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Monotonicity of a Power Function: an Elementary 
Probabilistic Proof 

DAVID GILAT* 

Abstract 

It is poiinted out that in many one-sided testing situations for a 
r-eal-valued parameter 0, the monotonicity of the power function 
hinges on the stochastic order of the underlying family of distribu- 
tions [FJ] rather than on the stronger property of monotone 
likelihood ratio of the family. An elementary proof, accessible to 
students of introductory probability and statistics, is presented. 

KEY WORDS: Power function; Sums of independent riandom 
var-iables; Stochastic order; Distributions with given rnarginals. 

1. Introduction 

It has been customary in introductory probability 
and statistics texts, to interrupt the discussion of 
probability by a chapter on statistical inference based 
on the binomial distribution (e.g., [1] and [2]). This 
practice serves the desirable purpose of introducing 
the basic ideas of statistical methodology at the 
earliest possible stage for the student. However, 
when it comes to one-sided tests for proportions or 
later for general means as well as other parameters, 
the monotonicity of the power function is taken for 
granted or at best argued on intuitive grounds and 
illustrated numerically and graphically for a particular 
test. 

Consider, e.g., the binomial case, and let Sn, be the 
number of successes in n independent binomial trials 
with probability 0 (O < 0 < 1) of success on each trial. 
The good (nonrandomized) tests for 

Ho: 0 c 00 vs Hl: 0 > 00 

are, of course, those which reject Ho in favor of H1 
when Sn > c, where c is some fixed integer between 0 
and n. The power function - = 7, of such a test is 

7(0) = P0[Sn ? c]- (1. 1) 

Obviously, the larger the probability, 0, of success in 
a single trial, the more likely it is to obtain a large 
number of successes in any given finite number of 
trials. A similar statement is typically presented in 
introductory textbooks as an argument for the mono- 
tonicity of -, while more advanced texts, like [3] and 
[4], deduce it from monotone likelihood ratio via the 
Neyman-Pearson lemma. It is the purpose of this note 
to provide an elementary proof of this "obviousity" 
and thus establish the monotonicity of the power- 
function (1.1) without recourse to either Neyman- 
Pearson or monotone likelihood ratio. The method of 

proof applies to one-sided situations, whenever the 
test statistic has a representation as the sum, Sn, of 
independent random variables with a common distri- 
bution Fo, and the family [F0] satisfies 

1 - Fol(t) c 1 -- Fo,(t) (1.2) 

for all t, whenever 01 < 02. A one-parameter family 
[F0], of distributions which satisfies (1.2) is said to be 
stochastically increasing. It is thus argued that mono- 
tonicity of 7(0) = PO[S, ?- c] does not require the full 
force of monotone likelihood riatio. The strictly 
weaker ([4], p. 75) stochastic order, (1.2), of the 
underlying family of distributions of a single (possibly 
transformed) observation is sufficient. 

2. The Binomial Case 

Observe that in this case 
n 

7()= P0[Sn ?_C = I' ($)0Ik(l - 0)ni-k (2.1) 
hk=c (k( 

is simply a polynomial in 0. When 7(0) is expressed in 
ascending powers of 0, some of the coefficients are 
positive while some are negative, so that monotonic- 
ity of 7(0) for 0 ' 0 c 1 is not in evidence at all. 

Instead of viewing 7(0) as a polynomial, consider a 
sequence, (Ul, . . . , Un) of n independent random 
variables with a uniform distribution on the unit 
interval [0, 1]. For each fixed 0, 0 ? 0 ? 1, observe 
which of the Ui's do not exceed 0, and let Sn(0) be the 
number of them. Clearly, S?l(0) has the binomial (n, 0) 
distribution. Furthermore, for 0 ? a < /3 ? 1, the 
joint distribution of S,, Sn(a) and T, SJl(13) is such 
that 

Pr [Sn < Tn]- 1 

and 

Pr [S?l < Tn] > Pr [a < U1 (2.2) 

a, < Un C /3] 

n 

= Pr [ae < Ui c< / = (/ - 
at)n > O. 

i =l 

Thus for every 0 < c < n, the event [Sn ? c] strictly 
(with positive probability to spare) implies the event 
[Tn ? c]. Consequently, 

7(oa) = Pr [Sn ? c] < Pr [T, ?- c] = */3), 

which demonstrates the strict monotonicity of the 
power function - on [0, 1]. 

