Two hours

Statistical tables to be provided

THE UNIVERSITY OF MANCHESTER

INTRODUCTION TO STATISTICS

20 May 2019 14.00 - 16.00

Answer <u>ALL FOUR</u> questions in Section A (10 marks each) and <u>TWO</u> of the <u>THREE</u> questions in Section B (20 marks each). If more than <u>TWO</u> questions from Section B are attempted, then credit will be given for the best <u>TWO</u> answers.

Electronic calculators may be used in accordance with the University regulations

© The University of Manchester, 2020

SECTION A

Answer $\underline{\mathbf{ALL}}$ four questions

A1. (a) Suppose that we have the following sample of observations

 $1.75,\, 0.77,\, 0.39,\, 0.34,\, 0.07,\, 0.58,\, -0.54,\, -2.78,\, 0.75,\, -0.68$

Compute the following

- (i) sample mean;
- (ii) sample variance;
- (iii) sample median;
- (iv) sample first quartile;
- (v) sample third quartile;
- (vi) sample range.

[1 marks]

[1 marks]

[1 marks]

[1 marks]

[1 marks]

[1 marks]

For computing the quartiles, use the fact that the pth quartile is

$$Q(p) = x_{(r')} + \left\{ p(n+1) - r' \right\} \left\{ x_{(r'+1)} - x_{(r')} \right\},$$

where r' = [p(n+1)] and n is the sample size.

(b) Let x_1, x_2, \ldots, x_n denote a data set and let $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ denote the order statistics in ascending order. Show that

sample third quartile =
$$\begin{cases} x_{(3m)} + \frac{3}{4} \left(x_{(3m+1)} - x_{(3m)} \right), & \text{if } n = 4m, \\ x_{(3m)}, & \text{if } n = 4m - 1, \\ x_{(3m-1)} + \frac{1}{4} \left(x_{(3m)} - x_{(3m-1)} \right), & \text{if } n = 4m - 2, \\ x_{(3m-2)} + \frac{1}{2} \left(x_{(3m-1)} - x_{(3m-2)} \right), & \text{if } n = 4m - 3, \end{cases}$$

where m is an integer greater than or equal to 1.

[4 marks]

[Total 10 marks]

A2. (a) Suppose $\hat{\theta}$ is an estimator of θ based on a random sample of size *n*. Define what is meant by the following:

- (i) $\hat{\theta}$ is an unbiased estimator of θ ;
- (ii) the bias of $\hat{\theta}$ (written as $\text{bias}(\hat{\theta})$);
- (iii) the mean squared error of $\hat{\theta}$ (written as $MSE(\hat{\theta})$);
- (iv) $\hat{\theta}$ is a consistent estimator of θ .

[1 marks]

[1 marks]

[1 marks]

[1 marks]

(b) Suppose X_1, \ldots, X_n are independent $\text{Uniform}(0, \theta)$ random variables. Let $\hat{\theta} = \max(X_1, \ldots, X_n)$ denote a possible estimator of θ .

(i) Derive the bias of θ;
[3 marks]
(ii) Derive the mean squared error of θ;
[1 marks]
(iii) Is θ an unbiased estimator for θ? Justify your answer;
[1 marks]
(iv) Is θ a consistent estimator for θ? Justify your answer.
[1 marks]

[Total 10 marks]

A3. (a) Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:

- (i) the Type I error of a test;
- (ii) the Type II error of a test;
- (iii) the significance level of a test.

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. State the rejection region for each of the following tests:

(i)
$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0$.

(ii) $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$.

In each case, assume a significance level of α .

(c) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. Derive an expression for P (Reject $H_0 \mid H_1$ is true) for the two cases in part (b):

- (i) $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$.
- (ii) $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$.

[2 marks]

[3 marks]

You may express the probability in terms of the distribution function of a Student't t random variable.

[Total 10 marks]

[1 marks]

[1 marks]

[1 marks]

[1 marks]

[1 marks]

MATH10282 - RESIT

A4. (a) Let $\mathbf{X} = (X_1, \ldots, X_n)$, with X_1, \ldots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let $I(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ . Define what is meant by the following:

- (i) that $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval.
- (ii) coverage probability of $I(\mathbf{X})$.
- (iii) coverage length of $I(\mathbf{X})$.

[1 marks]

[1 marks]

[1 marks]

(b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Derive a $100(1 - \alpha)\%$ confidence interval for μ if

- (i) σ is known.
- (ii) σ is not known.

[1 marks]

[1 marks]

(c) Suppose X_1, X_2, \ldots, X_n is a random sample from Uniform [0, a].

(i) Show that the cumulative distribution function $\min(X_1, X_2, \ldots, X_n) = Z$ say, is

$$F_Z(z) = 1 - \left[1 - \frac{z}{a}\right]^n$$

for 0 < z < a.

[2 marks]

(ii) Use the result in (i) to derive a $100(1-\alpha)\%$ confidence interval for a.

[3 marks]

[Total 10 marks]

MATH10282 - RESIT

SECTION B

Answer $\underline{\mathbf{TWO}}$ of the three questions

B5. Suppose X_1, X_2 and X_3 are independent $\text{Exp}(1/\lambda)$ random variables. Let $\hat{\theta}_1 = a (X_1 + X_2 + X_3)$ and $\hat{\theta}_2 = b\sqrt{X_1X_2}$ denote possible estimators of λ , where a and b are constants.

(i) Show that a = 1/3 if $\hat{\theta}_1$ is to be an unbiased estimator of λ ;

(ii) Show that $b = 4/\pi$ if $\hat{\theta}_2$ is to be an unbiased estimator of λ ;

- (iii) Determine the variance of $\hat{\theta}_1$;
- (iv) Determine the variance of $\hat{\theta}_2$;

[4 marks]

[4 marks]

[4 marks]

[4 marks]

(v) Which of the estimators $(\hat{\theta}_1 \text{ and } \hat{\theta}_2)$ is better with respect to mean squared error and why?

[4 marks]

[Total 20 marks]

B6. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function

$$f_X(x) = \frac{x^2}{\sigma^3} \exp\left(-\frac{x^3}{3\sigma^3}\right)$$

for x > 0.

(i) Write down the likelihood function of σ^3 .

(ii) Show that the maximum likelihood estimator of σ^3 is

$$\widehat{\sigma^3} = \frac{1}{3n} \sum_{i=1}^n X_i^3.$$

[4 marks]

[4 marks]

(iii) Deduce the maximum likelihood estimator of σ .

[4 marks]

(iv) Show that the estimator in part (ii) is an unbiased estimator of σ^3 .

(v) Show that the estimator in part (ii) is a consistent estimator of σ^3 .

[4 marks]

[4 marks]

[Total 20 marks]

MATH10282 - RESIT

B7. An electrical circuit consists of four batteries connected in series to a lightbulb. We model the battery lifetimes X_1 , X_2 , X_3 as independent and identically distributed Uniform $(0, \theta)$ random variables. Our experiment to measure the operating time of the circuit is stopped when any one of the batteries fails. Hence, the only random variable we observe is $Y = \min(X_1, X_2, X_3)$.

(i) Determine the cumulative distribution function of the random variable Y.

		[4 marks]
(ii)	Write down the likelihood function of θ based on a single observation of Y.	
		[4 marks]
(iii)	Derive the maximum likelihood estimator of θ .	
		[4 marks]
(iv)	Find the bias of the estimator in part (iii). Is the estimator unbiased?	
		[4 marks]
(v)	Find the mean squared error of the estimator in part (iii).	
		[4 marks]

[Total 20 marks]

END OF EXAMINATION PAPER