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Solutions to Question 1 This question explores the moment generating function of the
normal distribution.

(i) Let X ∼ N(0, 1). The moment generating function of X is:

MX(t) =
1√
2π

∫ ∞
−∞

exp

(
tx− x2

2

)
dx

=
1√
2π

∫ ∞
−∞

exp

(
−x

2 − 2tx

2

)
dx

=
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2 − t2

2

)
dx

= exp

(
t2

2

)
1√
2π

∫ ∞
−∞

exp

(
−(x− t)2

2

)
dx

= exp

(
t2

2

)
.

(ii) The first four derivatives of MX(t) are

M
′

X(t) = t exp

(
t2

2

)
,

M
′′

X(t) = t2 exp

(
t2

2

)
+ exp

(
t2

2

)
,

M
′′′

X (t) = t3 exp

(
t2

2

)
+ 3t exp

(
t2

2

)
,

M
′′′′

X (t) = t4 exp

(
t2

2

)
+ 6t2 exp

(
t2

2

)
+ 3 exp

(
t2

2

)
.

So, E(X) = 0, E(X2) = 1, E(X3) = 0 and E(X4) = 3.

(iii) The moment generating function of Y = µ+ σZ is:

MY (t) = E [exp(tµ+ tσZ)] = exp(tµ)E [exp(tσZ)] = exp(tµ) exp

(
t2σ2

2

)
.

(iv) The moment generating function of S = X1 +X2 is:

MS(t) = E [exp(tX1 + tX2)]

= E [exp(tX1)]E [exp(tX2)]

= exp

(
tµ1 +

t2σ2
1

2

)
exp

(
tµ2 +

t2σ2
2

2

)
.

(v) We have E(S) = E(X1 + X2) = E(X1) + E(X2) = µ1 + µ2 and V ar(S) = V ar(X1 +
X2) = V ar(X1) + V ar(X2) = σ2

1 + σ2
2.
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(vi) Since

MS(t) = exp

(
tµ1 +

t2σ2
1

2

)
exp

(
tµ2 +

t2σ2
2

2

)
= exp

[
t(µ1 + µ2) +

t2(σ2
1 + σ2

2)

2

]
,

it follows that S has the normal distribution with mean µ1 + µ2 and variance σ2
1 + σ2

2.
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Solutions to Question 2 Suppose θ̂ is an estimator of θ.

(i) θ̂ is an unbiased estimator of θ if E(θ̂) = θ.

(ii) θ̂ is an asymptotically unbiased estimator of θ if limn→∞E(θ̂) = θ.

(iii) the bias of θ̂ is E(θ̂)− θ.

(iv) the mean squared error of θ̂ is E(θ̂ − θ)2.

(v) θ̂ is a consistent estimator of θ if limn→∞E(θ̂ − θ)2 = 0.

Let Xi denote the time that it takes student i to complete a take-home exam, and suppose
that X1, X2, . . . , Xn constitute a random sample from an exponential distribution with pa-
rameter β. Consider the following estimators for θ = 1/β: θ̂1 = cmin(X1, X2, . . . , Xn) and

θ̂2 = 1/n
∑n
i=1Xi.

(i) Let Z = min(X1, X2, . . . , Xn). Then the cdf of Z is

Pr(Z < z) = Pr (min(X1, X2, . . . , Xn) < z)

= 1− Pr (min(X1, X2, . . . , Xn) > z)

= 1− Pr (X1 > z,X2 > z, . . . , Xn > z)

= 1− Prn (X > z)

= 1− exp(−nβz).

It follows that Z has an exponential distribution with parameter nβ. So, E(cZ) =
cE(Z) = c/(nβ) = cθ/n = θ if and only if c = n.

(ii) The variance of θ̂1 is

V ar
(
θ̂1
)

= n2V ar (Z)

=
n2

n2β2

=
1

β2

= θ2

The MSE is the same as the variance since θ̂1 is unbiased.

