 − 2
, ν2 > 2. (88)

7. the variance is:

V ar(X) =
2ν22(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
, ν2 > 4. (89)

8. if X ∼ tν then X2 ∼ F1,ν .

9 Hypotheses Testing

As we have discussed earlier, a principal objective of statistics is to make inferences about the
unknown values of population parameters based on a sample of data from the population. In this
section, we will explore how to test hypotheses about the parameter values.

Definition

A statistical hypothesis is a conjecture or proposition regarding the distribution of one or more
random variables. We need to specify the functional form of the underlying distribution as well as
the values of any parameters. A simple hypothesis completely specifies the distribution whereas
a composite hypothesis does not. For example, “the data come from a normal distribution with
µ = 5 and σ = 1” is a simple hypothesis while “the data come from a normal distribution with
µ > 5 and σ = 1” is a composite hypothesis.

Elements of a Statistical Test

Null hypothesis (H0), the hypothesis to be tested.

Alternative hypothesis (H1), a research hypothesis about the population parameters which we
will accept if the data do not provide sufficient support for H0.

The null hypothesis we will be considering are simple whereas the alternative maybe simple or
composite. For example, while testing hypotheses about the mean µ of a normal distribution with
known variance σ2, we may take
H0 : µ = µ0 (where µ0 is a specified value) and H1 : µ 6= µ0;
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H0 : µ = µ0 (where µ0 is a specified value) and H1 : µ > µ0; or
H0 : µ = µ0 (where µ0 is a specified value) and H1 : µ < µ0.

Test statistic, a function of the sample data whose value we will use to decide between which of
H0 or H1 to accept.

Acceptance and Rejection Regions: the set of all possible values a test statistic can take is
divided into two non–overlapping subsets called the acceptance and rejection regions. If the value of
the test statistic falls in the acceptance region then we accept the claim made under H0. However,
if the value falls into the rejection region then we reject H0 in favor of the claim made under H1.

Type I error occurs when we reject H0 when it is in fact true. The probability of this error is
denoted by α and is called the significance level or size of the test. Usually, the value of α is decided
in advance, e.g. α = 0.05.

Type II error occurs when we accept H0 when it is in fact false. The probability of this error is
denoted by β.

Inferences about Population Mean

Suppose x1, x2, . . . , xn is a random sample from a normal population with mean µ and variance σ2

(assumed known). For

H0 : µ = µ0 (90)

versus

H1 : µ 6= µ0 (91)

reject H0 at level of significance α if

√
n

σ
|x− µ0| > zα/2, (92)

where zα/2 is the 100(1 − α/2)% percentile of the standard normal distribution. For

H0 : µ = µ0 (93)

versus

H1 : µ > µ0 (94)

reject H0 at level of significance α if

√
n

σ
(x− µ0) ≥ zα. (95)

For

H0 : µ = µ0 (96)
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versus

H1 : µ < µ0 (97)

reject H0 at level of significance α if

√
n

σ
(x− µ0) ≤ −zα. (98)

Suppose x1, x2, . . . , xn is a random sample from a normal population with mean µ and variance σ2

(assumed unknown). Denote the sample variance by:

s2 =
1

n− 1

n∑

i=1

(xi − x)2 . (99)

For

H0 : µ = µ0 (100)

versus

H1 : µ 6= µ0 (101)

reject H0 at level of significance α if

√
n

s
|x− µ0| > tn−1,α/2, (102)

where tn−1,α/2 is the 100(1− α/2)% percentile of the t distribution with n− 1 degrees of freedom.
For

H0 : µ = µ0 (103)

versus

H1 : µ > µ0 (104)

reject H0 at level of significance α if

√
n

s
(x− µ0) ≥ tn−1,α. (105)

For

H0 : µ = µ0 (106)

versus

H1 : µ < µ0 (107)

reject H0 at level of significance α if

√
n

s
(x− µ0) ≤ −tn−1,α. (108)
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Inferences about Population Variance

Suppose x1, x2, . . . , xn is a random sample from a normal population with mean µ and variance σ2.
Denote the sample variance by:

s2 =
1

n− 1

n∑

i=1

(xi − x)2 . (109)

For

H0 : σ = σ0 (110)

versus

H1 : σ 6= σ0 (111)

reject H0 at significance level α if

(n− 1)s2

σ2
0

> χ2
n−1,α/2 (112)

or

(n− 1)s2

σ2
0

< χ2
n−1,1−α/2, (113)

where χ2
n−1,α/2 and χ2

n−1,1−α/2 are the 100(1 − α/2)% and 100α/2% percentiles of the chi-square
distribution with n− 1 degrees of freedom. For

H0 : σ = σ0 (114)

versus

H1 : σ > σ0 (115)

reject H0 at significance level α if

(n− 1)s2

σ2
0

> χ2
n−1,α. (116)

