MATH10282: INTRODUCTION TO STATISTICS
SEMESTER 2
SOLUTIONS TO QUIZ PROBLEM 8

Suppose X1, Xo,..., X, is a random sample from a distribution specified by the probability

density function
1 log x — 6)?
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for x > 0 and 6 > 0.

The likelihood function of 0 is
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Its log is

n
logL(#) = —g log(2m) — nlog — Zlog X; —
i=1

= —— 10g(27r) —nlogf — ZlogX > {(log X;)? —20log X; + 92}

i=1 20 3
1 n n
_ ) 2
= -3 log(27r) —nlogf — ZlogX 202 [Z (log X;)?| — 26 <Z logXZ> +nb }
=1 =1 =1
n - 1 [& n
= —§log(27r)—nlog9—;10gXi—202 _;(logX (ZlogX) 5
The derivative with respect to 0 is
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Setting this to zero, we obtain the quadratic equation
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Its roots are
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Since # must be positive, the valid root is
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The second derivative of the log likelihood is
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From (1),
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By substituting (3) into (2), we see
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Hence,
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is a maximum likelihood estimator of 6.



