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Extreme value analysis of electricity

demand in the UK

Stephen Chan and Saralees Nadarajah*

School of Mathematics, University of Manchester, Manchester M13
9PL, UK

For the first time, an extreme value analysis of electricity demand in the
UK is provided. The analysis is based on the generalized Pareto distribu-
tion. Its parameters are allowed to vary linearly and sinusoidally with
respect to time to capture patterns in the electricity demand data. The
models are shown to give reasonable fits. Some useful predictions are
given for the value at risk of the returns of electricity demand.
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I. Introduction

Electricity demand for the UK has been studied by
many authors: Psiloglou et al. (2009) identified tem-
peratures, thermal comfort levels, weekly effects,
holiday effects and other economic, social and demo-
graphic factors as explaining electricity demand in
London, UK; Papadopoulos et al. (2011) studied
electricity demand with electric cars in 2030 for the
UK; Al-Qahtani and Crone (2013) proposed a multi-
variate k nearest neighbour regression method for
forecasting electricity demand for the UK.
Often what is of interest is the peak of electricity

demand. As pointed out by Sigauke et al. (2013),
peak electricity demand modelling

is a policy concern for countries throughout
the world. Many countries are investing heav-
ily in the construction of new (reserve) gen-
erating plants in order to increase electricity
supply during peak demand periods.

Statistical analysis of peaks involves the use of
extreme value models. We are not aware of any study

applying extreme value models for electricity
demand in the UK. Even globally, there have been
only a few studies applying extreme value models for
electricity demand. The ones we are aware of are the
study of Chikobvu and Sigauke (2013) that modelled
the influence of temperature on average daily elec-
tricity demand in South Africa using a piecewise
linear regression model and the generalized extreme
value theory; and the study of Sigauke et al. (2013)
that modelled extreme daily increases in peak elec-
tricity demand for South Africa using the generalized
Pareto distribution.
However, there have been studies applying

extreme value models to other aspects of electricity:
electricity spot price modelling at work for the EEX
Phelix Base electricity price index (Klüppelberg
et al., 2010); modelling of electricity pool prices
from the Australian National Electricity Market
(Dev and Martin, 2014); modelling of extreme
events in electricity spot markets in Australia
(Herrera and Gonzalez, 2014).
This is the first article modelling extreme values of

electricity demand for the UK. We use the
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generalized Pareto distribution to model the extreme
values as in Sigauke et al. (2013) andDev andMartin
(2014). But one important distinction is that our
models explain how the extremes of electricity
demand vary with respect to time. This feature was
not accommodated in the models considered in
Sigauke et al. (2013) and Dev and Martin (2014).
The use of the generalized Pareto distribution to

model extreme values is theoretically motivated as
stated in Section II. There are other distributions for
modelling extreme values like the generalized
extreme value distribution used in Chikobvu and
Sigauke (2013). But the use of this distribution
wastes data as well known. The generalized Pareto
distribution uses much more of the data.
The contents of this article are organized as fol-

lows: Models based on the generalized Pareto dis-
tribution and procedures for fitting to the UK
electricity demand data (Section II, Chan and
Nadarajah, 2014) are discussed in Section II. The
results based on the fitting of these models are dis-
cussed in Section III. Finally, some conclusions are
noted in Section IV.

II. Models

Let X denote a random variable. We say X takes an
extreme value if X > u for some high threshold u.
Extreme values in this context could be high values
of the returns of electricity demand or high values of
the negative returns of electricity demand.
Pickands (1975) developed much asymptotic the-

ory for the extreme values X. According to that
theory, if certain regularity conditions are satisfied
and u is sufficiently large then

PrðX > xþ ujX > uÞ � 1þ �
x

σ

h i�1=�
; (1)

where σ > 0 is the scale parameter, �1 < � < 1
is the shape parameter and 1þ �x=σ > 0. Rearranging
Equation 1, we can express the distribution function of
X as

FðxÞ ¼ PrðX < xÞ � 1� p 1þ �
x� u

σ

h i�1=�
(2)

for u � x < 1 if � � 0 and u � x � uþ σ=� if
� < 0, where p ¼ PrðX > uÞ. The model given by

Equation 2 is known as the generalized Pareto
model.
Chan and Nadarajah (Section II, 2014) noted that

the extreme returns of electricity demand show some
evidence of seasonality and trend. To see if season-
ality is significant we fitted the following models:

Model S1: X is distributed according to Equation 2
with σ fixed and ξ fixed;

Model S2: X is distributed according to
Equation 2 with σ ¼ exp½aþ b sinðπM=12Þ þ
c cosðπM=12Þ� and ξ fixed, where M denotes
the month number (1 for January and 12 for
December);

Model S3: X is distributed according to
Equation 2 with σ fixed and � ¼ dþ
e sinðπM=12Þ þ f cosðπM=12Þ, where M
denotes the month number (1 for January and
12 for December);

Model S4: X is distributed according to
Equation 2 with σ ¼ exp½aþ b sinðπM=12Þ þ
c cosðπM=12Þ� and � ¼ d þ e sinðπM=12Þþ
f cosðπM=12Þ, where M denotes the month
number (1 for January and 12 for December).

To see if trend is significant we fitted the following
models:

Model T1: X is distributed according to Equation 2
with σ fixed and ξ fixed;

Model T2: X is distributed according to Equation 2
with σ ¼ exp g þ h Y � 2010ð Þ½ � and ξ fixed,
where Y denotes the year;

Model T3: X is distributed according to Equation 2
with σ fixed and � ¼ sþ t Y � 2010ð Þ, where Y
denotes the year;

Model T4: X is distributed according to Equation 2
with σ ¼ exp g þ h Y � 2010ð Þ½ � and � ¼ sþ t
Y � 2010ð Þ, where Y denotes the year.

