Taylor & Francis
Taylor & Francis Group

The American Statistician

ISSN: 0003-1305 (Print) 1537-2731 (Online) Journal homepage: http://www.tandfonline.com/loi/utas20

Closed-Form Estimators for the Gamma
Distribution Derived from Likelihood Equations

Zhi-Sheng Ye & Nan Chen

To cite this article: Zhi-Sheng Ye & Nan Chen (2016): Closed-Form Estimators for the
Gamma Distribution Derived from Likelihood Equations, The American Statistician, DOI:
10.1080/00031305.2016.1209129

To link to this article: http://dx.doi.org/10.1080/00031305.2016.1209129

ﬁ Accepted author version posted online: 21
Jul 2016.

N
[:J/ Submit your article to this journal &

||I| Article views: 136

A
h View related articles &'

P

() view Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=utas20

(Download by: [The University of Manchester Library] Date: 28 February 2017, At: 10:36 )



http://www.tandfonline.com/action/journalInformation?journalCode=utas20
http://www.tandfonline.com/loi/utas20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00031305.2016.1209129
http://dx.doi.org/10.1080/00031305.2016.1209129
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=utas20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00031305.2016.1209129
http://www.tandfonline.com/doi/mlt/10.1080/00031305.2016.1209129
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2016.1209129&domain=pdf&date_stamp=2016-07-21
http://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2016.1209129&domain=pdf&date_stamp=2016-07-21

ACCEPTED MANUSCRIPT

Closed-Form Estimators for the Gamma Distribution
Derived from Likelihood Equations

Zhi-Sheng YE and Nan CHEN
Department of Industrial & Systems Engineering
National University of Singapore, Singapore, 117576

Abstract

It is well-known that maximum likelihood (ML) estimators of the two parameters in a

gamma distribution do not have closed forms. This poséedities in some applications such

as real-time signal processing using low-grade processors. The gamma distribution is a spe-
cial case of a generalized gamma distribution. Surprisingly, two out of the three likelihood
equations of the generalized gamma distribution can be used as estimating equations for the
gamma distribution, based on which simple closed-form estimators for the two gamma parame-
ters are available. Intuitively, performance of the new estimators based on likelihood equations
should be close to the ML estimators. The study consolidates this conjecture by establishing
the asymptotic behaviours of the new estimators. In addition, the closed-forms enable bias-
corrections to these estimators. The bias-correction significantly improves the small-sample

performance.

Keywords: Estimating equations; bias-correction; generalized gamma distribution; asymptotic

efficiency.
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1 Introduction

The gamma distribution, denoted as gat@), is a two-parameter distribution with probability

density function (PDF)

v—1
BT ()

wherea > 0 is the shape parametgr> 0 is the scale parameter afl) is the gamma function.

fgam(x) =

exp(-x/B), x> 0, (1)

Due to the moderate skewness, the gamma distribution is a useful model in many areas of statistics
when the normal distribution is not appropriate. For example, it is often used to model frailty
and random-ects. In queueing theory, the gamma distribution is often used as a distribution
for waiting times and service times\hitt 2000. It is widely used in environmetrics such as
environmental monitoring of rainfall sizeKiishnamoorthy et al. 2008 The gamma distribution

is a useful model for lifetimeGhen and Ye 20L6Mieeker and Escobar 199€hapter 5.2). It is

also used in signal processing (évgseghi 2008 and clinical trials (e.gWiens 1999.

The most popular parameter estimation method is the maximum likelihood (ML) method.
However, for the two-parameter gamma distribution, there are no closed-form expressions for the
ML estimators. This posestticulties in real-time dafaignal processing using battery-constrained,
memory and CPU deficient mobile hand-held devicgsng 2008 On the other hand, when the
computing power of the device is strong enough, the ML estimators may be obtained by numeri-
cally maximizing the gamma log-likelihood. However, our simulation experience suggests that the
optimization algorithm may fail to converge whens very small. Even whea is large enough to
ensure convergence of the likelihood maximization, the maximization often takes a non-ignorable
time. For example, to avoid very long computational time in detecting multiple changepoints in

a gamma-distributed sample, previous changepoint detection algorithms usually assume a known
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shape parameter, e.g.,Killick and Eckley (2014). Although the moment estimators of the two
gamma parameters have closed-forms, they are ffiotemt under either small samples or large
samples, see Figurds 2, and3 below. In order to obtain simple yeffiient estimators of the
gamma parameters, we need to think outside the box of the two conventional inference methods.

