Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

24 May 2016 14:00-16:00

Answer FOUR of the SIX questions. If more than FOUR questions are attempted, then credit will be given for the best FOUR answers.

University-approved calculators may be used

1. Suppose X is a random variable with its probability density function given by

$$f(x) = \alpha \lambda \exp(-\lambda x) + (1 - \alpha)\mu \exp(-\mu x)$$

for $x > 0, 0 < \alpha < 1, \lambda > 0$ and $\mu > 0$.

(a) Show that the moment generating function of X is

$$M_X(t) = E\left[\exp(tX)\right] = \frac{\alpha\lambda}{\lambda - t} + \frac{(1 - \alpha)\mu}{\mu - t}$$

(8 marks)

- (b) Use your result in (a) to derive the first four moments of X. (8 marks)
- (c) If X_i are independent and identical random variables and are distributed as X derive the moment generating function of $Y = X_1 + \dots + X_n$. (3 marks)
- (d) Derive the mean and variance of Y. (3 marks)
- (e) What is the distribution of Y if $\lambda = \mu$? (3 marks)

2. (a) Suppose $\hat{\theta}$ is an estimator of θ based on a random sample of size *n*. Define what is meant by the following:

(i)	$\hat{\theta}$ is an unbiased estimator of θ ;	(2 marks)
(ii)	$\widehat{\theta}$ is an asymptotically unbiased estimator of θ ;	(2 marks)
(iii)	the bias of $\hat{\theta}$ (written as bias $\left(\hat{\theta}\right)$);	(2 marks)
(iv)	the mean squared error of $\hat{\theta}$ (written as $MSE(\hat{\theta})$);	(2 marks)
(v)	$\widehat{\theta}$ is a consistent estimator of θ .	(2 marks)
(b) S $\hat{\theta}_2 =$	uppose X_1, \ldots, X_n are independent Uniform $[0, \theta]$ random variables. max (X_1, \ldots, X_n) denote possible estimators of θ .	Let $\widehat{\theta}_1 = \frac{2(X_1 + \dots + X_n)}{n}$ and
(i)	Derive the bias and mean squared error of $\hat{\theta}_1$;	(4 marks)

- (ii) Derive the bias and mean squared error of $\hat{\theta}_2$; (7 marks)
- (iii) Which of the estimators $(\hat{\theta}_1 \text{ and } \hat{\theta}_2)$ is better with respect to bias and why? (1 marks)
- (iv) Which of the estimators $(\hat{\theta}_1 \text{ and } \hat{\theta}_2)$ is better with respect to mean squared error and why? (3 marks)

(5 marks)

3. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function $f(x) = \frac{1}{2a} \exp\left(-\frac{|x|}{a}\right), -\infty < x < \infty$, where a > 0 is an unknown parameter.

- (a) Write down the likelihood function of a.
- (b) Show that the maximum likelihood estimator of a is $\hat{a} = \frac{1}{n} \sum_{i=1}^{n} |X_i|$. (6 marks)
- (c) Derive the expected value of â in part (b).
 (d) Derive the variance of â in part (b).
 (6 marks)
- (e) Show that \hat{a} is an unbiased and consistent estimator for a. (2 marks)

4. Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Suppose Y_1, Y_2, \ldots, Y_m is a random sample from $LN(\mu, \sigma^2)$ independent of X_1, X_2, \ldots, X_n . Assume both μ and σ^2 are unknown.

- (a) Write down the joint likelihood function of μ and σ^2 based on all the data X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m . (5 marks)
- (b) Show that the maximum likelihood estimator of μ is $\frac{1}{m+n} \left[\sum_{i=1}^{n} X_i + \sum_{i=1}^{m} \log Y_i \right]$. (5 marks)
- (c) Show that the maximum likelihood estimator of σ^2 is $\frac{1}{m+n} \left[\sum_{i=1}^n (X_i \hat{\mu})^2 + \sum_{i=1}^m (\log Y_i \hat{\mu})^2 \right].$ (5 marks)
- (d) Show that the estimator in (b) is unbiased and consistent for μ . (5 marks)
- (e) If $X \sim N(\mu, \sigma^2)$ and $Y \sim LN(\mu, \sigma^2)$ are independent random variables find the maximum likelihood estimator of $\Pr(2X < \log Y)$. (5 marks)

5. (a) Suppose we wish to test $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$. Define what is meant by the following:

- (i) the Type I error of a test; (1 marks)
- (ii) the Type II error of a test; (1 marks)
- (iii) the significance level of a test; (1 marks)
- (iv) the power function of a test (denoted $\Pi(\mu)$). (1 marks)

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ^2 is assumed known. State the rejection region for each of the following tests:

- (i) $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$; (2 marks)
- (ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$ (2 marks)

In each case, assume a significance level of α .

(c) Under the same assumptions as in part (b), find the power function, $\Pi(\mu)$, for each of the tests:

- (i) $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$; (6 marks)
- (ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$ (3 marks)

In each case, you should express the power function, $\Pi(\mu)$, in terms of $\Phi(\cdot)$, the standard normal distribution function.

(d) Are the power functions in (c) most powerful in the sense of the Neyman-Pearson lemma? Justify your answer. (8 marks)

6. (a) Describe the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. State both the test statistic and the rejection region. (4 marks)

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function $f(x) = \exp(\theta - x), x > \theta > 0$, where θ is unknown.

- (i) Derive the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$, where $\theta_1 < \theta_2$. Show that the rejection region is either min $(X_1, \ldots, X_n) > \theta_2$ or the empty set. (6 marks)
- (ii) Another test for $H_0: \theta = \theta_1$ has rejection region

$$\min\left(X_1,\ldots,X_n\right) > c$$

Assuming $c > \theta_1$ is a constant, show that the power function is

$$\Pi(\theta) = \begin{cases} \exp(n\theta - nc), & \text{if } \theta < c, \\ 1, & \text{if } \theta \ge c. \end{cases}$$

(6 marks)

- (iii) For the test in part (ii), find the value of c if n = 10, $\theta_1 = 1$ and the probability of type I error is 0.05. (4 marks)
- (iv) For the test in part (ii), find the probability of a type II error if n = 10, $\theta_1 = 1$, $\theta_2 = 2$ and the probability of type I error is 0.05. (5 marks)

[Total: 25 marks]

END OF EXAMINATION PAPER