For

H0 : σ = σ0 (117)

versus

H1 : σ < σ0 (118)

reject H0 at significance level α if

(n− 1)s2

σ2
0

< χ2
n−1,1−α. (119)
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Inferences about Population Proportion

Suppose x1, x2, . . . , xn is a random sample from the Bernoulli distribution with parameter p and
assume n ≥ 25. For

H0 : p = p0 (120)

versus

H1 : p 6= p0 (121)

reject H0 at significance level α if
√

n

x(1− x)
|x− p0| ≥ zα/2, (122)

where zα/2 is the 100(1 − α/2)% percentile of the standard normal distribution. For

H0 : p = p0 (123)

versus

H1 : p > p0 (124)

reject H0 at significance level α if
√

n

x(1− x)
(x− p0) ≥ zα. (125)

For

H0 : p = p0 (126)

versus

H1 : p < p0 (127)

reject H0 at significance level α if
√

n

x(1− x)
(x− p0) ≤ −zα. (128)

Confidence Intervals

Some 100(1 − α)% confidence intervals for

• population mean µ when σ is known or n ≥ 25:
(
x− zα/2

σ√
n
, x+ zα/2

σ√
n

)
. (129)

23



• population mean µ when σ is unknown and n < 25:

(
x− tn−1,α/2

s√
n
, x+ tn−1,α/2

s√
n

)
. (130)

• population proportion p when n ≥ 25:


x− zα/2

√
x(1− x)

n
, x+ zα/2

√
x(1− x)

n


 . (131)

• population variance σ2:

(
(n − 1)s2

χ2
n−1,α/2

,
(n− 1)s2

χ2
n−1,1−α/2

)
. (132)

Testing Equality of Means – Variances Known

Let x1, x2, . . . , xm be a random sample from a normal population with mean µX and variance σ2
X

(assumed known). Let y1, y2, . . . , yn be a random sample from a normal population with mean µY

and variance σ2
Y (assumed known). Assume independence of the two samples. For

H0 : µX = µY

versus

H1 : µX 6= µY

reject H0 at level of significance α if

| x̄− ȳ |√
σ2

X

m +
σ2

Y

n

≥ zα/2,

where zα/2 is the 100(1−α/2)% percentile of the standard normal distribution. The corresponding
p-value is:

p-value = Pr


|Z| ≥ | x̄− ȳ |√

σ2

X

m +
σ2

Y

n


 ,

where Z denotes a random variable having the standard normal distribution.

For

H0 : µX ≤ µY

versus

H1 : µX > µY
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reject H0 at level of significance α if

x̄− ȳ√
σ2

X

m +
σ2

Y

n

≥ zα.

The corresponding p-value is:

p-value = Pr


Z ≥ x̄− ȳ√

σ2

X

m +
σ2

Y

n


 .

For

H0 : µX ≥ µY

versus

H1 : µX < µY

reject H0 at level of significance α if

x̄− ȳ√
σ2

X

m +
σ2

Y

n

≤ −zα.

The corresponding p-value is:

p-value = Pr


Z ≤ x̄− ȳ√

σ2

X

m +
σ2

Y

n


 .

Testing Equality of Means – Variances Unknown but Equal

Let x1, x2, . . . , xm be a random sample from a normal population with mean µX and variance σ2

(assumed unknown). Let y1, y2, . . . , yn be a random sample from a normal population with mean
µY and variance σ2 (assumed unknown). Assume independence of the two samples. Estimate the
common variance by the pooled sample variance:

s2p =
(m− 1)s2X + (n − 1)s2Y

m+ n− 2
,

where

s2X =
1

m− 1

m∑

i=1

(xi − x̄)2

and

s2Y =
1

n− 1

n∑

i=1

(yi − ȳ)2 .
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Then for testing

H0 : µX = µY

versus

H1 : µX 6= µY

reject H0 at level of significance α if

| x̄− ȳ |√
s2p

(
1
m + 1

n

) ≥ tm+n−2,α/2,

where tm+n−2,α/2 is the 100(1 − α/2)% percentile of the t distribution with m + n − 2 degrees of
freedom. The corresponding p-value is:

p-value = Pr


|Tm+n−2| ≥

| x̄− ȳ |√
s2p

(
1
m + 1

n

)


 ,

where Tm+n−2 denotes a random variable having the t distribution with m + n − 2 degrees of
freedom.

For testing

H0 : µX ≤ µY

versus

H1 : µX > µY

reject H0 at level of significance α if

x̄− ȳ√
s2p

(
1
m + 1

n

) ≥ tm+n−2,α.

The corresponding p-value is:

p-value = Pr


Tm+n−2 ≥

x̄− ȳ√
s2p

(
1
m + 1

n

)


 .