One way to accomplish this is through the use of the generalized gamma distribution, denoted
as ggt., B,v), wherey > 0 is a power parameter. It is a useful extension of the gamma distribution
with PDF

_ yxt y
foo(X) = BT(@) exp[—(x/B)"], x> 0. 2)

The generalized gamma can be obtained by a power transformation of gamfna:game, g3),
thenX” ~ gg(a, B,y). This distribution, proposed iytacy(1962, is a flexible model that contains
the gamma, Weibull and lognormal distributions as special cases. Many studies have focused on
parameter inference for the generalized gamma distributionL 8ekess(1980 andSong(2008,
among others. Inference in this distribution is generally hard. Surprisingly, two estimating equa-
tions for the gamma distribution can be obtained by first treating the gamma-distributed data as if
they are generalized gamma distributed and then obtaining the three likelihood equations based on
the generalized gamma distribution. Estimators based on the two estimating equations have simple
closed forms. We show that in terms of both small sample performance and asymfitcisoey,
the new estimators are comparable to the ML estimators. In addition, the closed-forms enable
bias-correction to these estimators, which significantly improves the small-sample performance in
terms of bias and mean squared errors (MSES).

The paper is organized as follows. Section 2 derives the new estimators for the gamma distribu-
tion by looking outside to the generalized gamma distribution. Large sample properties of the new

estimators are investigated in Section 3. Section 4 studies bias-correction for the new estimators.
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2 The New Estimators

Let X ~ gamg,B) and Xy, X,,--- , X, ben i.i.d. copies ofX, wherea andg are parameters of
interest and need estimation. Obviousty;~ gg(a,3,y) with y = 1. For now, let us pretend that
X follows the above generalized gamma distribution with unknewnThen the log-likelihood

function based on the observ&g X, - -- , X, is
1 n
lgo(.8.7) = logy — aylogp ~ logI(a) + = > [(ay ~ 1)logX — (X/B)"].
i=1

The likelihood equations are obtained by taking the partial derivativég, @fith respect tar, 5

andy, respectively:

M = —u(a) - ylogB+ L Y logx, 3)
0% n —

algg(a/’ﬁ7 7) _ 1 - .

T = —a+ A ;(Xu /B)", 4)
Olgg(a,B.y) @ U _ 1< _ _

e Zl] log(X /) - ;(X' B) 109(Xi/B). 5)

wherey () = dlogI'(x)/dx is the digamma function. Setting these equal to zero and solving the
resulting system of equations gives the ML estimatorag8(y). In particular, by settingd) equal

to zero, we can expregsas a function ofr andy:

Z X’)/ 1/y
pan = (2]

(04
Substitute the above display ints) o give

ny, X’
ny 3 X'log X —y X logX ¥ X/

a(y) =

Now, return to the gamma distribution. We already know thatl. Use this fact in the above
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two displays to obtain the new estimators doandg as

ny X
nY XlogX —>logX X X’

a =

(6)

and

%(nZXﬂogXi—ZngiZXi). (7)

From the viewpoint of estimating equations,ahdj3 are obtained based on the two estimating

B

equations 4) and 6), which originate from the likelihood equations of the generalized gamma
distribution.

Another common parametrization of the gamma distribution is to replégea rate parameter
A = 1/B. Under this parametrization, we can go through the above procedure again to obtain an

estimator forl as
n2

= S Xl0g% - S logX 3 X

(8)

which is simply the inverse gb. The estimator ofr remains the same a$)(under the rate
reparametrization.

The above procedure can be easily extended to the estimation of stationary gamma processes
(Ye et al. 201). Since the two estimating equations for the gamma parameters are essentially
likelihood equations of the generalized gamma distribution, it is expected that the performance
of the proposed estimators should be similar to the ML estimators. In the next section, we show
that the asymptoticf&ciency of the proposed estimators is almost the same as the ML estimator

counterparts.
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3 Large Sample Properties

In this section, we first show that the new estimators are strongly consistent in Th&oféran,
the asymptotic normality is established and the asymptotic covariance matrix is derived in Theorem

2.

Theorem 1 The estimatorg, 3 and 1 given in ), (7) and @) are strongly consistent estimators

of a, B, and 2, respectively.

Proof Given theni.i.d. copies ofX ~ gamg, ), letX, Y, Z be the empirical means & log X, X log X,

respectively. The mean &fis af. Based on the moment generating function ofXog

INa+2 ,

MIogX(Z) = F(a) B (9)

the mean of loX is ¥(a) + logB. To obtainE[ X log X], note that

E[Xlog X] = f " X0gX o nex/p)dx = AL+ ) f ) 5 X10gX _ o nx/p)dx
0 0

BT () I'(a) (@ + 1)

The above formula implies

E[XlogX] = aply(a + 1) + logg].

According to the strong law of large numbers,

(X, Y,2) —as (@B, ¥(a) +10gB, afly(a + 1) + logg]) asn — co.

