Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

21 May 2015 09:45-11:45

Answer FOUR of the SIX questions. If more than FOUR questions are attempted, then credit will be given for the best FOUR answers.

University-approved calculators may be used

1. Let X denote a random variable with its probability density function given by

$$f_X(x;\lambda,\mu) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

for x > 0, $\lambda > 0$ and $\mu > 0$. X is said to have the inverse Gaussian distribution with parameters λ and μ .

(a) Show that

$$\exp(tx)f_X(x;\lambda,\mu) = \exp\left\{\frac{\lambda}{\mu}\left[1 - \sqrt{1 - \frac{2\mu^2 t}{\lambda}}\right]\right\}f_X(x;\lambda,\mu_t),$$

where $\mu_t = \sqrt{\lambda} \mu / \sqrt{\lambda - 2\mu^2 t}$. Hence, deduce that the moment generating function of X can be expressed as

$$M_X(t) = E\left[\exp(tX)\right] = \exp\left\{\frac{\lambda}{\mu}\left[1 - \sqrt{1 - \frac{2\mu^2 t}{\lambda}}\right]\right\}$$

for $t < \lambda/(2\mu^2)$.

(b) Use your result in (a) to derive the first two moments of X.

- (c) If X_i are independent and identical random variables and are distributed as X derive the moment generating function of $Y = X_1 + \dots + X_n$. (4 marks)
- (d) Calculate the mean and variance of Y. (4 marks)
- (e) What is the distribution of Y?

[Total: 25 marks]

(10 marks)

(4 marks)

(3 marks)

2. (a) Suppose $\hat{\theta}$ is an estimator of θ based on a random sample of size *n*. Define what is meant by the following:

(i) $\hat{\theta}$ is an unbiased estimator of θ ;	(2 marks)
(ii) $\hat{\theta}$ is an asymptotically unbiased estimator of θ ;	(2 marks)
(iii) the bias of $\hat{\theta}$ (written as $\text{bias}(\hat{\theta})$);	(2 marks)
(iv) the mean squared error of $\hat{\theta}$ (written as $MSE(\hat{\theta})$);	(2 marks)
(v) $\hat{\theta}$ is a consistent estimator of θ .	(2 marks)
(b) Suppose X_1 and X_2 are independent Uniform $[-\theta, \theta]$ random variables. Let $\hat{\theta}_1 = 3 \min(X_1 , X_2)$ and $\hat{\theta}_2 = 3 \max(X_1, X_2)$ denote possible estimators of θ .	
(i) Derive the bias and mean squared error of $\hat{\theta}_1$;	(7 marks)
(ii) Derive the bias and mean squared error of $\hat{\theta}_2$;	(6 marks)

(iii) Which of the estimators $(\hat{\theta}_1 \text{ and } \hat{\theta}_2)$ is better with respect to bias and why? (1 marks)

(iv) Which of the estimators $(\hat{\theta}_1 \text{ and } \hat{\theta}_2)$ is better with respect to mean squared error and why? (1 marks)

(2 marks)

3. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function $f(x) = a^{-1}x^{a^{-1}-1}$, 0 < x < 1, where a > 0 is an unknown parameter.

- (a) Write down the likelihood function of a.
- (b) Show that the maximum likelihood estimator of a is $\hat{a} = -\frac{1}{n} \sum_{i=1}^{n} \log X_i$. (7 marks)
- (c) Derive the expected value of \hat{a} in part (b). You may use the fact that $\int_0^1 x^\alpha \log x dx = -(\alpha+1)^{-2}$ without proof. (6 marks)
- (d) Derive the variance of \hat{a} in part (b). You may use the fact that $\int_0^1 x^{\alpha} (\log x)^2 dx = 2(\alpha + 1)^{-3}$ without proof. (6 marks)
- (e) Show that \hat{a} is an unbiased and a consistent estimator for a. (2 marks)
- (f) Find the maximum likelihood estimator of Pr(X < 0.5), where X has the probability density function $f(x) = a^{-1}x^{a^{-1}-1}$, 0 < x < 1. Justify your answer. (2 marks)

4. Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Suppose Y_1, Y_2, \ldots, Y_n is a random sample from $Exp(\sigma^{-2})$ independent of X_1, X_2, \ldots, X_n . Assume both μ and σ^2 are unknown.

- (a) Write down the joint likelihood function of μ and σ^2 . (5 marks)
- (b) Show that the maximum likelihood estimator of μ is $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$. (4 marks)
- (c) Show that the maximum likelihood estimator of σ^2 is $\widehat{\sigma^2} = \frac{1}{3n} \sum_{i=1}^n (X_i \widehat{\mu})^2 + \frac{2}{3n} \sum_{i=1}^n Y_i.$ (4 marks)
- (d) Show that the estimator in (b) is unbiased and consistent for μ . (4 marks)
- (e) Show that the estimator in (c) is biased and consistent for σ^2 . (8 marks)

- **5.** (a) Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:
 - (i) the Type I error of a test. (2 marks)
- (ii) the Type II error of a test. (2 marks)
- (iii) the significance level of a test. (2 marks)
- (iv) the power function of a test (denoted $\Pi(\theta)$). (2 marks)

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from a Bernoulli distribution with parameter p. State the rejection region for each of the following tests:

- (i) $H_0: p = p_0$ versus $H_1: p \neq p_0$. (2 marks)
- (ii) $H_0: p = p_0$ versus $H_1: p < p_0$. (2 marks)

In each case, assume a significance level of α and that $\overline{X} = (X_1 + X_2 + \cdots + X_n)/n$ has an approximate normal distribution.

(c) Under the same assumptions as in part (b), find the power function, $\Pi(p)$, for each of the tests:

- (i) $H_0: p = p_0$ versus $H_1: p \neq p_0$. (5 marks)
- (ii) $H_0: p = p_0$ versus $H_1: p < p_0$. (3 marks)

In each case, you should express the power function, $\Pi(p)$, in terms of $\Phi(\cdot)$, the standard normal distribution function.

(d) Are the power functions in (c) most powerful in the sense of the Neyman-Pearson lemma? Justify your answer. (5 marks)

6. (a) Describe the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. State both the test statistic and the rejection region. (4 marks)

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function $f(x) = a\theta^a x^{-a-1}, x > \theta$, where a is known but θ is unknown.

- (i) Derive the Neyman-Pearson test for $H_0: \theta = K$ versus $H_1: \theta = L$, where K > L. Show that the rule for rejecting H_0 can be expressed as $\min(X_1, X_2, \dots, X_n) < c$. (6 marks)
- (ii) Show that the power function for the rejection rule in part (i) is

$$\Pi(\theta) = 1 - \frac{\theta^{na}}{c^{na}}.$$

(6 marks)

- (iii) Find the value of c if n = 10, a = 1, K = 1 and the probability of a type I error is 0.05. (4 marks)
- (iv) Find the probability of a type II error if n = 10, a = 1, K = 1, L = 1/2 and the probability of a type I error is 0.05. (5 marks)

[Total: 25 marks]

END OF EXAMINATION PAPER