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Abstract

It is well-known that maximum likelihood (ML) estimators of the two parameters in a

gamma distribution do not have closed forms. This poses difficulties in some applications such

as real-time signal processing using low-grade processors. The gamma distribution is a spe-

cial case of a generalized gamma distribution. Surprisingly, two out of the three likelihood

equations of the generalized gamma distribution can be used as estimating equations for the

gamma distribution, based on which simple closed-form estimators for the two gamma parame-

ters are available. Intuitively, performance of the new estimators based on likelihood equations

should be close to the ML estimators. The study consolidates this conjecture by establishing

the asymptotic behaviours of the new estimators. In addition, the closed-forms enable bias-

corrections to these estimators. The bias-correction significantly improves the small-sample

performance.

Keywords: Estimating equations; bias-correction; generalized gamma distribution; asymptotic

efficiency.
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1 Introduction

The gamma distribution, denoted as gam(α, β), is a two-parameter distribution with probability

density function (PDF)

fgam(x) =
xα−1

βαΓ(α)
exp(−x/β) , x > 0, (1)

whereα > 0 is the shape parameter,β > 0 is the scale parameter andΓ(∙) is the gamma function.

Due to the moderate skewness, the gamma distribution is a useful model in many areas of statistics

when the normal distribution is not appropriate. For example, it is often used to model frailty

and random-effects. In queueing theory, the gamma distribution is often used as a distribution

for waiting times and service times (Whitt 2000). It is widely used in environmetrics such as

environmental monitoring of rainfall sizes (Krishnamoorthy et al. 2008). The gamma distribution

is a useful model for lifetime (Chen and Ye 2016; Meeker and Escobar 1998, Chapter 5.2). It is

also used in signal processing (e.g.Vaseghi 2008), and clinical trials (e.g.,Wiens 1999).

The most popular parameter estimation method is the maximum likelihood (ML) method.

However, for the two-parameter gamma distribution, there are no closed-form expressions for the

ML estimators. This poses difficulties in real-time data/signal processing using battery-constrained,

memory and CPU deficient mobile hand-held devices (Song 2008). On the other hand, when the

computing power of the device is strong enough, the ML estimators may be obtained by numeri-

cally maximizing the gamma log-likelihood. However, our simulation experience suggests that the

optimization algorithm may fail to converge whenα is very small. Even whenα is large enough to

ensure convergence of the likelihood maximization, the maximization often takes a non-ignorable

time. For example, to avoid very long computational time in detecting multiple changepoints in

a gamma-distributed sample, previous changepoint detection algorithms usually assume a known
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shape parameterα, e.g.,Killick and Eckley (2014). Although the moment estimators of the two

gamma parameters have closed-forms, they are not efficient under either small samples or large

samples, see Figures1, 2, and3 below. In order to obtain simple yet efficient estimators of the

gamma parameters, we need to think outside the box of the two conventional inference methods.

One way to accomplish this is through the use of the generalized gamma distribution, denoted

as gg(α, β, γ), whereγ > 0 is a power parameter. It is a useful extension of the gamma distribution

with PDF

fgg(x) =
γxαγ−1

βαγΓ(α)
exp

[
−(x/β)γ

]
, x > 0. (2)

The generalized gamma can be obtained by a power transformation of gamma: ifX ∼ gam(α, β),

thenXγ ∼ gg(α, β, γ). This distribution, proposed byStacy(1962), is a flexible model that contains

the gamma, Weibull and lognormal distributions as special cases. Many studies have focused on

parameter inference for the generalized gamma distribution. SeeLawless(1980) andSong(2008),

among others. Inference in this distribution is generally hard. Surprisingly, two estimating equa-

tions for the gamma distribution can be obtained by first treating the gamma-distributed data as if

they are generalized gamma distributed and then obtaining the three likelihood equations based on

the generalized gamma distribution. Estimators based on the two estimating equations have simple

closed forms. We show that in terms of both small sample performance and asymptotic efficiency,

the new estimators are comparable to the ML estimators. In addition, the closed-forms enable

bias-correction to these estimators, which significantly improves the small-sample performance in

terms of bias and mean squared errors (MSEs).