Define two functions
a(X.Y.2 =z=-Xxy, QX Y,2) = X/(z—Xy).

Both g; andg, are continuous aix(y, 2) = (aB, ¥(a) + 1098, aB[¥(a + 1) +1ogB]). An application

ACCEPTED MANUSCRIPT
6



ACCEPTED MANUSCRIPT

of the continuous-mapping theorem yields that, when o,

B =01(X.Y,Z) —as aBly(a + 1) - ¢(a)].

For the arguments on the right-hand side of the above display,

d
= a[log al = 1/a.

d[ (e +1)

w(a+1) - w(a) = dﬂt[ logI(a + 1)~ logT(@)] = g |log ——~

we haveB —,s 8. By the continuous-mapping theorem again= ‘gz(X\ZZ) —as @. Since
A = 1/B, its strong consistency is an immediate consequence of the continuous-meEuirgm.

Theorem 2 When n— oo, the two estimatord and in (6) and (7) are asymptotically normally

distributed as

A . 0 [1+ayi(1+a)] —af[l+ ay(a+ 1)]
V(@ - a,f-p) =4 N ; , (10)
0| —apll+aysle+1)] AL+ aya(e)]
Proof Continue with the proof in Theorerh and letX ~ gamg,B). ThenE[X] = oB and

E[X?] = oB? + o®8?. Based on the moment generating functiondf log X, define two quantities:

V(l

Ellog X] = y(a) + logg,

U, E[(log X)?] = y1(a) + ¥?(a) + 2y(e) logB + log? B,

wherey(-) is the trigamma function equal ) (x)/dx. By making use of these two quanti-
ties, we haveE[X10g X] = afBV,.1, E[(X10ogX)?] = aB(e + 1)U,.2, E[X10g? X] = aBu,.1, and
E[X?log X] = oB?(e + 1)v,.». Based on the above expectations, we can show after tedious calcu-

lations that

VI(X, Y, Z) = (@B, Va, @BVas1)] —a N (03, %),
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where0s is a zero vector with 3 elements, and
aff? B af?(1 + Vou1)

X = B Ya(a) api(a + 1) + BVos

| a’ﬂz(l + Va+l) aﬁwl(a’ + 1) +ﬁva+1 a’ﬁz[(a' + 1)ua+2 - a'vtzﬁl] ]

Becauser = gx(X, Y, Z) andg = gi(X, Y, Z), the partial derivatives ofg, g,) with respect to the

three arguments(y, z) and evaluated ai(y, z) = (aB, V,, aBV,) are

v O% West G2 _a
ax I7) 0z

A= y _| B B
9 09 In - -
ox ay 0z Ve a'B 1

An application of the delta method yields theh(a — @, 3 — B) is normally distributed with mean

0, and variance matriAZA’. After tedious simplifications, we can show that

[l +ayi(l+a)] —af[l+ aya(a+1)]
AZA =
—af[l+ayr(a+1)] B+ aya(a)]

Therefore, the theorem folles. |

Remark: From @) and (7), it is interesting to observe that our estimators are mixed type log-
moment estimators. The regular moment estimators use the first two moEj&fjts= o8 and

E[X?] = aB?+a?B%. Our method replaces the second moment equatid ¥yog X]-E[X]E[log X] =

B, after which our estimators are obtained by using sample momemXslaj X and Xlog X in

place of the unknown population moments. Given that the means and varian€ds@X and

Xlog X exist, the asymptotic results of the two estimators are not surprising. The generalized
gamma device serves as a heuristic to obtain the two mixed-type log-moment estimating equa-
tions. Without the help of the generalized gamma, derivation of the two estimating equations

would be dificult.
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We compare the asymptotid¢hieiency of the new estimators, the ML estimators and the mo-
ment estimators. ML estimators @fandg have to be obtained by solving the likelihood equations

numerically. The moment estimators@findg are

L (ZX)? ~ Y X (X X)?
"Tarx-x) Tt EXx)

The asymptotic variance matrix, which is also the Cramer-Rao lower bound, for the ML estimators
of («,B) is obtained by first deriving the Fisher information matrix and then inverting it, which is
given by

aw| —

B By(a)
The asymptotic variance matrix for the moment estimators can be obtained through the delta
method. Figurel shows the asymptotic variances of the threedent estimators fo# andg.
Because the variances @fahd;/3 do not depend of, we fix 8 = 1 and varye over the interval
[0.1, 3], as shown in Figuré&. The asymptotic variances of the moment estimators are much higher
than the others. In contrast, the variance curves of the proposed estimators and the ML estimators
are almost the same. Simulation in the next section shows the same conclusion under small sam-

ples. Nevertheless, due to the simple closed forms, the proposed estimators can be calibrated to

yield smaller biases under small samples, as shown in the next section.

