Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

1 June 2018 14:00-16:00

Answer FOUR of the SIX questions. If more than FOUR questions are attempted, then credit will be given for the best FOUR answers.

University-approved calculators may be used

1. A random variable X is said to have the hyperbolic secant distribution if its probability density function is given by

$$f_X(x) = \frac{1}{\exp\left(\frac{\pi x}{2}\right) + \exp\left(-\frac{\pi x}{2}\right)}$$

for $-\infty < x < +\infty$.

- (a) Derive the cumulative distribution function of X.
- (b) Show that the moment generating function of X can be expressed as

$$M_X(t) = \frac{1}{\pi} \Gamma\left(\frac{1}{2} + \frac{t}{\pi}\right) \Gamma\left(\frac{1}{2} - \frac{t}{\pi}\right)$$

for $-\frac{\pi}{2} < t < \frac{\pi}{2}$, where $\Gamma(a)$ denotes the gamma function defined by

$$\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t) dt$$

for a > 0.

- (c) Use your result in (b) to derive the first two moments of X. Express the moments in terms of the gamma function and its derivatives. (6 marks)
- (d) A random variable Y, whose distribution is symmetric around zero, satisfies $|Y| = \exp(\pi X/2)$. Derive the probability density and cumulative distribution functions of Y. (5 marks)
- (e) What is the distribution of Y known as?

[Total: 25 marks]

(6 marks)

(6 marks)

(2 marks)

2. (a) Suppose $\hat{\theta}$ is an estimator of θ based on a random sample of size *n*. Define what is meant by the following:

(i) $\hat{\theta}$ is an unbiased estimator of θ ;	(2 marks)
(ii) $\hat{\theta}$ is an asymptotically unbiased estimator of θ ;	(2 marks)
(iii) the bias of $\hat{\theta}$ (written as $\text{bias}(\hat{\theta})$);	(2 marks)
(iv) the mean squared error of $\widehat{\theta}$ (written as $MSE(\widehat{\theta})$);	(2 marks)
(v) $\hat{\theta}$ is a consistent estimator of θ .	(2 marks)
(b) Suppose X_1 and X_2 are independent $\text{Exp}(1/\theta)$ and Uniform $[0, \theta]$ random variable $aX_1 + bX_2$ denote a class of estimators of θ , where a and b are constants.	es. Let $\hat{\theta} =$
(i) Determine the bias of $\hat{\theta}$;	(3 marks)
(ii) Determine the variance of $\hat{\theta}$;	
(ii) Determine the variance of θ ,	(3 marks)
(ii) Determine the warrance of θ ; (iii) Determine the mean squared error of $\hat{\theta}$;	(3 marks) (2 marks)

(v) Determine the value of a such that $\hat{\theta}$ is unbiased for θ and has the smallest variance. (5 marks)

3. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function

$$f_X(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

for x > 0.

- (a) Write down the likelihood function of σ^2 .
- (b) Show that the maximum likelihood estimator of σ^2 is

$$\widehat{\sigma^2} = \frac{1}{2n} \sum_{i=1}^n X_i^2.$$

(4 marks)

(8 marks)

(4 marks)

(c) Deduce the maximum likelihood estimator of σ . (1 marks)

(d) Show that the estimator in part (b) is an unbiased estimator of σ^2 . (8 marks)

(e) Show that the estimator in part (b) is a consistent estimator of σ^2 .

4. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function

$$f_X(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

for $x>0,\,\mu>0$ and $\lambda>0.$ Assume both μ and λ are unknown.

- (a) Write down the joint likelihood function of μ and λ . (5 marks)
- (b) Show that the maximum likelihood estimator of μ is $\hat{\mu} = \overline{X} = \frac{1}{n} (X_1 + X_2 + \dots + X_n).$ (5 marks)
- (c) Show that the maximum likelihood estimator of λ is $\hat{\lambda} = \left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{X_i} \frac{1}{\overline{X}}\right)^{-1}$. (5 marks)
- (d) Show that the estimator in (b) is unbiased and consistent for μ . (5 marks)
- (e) Show that the estimator $1/\hat{\lambda}$ is biased but consistent for $1/\lambda$. You may use the following fact without proof:

$$\lambda\left(\sum_{i=1}^{n}\frac{1}{X_{i}}-\frac{n}{\overline{X}}\right)\sim\chi_{n-1}^{2}$$

(5 marks)

MATH20802

(2 marks)

- **5.** (a) Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:
 - (i) the Type I error of a test. (2 marks)
- (ii) the Type II error of a test.
- (iii) the significance level of a test. (2 marks)
- (iv) the power function of a test (denoted $\Pi(\theta)$). (2 marks)

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ is not known. State the rejection region for each of the following tests:

- (i) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$. (2 marks)
- (ii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma < \sigma_0$. (2 marks)
- (iii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$. (2 marks)

In each case, assume a significance level of α .

(c) Under the same assumptions as in part (b), find the power function, $\Pi(\sigma)$, for each of the following tests:

- (i) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$. (5 marks)
- (ii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma < \sigma_0$. (3 marks)
- (iii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$. (3 marks)

In each case, assume a significance level of α .

6. (a) Describe the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. State both the test statistic and the form of the rejection region. (4 marks)

- (b) Suppose X_1, X_2, \ldots, X_n is an independent random sample from Exp (θ) , where θ is unknown.
 - (i) Derive the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$, where $\theta_2 > \theta_1$. Show that the rule for rejecting H_0 can be expressed as $\sum_{i=1}^n X_i < c.$ (8 marks)
 - (ii) Show that the power function for the rejection rule in part (i) is

$$\Pi(\theta) = 1 - \left[1 + \theta c + \frac{\theta^2 c^2}{2} + \dots + \frac{\theta^{n-1} c^{n-1}}{(n-1)!}\right] \exp(-\theta c).$$

You may use mathematical induction to prove this.

(8 marks)

- (iii) Show that if n = 2, $\theta_1 = 1$ and c = 0.3553595, then the probability of a type I error is 0.05. (2 marks)
- (iv) Find the probability of a type II error if n = 2, $\theta_1 = 1$, $\theta_2 = 2$ and the probability of a type I error is 0.05. (3 marks)

[Total: 25 marks]

7 of 7