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SOLUTION TO QUIZ PROBLEM 6

Suppose X1, X2, . . . , Xn is a random sample from Uni[0, θ]. Let Z = max (X1, X2, . . . , Xn). The
cdf of Z is

FZ(z) = Pr [max (X1, X2, . . . , Xn) ≤ z]
= Pr [X1 ≤ z,X2 ≤ z, . . . ,Xn ≤ z]
= Pr [X1 ≤ z] Pr [X2 ≤ z] · · ·Pr [Xn ≤ z]
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θ
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So the pdf of Z is

fZ(z) =
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θn

for 0 < z < θ. Hence, the bias of Z as an estimator of θ is

Bias(Z) = E(Z)− θ
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The variance of Z is

Var(Z) = E
(
Z2
)
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The MSE of Z is

MSE(Z) = θ2
n

(n+ 1)2(n+ 2)
+

[
θ

n+ 1

]2
which approaches zero as n→∞. Hence, Z is consistent for θ.
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