4 Small Sample Properties

In this section, an unbiased estimator for the scale parafesesbtained by calibrating the new

estimator3. Unbiased estimators for the rate and the shape parameters are not available. Never-
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theless, we give a method to calibrate the corresponding new estimators by comparing the exact
covariance and asymptotic covariance between the two estimatofs @nlflonte Carlo simula-

tion is used to show the good performance of the calibrated estimators in terms of bias and MSEs.

4.1 Bias correction

Theorem 3 An unbiased estimator for the scale paramegités

~ A 1
B = nilﬁ: n(n_l)(nZXilogXi—ZlogXiZXi).

While an unbiased estimator fara is

— _ N . nXXlogX -XlogX ¥ X
¢ Tho T -1 X '

Proof First, expresg as

.1 n

B=|in- 1); Xi log X; — ;xi logX;|.
Note thatX; are i.i.d. gamg, ), andX; and logX; are independent when# j. According to the
proof in Theorent, E[Xlog X] = aB[y(a + 1) + logp], E[X] = aB andE[log X] = y(a) + logp.

Direct calculation yields

E[B] = —{(n~ Draslu(a + 1) + logs] - n(n ~ Daplu(e) + loghl} = 5.

Therefore, an unbiased estimator fais 53 = n3/(n — 1).
On the other hand, note thatri (6) can be expressed as

ny %
Ny %logy - Xlogs %%

a =

This expression suggests thats"independent of the scale paramgteBased on the results in
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Pitman(1937, Section 6)¢«’is independent o}; X;. Therefore,

n) X

(0

E

=E[n) X|E[a = nPapE[a~"].

But based on®), the above display is equal &[n Y, Xilog X — 3. log X; > Xi], which is equal to

n(n — 1)8. ThereforeE[a!] = “2a*. An unbiased estimator far ! is then-at. |
Next, we will show that the estimatarcan be calibrated to yield a smaller bias. First note that
P P A n-1___.
coua.p) = Elap] - E|a]E[f] = of - ——pE[al.
On the other hand, Theore®suggests that the asymptotic covariance betweandp is
Aco@, B) = —aB[1 + ayi(a + 1)]/n.

Equate the previous two displays to yield

_na+af[l+ay(a+1)]
B n-1 '

E[4]

If we expandyy(-) as a Laurent serieg\bramowitz and Stegun 197Eqn. 6.4.12) and keep the
first term only, the right-hand side can be approximatedrby 2)a/(n — 1). Therefore, a biased-

corrected estimator far can be

n-1. nin—1)> X
nt 2" " (N+2)n3 X logX; — Y logX > %]’

a=

Similarly, by looking into the covariance and asymptotic covariance betgeed?, a biased-

corrected estimator for the rate parametean be obtained as

n—1 n2(n—1
- (n-1)

/l:n+2 (N+2)n3 X logX; — X logX > %]

ACCEPTED MANUSCRIPT
11



ACCEPTED MANUSCRIPT

4.2 Simulation

A simulation is used to assess the performance of the proposed estimators afiddiseoé cal-
ibration. Because the variance @fahd the asymptotic variance pf3 are independent &, we

setB = 1 in the simulation and vary from 0.2 to 5. We consider two sample sizes: 20 and

n = 50. The results under filerent sample sizes give the same conclusion. Under each sample
size, the absolute biases and root MSEs (rMSESs)féémdint estimators af, 8 andA are obtained
based on 100,000 simulation replications.

The results are shown in Figur@sand 3. According to the results, the performance of the
proposed estimatorsdndp, in terms of biases and rMSEs, is almost the same compared with the
ML estimators. The bias calibration ta 3 and significantly reduces their biases and improves
the performance of these estimators. On the other hand, the moment estimators always have larger
biases and rMSEs. It is interesting to observe that the unbiased estjassr a larger rMSE
compared withB. This is because the weight(n — 1) used in the calibration ¢ is larger than 1.

The calibration decreases the bias but increases the variance. The increase in the variance overtakes

the decrease in the bias, leading to an increase in the rMSE.
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Figure 2: Absolute values of the biases (thin lines) and the rMSEs (bold lines) of the new estima-
tors, the calibrated estimators, the ML estimators and the moment estimators when the sample size
isn = 20: The left panel is for, the middle is fo and the right for.
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Figure 3: Absolute values of the biases (thin lines) and the rMSEs (bold lines) of the new estima-
tors, the calibrated estimators, the ML estimators and the moment estimators when the sample size
isn = 50: The left panel is fow, the middle is foB and the right forl.
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