Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

Answer any FOUR of the SIX questions.

University-approved calculators may be used

1. A random variable X is said to have the Gumbel distribution, written $X \sim \text{Gumbel}(\mu, \beta)$, if its probability density function is given by

$$f_X(x) = \frac{1}{\beta} \exp\left(-\frac{x-\mu}{\beta}\right) \exp\left\{-\exp\left(-\frac{x-\mu}{\beta}\right)\right\}$$

for $-\infty < x < \infty$, $-\infty < \mu < \infty$ and $\beta > 0$.

(i) Show that the cumulative distribution function of X is

$$F_X(x) = \exp\left\{-\exp\left(-\frac{x-\mu}{\beta}\right)\right\}$$
 for $-\infty < x < \infty$. (7 marks)

(ii) Show that the moment generating function of X is

$$M_X(t) = \exp(\mu t)\Gamma(1 - \beta t)$$

for $t < 1/\beta$, where $\Gamma(\cdot)$ denotes the gamma function.

(iii) Show that

$$E(X) = \mu - \beta \Gamma'(1),$$

where $\Gamma'(\cdot)$ denotes the first derivative of $\Gamma(\cdot)$. (4 marks)

(iv) If $X_i \sim \text{Gumbel}(\mu, \beta)$, i = 1, 2, ..., n are independent random variables then show that $\max(X_1, X_2, ..., X_n) \sim \text{Gumbel}(\mu + \beta \log n, \beta)$. (7 marks)

[Total: 25 marks]

(7 marks)

- **2.** (a) Suppose $\widehat{\theta}$ is an estimator of θ based on a random sample of size n. Define what is meant by the following:
 - (i) $\widehat{\theta}$ is an unbiased estimator of θ ; (2 marks)
 - (ii) $\widehat{\theta}$ is an asymptotically unbiased estimator of θ ; (2 marks)
- (iii) the bias of $\widehat{\theta}$ (written as bias($\widehat{\theta}$)); (2 marks)
- (iv) the mean squared error of $\widehat{\theta}$ (written as $MSE(\widehat{\theta})$); (2 marks)
- (v) $\hat{\theta}$ is a consistent estimator of θ . (2 marks)
- (b) Suppose X_1, X_2, \ldots, X_n is a random sample from the Exp (λ) distribution. Consider the following estimators for $\theta = 1/\lambda$: $\widehat{\theta}_1 = (1/n) \sum_{i=1}^n X_i$ and $\widehat{\theta}_2 = (1/(n+1)) \sum_{i=1}^n X_i$.
 - (i) Find the biases of $\widehat{\theta}_1$ and $\widehat{\theta}_2$. (4 marks)
 - (ii) Find the variances of $\widehat{\theta}_1$ and $\widehat{\theta}_2$. (4 marks)
- (iii) Find the mean squared errors of $\widehat{\theta_1}$ and $\widehat{\theta_2}$. (3 marks)
- (iv) Which of the two estimators $(\widehat{\theta}_1 \text{ or } \widehat{\theta}_2)$ is better and why? (4 marks)

- **3.** Consider the two independent random samples: X_1, X_2, \ldots, X_n from $N(\mu_X, \sigma^2)$ and Y_1, Y_2, \ldots, Y_m from $N(\mu_Y, \sigma^2)$, where σ^2 is assumed known. The parameters μ_X and μ_Y are assumed not known.
 - (i) Write down the joint likelihood function of μ_X and μ_Y . (5 marks)
 - (ii) Find the maximum likelihood estimators (mles) of μ_X and μ_Y . (10 marks)
- (iii) Find the mle of $\Pr(X < Y)$, where $X \sim N(\mu_X, \sigma^2)$ and $Y \sim N(\mu_Y, \sigma^2)$ are independent random variables. (5 marks)
- (iv) Show that the mle of μ_X in part (ii) is an unbiased and consistent estimator for μ_X . (3 marks)
- (v) Show also that the mle of μ_Y in part (ii) is an unbiased and consistent estimator for μ_Y . (2 marks)

- **4.** Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.
 - (i) Write down the joint likelihood function of μ and σ^2 . (5 marks)
 - (ii) Show that the maximum likelihood estimator (mle) of μ is $\hat{\mu} = \bar{X}$, where $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$ is the sample mean. (5 marks)
- (iii) Show that the mle of σ^2 is $\widehat{\sigma^2} = (1/n) \sum_{i=1}^n (X_i \bar{X})^2$. (5 marks)
- (iv) Show that the mle, $\hat{\mu}$, is an unbiased and consistent estimator for μ . (5 marks)
- (v) Show that the mle, $\widehat{\sigma}^2$, is a biased and consistent estimator for σ^2 . (5 marks)

- **5.** (a) Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:
 - (i) the Type I error of a test. (2 marks)
 - (ii) the Type II error of a test. (2 marks)
- (iii) the significance level of a test. (2 marks)
- (iv) the power function of a test (denoted $\Pi(\theta)$). (2 marks)
- (b) Suppose X_1, X_2, \ldots, X_n is a random sample from a Bernoulli distribution with parameter p. State the rejection region for each of the following tests:
 - (i) $H_0: p = p_0 \text{ versus } H_1: p \neq p_0.$ (2 marks)
 - (ii) $H_0: p = p_0 \text{ versus } H_1: p < p_0.$ (2 marks)
- (iii) $H_0: p = p_0 \text{ versus } H_1: p > p_0.$ (2 marks)

In each case, assume a significance level of α and that $\overline{X} = (X_1 + X_2 + \cdots + X_n)/n$ has an approximate normal distribution.

(c) Under the same assumptions as part (b), find the power function, $\Pi(p)$, for each of the tests:

(i)
$$H_0: p = p_0 \text{ versus } H_1: p \neq p_0.$$
 (4 marks)

(ii)
$$H_0: p = p_0 \text{ versus } H_1: p < p_0.$$
 (4 marks)

(iii)
$$H_0: p = p_0 \text{ versus } H_1: p > p_0.$$
 (3 marks)

In each case, you may express the power function, $\Pi(p)$, in terms of $\Phi(\cdot)$, the standard normal distribution function.

[Total: 25 marks]

- **6.** (a) State the Neyman-Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. (5 marks)
- (b) Let X_1, X_2, \ldots, X_n be a random sample from a Uniform $(0, \theta)$ distribution.
 - (i) Find the most powerful test at significance level α for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$, where $\theta_2 > \theta_1$ are constants. Show that the test rejects H_0 if and only if $\max(X_1, X_2, \dots, X_n) > k$ for some k.
 - (ii) Determine the power function, $\Pi(\theta)$, of the test in part (i). (5 marks)
- (iii) Find the value of k when $\alpha = 0.05$, n = 5 and $\theta = \theta_1 = 0.5$. (5 marks)
- (iv) Find $\beta = \Pr$ (Type II error) when n = 5, $\theta_1 = 0.5$ and $\theta = \theta_2 = 0.6$. (5 marks)