MATH10282: INTRODUCTION TO STATISTICS SEMESTER 2 SOLUTIONS TO QUIZ PROBLEM 10

Suppose X_1, \ldots, X_n is a random sample from a distribution specified by the cumulative distribution function $F(x) = 1 - (K/x)^a$ for a > 0 and $x \ge K > 0$, where a is known. Consider testing $H_0: K = K_0$ versus $H_1: K > K_0$. Suppose we reject H_0 when $T = \min(X_1, \ldots, X_n) > c$ for some constant c. The probability of type II error is

Pr (Type II error) = Pr
$$(T \le c \mid K > K_0)$$

= $1 - \Pr(T > c \mid K > K_0)$
= $1 - \Pr(\min(X_1, ..., X_n) > c)$
= $1 - \Pr(X_1 > t, ..., X_n > C)$
= $1 - \Pr(X_1 > c) \cdots \Pr(X_n > c)$
= $1 - [\Pr(X > c)]^n$
= $1 - [1 - \Pr(X \le c)]^n$
= $1 - [1 - F(c)]^n$
= $1 - \left(\frac{K}{c}\right)^{na}$.

We must have

$$1 - \left(\frac{K}{c}\right)^{na} \le \beta$$

which is equivalent to

$$\left(\frac{K}{c}\right)^{na} \geq 1 - \beta$$

which is equivalent to

$$na \log \left(\frac{K}{c}\right) \ge \log(1-\beta)$$

which is equivalent to

$$n \ge \frac{\log(1-\beta)}{a\log\left(\frac{K}{c}\right)}.$$

So, the correct answer is d).