This elegant argument, which I learned from Erich 
Lehmann, does not seem to generalize to situations 
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other than the binomial. An alternative approach to 
the binomial case, later to be generalized, therefore, 
is presented next. For 0 c a < /8 c 1, consider a pair 
(X, Y) of random variables whose joint distribution 
given by Pr [X = 0, Y = 0] - 1 - /3, Pr [X = 0, Y = 1] 
= 3 - a, and Pr [X = 1, Y - 1] a, is summarized 
in the following table. 

Y 
0 1 X-marginal 

x 
O 1 - /3- 1 -a 
1 0 a a 

Y-rnarginal 1 - /3 /3 

As is evident fi-om this table, X and Y have the 
binomial (1, a) and (1, /3) as their respective marginal 
distributions. Furthermore, the joint distribution of 
(X, Y) is such that 

Pr [X Y Y] = I and Pr [X < Y] = /3 - a > 0. (2.3) 

To conclude the argument, take n independent obser- 
vations, (X1, Y1), . . . , (X?l, Y), on the pair (X, Y), let 
S, = XI + + X , and let Tn = Y1 + + Y .Then 
marginally Sn, and Tn have, respectively, the binomial 
(n, a) and (n, /) distributions, while jointly, the pair 
(S?l, T?) satisfies 

Pr [Sn ' Tii] = 1 
and 

Pr [Sn < Tn] >- Pr [Xl < Yl, .. , Xn < yii] (2.4) 
n 

- Hl Pr [Xi < YJ = (/3 - a) > 0. 

Finally, from (2.4) one proceeds exactly as in the 
previous proof from (2.2). 

3. The General Case 

The two different proofs presented above for the 
binomial case have an important common ingredient. 
The underlying idea in both is the construction of a 
probabilistic experiment on which the given random 
variables, S,, and Tn, can be jointly realized in such a 
way that Sn never exceeds Tn. In the first proof the 
experiment consists of n independent observations on 
a uniform random variable, whereas in the second 
proof, the probabilistic setup is formed by n inde- 
pendent observations on the special pair (X, Y). It 
will now be shown that a suitable joint distribution 
can be constructed not only for the binomial case but, 
in fact, for any two random variables whose distribu- 
tion functions satisfy the relation (1.2). To state the 
result, let F be the distribution function of the random 
variable X, and let G be the distribution function of Y. 

(A) Proposition: If 1 - F(t) ' 1 - G(t) for all t (i.e., 
if Y is stochastically larger than X), then the pair 

(X, Y) admits a joint distribution H, with the pre- 
scribed marginals F and G, for which the event [X < 
Y] has probability 1, and, unless F = G, the event [X 
< Y] has positive probability. 

This proposition is well-known. Its standard proof 
(e.g., [4], p. 73, Lemma 1), however, is inaccessible 
to students befoie they i-each measuie-theoretic prob- 
ability and statistical theory. An alternative, more 
elementary, and perhaps new proof of (A) is, there- 
foie suggested here. 

As is customary, wi-ite a A b for the irlinimum of 
the numbers a and b. Given the distribution functions 
F and G, define the function H on the plane by 

H(x, y) = F(x) A G(y). (3.1) 

It is easily seen that H is a two-dimensional distribu- 
tion function having F and G foi- its marginals. Next 
let (X, Y) be a pair of iandom variables with the joint 
distribution H. Then for any xl < x2 and Yi < Y2, 

Pr[x1 <X?x2,yl < Y?Y2] (3.2) 

= H(x2, Y2) - H(x2, Y1) - H(xl, Y2) + H(xl, yl) 

= F(x2) A G(y2) - F(x2) A G(yl) 

- F(xl) A G(y2) + F(xl) A G(yl). 

Finally, observe that under the condition F - G, 
when the rectangle (xl, x2] x (yl, Y21 is situated 
(strictly) below the main diagonal D = {(x, y): x = y} 
of the plane (i.e., when x1 > Y2), then, since F is 
nondecreasing, the last expression in (3.2) reduces to 
G(y2) - G(yl) G(y2) + G(y1) = 0. Consequently, 
the event [X Y f] has probability 1, under- H. 
Similarly, it can be argued that unless F = G, the H 
piobability of the event [X Y] is strictly less than 1, 
which completes the proof of (A). 

