MATH10282 Introduction to Statistics

Formulas to remember for the final exam in May/June 2019

Given a data set, know how to compute the sample mean, sample variance, sample p quartile, sample first quartile, sample third quartile, sample median and sample range.

 $\widehat{\theta}$ is an unbiased estimator of θ if $E\left(\widehat{\theta}\right)=\theta$.

 $\widehat{\theta}$ is an asymptotically unbiased estimator of θ if $\lim_{n \to \infty} E\left(\widehat{\theta}\right) = \theta$.

The bias of $\widehat{\theta}$ is $E(\widehat{\theta}) - \theta$.

The mean squared error of $\hat{\theta}$ is $E\left|\left(\hat{\theta}-\theta\right)^2\right|$.

 $\widehat{\theta}$ is a consistent estimator of θ if $\lim_{n\to\infty} E\left[\left(\widehat{\theta}-\theta\right)^2\right]=0$.

If $X \sim \text{Exp}(a)$ then E(X) = 1/a, $Var(X) = 1/a^2$, $f_X(x) = a \exp(-ax)$ and $F_X(x) = a \exp(-ax)$ $1 - \exp(-ax)$.

If $X \sim \text{Uniform } [a,b]$ then E(X) = (a+b)/2, $Var(X) = (b-a)^2/12$ and $F_X(x) = \frac{x-a}{b-a}$. When testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ the Type I error occurs if H_0 is rejected when in fact $\mu = \mu_0$.

When testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ the Type II error occurs if H_0 is accepted when in fact $\mu \neq \mu_0$.

The significance level is the probability of type I error.

Suppose X_1, X_2, \dots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ is known. The rejection region for the following tests are

- (i) reject $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ if $\sqrt{n} |\overline{X} \mu_0| / \sigma > z_{1-\frac{\alpha}{2}}$;
- (ii) reject $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ if $\sqrt{n} \left(\overline{X} \mu_0\right) / \sigma < -z_{1-\alpha}$.

Let $X = (X_1, \ldots, X_n)$, with X_1, \ldots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let I(X) = [a(X), b(X)] denote an interval estimator for θ .

(i) $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval if

$$\Pr\left(a\left(\mathbf{X}\right) < \theta < b\left(\mathbf{X}\right)\right) = 1 - \alpha;$$

(ii) the coverage probability of I(X) is

$$\Pr\left(a\left(\mathbf{X}\right) < \theta < b\left(\mathbf{X}\right)\right);$$

(iii) the coverage length of $I(\mathbf{X})$ is $b(\mathbf{X}) - a(\mathbf{X})$.

If X_1, X_2, \ldots, X_n is a random sample from $N\left(\mu, \sigma^2\right)$ then $\overline{X} \sim N\left(\mu, \sigma^2/n\right)$. If X_1, X_2, \ldots, X_n is a random sample from $N\left(\mu, \sigma^2\right)$ and S^2 denotes the sample variance then $\sqrt{n} (\overline{X} - \mu) / S \sim t_{n-1}$.

The gamma function is defined by $\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t) dt$.

 $\Gamma(n+1) = n!$ if n is a positive integer.

 $\Gamma(a+1) = a\Gamma(a)$ and $\Gamma(1/2) = \sqrt{\pi}$.