(iii) The bias of θ̂2 is

E
(
θ̂2
)
− θ = E

(
1

n

n∑
i=1

Xi

)
− θ

=
1

n

n∑
i=1

E (Xi)− θ
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=
1

n

n∑
i=1

θ − θ

= θ − θ
= 0.

The variance of θ̂2 is

V ar
(
θ̂2
)

= V ar

(
1

n

n∑
i=1

Xi

)

=
1

n2

n∑
i=1

V ar (Xi)

=
1

n2

n∑
i=1

θ2

=
θ2

n
.

The MSE is the same as the variance since θ̂2 is unbiased.

(iv) Clearly, θ̂2 has the smaller MSE and so it should be preferred.

4



Solutions to Question 3 Let the random variable Yi be the number of typographical
errors on a page of a 400-page book (for i = 1, 2, . . . , 400), and suppose that the Yi’s are
independent and identically distributed according to a Poisson distribution with parameter
λ. Let the random variable X be the number of pages of this book that contain at least one
typographical error. Suppose that you are told the value of X but are not told anything
about the values of Yi.

(i) Clearly, X has the binomial distribution with parameters n = 400 and p = Pr(Y >
0) = 1− Pr(Y = 0) = 1− exp(−λ). So, the pmf of X is

p(x) =

(
n

x

)
(1− p)400−xpx

=

(
n

x

)
exp {−(400− x)λ} {1− exp(−λ)}x

for x = 0, 1, . . . , 400.

(ii) The likelihood function of λ is

L(λ) =

(
n

x

)
exp {−(400− x)λ} {1− exp(−λ)}x

for λ > 0.

(iii) The log likelihood function of λ is

logL(λ) = log

(
n

x

)
− (400− x)λ+ x log {1− exp(−λ)} .

The first derivative of logL with respect to λ is

d logL(λ)

dλ
= x− 400 +

x exp(−λ)

1− exp(−λ)
.

Setting this to zero and solving, we obtain λ̂ = log{400/(400 − x)}. The second
derivative of logL with respect to λ

d2 logL(λ)

dλ2
= − x exp(λ)

{exp(λ)− 1}2
< 0,

so λ̂ = log{400/(400− x)} is indeed a maximum likelihood estimator of λ.

(iv) If x = 25 then λ̂ = log{400/375} = 06453852.

(v) If X has the binomial distribution with parameters n = 400 and p then the mle of p
is p̂ = x/400. So, by the invariance property the mle of λ can be obtained by setting
1− exp(−λ) = x/400.
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Solutions to Question 4 Suppose X1, X2, . . . , Xn are independent and identically dis-
tributed random variables with the common probability density function (pdf):

f(x) = θ2x
θ2−1θ−θ21

for 0 < x < θ1, θ1 > 0 and θ2 > 0. Both θ1 and θ2 are unknown.

(i) The cumulative distribution function corresponding to the given pdf is

F (x) = θ2θ
−θ2
1

∫ x

0
yθ2−1dy = θ−θ21 xθ2 .

The mean corresponding to the given pdf is

E(X) = θ2θ
−θ2
1

∫ θ1

0
yθ2dy =

θ1θ2
θ2 + 1

.

The variance corresponding to the given pdf is

V ar(X) = θ2θ
−θ2
1

∫ θ1

0
yθ2+1dy − θ21θ

2
2

(θ2 + 1)2
=

θ21θ2
θ2 + 2

− θ21θ
2
2

(θ2 + 1)2
.

(ii) The joint likelihood function of θ1 and θ2 is

L (θ1, θ2) = θn2 θ
−nθ2
1

(
n∏
i=1

xi

)θ2−1

for θ1 > 0 and θ2 > 0.

(iii) The likelihood function monotonically decreases with respect to θ1. The lowest possible
value for θ1 is max(X1, X2, . . . , Xn). So, the mle of θ1 is max(X1, X2, . . . , Xn).

(iv) The log of the joint likelihood function is

logL (θ1, θ2) = n log θ2 − nθ2 log θ1 + (θ2 − 1)
n∑
i=1

log xi.

