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Solutions to Question 1 This question explores the use of moment generating function.

(i) Let X ∼ χ2
a. The moment generating function of X is:

MX(t) =
1

2a/2Γ(a/2)

∫ ∞
0

xa/2−1 exp
(
tx− x

2

)
dx

=
1

2a/2Γ(a/2)

∫ ∞
0

xa/2−1 exp
{
−
(

1

2
− t

)
x
}
dx

=
1

2a/2Γ(a/2)(1/2− t)a/2
∫ ∞
0

ya/2−1 exp(−y)dy

=
1

2a/2Γ(a/2)(1/2− t)a/2
Γ(a/2)

=
1

(1− 2t)a/2
,

where we have made the substitution that y = (1/2− t)x.

(ii) The first four derivatives of MX(t) are

M
′

X(t) = a(1− 2t)−a/2−1,

M
′′

X(t) = a(a+ 2)(1− 2t)−a/2−2,

M
′′′

X (t) = a(a+ 2)(a+ 4)(1− 2t)−a/2−3,

M
′′′′

X (t) = a(a+ 2)(a+ 4)(a+ 6)(1− 2t)−a/2−4.

So, E(X) = a, E(X2) = a(a+ 2), E(X3) = a(a+ 2)(a+ 4) and E(X4) = a(a+ 2)(a+
4)(a+ 6).

(iii) The moment generating function of S = X1 +X2 is:

MS(t) = E [exp(tX1 + tX2)]

= E [exp(tX1)]E [exp(tX2)]

= (1− 2t)−a/2(1− 2t)−b/2

= (1− 2t)−(a+b)/2.

(iv) We have E(S) = E(X1+X2) = E(X1)+E(X2) = a+b and V ar(S) = V ar(X1+X2) =
V ar(X1) + V ar(X2) = 2a+ 2b.

(v) Since

MS(t) = (1− 2t)−(a+b)/2,

it follows that S has a chi-square distribution with a+ b degrees of freedom.
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Solutions to Question 2 Suppose θ̂ is an estimator of θ.

(i) θ̂ is an unbiased estimator of θ if E(θ̂) = θ.

(ii) θ̂ is an asymptotically unbiased estimator of θ if limn→∞E(θ̂) = θ.

(iii) the bias of θ̂ is E(θ̂)− θ.

(iv) the mean squared error of θ̂ is E(θ̂ − θ)2.

(v) θ̂ is a consistent estimator of θ if limn→∞E(θ̂ − θ)2 = 0, where n is the size of the
sample used to calculate θ̂.

UP TO THIS BOOK WORK.

Let X and Y be uncorrelated random variables. Suppose that X has mean 2θ and variance
4. Suppose that Y has mean θ and variance 2. The parameter θ is unknown.

(i) The biases and mean squared errors of θ̂1 = (1/4)X + (1/2)Y and θ̂2 = X − Y are:

Bias
(
θ̂1
)

= E
(
θ̂1
)
− θ

= E
(
X

4
+
Y

2

)
− θ

=
E(X)

4
+
E(Y )

2
− θ

=
2θ

4
+
θ

2
− θ

= 0,

Bias
(
θ̂2
)

= E
(
θ̂2
)
− θ

= E (X − Y )− θ
= E(X)− E(Y )− θ
= 2θ − θ − θ
= 0,

MSE
(
θ̂1
)

= V ar
(
θ̂1
)

= V ar
(
X

4
+
Y

2

)
=

V ar(X)

16
+
V ar(Y )

4

=
4

16
+

2

4

=
3

4
,
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and

MSE
(
θ̂2
)

= V ar
(
θ̂2
)

= V ar (X − Y )

= V ar(X) + V ar(Y )

= 4 + 2

= 6.

(ii) Both θ̂1 and θ̂2 are unbiased. The MSE of θ̂1 is smaller than the MSE of θ̂2. So, we
prefer θ̂1.

