Two hours

THE UNIVERSITY OF MANCHESTER

INTRODUCTION TO STATISTICS

20 May 2021

14.00 - 16.00

Answer ALL FOUR questions in Section A (40 marks in total). Answer TWO of the THREE questions in Section B (40 marks in total). If more than TWO questions from Section B are attempted, then credit will be given for the best TWO answers.

Electronic calculators may be used in accordance with the University regulations

SECTION A

Answer **ALL** four questions

A1. (a) Suppose that we have the following sample of observations

$$-1.3$$
, -0.59 , 0.1 , -1.4 , -0.22 , -0.35 , -0.76 , -0.2 , 0.41 , 0.32

Compute the following

(i) sample mean;

[1 marks]

(ii) sample variance;

[1 marks]

(iii) sample median;

[1 marks]

(iv) sample first quartile;

[1 marks]

(v) sample third quartile;

[1 marks]

(vi) sample range.

[1 marks]

(b) Let x_1, x_2, \ldots, x_n denote a data set and let $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ denote the order statistics in ascending order. Show that

$$\text{sample third quartile} = \begin{cases} x_{(3m)} + \frac{3}{4} \left(x_{(3m+1)} - x_{(3m)} \right), & \text{if } n = 4m, \\ x_{(3m)}, & \text{if } n = 4m - 1, \\ x_{(3m-1)} + \frac{1}{4} \left(x_{(3m)} - x_{(3m-1)} \right), & \text{if } n = 4m - 2, \\ x_{(3m-2)} + \frac{1}{2} \left(x_{(3m-1)} - x_{(3m-2)} \right), & \text{if } n = 4m - 3, \end{cases}$$

where m is an integer greater than or equal to 1.

[4 marks]

[Total 10 marks]

A2. (a) Suppose $\widehat{\theta}$ is an estimator of θ based on a random sample of size n . Define what is n by the following:	meant
(i) the bias of $\widehat{\theta}$ (written as bias $(\widehat{\theta})$).	
[1 r	marks]
(ii) $\widehat{\theta}$ is an unbiased estimator of θ .	
[1 r	marks]
(iii) $\widehat{\theta}$ is an asymptotically unbiased estimator of θ .	
[1 r	marks]
(iv) the mean squared error of $\widehat{\theta}$ (written as MSE $(\widehat{\theta})$).	
[1 r	marks]
(v) $\widehat{\theta}$ is a consistent estimator of θ .	
[1 r	marks]
(b) Suppose X_1, X_2, \ldots, X_n is a random sample from the Exp (λ) distribution. Consider the following for $\theta = 1/\lambda$: $\widehat{\theta}_1 = (1/n) \sum_{i=1}^n X_i$ and $\widehat{\theta}_2 = (1/(n+1)) \sum_{i=1}^n X_i$.	owing
(i) Find the biases of $\widehat{\theta_1}$ and $\widehat{\theta_2}$.	
[2 r	marks]
(ii) Find the mean squared errors of $\widehat{\theta}_1$ and $\widehat{\theta}_2$.	
[3 r	marks]
[Total 10 r	marks]

A3.	(a)	Suppose	we	wish	to	test	H_0	: θ	=	θ_0	versus	H_1	$: \theta \neq \theta_0.$	Define	what is	meant	by	the
follo	wing	·• ·																

(i) the Type I error of a test;

[1 marks]

(ii) the Type II error of a test;

[1 marks]

(iii) the significance level of a test.

[1 marks]

- (b) Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. State the rejection region for each of the following tests:
 - (i) $H_0: \sigma = \sigma_0 \text{ versus } H_1: \sigma \neq \sigma_0.$

[1 marks]

(ii) $H_0: \sigma = \sigma_0 \text{ versus } H_1: \sigma < \sigma_0.$

[1 marks]

In each case, assume a significance level of α .

- (c) Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. Derive an expression for P (Reject $H_0 \mid H_1$ is true) for the two cases in part (b):
 - (i) $H_0: \sigma = \sigma_0 \text{ versus } H_1: \sigma \neq \sigma_0.$

[3 marks]

(ii) $H_0: \sigma = \sigma_0$ versus $H_1: \sigma < \sigma_0$.

[2 marks]

Please express the probability in terms of the distribution function of a chisquared random variable.

[Total 10 marks]

A4. (a) Let $\mathbf{X} = (X_1, \dots, X_n)$, with X_1, \dots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let $I(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ . Define what is meant by the following:

(i) $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval,

[1 marks]

(ii) coverage probability of $I(\mathbf{X})$,

[1 marks]

(iii) coverage length of $I(\mathbf{X})$.

[1 marks]

- (b) Suppose X_1, \ldots, X_n are counts of defective items produced on n different days assumed to be a random sample. The number of defectives on any given day is modeled as a Poisson random variable with parameter λ , which is the unknown population mean defectives per day.
 - (i) Show that $E(\overline{X}) = \lambda$ and $Var(\overline{X}) = \lambda/n$.

[3 marks]

(ii) Assuming that $(\overline{X} - \lambda) / (\sqrt{\lambda/n})$ has the standard normal distribution, derive a $100(1 - \alpha)\%$ confidence interval for λ .

[4 marks]

[Total 10 marks]

SECTION B

Answer $\underline{\mathbf{TWO}}$ of the three questions

B5. Let X and Y be uncorrelated random variables. Suppose that X has mean 2θ and variance 4. Suppose that Y has mean θ and variance 2. The parameter θ is unknown.

(i) Compute the bias and mean squared error for each of the following two estimators of θ : $\widehat{\theta}_1 = (1/4)X + (1/2)Y$ and $\widehat{\theta}_2 = X - Y$.

[8 marks]

(ii) Which of the two estimators $(\widehat{\theta}_1 \text{ or } \widehat{\theta}_2)$ is better and why?

[4 marks]

(iii) Verify that the estimator $\widehat{\theta_c} = (c/2)X + (1-c)Y$ is unbiased. Find the value of c which minimizes $\operatorname{Var}(\widehat{\theta_c})$.

[8 marks]

[Total 20 marks]

Page 6 of 8 P.T.O.

B6. Suppose X_1, X_2, \ldots, X_n are independent and identically distributed random variables with the common probability mass function (pmf):

$$p(x) = \theta(1 - \theta)^{x - 1}$$

for x = 1, 2, ... and $0 < \theta < 1$.

(i) Write down the likelihood function of θ .

[4 marks]

(ii) Find the maximum likelihood estimator of θ .

[4 marks]

(iii) Find the maximum likelihood estimator of $\psi = 1/\theta$.

[4 marks]

(iv) Determine the bias, variance and the mean squared error of the maximum likelihood estimator of ψ .

[4 marks]

(v) Is the maximum likelihood estimator of ψ unbiased? Is it consistent?

[4 marks]

[Total 20 marks]

B7. Consider the linear regression model with zero intercept

$$Y_i = \beta X_i + e_i$$

for i = 1, 2, ..., n, where $e_1, e_2, ..., e_n$ are independent and identical normal random variables with zero mean and variance σ^2 assumed known. Moreover, suppose $X_1, X_2, ..., X_n$ are known constants taking distinct values.

(i) Write down the likelihood function of β .

[4 marks]

(ii) Show that the maximum likelihood estimator of β is

$$\widehat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}.$$

[4 marks]

(iii) Find the bias of the estimator in part (ii). Is the estimator unbiased?

[4 marks]

(iv) Find the mean square error of the estimator in part (ii).

[4 marks]

(v) Find the exact distribution of the estimator in part (ii).

[4 marks]

[Total 20 marks]