The paper is organized as follows. Section 2 derives the new estimators for the gamma distribu-

tion by looking outside to the generalized gamma distribution. Large sample properties of the new

estimators are investigated in Section 3. Section 4 studies bias-correction for the new estimators.
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2 The New Estimators

Let X ∼ gam(α, β) andX1,X2, ∙ ∙ ∙ ,Xn be n i.i.d. copies ofX, whereα andβ are parameters of

interest and need estimation. Obviously,X ∼ gg(α, β, γ) with γ = 1. For now, let us pretend that

X follows the above generalized gamma distribution with unknownγ. Then the log-likelihood

function based on the observedX1,X2, ∙ ∙ ∙ ,Xn is

lgg(α, β, γ) = logγ − αγ logβ − logΓ(α) +
1
n

n∑

i=1

[
(αγ − 1) logXi − (Xi/β)γ

]
.

The likelihood equations are obtained by taking the partial derivatives oflgg with respect toα, β

andγ, respectively:

∂lgg(α, β, γ)

∂α
= −ψ(α) − γ logβ +

γ

n

n∑

i=1

logXi , (3)

∂lgg(α, β, γ)

∂β
= −α +

1
n

n∑

i=1

(Xi/β)γ, (4)

∂lgg(α, β, γ)

∂γ
= 1/γ +

α

n

n∑

i=1

log(Xi/β) −
1
n

n∑

i=1

(Xi/β)γ log(Xi/β), (5)

whereψ(∙) = d logΓ(x)/dx is the digamma function. Setting these equal to zero and solving the

resulting system of equations gives the ML estimators of (α, β, γ). In particular, by setting (4) equal

to zero, we can expressβ as a function ofα andγ:

β(α, γ) =

(∑
Xγ

i

nα

)1/γ

.

Substitute the above display into (5) to give

α(γ) =
n
∑

Xγ
i

nγ
∑

Xγ
i logXi − γ

∑
logXi

∑
Xγ

i

.

Now, return to the gamma distribution. We already know thatγ = 1. Use this fact in the above
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two displays to obtain the new estimators forα andβ as

α̂ =
n
∑

Xi

n
∑

Xi logXi −
∑

logXi
∑

Xi
, (6)

and

β̂ =
1
n2

(
n
∑

Xi logXi −
∑

logXi

∑
Xi

)
. (7)

From the viewpoint of estimating equations, ˆα and β̂ are obtained based on the two estimating

equations (4) and (5), which originate from the likelihood equations of the generalized gamma

distribution.

Another common parametrization of the gamma distribution is to replaceβ by a rate parameter

λ = 1/β. Under this parametrization, we can go through the above procedure again to obtain an

estimator forλ as

λ̂ =
n2

n
∑

Xi logXi −
∑

logXi
∑

Xi
, (8)

which is simply the inverse of̂β. The estimator ofα remains the same as (6) under the rate

reparametrization.

The above procedure can be easily extended to the estimation of stationary gamma processes

(Ye et al. 2014). Since the two estimating equations for the gamma parameters are essentially

likelihood equations of the generalized gamma distribution, it is expected that the performance

of the proposed estimators should be similar to the ML estimators. In the next section, we show

that the asymptotic efficiency of the proposed estimators is almost the same as the ML estimator

counterparts.
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3 Large Sample Properties

In this section, we first show that the new estimators are strongly consistent in Theorem1. Then,

the asymptotic normality is established and the asymptotic covariance matrix is derived in Theorem

2.

Theorem 1 The estimatorŝα, β̂ and λ̂ given in (6), (7) and (8) are strongly consistent estimators

of α, β, andλ, respectively.

