MATH10282: INTRODUCTION TO STATISTICS SEMESTER 2 QUIZ PROBLEM 9

(Deadline: Thursday 29 April 2021, 10:00am)

Suppose X_1, \ldots, X_n is a random sample from a distribution specified by the cumulative distribution function $F(x) = 1 - (K/x)^a$ for a > 0 and $x \ge K > 0$, where a is known. Derive the distribution of $T = \min(X_1, \ldots, X_n)$ and use that to show that a $100(1 - \alpha)$ percent confidence interval for K is

a)
$$\left[T\left(\frac{\alpha}{2}\right)^{1/(na)}, T\left(1-\frac{\alpha}{2}\right)^{1/(na)}\right]$$
.

b)
$$\left[T \left(\frac{\alpha}{2} \right)^{-1/(na)}, T \left(1 - \frac{\alpha}{2} \right)^{-1/(na)} \right].$$

c)
$$\left[T\left(\frac{\alpha}{2}\right)^{-1/(na)}, T\left(1-\frac{\alpha}{2}\right)^{1/(na)}\right].$$

d)
$$\left[T\left(\frac{\alpha}{2}\right)^{1/(na)}, T\left(1-\frac{\alpha}{2}\right)^{-1/(na)}\right]$$
.

This problem is worth 1 mark. Marking scheme: 1 mark if the answer is correct, 0 mark if the answer is incorrect.

Please use Blackboard to enter your answer.