For testing

H0 : µX ≥ µY

versus

H1 : µX < µY
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reject H0 at level of significance α if

x̄− ȳ√
s2p

(
1
m + 1

n

) ≤ −tm+n−2,α.

The corresponding p-value is:

p-value = Pr


Tm+n−2 ≤

x̄− ȳ√
s2p

(
1
m + 1

n

)


 .

Testing Equality of Means – Variances Unknown and Unequal

Let x1, x2, . . . , xm be a random sample from a normal population with mean µX and variance σ2
X

(assumed unknown). Let y1, y2, . . . , yn be a random sample from a normal population with mean
µY and variance σ2

Y (assumed unknown). Assume independence of the two samples. Estimate σ2
X

and σ2
Y by

s2X =
1

m− 1

m∑

i=1

(xi − x̄)2

and

s2Y =
1

n− 1

n∑

i=1

(yi − ȳ)2 ,

respectively.

Then for testing

H0 : µX = µY

versus

H1 : µX 6= µY

reject H0 at level of significance α if

| x̄− ȳ |√
s2
X

m +
s2
Y

n

≥ tν,α/2,

where

ν =

(
s2
X

m +
s2
Y

n

)2

1
m−1

(
s2
X

m

)2

+ 1
n−1

(
s2
Y

n

)2
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and tν,α/2 is the 100(1 − α/2)% percentile of the t distribution with ν degrees of freedom (approx-
imate ν to the nearest integer if it is not an integer). The corresponding p-value is:

p-value = Pr


|Tν | ≥

| x̄− ȳ |√
s2
X

m +
s2
Y

n


 ,

where Tν denotes a random variable having the t distribution with ν degrees of freedom.

For testing

H0 : µX ≤ µY

versus

H1 : µX > µY

reject H0 at level of significance α if

x̄− ȳ√
s2
X

m +
s2
Y

n

≥ tν,α,

The corresponding p-value is:

p-value = Pr


Tν ≥ x̄− ȳ√

s2
X

m +
s2
Y

n


 .

For testing

H0 : µX ≥ µY

versus

H1 : µX < µY

reject H0 at level of significance α if

x̄− ȳ√
s2
X

m +
s2
Y

n

≤ −tν,α,

The corresponding p-value is:

p-value = Pr


Tν ≤ x̄− ȳ√

s2
X

m +
s2
Y

n


 .
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Testing Equality of Means – Paired Data

Let x1, x2, . . . , xn be a random sample from a normal population with mean µX and let y1, y2, . . . , yn
be a random sample from a normal population with mean µY . Suppose (x1, y1), (x2, y2), . . . are
“paired” as if they were mesured off the same “experimental unit”. Tests for equality of the means
are based on Di = Xi − Yi. Let d̄ and S2

d denote the sample mean and sample variance of Di, i.e.

d̄ =
1

n

n∑

i=1

di

and

S2
d =

1

n− 1

n∑

i=1

(
di − d̄

)2
.

Then for testing

H0 : µX = µY

versus

H1 : µX 6= µY

reject H0 at level of significance α if
√
n | d̄ |
Sd

≥ tn−1,α/2,

where tn−1,α/2 is the 100(1− α/2)% percentile of the t distribution with n− 1 degrees of freedom.
The corresponding p-value is:

p-value = Pr

(
|Tn−1| ≥

√
n | d̄ |
Sd

)
,

where Tn−1 denotes a random variable having the t distribution with n− 1 degrees of freedom.

For testing

H0 : µX ≤ µY

versus

H1 : µX > µY

reject H0 at level of significance α if
√
nd̄

Sd
≥ tn−1,α.

The corresponding p-value is:

p-value = Pr

(
Tn−1 ≥

√
nd̄

Sd

)
.
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For testing

H0 : µX ≥ µY

versus

H1 : µX < µY

reject H0 at level of significance α if

√
nd̄

Sd
≤ tn−1,α.

The corresponding p-value is:

p-value = Pr

(
Tn−1 ≤

√
nd̄

Sd

)
.

Testing Equality of Proportions

Let x1, x2, . . . , xm be a random sample from a Bernoulli population with parameter pX and let
y1, y2, . . . , yn be a random sample from a Bernoulli population with parameter pY . Assume m ≥ 25,
n ≥ 25 and the independence of the two samples. Then for testing

H0 : pX = pY

versus

H1 : pX 6= pY

reject H0 at level of significance α if

| x̄− ȳ |√
x̄(1−x̄)

m + ȳ(1−ȳ)
n

≥ zα/2,

where zα/2 is the 100(1−α/2)% percentile of the standard normal distribution. The corresponding
p-value is:

p-value = Pr


|Z| ≥ | x̄− ȳ |√

x̄(1−x̄)
m + ȳ(1−ȳ)

n


 ,

where Z denotes a random variable having the standard normal distribution.