Proof Given then i.i.d. copies ofX ∼ gam(α, β), let X̄, Ȳ, Z̄ be the empirical means ofX, logX,X logX,

respectively. The mean ofX is αβ. Based on the moment generating function of logX:

MlogX(z) =
Γ(α + z)
Γ(α)

βz, (9)

the mean of logX is ψ(α) + logβ. To obtainE[X logX], note that

E[X logX] =
∫ ∞

0

xα log x
βαΓ(α)

exp(−x/β)dx=
βΓ(α + 1)

Γ(α)

∫ ∞

0

xα log x
βα+1Γ(α + 1)

exp(−x/β)dx.

The above formula implies

E[X logX] = αβ[ψ(α + 1)+ logβ].

According to the strong law of large numbers,

(X̄, Ȳ, Z̄)→a.s. (αβ, ψ(α) + logβ, αβ[ψ(α + 1)+ logβ]) asn→ ∞.

Define two functions

g1(x, y, z) = z− xy, g2(x, y, z) = x/(z− xy).

Bothg1 andg2 are continuous at (x, y, z) = (αβ, ψ(α)+ logβ, αβ[ψ(α+ 1)+ logβ]). An application

6
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of the continuous-mapping theorem yields that, whenn→ ∞,

β̂ = g1(X̄, Ȳ, Z̄)→a.s. αβ[ψ(α + 1)− ψ(α)].

For the arguments on the right-hand side of the above display,

ψ(α + 1)− ψ(α) =
d
dt

[
logΓ(α + 1)− logΓ(α)

]
=

d
dt

[

log
Γ(α + 1)
Γ(α)

]

=
d
dt

[logα] = 1/α.

we haveβ̂ →a.s. β. By the continuous-mapping theorem again, ˆα = g2(X̄, Ȳ, Z̄) →a.s. α. Since

λ̂ = 1/β̂, its strong consistency is an immediate consequence of the continuous-mappingtheorem.

Theorem 2 When n→ ∞, the two estimatorŝα and β̂ in (6) and (7) are asymptotically normally

distributed as

√
n(α̂ − α, β̂ − β)→d N







0

0



,




α2[1 + αψ1(1+ α)] −αβ[1 + αψ1(α + 1)]

−αβ[1 + αψ1(α + 1)] β2[1 + αψ1(α)]






. (10)

Proof Continue with the proof in Theorem1 and let X ∼ gam(α, β). Then E[X] = αβ and

E[X2] = αβ2 + α2β2. Based on the moment generating function (9) of logX, define two quantities:

vα ≡ E[log X] = ψ(α) + logβ,

uα ≡ E
[
(logX)2] = ψ1(α) + ψ2(α) + 2ψ(α) logβ + log2 β,

whereψ1(∙) is the trigamma function equal todψ(x)/dx. By making use of these two quanti-

ties, we haveE[X logX] = αβvα+1, E[(X logX)2] = αβ2(α + 1)uα+2, E[X log2 X] = αβuα+1, and

E[X2 logX] = αβ2(α + 1)vα+2. Based on the above expectations, we can show after tedious calcu-

lations that

√
n[(X̄, Ȳ, Z̄) − (αβ, vα, αβvα+1)] →d N (03,Σ) ,

7
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where03 is a zero vector with 3 elements, and

Σ =




αβ2 β αβ2(1+ vα+1)

β ψ1(α) αβψ1(α + 1)+ βvα+1

αβ2(1+ vα+1) αβψ1(α + 1)+ βvα+1 αβ2[(α + 1)uα+2 − αv2
α+1]




.

Because ˆα = g2(X̄, Ȳ, Z̄) andβ̂ = g1(X̄, Ȳ, Z̄), the partial derivatives of (g1,g2) with respect to the

three arguments (x, y, z) and evaluated at (x, y, z) = (αβ, vα, αβvα) are

A ≡




∂g2

∂x
∂g2

∂y
∂g2

∂z

∂g1

∂x
∂g1

∂y
∂g1

∂z



=




αvα+1
β

α2 −α
β

−vα −αβ 1



.