Note that S1 and T1 are the same models.
Each model was fitted by the method of maxi-

mum likelihood. Discrimination among the fitted
models S1–S4 (and that among the fitted models
T1–T4) was performed using the likelihood ratio
test (Cox and Hinkley, 1974). The value of u was
chosen by plotting the empirical estimate of
E X � ujX > uð Þ versus u known as the mean resi-
dual life plot.
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III. Results and Discussion

The mean residual plots for the returns and the nega-
tive returns are shown in Fig. 1. The u for the returns
(respectively, negative returns) can be chosen as u ¼
0:115 (respectively, u ¼ 0:076). Hence, high returns
(respectively, negative low returns) can be taken as
those returns exceeding 0.115 (respectively, 0.076).
The auto correlation function plot of all returns

(respectively, all negative returns) exceeding 0.115
(respectively, 0.076) is shown in Fig. 2. This figure
shows evidence to support the fact that all the high
returns (or, all thenegative low returns) are independent.
We also tested for no serial correlation usingDurbin and
Watson’s method. This gave the p-values of 0.12 and
0.43 for high returns and negative low returns, respec-
tively.Hence, themodels in Section II can befitted to all
high returns as well as all negative low returns.

Models S1–S4 and T1–T4 were fitted by the
method of maximum likelihood. The para-
meter estimates, SE and the log-likelihoods
for the high and low returns are shown in
Tables 1 and 2 of Chan and Nadarajah
(2014). The SEs were computed by inverting
the observed information matrix of the max-
imum likelihood estimates (Cox and Hinkley,
1974).

The best model among models from T1 to T4 (or, S1
to S4) as shown in Table 1 of Chan and Nadarajah
(2014), is model T2 (or, S2), which is determined by
the standard likelihood ratio test. This shows that
there is a significant downward trend and a signifi-
cant seasonality in the scale of the high returns. We
also fitted a model that combines the trend and
seasonality:
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Fig. 1. Mean residual plots for the returns (left) and the negative returns (right). The y-axes are in log scale
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Fig. 2. Auto correlation function plots of the high returns (left) and the negative low returns (right)
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X is distributed according to Equation 2
with σ ¼ exp aþ b sin πM=12ð Þ þ c cos½
πM=12ð Þ� þ d Y � 2010ð Þ and ξ fixed,
where M denotes the month number (1 for
January and 12 for December) and Y
denotes the year.

We refer to this model as S2T2. The parameter
estimates were �̂ ¼ �1:754� 10�1 4:717� 10�2

� �
,

â ¼ �5:854 2:271� 10�1
� �

, b̂ ¼ 8:322� 10�1

2:208� 10�1
� �

, ĉ ¼ �4:779� 10�1 1:032 �ð
10�1Þ, d̂ ¼ �5:210� 10�4 2:790� 10�4

� �
with log

L ¼ 1508:758. Clearly, model S2T2 is a significant
improvement on models S2 and T2. Hence, it can be
chosen as the best model for high returns. Using Table
2 of Chan and Nadarajah (2014), the best model for
negative low returns was chosen, that is, model S3.
The probability and quantile plots for the best fitting
models (S2T2 for high returns and S3 for negative
low returns) are shown in Figs 3 and 4. The plots

show that the best fitting models describe the data
reasonably.
The estimates of value at risk with probability q

for the two best fitting models are

VaRq� uþ1

�̂

�
exp

�
âþ b̂sin

�
πM

12

�
þ ĉcos

�
πM

12

��

þ d̂ðY �2010Þ
	h

p�̂ð1�qÞ��̂�1
i

and

VaRq � uþ σ̂

d̂ þ ê sin πM=12ð Þ þ f̂ cos πM=12ð Þ
p

1� q

� �d̂þê sin πM=12ð Þþ f̂ cos πM=12ð Þ
� 1

" #
:

The former is the value at risk for high returns. The
latter is the value at risk for negative low returns. The
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Fig. 3. Probability plots for the high returns (left) and the negative low returns (right)
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Fig. 4. Quantile plots for the high returns (left) and the negative low returns (right)
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plots of these estimates from January 2010 to
December 2017 are shown in Fig. 5. Also shown in
the plots are the observed data from January 2010 to
September 2013. The predictions given from
October 2013 to December 2017 can be useful for
practitioners. In particular, they can be useful for
policymakers about how extreme day to day changes
in electricity demand can become. Such predictions
based on value-at-risk estimates for electricity spot
markets in Australia are given in Herrera and
Gonzalez (2014).
The value at risk for high returns appears largest

for summer months and smallest for winter months.
The value at risk for negative low returns also
appears largest for summer months and smallest for
winter months. To the best of our knowledge, these
findings are new and have not been noted by other
researchers. The common finding of other research-
ers has been that the electricity demand (not its
returns) is largest for winter months and smallest
for summer months. Our findings are in sharp con-
trast (but do not contradict the common finding) and
can be useful for policymakers with respect to elec-
tricity demand.

IV. Conclusions

We have used models based on the generalized
Pareto distribution to explain how the extremes of
the returns of electricity demand in the UK vary with
respect to time. Some of the main conclusions are as
follows: the high returns of electricity demand show
a downward trend in scale and seasonality in
scale; the negative low returns of electricity

demand show seasonality in shape but no significant
trends.
A future work is to extend the models in Section

II to accommodate factors like temperature and
holiday effects. Another is to consider neural net-
works and time series models for electricity demand
in the UK.
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