For testing

H0 : pX ≤ pY

versus

H1 : pX > pY
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reject H0 at level of significance α if

x̄− ȳ√
x̄(1−x̄)

m + ȳ(1−ȳ)
n

≥ zα.

The corresponding p-value is:

p-value = Pr


Z ≥ x̄− ȳ√

x̄(1−x̄)
m + ȳ(1−ȳ)

n


 .

For testing

H0 : pX ≥ pY

versus

H1 : pX < pY

reject H0 at level of significance α if

x̄− ȳ√
x̄(1−x̄)

m + ȳ(1−ȳ)
n

≤ −zα.

The corresponding p-value is:

p-value = Pr


Z ≤ x̄− ȳ√

x̄(1−x̄)
m + ȳ(1−ȳ)

n


 .

Testing Equality of Variances

Let x1, x2, . . . , xm be a random sample from a normal population with mean µX and variance σ2
X .

Let y1, y2, . . . , yn be a random sample from a normal population with mean µY and variance σ2
Y .

Assume independence of the two samples. Estimate σ2
X and σ2

Y by

s2X =
1

m− 1

m∑

i=1

(xi − x̄)2

and

s2Y =
1

n− 1

n∑

i=1

(yi − ȳ)2 ,

respectively.

Then for testing

H0 : σX = σY
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versus

H1 : σX 6= σY

reject H0 at level of significance α if

s2X
s2Y

> Fm−1,n−1,α/2

or

s2X
s2Y

< Fm−1,n−1,1−α/2,

where Fm−1,n−1,α/2 and F 2
m−1,n−1,1−α/2 are the 100(1 − α/2)% and 100α/2% percentiles of the F

distribution with and m− 1 and n− 1 degrees of freedom.

For testing

H0 : σX ≤ σY

versus

H1 : σX > σY

reject H0 at level of significance α if

s2X
s2Y

> Fm−1,n−1,α.

For testing

H0 : σX ≥ σY

versus

H1 : σX < σY

reject H0 at level of significance α if

s2X
s2Y

< Fm−1,n−1,1−α.

It is useful to know that Fn−1,m−1,α/2 = 1/Fm−1,n−1,1−α/2.

Confidence Intervals

Some 100(1 − α)% confidence intervals
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• for µ1 − µ2 when σ2
X and σ2

Y are known:


x̄− ȳ ± zα/2

√
σ2
X

m
+

σ2
Y

n


 .

• for µ1 − µ2 when σ2
X = σ2

Y and the common variance is unknown:

(
x̄− ȳ ± tm+n−2,α/2sp

√
1

m
+

1

n

)
.

• for µ1 − µ2 when σ2
X 6= σ2

Y and the variances are unknown:


x̄− ȳ ± tν,α/2

√
s2X
m

+
s2Y
n


 .

• for µ1 − µ2 for paired samples:

(
x̄− ȳ ± tn−1,α/2

sd√
n

)
.

• for p1 − p2 when m ≥ 25 and n ≥ 25:


x̄− ȳ ± zα/2

√
x̄(1− x̄)

m
+

ȳ(1− ȳ)

n


 .

• for σ2
X/σ2

Y :

(
1

Fm−1,n−1,α/2

s2X
s2Y

, Fn−1,m−1,α/2
s2X
s2Y

)
.

Power Function

We wish to make inferences about a population parameter θ based on a random sample of size n.
Suppose Ω is the set of all possible values of θ and let θ0 be a fixed value in Ω. We wish to test

H0 : θ = θ0

versus
H1 : θ 6= θ0

or equivalently
H1 : θ ∈ Ω1 = Ω\{θ0}

. Suppose we use test statistics T and reject H0 at significance level α if T takes values in the
rejection region. For any θ ∈ Ω, the power function is defined by

π(θ) = P (T ∈ Rejection Region | θ), (133)

33



i.e. π(θ) is the probability that the test rejects H0 given the true value of the parameter is θ.
Clearly, π(θ0) = α. A typical power function curve will look like

θ0

α

Power Function, π(θ)

θ

so that as the true value of θ becomes more distant from θ0 the power increases. For a fixed sample
size n, the strategy is to firstly fix α and then choose that test statistic T which has the largest
power for all θ ∈ Ω1. The question then is how do we find such a test statistic?

Neyman–Pearson Lemma

Suppose we wish to test
H0 : θ = θ0

versus
H1 : θ = θ1

based on a random sample x1, x2, . . . , xn from a distribution with parameter θ. Let L(θ) denote
the likelihood of the sample. Then, for a given significance level α, the test that maximizes the
power at θ = θ1 has the rejection region determined by

L(θ0)

L(θ1)
< k. (134)
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