(iii) The bias of θ̂c is

E
(
θ̂c
)
− θ = E

(
c

2
X + (1− c)Y

)
− θ

=
c

2
E(X) + (1− c)E(Y )− θ

=
c

2
2θ + (1− c)θ − θ

= 0,

so θ̂c is unbiased.

The variance of θ̂c is

V ar
(
θ̂c
)

= V ar
(
c

2
X + (1− c)Y

)
=

c2

4
V ar(X) + (1− c)2V ar(Y )

=
c2

4
4 + 2(1− c)2

= c2 + 2(1− c)2.

Let g(c) = c2 + 2(1− c)2. Them g
′
(c) = 6c− 4 = 0 if c = 2/3. Also g

′′
(c) = 6 > 0. So,

c = 2/3 minimizes the variance of θ̂c.
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Solutions to Question 3 An electrical circuit consists of three batteries connected in series
to a lightbulb. We model the battery lifetimes X1, X2, X3 as independent and identically
distributed Exp(λ) random variables. Our experiment to measure the lifetime of the light-
bulb Y is stopped when any one of the batteries fails. Hence, the only random variable we
observe is Y = min(X1, X2, X3).

(i) The cdf of Y is

Pr(Y < y) = 1− Pr(Y > y)

= 1− Pr [min (X1, X2, X3) > y]

= 1− Pr (X1 > y) Pr (X2 > y) Pr (X3 > y)

= 1− Pr3 (X > y)

= 1− exp(−3λy).

So, Y ∼ Exp(3λ).

(ii) The likelihood function of λ is

L(λ) = 3λ exp(−3λy)

for λ > 0.

(iii) The log likelihood function of λ is

logL(λ) = log(3λ)− 3λy.

The first derivative of logL with respect to λ is

d logL(λ)

dλ
=

1

λ
− 3y.

Setting this to zero and solving, we obtain λ̂ = 1/(3y). The second derivative of logL
with respect to λ

d2 logL(λ)

dλ2
= − 1

λ2
< 0,

so λ̂ = 1/(3y) is indeed a maximum likelihood estimator of λ.

(iv) The bias of λ̂ is

Bias
(
λ̂
)

= E
(
λ̂
)
− λ

= λ
∫ ∞
0

1

y
exp(−3λy)dy − λ

= ∞,

so the estimator is biased.

(v) The mean squared error of λ̂ is

MSE
(
λ̂
)

= V ar
(
λ̂
)

+Bias2
(
λ̂
)

= V ar
(
λ̂
)

+∞ =∞.
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Solutions to Question 4 Suppose X1, X2, . . . , Xn are independent and identically dis-
tributed random variables with the common probability density function (pdf):

f(x) =
1

x
√

2πσ2
exp

{
−(log x− µ)2

2σ2

}

for x > 0, −∞ < µ <∞ and σ > 0. Both µ and σ2 are unknown.

(i) The joint likelihood function of µ and σ2 is

L
(
µ, σ2

)
=

n∏
i=1

{
1

Xi

√
2πσ

exp

[
−(logXi − µ)2

2σ2

]}

=
1

(2π)n/2σn

(
n∏
i=1

X−1i

)
exp

[
− 1

2σ2

n∑
i=1

(logXi − µ)2
]
.

The joint log likelihood function of µ and σ2 is

logL
(
µ, σ2

)
= −n

2
log(2π)− n log σ −

n∑
i=1

logXi −
1

2σ2

n∑
i=1

(logXi − µ)2 .

The first order partial derivatives of this with respect to µ and σ are

∂ logL

∂µ
=

1

σ2

n∑
i=1

(logXi − µ) =
1

σ2

(
n∑
i=1

logXi − nµ
)

(1)

and

∂ logL

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(logXi − µ)2 , (2)

respectively.

(ii) Using equation (1), one can see that the solution of ∂ logL/∂µ = 0 is µ = ¯logX =
(1/n)

∑n
i=1 logXi.

