MATH20802: STATISTICAL METHODS SECOND SEMESTER IN CLASS TEST - 22 APRIL 2009

YOUR FULL NAME:

This test contains two questions. Please answer ALL of the questions. You must fully explain all your answers. This test will account for 20% of your final mark.

Each paper will be graded by myself. If you would have complaints about your mark please address them directly to me.

Good luck.

1. For a random variable X let $M_X(t) = E[\exp(tX)]$ denote its moment generating function (mgf). Derive the mgfs of the following random variables:

- (i) $X \sim Geom(\theta)$ with the pmf $p(x) = \theta(1-\theta)^{x-1}$ for $x = 1, 2, \dots$ (2 marks)
- (ii) $X \sim Po(\theta)$ with the pmf $p(x) = \theta^x \exp(-\theta)/x!$ for $x = 0, 1, \dots$ (2 marks)
- (iii) $X \sim Laplace(a, b)$ with the pdf $f(x) = (1/(2b)) \exp(-|x a|/b)$ for $-\infty < x < \infty$. (2 marks)
- (iv) $X \sim Exp(\lambda)$ with the pdf $f(x) = \lambda \exp(-\lambda x)$ for x > 0. (2 marks)
- (v) $X \sim Gumbel(\mu, \beta)$ with the pdf $f(x) = (1/\beta) \exp[-(x-\mu)/\beta] \exp\{-\exp[-(x-\mu)/\beta]\}$ for $-\infty < x < \infty$. (2 marks)

- 2. Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.
 - (i) Write down the joint likelihood function of μ and σ^2 . (2 marks)
 - (ii) Show that the maximum likelihood estimator (mle) of μ is $\hat{\mu} = \bar{X}$, where $\bar{X} = (1/n) \sum_{i=1}^{n} X_i$ is the sample mean. (2 marks)
- (iii) Show that the mle of σ^2 is $\widehat{\sigma^2} = (1/n) \sum_{i=1}^n (X_i \bar{X})^2$. (2 marks)
- (iv) Show that the mle, $\hat{\mu}$, is an unbiased and consistent estimator for μ . (2 marks)
- (v) Show that the mle, $\widehat{\sigma^2}$, is a biased and consistent estimator for σ^2 . (2 marks)