MATH20802: STATISTICAL METHODS SECOND SEMESTER ANSWERS TO THE IN CLASS TEST

ANSWERS TO QUESTION 1

Let X denote an exponential random variable with its probability density function given by

$$f_X(x) = \exp(-x)$$

for x > 0.

(i) The moment generating function of X is

$$M_X(t) = \int_0^\infty \exp\left[-(1-t)x\right] dx$$
$$= \left[\frac{\exp\left[-(1-t)x\right]}{t-1}\right]_0^\infty$$
$$= 0 - \frac{1}{t-1}$$
$$= \frac{1}{1-t}.$$

(ii) The first four derivatives of $M_X(t)$ are

$$\begin{split} M_X'(t) &= \frac{1}{(1-t)^2}, \\ M_X''(t) &= \frac{2}{(1-t)^3}, \\ M_X'''(t) &= \frac{6}{(1-t)^4}, \\ M_X''''(t) &= \frac{24}{(1-t)^5}, \end{split}$$

so

$$E(X) = 1,$$

$$E(X^{2}) = 2,$$

$$E(X^{3}) = 6,$$

$$E(X^{4}) = 24.$$

(iii) The moment generating function of Y is

$$M_Y(t) = E [\exp(tY)]$$

$$= E [\exp(t(X_1 + \dots + X_n))]$$

$$= E [\exp(tX_1) \dots \exp(tX_n)]$$

$$= E \left[\exp(tX_1) \right] \cdots E \left[\exp(tX_n) \right]$$

$$= M_X(t) \cdots M_X(t)$$

$$= M_X^n(t)$$

$$= \frac{1}{(1-t)^n}.$$

(iv) The mean and variance of Y are

$$E[X_1 + \dots + X_n] = E(X_1) + \dots + E(X_n) = nE(X) = n$$

and

$$Var\left[X_{1}+\cdots+X_{n}\right]=Var\left(X_{1}\right)+\cdots+Var\left(X_{n}\right)=nVar(X)=n.$$

(v) Gamma distribution with parameters 1 and n.

ANSWERS TO QUESTION 2

An electrical circuit consists of four batteries connected in series to a lightbulb. We model the battery lifetimes X_1 , X_2 as independent and identically distributed $Uni(0,\theta)$ random variables. Our experiment to measure the operating time of the circuit is stopped when any one of the batteries fails. Hence, the only random variable we observe is $Y = \min(X_1, X_2)$.

(i) The cdf of Y is

$$Pr(Y \le y) = 1 - Pr [min (X_1, X_2) > y]$$

$$= 1 - Pr (X_1 > y) Pr (X_2 > y)$$

$$= 1 - Pr^2 (X > y)$$

$$= 1 - (1 - y/\theta)^2.$$

(ii) The likelihood function of θ is

$$L(\theta) = 2(\theta - y)/\theta^2$$

for $0 < y < \theta$. The likelihood function of θ can also be written as

$$L(\theta) = \frac{2(\theta - y)}{\theta^2} I\{0 < y < \theta\}$$

for $\theta > 0$.

(iii) The MLE of θ can be found using both the standard and indicator function approaches. Standard approach. The log-likelihood function is

$$\log L(\theta) = \log 2 + \log(\theta - y) - 2\log \theta$$

and

$$\frac{d\log L(\theta)}{d\theta} = \frac{1}{\theta - y} - \frac{2}{\theta}.$$

Setting $d \log L(\theta)/d\theta = 0$ gives $\hat{\theta} = 2y$. This is an MLE since

$$\frac{d^2 \log L(\theta)}{d\theta^2} \bigg|_{\widehat{\theta} = 2y} = -\frac{1}{(\theta - y)^2} + \frac{2}{\theta^2} \bigg|_{\widehat{\theta} = 2y} = -\frac{1}{y^2} + \frac{1}{2y^2} = -\frac{1}{2y^2} < 0.$$

Indicator function approach. Plot $L(\theta) = \frac{2(\theta-y)}{\theta^2} I\{0 < y < \theta\}$ versus θ . The graph will be flat zero if $\theta \le y$. When $\theta > y$,

$$L(\theta) = \frac{2(\theta - y)}{\theta^2}$$

and

$$\frac{dL(\theta)}{d\theta} = -\frac{2}{\theta^2} + \frac{4y}{\theta^3}$$

and setting this to zero given $\theta = 2y$. This solution corresponds to a maximum of the graph since

$$\left. \frac{d^2 L(\theta)}{d\theta^2} \right|_{\theta = 2y} = \left. \frac{4}{\theta^3} - \frac{12y}{\theta^4} \right|_{\theta = 2y} = \frac{1}{2y^3} - \frac{3}{4y^3} < 0.$$

Hence, the graph attains its maximum at $\theta = 2y$ and this is the MLE.

(iv) The bias of $\hat{\theta}$ is

$$\begin{aligned} Bias\left(\widehat{\theta}\right) &= E\left(\widehat{\theta}\right) - \theta \\ &= \int_0^\theta 2y \frac{2(\theta - y)}{\theta^2} dy - \theta \\ &= \frac{4}{\theta^2} \int_0^\theta \left(\theta y - y^2\right) dy - \theta \\ &= \frac{4}{\theta^2} \left[\frac{\theta y^2}{2} - \frac{y^3}{3}\right]_0^\theta - \theta \\ &= \frac{4}{\theta^2} \left[\frac{\theta^3}{2} - \frac{\theta^3}{3}\right] - \theta \\ &= \frac{2\theta}{3} - \theta \\ &= -\frac{\theta}{3}, \end{aligned}$$

so the estimator is biased.

(v) The variance of $\hat{\theta}$ is

$$Var\left(\widehat{\theta}\right) = E\left(\widehat{\theta}^{2}\right) - E^{2}\left(\widehat{\theta}\right)$$

$$= \int_{0}^{\theta} 4y^{2} \frac{2(\theta - y)}{\theta^{2}} dy - \frac{4\theta^{2}}{9}$$

$$= \frac{8}{\theta^{2}} \int_{0}^{\theta} \left(\theta y^{2} - y^{3}\right) dy - \frac{4\theta^{2}}{9}$$

$$= \frac{8}{\theta^{2}} \left[\frac{\theta y^{3}}{3} - \frac{y^{4}}{4}\right]_{0}^{\theta} - \frac{4\theta^{2}}{9}$$

$$= \frac{8}{\theta^{2}} \left[\frac{\theta^{4}}{3} - \frac{\theta^{4}}{4}\right] - \frac{4\theta^{2}}{9}$$

$$= \frac{2\theta^{2}}{3} - \frac{4\theta^{2}}{9}$$

$$= \frac{2\theta^{2}}{9}.$$

So, the mean squared error of $\widehat{\lambda}$ is

$$MSE\left(\widehat{\theta}\right) = Var\left(\widehat{\theta}\right) + Bias^2\left(\widehat{\theta}\right) = \frac{2\theta^2}{9} + \frac{\theta^2}{9} = \frac{\theta^2}{3}.$$