(B) Corollary: Let SW, be the sum of n independent 
observations on the random variable X, and let T,l be 
the sum of n independent observations on the random 
variable Y. If Pr [X > t] ? Pr [Y > t] for all t, then Pr 
[Sn > t] c Pr [ TI, > t] for all t. Furthermore, unless X 
and Y have the same distribution, the last inequalities 
are sti-ict for all values of t for which Pr [Tn > t] > 0. 

Proof: (B) is argued from (A) in exactly the same 
way as, in the binomial case, (2.4) was argued from 
(2.3). 

4. Concluding Remarks 

(i) The distribution of S?, in (B) is of course the 
n-fold convolution of the distribution of X. In this 
terminology, (B) merely says that stochastic order is 
preserved under convolution. The purpose of this 
note was to provide an elementary proof of this 
known fact and to irelate it to the monotonicity of the 
power function whenever the test statistic is of a 
suitable structur-e. 

(ii) For arbitrary distribution functions F and G, the 
two-dimensional distribution function H defined by 
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(3.1) was first introduced by Hoeffding [8] and later 
independently rediscovered by Frechet [7] as the 
maximal distribution in the plane with given margin- 
als F and G. Feller ([6], p. 166) refers to H as the 
Frechet maximal distribution. H has many interesting 
properties. For example, the L1 distance, E X - Y |, 
between the random variables X and Y with respec- 
tive marginal distributions F and G, is minimized 
when their joint distribution is H. This fact is reesta- 
blished by Dubins and Meilijson ([5], Lemma 3.2.1) in 
their study of stability of certain optimization prob- 
lems. More recently Schaffer [9] has shown that the 
expected range, E[X1 V V Xk) - (X1 A ... A Xk)], 
of a finite-dimensional random vector (X1, . . ., Xk) 
with prescribed marginals F1, . . .F, k, is minimized, 
when the joint distribution of (X1, . . . , Xk) is given 
by H(x1, . . ., Xk) = F1(x,) A ... A Fk(xk). Some new 
properties of H have most recently been obtained by 
Tchen [10]. 

[Received Jantiai-y 13, 1976. Revised November4 8, 1976.] 
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Construction of a Markov Chain with Given Stationary 
Distribution 

FRED J. CONNELL* 

Abstract 

Given ai rational, finite probability vector, a Markov chain is 
constructed having the given vector as its stationary distribution. 

KEY WORDS: Stationary distribution; Markov chain. 

Given finite probability vector P = [Pi, P2, 
PkI, with each pi rational, we construct a Markov 
chain whose stationary distribution is P. Let N be a 
common denominator of the pi. Write pi = ni/N, i = 
1, 2, . . ., k, and partition the set {O, 1, . .. , N - 1} 
into k subsets Sl, S2, . . . , Sk of cardinality nl, n2, 
... . nk, respectively. The sets Si will be considered 
to be the states of a Markov chain. Fix an integer m, 
1 ? m < N. If the system is in state Si at a given 
moment, choose at random one of the integers n E Si. 
Then transition to state Sj occurs if n + m mod N is 
an element of Sj. 

If m is relatively prime to N, the Markov chain so 
constructed is irreducible and has the given vector P 
as its stationary distribution. The proof is an interest- 
ing exercise. 

For example, given the probability vector P 
[5 2], we take N = 10. We might partition the set 

[0, 1, . . ., 9] into subsets S, = [0, 5], S2 = [3, 6, 9], 
and S3 [1, 2, 4, 7, 81, and choose m 1. Focusing 
attention on state S2, we see 3 + 1 = 4 E S3, 6 + 1 = 
7 E S3, and 9 + 1 = 0 E S1. ThusP21 p P22 0, and 
P23 3, where the pij are the transition probabilities. 
We find 

O 12 
i]=30 32 , 

1 2 2 

and P is the probability eigenvector for this matrix. 

[Received August 30, 1976. Revised December 16, 1976.] 
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