Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

21 June 2010 9:45 - 11:45

Answer any FOUR of the questions.

University-approved calculators may be used

- 1. This question explores the moment generating function of the normal distribution.
 - (i) Show that $\exp(t^2/2)$ is the moment generating function of the standard normal distribution. (5 marks)
 - (ii) Find the first four moments of the standard normal distribution by differentiating the moment generating function. (4 marks)
- (iii) Suppose that $Z \sim N(0, 1)$ and let $Y = \mu + \sigma Z$ for some scalar $\sigma > 0$. Find the moment generating function of Y. This is the form of the moment generating function of the $N(\mu, \sigma^2)$ distribution. (4 marks)
- (iv) Let $X_1 \sim N(\mu_1, \sigma_1^2)$, let $X_2 \sim N(\mu_2, \sigma_2^2)$, and assume that X_1 and X_2 are independent. Find the moment generating function of $S = X_1 + X_2$. (4 marks)
- (v) Use the linearity of expectation to find E(S) and Var(S). (4 marks)
- (vi) Use the uniqueness of the moment generating function to determine the distribution of S. (4 marks)

2. Suppose $\hat{\theta}$ is an estimator of θ . Define what is meant by the following:

(i) $\hat{\theta}$ is an unbiased estimator of $\hat{\theta}$;	(2 marks)
(ii) $\hat{\theta}$ is an asymptotically unbiased estimator of θ ;	(2 marks)
(iii) the bias of $\hat{\theta}$ (written as $\text{bias}(\hat{\theta})$);	(2 marks)
(iv) the mean squared error of $\hat{\theta}$ (written as MSE $(\hat{\theta})$);	(2 marks)
(v) $\hat{\theta}$ is a consistent estimator of θ .	(2 marks)

Let X_i denote the time that it takes student *i* to complete a take-home exam, and suppose that X_1, X_2, \ldots, X_n constitute a random sample from an exponential distribution with parameter β . Consider the following estimators for $\theta = 1/\beta$: $\hat{\theta}_1 = c \min(X_1, X_2, \ldots, X_n)$ and $\hat{\theta}_2 = 1/n \sum_{i=1}^n X_i$.

- (i) Determine the value of c (perhaps as a function of n) for which $\hat{\theta_1}$ is an unbiased estimator of θ . (4 marks)
- (ii) Determine the variance and MSE of the estimator, $\hat{\theta}_1$, from (i) as a function of the parameter θ . (4 marks)
- (iii) Determine the bias, variance, and MSE of $\hat{\theta}_2$ as a function of the parameter θ . (3 marks)
- (iv) Which of the two estimators $(\hat{\theta}_1 \text{ or } \hat{\theta}_2)$ is better and why? (4 marks)

(5 marks)

3. Let the random variable Y_i be the number of typographical errors on page *i* of a 400-page book (for i = 1, 2, ..., 400), and suppose that the Y_i 's are independent and identically distributed according to a Poisson distribution with parameter λ . Let the random variable X be the number of pages of this book that contain at least one typographical error. Suppose that you are told the value of X but are not told anything about the values of the Y_i .

- (i) Identify the probability distribution of X and write down its probability mass function in terms of λ . (5 marks)
- (ii) Write down the likelihood function of λ .
- (iii) Find the maximum likelihood estimator (MLE) of λ by maximizing the log likelihood function. (5 marks)
- (iv) Suppose that the data reveal that 25 of the 400 pages contain a typographical error. What is the MLE of λ ? (5 marks)
- (v) Show that you could have used the invariance property of maximum likelihood estimators to determine the MLE of λ . (5 marks)

4. Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables with the common probability density function (pdf):

$$f(x) = \theta_2 x^{\theta_2 - 1} \theta_1^{-\theta_2}$$

for $0 < x < \theta_1, \ \theta_1 > 0$ and $\theta_2 > 0$. Both θ_1 and θ_2 are unknown.

- (i) Calculate the cumulative distribution function, mean and variance corresponding to the given pdf. (5 marks)
- (ii) Write down the joint likelihood function of θ_1 and θ_2 . (5 marks)
- (iii) Determine the maximum likelihood estimator (MLE) of θ_1 . (5 marks)
- (iv) Determine the MLE of θ_2 . (5 marks)
- (v) Show that the MLE, $\hat{\theta}_1$, is a biased and consistent estimator for θ_1 . (5 marks)

5. Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:

- (i) the Type I error of the test. (2 marks)
- (ii) the Type II error of the test. (2 marks)
- (iii) the significance level of the test. (2 marks)
- (iv) the power function of the test (denoted $\Pi(\theta)$). (2 marks)

Suppose X_1, X_2, \ldots, X_n is a random sample from a Bernoulli distribution with parameter p. State the rejection region for each of the following tests:

- (i) $H_0: p = p_0$ versus $H_1: p \neq p_0$. (2 marks)
- (ii) $H_0: p = p_0$ versus $H_1: p < p_0$. (2 marks)
- (iii) $H_0: p = p_0$ versus $H_1: p > p_0$. (2 marks)

In each case, assume a significance level of α and that $\overline{X} = (X_1 + X_2 + \cdots + X_n)/n$ has an approximate normal distribution.

Under the same assumptions, find the power function, $\Pi(p)$, for each of the tests:

- (i) $H_0: p = p_0$ versus $H_1: p \neq p_0$. (4 marks)
- (ii) $H_0: p = p_0$ versus $H_1: p < p_0$. (4 marks)
- (iii) $H_0: p = p_0$ versus $H_1: p > p_0$. (3 marks)

In each case, you may express the power function, $\Pi(p)$, in terms of $\Phi(\cdot)$, the standard normal distribution function.

6. State the Neyman–Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. (5 marks)

Let X_1, X_2, \ldots, X_n be a random sample from a Bernoulli distribution with parameter p.

- (i) Find the most powerful test at level α for H_0 : $p = p_0$ versus $p = p_1$, where $p_1 > p_0$ are constants. Show that the test rejects H_0 if and only if $\sum_{i=1}^n X_i > k$ for some k. (5 marks)
- (ii) Determine the power function, $\Pi(p)$, of the test in part (i). (5 marks)
- (iii) Find the value of k when $\alpha = 0.05$, n = 5, $p_0 = 0.5$ and $p_1 = 0.6$. (5 marks)
- (iv) Find $\beta = \Pr$ (Type II error) when n = 5, $p_0 = 0.5$ and $p_1 = 0.6$. (5 marks)

END OF EXAMINATION PAPER