Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

21 June 2009 9:45 - 11:45

Answer any FOUR of the questions.

University-approved calculators may be used

1. A random variable X is said to have the Gumbel distribution, written $X \sim \text{Gumbel}(\mu, \beta)$, if its probability density function is given by

$$f_X(x) = \frac{1}{\beta} \exp\left(-\frac{x-\mu}{\beta}\right) \exp\left\{-\exp\left(-\frac{x-\mu}{\beta}\right)\right\}$$

for $-\infty < x < \infty$, $-\infty < \mu < \infty$ and $\beta > 0$.

(i) Show that the cumulative distribution function of X is

$$F_X(x) = \exp\left\{-\exp\left(-\frac{x-\mu}{\beta}\right)\right\}$$

for $-\infty < x < \infty$, $-\infty < \mu < \infty$ and $\beta > 0$.

(ii) Show that the moment generating function of X is

$$M_X(t) = \exp(\mu t)\Gamma(1 - \beta t)$$

for $t < 1/\beta$, where $\Gamma(\cdot)$ denotes the gamma function.

(iii) Show that

$$E(X) = \mu - \beta \Gamma'(1),$$

where $\Gamma'(\cdot)$ denotes the first derivative of $\Gamma(\cdot)$.

(iv) If $X_i \sim \text{Gumbel}(\mu, \beta)$, i = 1, 2, ..., n are independent random variables then shown that $\max(X_1, X_2, ..., X_n) \sim \text{Gumbel}(\mu + \beta \log n, \beta)$. (7 marks)

(7 marks)

(7 marks)

2. Suppose $\hat{\theta}$ is an estimator of θ . Define what is meant by the following:

(i) θ is an unbiased estimator of θ .	(2 marks)
(ii) $\hat{\theta}$ is an asymptotically unbiased estimator of θ .	(2 marks)
(iii) the bias of $\hat{\theta}$ (written as bias $(\hat{\theta})$).	(2 marks)
(iv) the mean squared error of $\widehat{\theta}$ (written as MSE $(\widehat{\theta})$).	(2 marks)
(v) $\hat{\theta}$ is a consistent estimator of θ .	(2 marks)
Suppose X_1, X_2, \ldots, X_n is a random sample from the Exp (λ) distribution estimators for $\theta = 1/\lambda$: $\widehat{\theta}_1 = (1/n) \sum_{i=1}^n X_i$ and $\widehat{\theta}_2 = (1/(n+1)) \sum_{i=1}^n X_i$	pution. Consider the following $_{1}X_{i}$.

- (i) Find the biases of $\hat{\theta}_1$ and $\hat{\theta}_2$. (4 marks)
- (ii) Find the variances of $\hat{\theta}_1$ and $\hat{\theta}_2$. (4 marks)
- (iii) Find the mean squared errors of $\hat{\theta}_1$ and $\hat{\theta}_2$. (3 marks)
- (iv) Which of the two estimators $(\hat{\theta}_1 \text{ or } \hat{\theta}_2)$ is better and why? (4 marks)

3. Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables with the common probability mass function (pmf):

$$p(x) = \theta (1 - \theta)^{x - 1}$$

for x = 1, 2, ... and $0 < \theta < 1$.

(i)	Write down the likelihood function of θ .	(5 marks)
(ii)	Find the maximum likelihood estimator (mle) of θ .	(6 marks)
(iii)	Find the mle of $\psi = 1/\theta$.	(3 marks)
(iv)	Determine the bias, variance and the mean squared error of the mle of ψ .	(8 marks)
(v)	Is the mle of ψ unbiased? Is it consistent?	(3 marks)

4. Suppose X_1, X_2, \ldots, X_n is a random sample from $Uni[a, b]$, where both a and b are unknown.		
(i) Write down the joint likelihood function of a and b .	(5 marks)
(ii) Show that the maximum likelihood estimator (mle) of a is $\hat{a} = \min(X_1, X_2, \dots, X_n)$.	(5 marks)
(iii) Show that the mle of b is $\hat{b} = \max(X_1, X_2, \dots, X_n)$.	(5 marks)
(iv) Show that the mle, \hat{a} , is a biased and consistent estimator for a .	(5 marks)
(v)) Show that the mle, \hat{b} , is also a biased and consistent estimator for b .	(5 marks)

5. Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:

- (i) the Type I error of the test.
 (2 marks)
 (ii) the Type II error of the test.
 (2 marks)
- (iii) the significance level of the test. (2 marks)
- (iv) the power function of the test (denoted $\Pi(\theta)$). (2 marks)

Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\theta, \sigma^2)$, where σ is not known. Calculate the power function, $\Pi(\sigma)$, for each of the following tests:

- (i) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$. (6 marks)
- (ii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma < \sigma_0$. (6 marks)
- (iii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$. (5 marks)

In each case, assume a significance level of α .

6. State the Neyman–Pearson test for $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. (5 marks)

Let X_1, X_2, \ldots, X_n be a random sample from a $N(\theta, \sigma^2)$ distribution, where σ^2 is assumed known.

- (i) Find the most powerful test at level α for $H_0: \theta = \theta_1$ versus $\theta = \theta_2$, where $\theta_1 < \theta_2$ are constants. Show that the test rejects H_0 if and only if $(1/n) \sum_{i=1}^n X_i > k$ for some k. (5 marks)
- (ii) Determine the power function, $\Pi(\theta)$, of the test in part (i). (5 marks)
- (iii) Find the value of k when $\alpha = 0.01$, n = 100, $\sigma = 1$ and $\theta_1 = 1$. (5 marks)
- (iv) Find $\beta = \Pr$ (Type II error) when $n = 100, \sigma = 1$ and $\theta_2 = 2$. (5 marks)

END OF EXAMINATION PAPER