MATH10282 Introduction to Statistics

Formulas to remember for the final exam in May/June 2022

Given a data set, know how to compute the sample mean, sample variance and sample median.

Let x_1, x_2, \ldots, x_n denote a data set and let $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ denote the order statistics in ascending order. Then the pth quartile is

$$Q(p) = x_{\left(r^{'}\right)} + \left\{p(n+1) - r^{'}\right\} \left\{x_{\left(r^{'}+1\right)} - x_{\left(r^{'}\right)}\right\},$$

where $r^{'} = [p(n+1)]$.

 $\widehat{\theta}$ is an unbiased estimator of θ if $E(\widehat{\theta}) = \theta$.

The bias of $\widehat{\theta}$ is $E(\widehat{\theta}) - \theta$.

 $\widehat{\theta}$ is asymptotically unbiased estimator of θ if its bias approaches zero as $n \to \infty$.

The mean squared error of $\widehat{\theta}$ is $E\left[\left(\widehat{\theta}-\theta\right)^2\right]$.

 $\widehat{\theta}$ is a consistent estimator of θ if $\lim_{n\to\infty} E\left[\left(\widehat{\theta}-\theta\right)^2\right]=0$.

If $X \sim \text{Poisson}(a)$ then E(X) = a and Var(X) = a.

If $X \sim \text{Exp}(a)$ then E(X) = 1/a and $Var(X) = 1/a^2$.

Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is known. We reject $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ if $\sqrt{n} |\overline{X} - \mu_0| / \sigma > z_{1-\frac{\alpha}{2}}$.

Suppose X_1, X_2, \ldots, X_n is a random sample from $N\left(\mu, \sigma^2\right)$, where σ is known. We reject $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ if $\sqrt{n} \left(\overline{X} - \mu_0\right) / \sigma < z_{\alpha}$.

If X_1, X_2, \ldots, X_n is a random sample from $N\left(\mu, \sigma^2\right)$ and \overline{X} denotes the sample mean then $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$.

Let $\mathbf{X} = (X_1, \dots, X_n)$, with X_1, \dots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let $I(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ .

(i) $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval if

$$\Pr\left(a\left(\mathbf{X}\right) < \theta < b\left(\mathbf{X}\right)\right) = 1 - \alpha;$$

(ii) the coverage probability of $I(\mathbf{X})$ is

$$\Pr\left(a\left(\mathbf{X}\right) < \theta < b\left(\mathbf{X}\right)\right);$$

(iii) the coverage length of $I(\mathbf{X})$ is $b(\mathbf{X}) - a(\mathbf{X})$.

The gamma function defined by $\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t) dt$.

The property that $\Gamma(n) = (n-1)!$ where n is a positive integer.

When testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ the Type I error occurs if H_0 is rejected when in fact $\mu = \mu_0$.

When testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ the Type II error occurs if H_0 is accepted when in fact $\mu \neq \mu_0$.

The significance level is the probability of type I error.