(iii) Using equation (2), one can see that the solution of ∂ logL/∂σ = 0 is σ2 = (1/n)
∑n
i=1(logXi−

µ̂)2.

(iv) The mle, µ̂, is an unbiased and consistent estimator for µ since

E (µ̂) = E

(
1

n

n∑
i=1

logXi

)

=
1

n

n∑
i=1

E (logXi)

=
1

n

n∑
i=1

µ

= µ
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and

V ar (µ̂) = V ar

(
1

n

n∑
i=1

logXi

)

=
1

n2

n∑
i=1

V ar (logXi)

=
1

n2

n∑
i=1

σ2

=
σ2

n
.

(v) The mle, σ̂2, is a biased and consistent estimator for σ2 since

E
(
σ̂2
)

= E

[
1

n

n∑
i=1

(logXi − µ̂)2
]

= E
[
n− 1

n
S2
]

=
σ2

n
E
[
n− 1

σ2
S2
]

=
σ2

n
E
[
χ2
n−1

]
=

(n− 1)σ2

n

and

V ar
(
σ̂2
)

= V ar

[
1

n

n∑
i=1

(logXi − µ̂)2
]

= V ar
[
n− 1

n
S2
]

=
σ4

n2
E
[
n− 1

σ2
S2
]

=
σ4

n2
E
[
χ2
n−1

]
=

2(n− 1)σ4

n2
.

Note that we have used the fact (n − 1)S2/σ2 ∼ χ2
n−1. Furthermore, S2 = (1/(n −

1))
∑n
i=1(Xi − X̄)2 denotes the sample variance.
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Solutions to Question 5 Suppose we wish to test H0 : θ = θ0 versus H1 : θ 6= θ0.

(i) the Type I error occurs if H0 is rejected when in fact θ = θ0.

(ii) the Type II error occurs if H0 is accepted when in fact θ 6= θ0.

(iii) the significance level is the probability of type I error.

(iv) the power function: Π(θ) = Pr( Reject H0 | θ).

UP TO THIS BOOK WORK.

Suppose X1, X2, . . . , Xn is a random sample from N(θ, σ2), where σ2 is assumed known.

(i) The power function, Π(θ), for H0 : θ = θ0 versus H1 : θ 6= θ0 is

Π(θ) = Pr

(√
n

σ
| x̄− θ0 |> zα/2

∣∣∣∣∣ θ
)

= Pr

(
| x̄− θ0 |>

σ√
n
zα/2

∣∣∣∣∣ θ
)

= Pr

(
x̄ > θ0 +

σ√
n
zα/2 or x̄ < θ0 −

σ√
n
zα/2

∣∣∣∣∣ θ
)

= Pr

(
x̄− θ > θ0 − θ +

σ√
n
zα/2 or x̄− θ < θ0 − θ −

σ√
n
zα/2

∣∣∣∣∣ θ
)

= Pr

(√
n

σ
(x̄− θ) >

√
n

σ
(θ0 − θ) + zα/2 or

√
n

σ
(x̄− θ) <

√
n

σ
(θ0 − θ)− zα/2

∣∣∣∣∣ θ
)

= Pr

(
Z >

√
n

σ
(θ0 − θ) + zα/2 or Z <

√
n

σ
(θ0 − θ)− zα/2

)

= 1− Pr

(
Z <

√
n

σ
(θ0 − θ) + zα/2

)
+ Pr

(
Z <

√
n

σ
(θ0 − θ)− zα/2

)

= 1− Φ

(√
n

σ
(θ0 − θ) + zα/2

)
+ Φ

(√
n

σ
(θ0 − θ)− zα/2

)
.

