MATH10282: INTRODUCTION TO STATISTICS SEMESTER 2 SOLUTIONS TO QUIZ PROBLEM 5

Suppose X_1, \ldots, X_n is a random sample from Uniform[0, a]. Suppose $\hat{a} = \max(X_1, \ldots, X_n)$ is an estimator of a. Let $Z = \max(X_1, \ldots, X_n)$. The cumulative distribution function of Z is

$$F_Z(z) = \Pr(Z \le z)$$

= $\Pr(\max(X_1, \dots, X_n) \le z)$
= $\Pr(X_1 \le z, \dots, X_n \le z)$
= $\Pr(X_1 \le z) \cdots \Pr(X_n \le z)$
= $[\Pr(X \le z)]^n$
= $\left[\frac{z}{a}\right]^n$.

So, the probability density function of ${\cal Z}$ is

$$f_Z(z) = \frac{d}{dz} F_Z(z) = \frac{nz^{n-1}}{a^n}.$$

The bias is

$$Bias(Z) = E(Z) - a$$

$$= \int_{a}^{1} z \frac{nz^{n-1}}{a^{n}} dz - a$$

$$= \frac{n}{a^{n}} \int_{0}^{a} z^{n} dz - a$$

$$= \frac{n}{a^{n}} \left[\frac{z^{n+1}}{n+1} \right]_{0}^{a} - a$$

$$= \frac{n}{a^{n}} \left[\frac{a^{n+1}}{n+1} - 0 \right] - a$$

$$= \frac{na}{n+1} - a$$

$$= -\frac{a}{n+1}.$$

Hence, the estimator is not unbiased.

So, the correct answer is b).