The first derivative of the log likelihood with respect to θ2 is

d logL (θ1, θ2)

dθ2
=

n

θ2
− n log θ1 +

n∑
i=1

log xi.

Setting this to zero and solving, we obtain θ̂2 = n/{n log θ̂1 −
∑n
i=1 log xi}, where

θ̂1 = max(X1, X2, . . . , Xn). The second derivative of the log likelihood with respect to
θ2

d2 logL (θ1, θ2)

dθ22
= − n

θ22
< 0.

Hence, θ̂2 = n/{n log θ̂1 −
∑n
i=1 log xi} is indeed the mle of θ2.
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(v) Let Z = max(X1, X2, . . . , Xn). Then the cdf of Z is

Pr(Z < z) = Pr (max(X1, X2, . . . , Xn) < z)

= Pr (X1 < z,X2 < z, . . . , Xn < z)

= Prn (X < z)

= θ−nθ21 xnθ2 .

It follows that Z has the same distribution as the given pdf with θ2 replaced by nθ2.
So, the bias θ̂1 is

E
(
θ̂1
)
− θ1 =

nθ1θ2
nθ2 + 1

− θ1 = − θ1
nθ2 + 1

< 0.

The variance θ̂1 is

V ar
(
θ̂1
)

=
nθ21θ2
nθ2 + 2

− n2θ21θ
2
2

(nθ2 + 1)2

and the MSE θ̂1 is

MSE
(
θ̂1
)

=
θ21

(nθ2 + 1)2
+

nθ21θ2
nθ2 + 2

− n2θ21θ
2
2

(nθ2 + 1)2
.

The MSE approaches zero as n → ∞. Hence, θ̂1 is a biased and consistent estimator
for θ1.
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Solutions to Question 5 Suppose we wish to test H0 : θ = θ0 versus H1 : θ 6= θ0.

(i) the Type I error occurs if H0 is rejected when in fact θ = θ0.

(ii) the Type II error occurs if H0 is accepted when in fact θ 6= θ0.

(iii) the significance level is the probability of type I error.

(iv) the power function: Π(θ) = Pr( Reject H0 | θ).

Suppose X1, X2, . . . , Xn is a random sample from a Bernoulli distribution with parameter p.
Assume X = (X1 + X2 + · · · + Xn)/n has a normal distribution with mean p and variance
p(1− p)/n.

(i) The rejection region for H0 : p = p0 versus H1 : p 6= p0 is√
n

x̄(1− x̄)
|x̄− p0| > zα/2.

(ii) The rejection region for H0 : p = p0 versus H1 : p < p0 is√
n

x̄(1− x̄)
(x̄− p0) < −zα.

(iii) The rejection region for H0 : p = p0 versus H1 : p > p0 is√
n

x̄(1− x̄)
(x̄− p0) > zα.

Suppose X1, X2, . . . , Xn is a random sample from a Bernoulli distribution with parameter p.
Assume X = (X1 + X2 + · · · + Xn)/n has a normal distribution with mean p and variance
p(1− p)/n.

(i) The power function, Π(p), for H0 : p = p0 versus H1 : p 6= p0 is

Π(p) = Pr

(√
n

x̄(1− x̄)
|x̄− p0| > zα/2

∣∣∣∣∣ p
)

= Pr

|x̄− p0| >
√
x̄(1− x̄)

n
zα/2

∣∣∣∣∣∣ p


= Pr

x̄ > p0 +

√
x̄(1− x̄)

n
zα/2 or x̄ < p0 −

√
x̄(1− x̄)

n
zα/2

∣∣∣∣∣∣ p
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= Pr

(
√
n

x̄− p√
p(1− p)

>
√
n

p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα/2

or
√
n

x̄− p√
p(1− p)

<
√
n

p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα/2

∣∣∣∣∣∣ p
)

= Pr

(
Z >

√
n

p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα/2

or Z <
√
n

p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα/2

∣∣∣∣∣∣ p
)

= 1− Φ

√n p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα/2


+Φ

√n p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα/2

 ,
where Φ(·) denotes the standard normal distribution function.