(ii) The power function, Π(θ), for H0 : θ = θ0 versus H1 : θ < θ0 is

Π(θ) = Pr

(√
n

σ
(x̄− θ0) ≤ −zα

∣∣∣∣∣ θ
)

= Pr

(
x̄− θ0 ≤ −

σ√
n
zα

∣∣∣∣∣ θ
)

= Pr

(
x̄ ≤ θ0 −

σ√
n
zα

∣∣∣∣∣ θ
)
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= Pr

(
x̄− θ ≤ θ0 − θ −

σ√
n
zα

∣∣∣∣∣ θ
)

= Pr

(√
n

σ
(x̄− θ) ≤

√
n

σ
(θ0 − θ)− zα

∣∣∣∣∣ θ
)

= Pr

(
Z ≤

√
n

σ
(θ0 − θ)− zα

)

= Φ

(√
n

σ
(θ0 − θ)− zα

)
.

(iii) The power function, Π(θ), for H0 : θ = θ0 versus H1 : θ > θ0 is

Π(θ) = Pr

(√
n

σ
(x̄− θ0) ≥ zα

∣∣∣∣∣ θ
)

= Pr

(
x̄− θ0 ≥

σ√
n
zα

∣∣∣∣∣ θ
)

= Pr

(
x̄ ≥ θ0 +

σ√
n
zα

∣∣∣∣∣ θ
)

= Pr

(
x̄− θ ≥ θ0 − θ +

σ√
n
zα

∣∣∣∣∣ θ
)

= Pr

(√
n

σ
(x̄− θ) ≥

√
n

σ
(θ0 − θ) + zα

∣∣∣∣∣ θ
)

= Pr

(
Z ≥

√
n

σ
(θ0 − θ) + zα

)

= 1− Pr

(
Z <

√
n

σ
(θ0 − θ) + zα

)

= 1− Φ

(√
n

σ
(θ0 − θ) + zα

)
.

Note that we have used the fact (
√
n/σ)(x̄ − θ) = Z ∼ N(0, 1). Furthermore, Φ(·) denotes

the cumulative distribution function of N(0, 1).
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Solutions to Question 6 The Neyman-Pearson test rejects H0 : θ = θ1 in favor of H1 :
θ = θ2 if

L (θ1)

L (θ2)
=

n∏
i=1

f (Xi; θ1)

n∏
i=1

f (Xi; θ2)

< k

for some k. UP TO THIS BOOK WORK.

Let X1, X2, . . . , Xn be a random sample from a uniform (0, θ) distribution.

(i) The most powerful test is to reject H0 : θ = θ1 if

L (θ1)

L (θ2)
=

θ−n1 I {0 < X1 < θ1} I {0 < X2 < θ1} · · · I {0 < Xn < θ1}
θ−n2 I {0 < X1 < θ2} I {0 < X2 < θ2} · · · I {0 < Xn < θ2}

=
θn2
θn1

I {max (X1, X2, . . . , Xn) < θ1}
I {max (X1, X2, . . . , Xn) < θ2}

< k0,

which is equivalent to

I {max (X1, X2, . . . , Xn) < θ1}
I {max (X1, X2, . . . , Xn) < θ2}

<
k0θ

n
1

θn2
⇐⇒ max (X1, X2, . . . , Xn) > k

as required. The last step follows because

I {max (X1, X2, . . . , Xn) < θ1}
I {max (X1, X2, . . . , Xn) < θ2}

is a decreasing function of max(X1, X2, . . . , Xn).

(ii) The power function is

Π(θ) = Pr (Reject H0 | θ)
= Pr (max (X1, X2, . . . , Xn) > k | θ)
= 1− Pr (max (X1, X2, . . . , Xn) ≤ k | θ)
= 1− Pr (X1 ≤ k | θ) Pr (X2 ≤ k | θ) · · ·Pr (Xn ≤ k | θ)

= 1−
(
k

θ

)n
.

(iii) Note that

1− (2k)5 = 0.05

⇐⇒ 2k = (0.95)1/5

⇐⇒ k = (1/2)(0.95)1/5.

So, k = 0.4948969.
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(iv) Note that

β = Pr (Type II error)

= 1−
[
1−

(
0.4948969

0.6

)5
]

=
(

0.4948969

0.6

)5

= 0.3817837.
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