An application of the delta method yields that
√

n(α̂ − α, β̂ − β) is normally distributed with mean

02 and variance matrixAΣA′. After tedious simplifications, we can show that

AΣA′ =




α2[1 + αψ1(1+ α)] −αβ[1 + αψ1(α + 1)]

−αβ[1 + αψ1(α + 1)] β2[1 + αψ1(α)]



.

Therefore, the theorem follows.

Remark: From (6) and (7), it is interesting to observe that our estimators are mixed type log-

moment estimators. The regular moment estimators use the first two momentsE[X] = αβ and

E[X2] = αβ2+α2β2. Our method replaces the second moment equation byE[X logX]−E[X]E[log X] =

β, after which our estimators are obtained by using sample moments ofX, logX and X logX in

place of the unknown population moments. Given that the means and variances ofX, logX and

X logX exist, the asymptotic results of the two estimators are not surprising. The generalized

gamma device serves as a heuristic to obtain the two mixed-type log-moment estimating equa-

tions. Without the help of the generalized gamma, derivation of the two estimating equations

would be difficult.

8
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We compare the asymptotic efficiency of the new estimators, the ML estimators and the mo-

ment estimators. ML estimators ofα andβ have to be obtained by solving the likelihood equations

numerically. The moment estimators ofα andβ are

α̂m =
(
∑

Xi)2

n
∑

X2
i − (

∑
Xi)2

, β̂m =
n
∑

X2
i − (

∑
Xi)2

(
∑

Xi)
.

The asymptotic variance matrix, which is also the Cramer-Rao lower bound, for the ML estimators

of (α, β) is obtained by first deriving the Fisher information matrix and then inverting it, which is

given by

1
αψ1(α) − 1




α −β

−β β2ψ1(α)



. (11)

The asymptotic variance matrix for the moment estimators can be obtained through the delta

method. Figure1 shows the asymptotic variances of the three different estimators forα andβ.

Because the variances of ˆα andβ̂/β do not depend onβ, we fix β = 1 and varyα over the interval

[0.1,3], as shown in Figure1. The asymptotic variances of the moment estimators are much higher

than the others. In contrast, the variance curves of the proposed estimators and the ML estimators

are almost the same. Simulation in the next section shows the same conclusion under small sam-

ples. Nevertheless, due to the simple closed forms, the proposed estimators can be calibrated to

yield smaller biases under small samples, as shown in the next section.

4 Small Sample Properties

In this section, an unbiased estimator for the scale parameterβ is obtained by calibrating the new

estimatorβ̂. Unbiased estimators for the rate and the shape parameters are not available. Never-

9
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

theless, we give a method to calibrate the corresponding new estimators by comparing the exact

covariance and asymptotic covariance between the two estimators andβ̂. A Monte Carlo simula-

tion is used to show the good performance of the calibrated estimators in terms of bias and MSEs.

4.1 Bias correction

Theorem 3 An unbiased estimator for the scale parameterβ is

β̃ =
n

n− 1
β̂ =

1
n(n− 1)

(
n
∑

Xi logXi −
∑

logXi

∑
Xi

)
.

While an unbiased estimator for1/α is

α̃−1 =
n

n− 1
α̂−1 =

n
∑

Xi logXi −
∑

logXi
∑

Xi

(n− 1)
∑

Xi
.

Proof First, expresŝβ as

β̂ =
1
n2


(n− 1)

n∑

i=1

Xi logXi −
∑

i, j

Xi logXj


 .

Note thatXi are i.i.d. gam(α, β), andXi and logXj are independent wheni , j. According to the

proof in Theorem1, E[X logX] = αβ[ψ(α + 1)+ logβ], E[X] = αβ andE[log X] = ψ(α) + logβ.

Direct calculation yields

E
[
β̂
]
=

1
n2

{
(n− 1)nαβ

[
ψ(α + 1)+ logβ

]
− n(n− 1)αβ

[
ψ(α) + logβ

]}
=

n− 1
n

β.

Therefore, an unbiased estimator forβ is β̃ = nβ̂/(n− 1).

