Two hours

Statistical tables to be provided

THE UNIVERSITY OF MANCHESTER

INTRODUCTION TO STATISTICS

 $20~\mathrm{May}~2020$

14.00 - 16.00

Answer <u>ALL FOUR</u> questions in Section A and <u>TWO</u> of the <u>THREE</u> questions in Section B.

Electronic calculators may be used in accordance with the University regulations

SECTION A

Answer **ALL** four questions

A1. (a) Let x_1, x_2, \ldots, x_n denote a data set and let $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ denote the order statistics in ascending order. Define what is meant by the following:

- (i) sample median;
- (ii) sample first quartile;
- (iii) sample third quartile;
- (iv) sample inter quartile range.
 - (b) Show that

(b) Show that
$$\begin{cases} x_{(3m)} - x_{(m)} + \frac{1}{4} \left(3x_{(3m+1)} - 3x_{(3m)} - x_{(m+1)} + x_{(m)} \right), & \text{if } n = 4m, \\ x_{(3m)} - x_{(m)}, & \text{if } n = 4m - 1, \\ x_{(3m-1)} - x_{(m-1)} + \frac{1}{4} \left(x_{(3m)} - x_{(3m-1)} - 3x_{(m)} + 3x_{(m-1)} \right), & \text{if } n = 4m - 2, \\ x_{(3m-2)} - x_{(m-1)} + \frac{1}{2} \left(x_{(3m-1)} - x_{(3m-2)} - x_{(m)} + x_{(m-1)} \right), & \text{if } n = 4m - 3, \end{cases}$$

where m is an integer greater than or equal to 1.

- **A2.** (a) Suppose $\widehat{\theta}$ is an estimator of θ based on a random sample of size n. Define what is meant by the following:
 - (i) the bias of $\widehat{\theta}$ (written as $\operatorname{bias}(\widehat{\theta})$);
 - (ii) the mean squared error of $\widehat{\theta}$ (written as $MSE(\widehat{\theta})$);
- (iii) $\widehat{\theta}$ is a consistent estimator of θ .
- (b) Suppose X_1, \ldots, X_n are independent Uniform $(-\theta, \theta)$ random variables. Let $\widehat{\theta} = \max(|X_1|, \ldots, |X_n|)$ denote a possible estimator of θ .
 - (i) Derive the bias of $\widehat{\theta}$;
 - (ii) Derive the mean squared error of $\widehat{\theta}$;
- (iii) Is $\widehat{\theta}$ an unbiased estimator for θ ? Justify your answer;
- (iv) Is $\widehat{\theta}$ a consistent estimator for θ ? Justify your answer.

- **A3.** (a) Suppose we wish to test $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$. Define what is meant by the following:
 - (i) the Type I error of a test;
 - (ii) the Type II error of a test;
- (iii) the significance level of a test.
- (b) Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. State the rejection region for each of the following tests:
 - (i) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu \neq \mu_0.$
 - (ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$

In each case, assume a significance level of α .

- (c) Suppose $X_1, X_2, ..., X_n$ is a random sample from $N(\mu, \sigma^2)$, where σ is unknown. Derive an expression for P (Reject $H_0 \mid H_1$ is true) for the two cases in part (b):
 - (i) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu \neq \mu_0.$
 - (ii) $H_0: \mu = \mu_0 \text{ versus } H_1: \mu < \mu_0.$

You may express the probability in terms of the distribution function of a Student't t random variable.

- **A4.** (a) Let $\mathbf{X} = (X_1, \dots, X_n)$, with X_1, \dots, X_n an independent random sample from a distribution F_X with unknown parameter θ . Let $I(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ . Define what is meant by the following:
 - (i) that $I(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence interval.
 - (ii) coverage probability of $I(\mathbf{X})$.
- (iii) coverage length of $I(\mathbf{X})$.
- (b) Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$. Derive a $100(1 \alpha)\%$ confidence interval for σ .
- (c) Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the cumulative distribution function

$$F_X(x) = 1 - \exp(\theta - x)$$

for $x > \theta$.

(i) Show that the cumulative distribution function $\min(X_1, X_2, \dots, X_n) = Z$ say, is

$$F_Z(z) = 1 - \exp(n\theta - nz)$$

for $z > \theta$.

(ii) Use the result in (i) to derive a $100(1-\alpha)\%$ confidence interval for θ .

SECTION B

Answer **TWO** of the three questions

B5. Suppose $X \sim \text{Binomial}(m, p)$ and $Y \sim \text{Binomial}(n, p)$ are independent random variables. Consider the following estimators for p:

$$\widehat{p_1} = \frac{X}{2m} + \frac{Y}{2n}$$

and

$$\widehat{p_2} = \frac{X+Y}{m+n}.$$

- (i) Calculate the bias of $\widehat{p_1}$.
- (ii) Calculate the bias of $\widehat{p_2}$.
- (iii) Calculate the mean squared error of $\widehat{p_1}$.
- (iv) Calculate the mean squared error of \widehat{p}_2 .
- (v) Which of the estimators $(\widehat{p_1} \text{ and } \widehat{p_2})$ is better with respect to bias and why?
- (vi) Which of the estimators $(\hat{p_1} \text{ and } \hat{p_2})$ is better with respect to mean squared error and why?

B6. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability density function

$$f_X(x) = \frac{\sqrt{2}}{\sqrt{\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

for x > 0.

- (i) Write down the likelihood function of σ^2 .
- (ii) Show that the maximum likelihood estimator of σ^2 is

$$\widehat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n X_i^2.$$

- (iii) Deduce the maximum likelihood estimator of σ .
- (iv) Show that the estimator in part (ii) is an unbiased estimator of σ^2 .
- (v) Show that the estimator in part (ii) is a consistent estimator of σ^2 .

B7. Suppose X_1, X_2, \ldots, X_n is a random sample from a distribution specified by the probability mass function

$$p_X(x) = {x+r-1 \choose x} (1-p)^r p^x$$

for $x = 0, 1, \dots$ with the properties

$$E(X) = \frac{pr}{1 - p}$$

and

$$Var(X) = \frac{pr}{(1-p)^2}.$$

Furthermore, assume r is known but p is unknown.

- (i) Write down the likelihood function of p.
- (ii) Show that the maximum likelihood estimator of p is

$$\widehat{p} = \frac{\sum_{i=1}^{n} X_i}{nr + \sum_{i=1}^{n} X_i}.$$

- (iii) Deduce the maximum likelihood estimator of $p/(1-p)=\psi$ say.
- (iv) Show that the estimator in part (iii) is an unbiased estimator of ψ .
- (v) Show that the estimator in part (iii) is a consistent estimator of ψ .