MATH20802: STATISTICAL METHODS
SECOND SEMESTER
ANSWERS TO THE IN CLASS TEST

ANSWERS TO QUESTION 1
The following solution is correct if X has the pdf
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- 29/2T(a)2) (12 — 1)/ (a/2)T(a/2) by using the fact T'(s + 1) = sI'(s)

(a/2+1) by definition of gamma function

= a(l—2t)"¥21,

(i) We have E(Y) = Mx(1) since E(Y) = FE(exp(X)). We have E(Y?) = Mx(2) since E(Y?) =
E(exp(2X)).

(iii) From (ii), we have
E(Y) = Mx(1) = a(—1)"*/*"!
and
E(Y?) = Mx(2) = a(=3)"%/?71,
So,
Var(Y) = a(=3)"%*1 —a?(-1)7772,



(iv) We have

Mx,+x, (t) = b [eXp (tXl T tX2)]
= FElexp(tX))] E [exp(tX2)]

= aiag (]_ - 21&)70’1/27&2/272 .

(v) It follows from (iv) that X; + X5 is a gamma random variable with A = 1/2 and a

(a1+(12)/2+2 ifa1a2 =1.
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(i) We have E(Y) = Mx(1) since E(Y) = E(exp(X)). We have E(Y?2) = Mx(2) since E(Y?) =

E(exp(2X)).

(iii) From (ii), we have

and

So,

Var(Y) = (—=3)%% — (-1).



(iv) We have

MX1+X2 (t) = F [exp (tXl + tXQ)]

= FEl[exp(tX1)] E [exp(tX2)]
= (1—2t)" /2 (1 —2)" /2
= (1- Qt)—(al+a2)/2 )

(v) It follows from (iv) that X + X2 is a chisquare random variable with degree of freedom equal
to a1 + as.



ANSWERS TO QUESTION 2

Suppose X1, Xo, ..., X, is a random sample from N (p, 002), where both ; and o2 are unknown
parameters and ¢ is a fixed known constant.

(i) The joint likelihood function of p and o2 is
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The joint log likelihood function of x and o? is
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The first order partial derivatives of this with respect to p and o are
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respectively.

(ii) Using equation (1), one can see that the solution of dlog L/Ou=01is p=X = (1/n) X", X;.
N2
(iii) Using equation (2), one can see that the solution of dlog L/dc = 0is 0% = (1/(nc)) ¥, (XZ- - X) .

(iv) The mle, fi, is an unbiased and consistent estimator for p since
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and

Var (i) = Var <;§:Xz>



(v) The mle, 02, is a biased and consistent estimator for o2 since
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Note that we have used the fact (n—1)5?/ (co?) ~ x2_;. Furthermore, S? = (1/(n—1)) 7, (Xi — X)
denotes the sample variance.



