Two hours

THE UNIVERSITY OF MANCHESTER

STATISTICAL METHODS

30 May 2008 2.00 - 4.00

Answer any FOUR of the questions.

Electronic calculators may be used, provided that they cannot store text.

1. For a continuous random variable X let $M_X(t) = E[\exp(tX)]$ denote its moment generating function (mgf).

(i) A random variable X is said to the have Laplace distribution, written $X \sim Laplace(a, b)$, if its probability density function is given by

$$f(x) = \frac{1}{2b} \exp\left(-\frac{|x-a|}{b}\right)$$

for $-\infty < x < \infty$. Show that the mgf of $X \sim Laplace(a, b)$ is

$$M_X(t) = \frac{\exp(at)}{1 - b^2 t^2}$$

for |t| < 1/b.

(7 marks)

- (ii) If $X \sim Laplace(0, b)$ then show that $|X| \sim Exp(1/b)$. (6 marks)
- (iii) If X_1 and X_2 are independent random variables then show that the mgf of $Y = aX_1 + bX_2$ can be written as $M_Y(t) = M_{X_1}(at)M_{X_2}(bt)$, where a and b are some constants. (6 marks)
- (iv) If $X_1 \sim Exp(\lambda_1)$ and $X_2 \sim Exp(\lambda_2)$ are independent random variables then show that $Y = \lambda_1 X_1 \lambda_2 X_2 \sim Laplace(0, 1).$ (6 marks)

2. Suppose $\hat{\theta}$ is an estimator of θ . Define what is meant by the following:

(i) $\hat{\theta}$ is an unbiased estimator of θ .	(2 marks)
(ii) $\hat{\theta}$ is an asymptotically unbiased estimator of θ .	(2 marks)
(iii) the bias of $\hat{\theta}$ (written as bias $(\hat{\theta})$).	(2 marks)
(iv) the mean squared error of $\hat{\theta}$ (written as MSE $(\hat{\theta})$).	(2 marks)

(v) $\hat{\theta}$ is a consistent estimator of θ . (2 marks)

Suppose X_1, X_2, \ldots, X_n is a random sample from the *Bernoulli(p)* distribution.

- (i) What is the distribution of $\hat{p} = (1/n) \sum_{i=1}^{n} X_i$? Write down its probability mass function. (3 marks)
- (ii) Show that \hat{p} is unbiased and consistent for p. (4 marks)
- (iii) If $\tilde{p} = (1/(n+1))(0.5 + \sum_{i=1}^{n} X_i)$ then show that \tilde{p} is biased and consistent for p. (4 marks)
- (iv) If n = 100 and p = 0.5 then which estimator $(\hat{p} \text{ or } \tilde{p})$ is the better estimator and why? (4 marks)

3. Consider the two independent random samples: X_1, X_2, \ldots, X_n from $N(\mu_X, \sigma^2)$ and Y_1, Y_2, \ldots, Y_m from $N(\mu_Y, \sigma^2)$, where μ_X and μ_Y are assumed known.

- (i) Write down the likelihood function of σ^2 . (4 marks)
- (ii) Find the maximum likelihood estimator (mle) of σ^2 . (7 marks)
- (iii) Show that the mle in part (ii) is an unbiased and consistent estimator for σ^2 . (8 marks)
- (iv) Find the mles of $\Pr(X_1 < Y_1)$ and $\Pr(X_1 + Y_1 < 1)$, where $X_1 \sim N(\mu_X, \sigma^2)$ and $Y_1 \sim N(\mu_Y, \sigma^2)$ are independent random variables. (6 marks)

- **4.** Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.
 - (i) Write down the likelihood function of μ and σ^2 . (5 marks)
 - (ii) Show that the maximum likelihood estimator (mle) of μ is $\hat{\mu} = \bar{X}$, where $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$ is the sample mean. (5 marks)
- (iii) Show that the mle of σ^2 is $\hat{\sigma^2} = (1/n) \sum_{i=1}^n (X_i \bar{X})^2$. (5 marks)
- (iv) Show that the mle $\hat{\mu}$ is an unbiased and consistent estimator for μ . (5 marks)
- (v) Show that the mle $\hat{\sigma^2}$ is a biased and consistent estimator for σ^2 . (5 marks)

5. Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:

- (i) the Type I error of the test. (2 marks)
- (ii) the Type II error of the test. (2 marks)
- (iii) the significance level of the test. (2 marks)
- (iv) the power function of the test (denoted $\Pi(\theta)$). (2 marks)

Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\theta, \sigma^2)$, where σ^2 is assumed unknown. Calculate the power function, $\Pi(\theta)$, for each of the following tests:

- (i) $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. (6 marks)
- (ii) $H_0: \theta = \theta_0$ versus $H_1: \theta < \theta_0$. (6 marks)
- (iii) $H_0: \theta = \theta_0$ versus $H_1: \theta > \theta_0$. (5 marks)

In each case, assume a significance level of α .

6. State the Neyman–Pearson lemma for testing $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$. (5 marks)

Let X_1, X_2, \ldots, X_n be a random sample from a $N(\theta, 1)$ distribution.

- (i) Find the most powerful test at level α for $H_0: \theta = \theta_1$ versus $\theta = \theta_2$, where $\theta_1 < \theta_2$ are constants. Show that the test rejects H_0 if and only if $(1/n) \sum_{i=1}^n X_i > k$ for some k. (10 marks)
- (ii) Find the value of k when $\alpha = 0.01$, n = 10 and $\theta_1 = 1$. (5 marks)
- (iii) Find $\beta = \Pr$ (Type II error) when n = 10 and $\theta_2 = 2$ in terms of the cdf of a standard normal random variable. (5 marks)

END OF EXAMINATION PAPER