Two hours

Statistical tables to be provided

THE UNIVERSITY OF MANCHESTER

INTRODUCTION TO STATISTICS

20 May 2019

14.00 - 16.00

Answer <u>ALL FOUR</u> questions in Section A (10 marks each) and <u>TWO</u> of the <u>THREE</u> questions in Section B (20 marks each). If more than <u>TWO</u> questions from Section B are attempted, then credit will be given for the best <u>TWO</u> answers.

Electronic calculators may be used in accordance with the University regulations

SECTION A

Answer **ALL** four questions

A1. (a) Suppose that we have the following sample of observations

$$-1.3$$
, -0.59 , 0.1 , -1.4 , -0.22 , -0.35 , -0.76 , -0.2 , 0.41 , 0.32

Compute the following

(i) sample mean;

[1 marks]

(ii) sample variance;

[1 marks]

(iii) sample median;

[1 marks]

(iv) sample first quartile;

[1 marks]

(v) sample third quartile;

[1 marks]

(vi) sample range.

[1 marks]

(b) Let x_1, x_2, \ldots, x_n denote a data set and let $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ denote the order statistics in ascending order. Show that

$$\text{sample third quartile} = \begin{cases} x_{(3m)} + \frac{3}{4} \left(x_{(3m+1)} - x_{(3m)} \right), & \text{if } n = 4m, \\ x_{(3m)}, & \text{if } n = 4m - 1, \\ x_{(3m-1)} + \frac{1}{4} \left(x_{(3m)} - x_{(3m-1)} \right), & \text{if } n = 4m - 2, \\ x_{(3m-2)} + \frac{1}{2} \left(x_{(3m-1)} - x_{(3m-2)} \right), & \text{if } n = 4m - 3, \end{cases}$$

where m is an integer greater than or equal to 1.

[4 marks]

[Total 10 marks]

A2. (a) Suppose $\widehat{\theta}$ is an estimator of θ based on a random sample of size n . Define what is mean by the following:	nt
(i) $\widehat{\theta}$ is an unbiased estimator of θ ;	
[1 mark	s]
(ii) the bias of $\widehat{\theta}$ (written as bias($\widehat{\theta}$));	
[1 mark	s]
(iii) the mean squared error of $\widehat{\theta}$ (written as $MSE(\widehat{\theta})$);	
[1 mark	s]
(iv) $\hat{\theta}$ is a consistent estimator of θ .	
[1 mark	s]
(b) Suppose X_1, \ldots, X_n are independent $\text{Exp}(1/\theta)$ random variables. Let $\widehat{\theta} = n \min(X_1, \ldots, X_n)$ denote a possible estimator of θ .	$_{n})$
(i) Derive the bias of $\widehat{\theta}$;	
[3 mark	s]
(ii) Derive the mean squared error of $\widehat{\theta}$;	
[1 mark	s]
(iii) Is $\widehat{\theta}$ an unbiased estimator for θ ? Justify your answer;	
[1 mark	s]
(iv) Is $\widehat{\theta}$ a consistent estimator for θ ? Justify your answer.	
[1 mark	s]
[Total 10 mark	s]

A3.	(a)	Suppose	we	wish	to	test	H_0	: θ	=	θ_0	versus	H_1	$: \theta \neq \theta_0.$	Define	what is	meant	by	the
follo	wing	g:																

(i) the Type I error of a test;

[1 marks]

(ii) the Type II error of a test;

[1 marks]

(iii) the significance level of a test.

[1 marks]

- (b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$, where σ is known. State the rejection region for each of the following tests:
 - (i) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu \neq \mu_0.$

[1 marks]

(ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$

[1 marks]

In each case, assume a significance level of α .

- (c) Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is known. Derive an expression for P (Reject $H_0 \mid H_1$ is true) for the two cases in part (b):
 - (i) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu \neq \mu_0.$

[3 marks]

(ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$

[2 marks]

You may express the probability in terms of $\Phi(\cdot)$, the standard normal distribution function.

[Total 10 marks]

A4. (a) Let $\mathbf{X} = (X_1, \dots, X_n)$, with X_1, \dots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let $I(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ . Define what is meant by the following:

(i) that $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval.

[1 marks]

(ii) coverage probability of $I(\mathbf{X})$.

[1 marks]

(iii) coverage length of $I(\mathbf{X})$.

[1 marks]

- (b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Derive a $100(1 \alpha)\%$ confidence interval for μ if
 - (i) σ is known.

[1 marks]

(ii) σ is not known.

[1 marks]

- (c) Suppose X_1, X_2, \ldots, X_n is a random sample from Uniform [0, a].
 - (i) Show that the cumulative distribution function $\max(X_1, X_2, \dots, X_n) = Z$ say, is

$$F_Z(z) = \left(\frac{z}{a}\right)^n$$

for 0 < z < a.

[2 marks]

(ii) Use the result in (i) to derive a $100(1-\alpha)\%$ confidence interval for a.

[3 marks]

[Total 10 marks]

SECTION B

Answer **TWO** of the three questions

B5. Suppose X_1 and X_2 are independent $\text{Exp}(1/\lambda)$ random variables. Let $\widehat{\theta}_1 = a(X_1 + X_2)$ and $\widehat{\theta}_2 = b\sqrt{X_1X_2}$ denote possible estimators of λ , where a and b are constants.

(i) Show that a = 1/2 if $\widehat{\theta_1}$ is to be an unbiased estimator of λ ;

[4 marks]

(ii) Show that $b = 4/\pi$ if $\widehat{\theta}_2$ is to be an unbiased estimator of λ ;

[4 marks]

(iii) Determine the variance of $\widehat{\theta}_1$;

[4 marks]

(iv) Determine the variance of $\widehat{\theta}_2$;

[4 marks]

(v) Which of the estimators $(\widehat{\theta}_1 \text{ and } \widehat{\theta}_2)$ is better with respect to mean squared error and why?

[4 marks]

[Total 20 marks]

B6. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function

$$f_X(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

for x > 0.

(i) Write down the likelihood function of σ^2 .

[4 marks]

(ii) Show that the maximum likelihood estimator of σ^2 is

$$\widehat{\sigma^2} = \frac{1}{2n} \sum_{i=1}^n X_i^2.$$

[4 marks]

(iii) Deduce the maximum likelihood estimator of σ .

[4 marks]

(iv) Show that the estimator in part (ii) is an unbiased estimator of σ^2 .

[4 marks]

(v) Show that the estimator in part (ii) is a consistent estimator of σ^2 .

[4 marks]

[Total 20 marks]

B7. An electrical circuit consists of four batteries connected in series to a lightbulb. We model the battery lifetimes X_1 , X_2 , X_3 , X_4 as independent and identically distributed Uniform $(0,\theta)$ random variables. Our experiment to measure the operating time of the circuit is stopped when any one of the batteries fails. Hence, the only random variable we observe is $Y = \min(X_1, X_2, X_3, X_4)$.

(i) Determine the cumulative distribution function of the random variable Y.

[4 marks]

(ii) Write down the likelihood function of θ based on a single observation of Y.

[4 marks]

(iii) Derive the maximum likelihood estimator of θ .

[4 marks]

(iv) Find the bias of the estimator in part (iii). Is the estimator unbiased?

[4 marks]

(v) Find the mean squared error of the estimator in part (iii).

[4 marks]

[Total 20 marks]