On the other hand, note that ˆα in (6) can be expressed as

α̂ =
n
∑ Xi

β

n
∑ Xi

β
log Xi

β
−

∑
log Xi

β

∑ Xi

β

.

This expression suggests that ˆα is independent of the scale parameterβ. Based on the results in

10
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Pitman(1937, Section 6), ˆα is independent of
∑

i Xi. Therefore,

E

[
n
∑

Xi

α̂

]

= E
[
n
∑

Xi

]
E[α̂−1] = n2αβE[α̂−1].

But based on (6), the above display is equal toE[n
∑

Xi logXi −
∑

logXi
∑

Xi], which is equal to

n(n− 1)β. Therefore,E[α̂−1] = n−1
n α

−1. An unbiased estimator forα−1 is then n
n−1α̂

−1.

Next, we will show that the estimator ˆα can be calibrated to yield a smaller bias. First note that

cov
(
α̂, β̂

)
= E

[
α̂β̂

]
− E

[
α̂
]
E
[
β̂
]
= αβ −

n− 1
n

βE
[
α̂
]
.

On the other hand, Theorem2 suggests that the asymptotic covariance between ˆα andβ̂ is

Acov
(
α̂, β̂

)
= −αβ

[
1+ αψ1(α + 1)

]
/n.

Equate the previous two displays to yield

E
[
α̂
]
=

nα + α
[
1+ αψ1(α + 1)

]

n− 1
.

If we expandψ1(∙) as a Laurent series (Abramowitz and Stegun 1972, Eqn. 6.4.12) and keep the

first term only, the right-hand side can be approximated by (n+ 2)α/(n− 1). Therefore, a biased-

corrected estimator forα can be

α̃ =
n− 1
n+ 2

α̂ =
n(n− 1)

∑
Xi

(n+ 2)
[
n
∑

Xi logXi −
∑

logXi
∑

Xi
] .

Similarly, by looking into the covariance and asymptotic covariance betweenβ̂ andλ̂, a biased-

corrected estimator for the rate parameterλ can be obtained as

λ̃ =
n− 1
n+ 2

λ̂ =
n2(n− 1)

(n+ 2)
[
n
∑

Xi logXi −
∑

logXi
∑

Xi
] .

11
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4.2 Simulation

A simulation is used to assess the performance of the proposed estimators and the effects of cal-

ibration. Because the variance of ˆα and the asymptotic variance ofβ̂/β are independent ofβ, we

setβ = 1 in the simulation and varyα from 0.2 to 5. We consider two sample sizesn = 20 and

n = 50. The results under different sample sizes give the same conclusion. Under each sample

size, the absolute biases and root MSEs (rMSEs) of different estimators ofα, β andλ are obtained

based on 100,000 simulation replications.

The results are shown in Figures2 and3. According to the results, the performance of the

proposed estimators ˆα andβ̂, in terms of biases and rMSEs, is almost the same compared with the

ML estimators. The bias calibration to ˆα, β̂ andλ̂ significantly reduces their biases and improves

the performance of these estimators. On the other hand, the moment estimators always have larger

biases and rMSEs. It is interesting to observe that the unbiased estimatorβ̃ has a larger rMSE

compared witĥβ. This is because the weightn/(n− 1) used in the calibration of̂β is larger than 1.

The calibration decreases the bias but increases the variance. The increase in the variance overtakes

the decrease in the bias, leading to an increase in the rMSE.
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Figure 1: Asymptotic variances of the new estimators, ML estimators and moment estimators
under different values ofα: The left panel is forα and the right panel is forβ.
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Figure 2: Absolute values of the biases (thin lines) and the rMSEs (bold lines) of the new estima-
tors, the calibrated estimators, the ML estimators and the moment estimators when the sample size
is n = 20: The left panel is forα, the middle is forβ and the right forλ.
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Figure 3: Absolute values of the biases (thin lines) and the rMSEs (bold lines) of the new estima-
tors, the calibrated estimators, the ML estimators and the moment estimators when the sample size
is n = 50: The left panel is forα, the middle is forβ and the right forλ.
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