(ii) The power function, Π(p), for H0 : p = p0 versus H1 : p < p0 is

Π(p) = Pr

(√
n

x̄(1− x̄)
(x̄− p0) < −zα

∣∣∣∣∣ p
)

= Pr

x̄ < p0 −
√
x̄(1− x̄)

n
zα

∣∣∣∣∣∣ p


= Pr

√n x̄− p√
p(1− p)

<
√
n

p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα

∣∣∣∣∣∣ p


= Pr

Z <
√
n

p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα

∣∣∣∣∣∣ p


= Φ

√n p0 − p√
p(1− p)

−

√√√√ x̄(1− x̄)

p(1− p)
zα

 ,
where Φ(·) denotes the standard normal distribution function.

(iii) The power function, Π(p), for H0 : p = p0 versus H1 : p > p0 is

Π(p) = Pr

(√
n

x̄(1− x̄)
(x̄− p0) > zα

∣∣∣∣∣ p
)

= Pr

x̄ > p0 +

√
x̄(1− x̄)

n
zα

∣∣∣∣∣∣ p
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= Pr

√n x̄− p√
p(1− p)

<
√
n

p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα

∣∣∣∣∣∣ p


= Pr

Z >
√
n

p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα

∣∣∣∣∣∣ p


= 1− Φ

√n p0 − p√
p(1− p)

+

√√√√ x̄(1− x̄)

p(1− p)
zα

 ,
where Φ(·) denotes the standard normal distribution function.

Note that we have used the fact
√
n{x̄−p}/

√
p(1− p) has the standard normal distribution.
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Solutions to Question 6 The Neyman–Pearson test rejects H0 : θ = θ1 in favor of H1 :
θ = θ2 if

L (θ1)

L (θ2)
=

n∏
i=1

f (Xi; θ1)

n∏
i=1

f (Xi; θ2)

< k

for some k.

Let X1, X2, . . . , Xn be a random sample from a Bernoulli distribution with parameter p.

(i) The most powerful test is to reject H0 : p = p0 if

L (p0)

L (p1)
=

p
∑n

i=1
Xi

0 (1− p0)n−
∑n

i=1
Xi

p
∑n

i=1
Xi

1 (1− p1)n−
∑n

i=1
Xi

=

(
1− p0
1− p1

)n [
p0 (1− p1)
p1 (1− p0)

]∑n

i=1
Xi

< k0,

which is equivalent to[
p0 (1− p1)
p1 (1− p0)

]∑n

i=1
Xi

<

(
1− p0
1− p1

)−n
k0

⇐⇒
n∑
i=1

Xi log

[
p0 (1− p1)
p1 (1− p0)

]
< log

(1− p0
1− p1

)−n
k0


⇐⇒

n∑
i=1

Xi >

{
log

[
p0 (1− p1)
p1 (1− p0)

]}−1
log

(1− p0
1− p1

)−n
k0


⇐⇒

n∑
i=1

Xi > k

as required. Note that {p0(1 − p1)}/{p1(1 − p0)} < 1 and so log{p0(1 − p1)}/{p1(1 −
p0)} < 0.

(ii) Note that
∑n
i=1Xi has the binomial distribution with parameters n and p. So,

Π(p) = Pr

(
n∑
i=1

Xi > k

∣∣∣∣∣ p
)

= Pr (Bin(n, p) > k) .

(iii) Note that

Pr (Bin(5, 0.5) > 4) = 0.03125,

Pr (Bin(5, 0.5) > 3) = 0.1875.

So, k = 3.
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(iv) Note that

β = Pr (Type II error)

= Pr

(
5∑
i=1

Xi ≤ 3

∣∣∣∣∣ p = 0.6

)
= Pr (Bin(5, 0.6) ≤ 3)

= 0.66304.
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