MATH4/68181: EXTREME VALUES AND FINANCIAL RISK
SEMESTER 1
SOLUTIONS TO QUIZ PROBLEM 3

Consider a class of distributions defined by the cdf
F(z) = [G@)" {14+ A= A[G@)]"}

where a > 0, b > 0, —00 < A < oo and G(-) is a valid cdf. Assume that ' and G have the same
upper end points.

First, suppose that G belongs to the max domain of attraction of the Gumbel extreme value
distribution. Then, there must exist a strictly positive function say h(t) such that
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for every x > 0, assuming w(F) = w(G). So, it follows that F' also belongs to the max domain of
attraction of the Gumbel extreme value distribution with
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for some suitable norming constants a,, > 0 and b,.

Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme value
distribution. Then, there must exist a § > 0 such that
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for every x > 0. So, it follows that F' also belongs to the max domain of attraction of the Fréchet
extreme value distribution with
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for some suitable norming constants a,, > 0 and b,.

Third, suppose that G belongs to the max domain of attraction of the Weibull extreme value
distribution. Then, there must exist a § > 0 such that
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for every x > 0. But
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for every z > 0, assuming w(F') = w(G). So, it follows that F' also belongs to the max domain of
attraction of the Weibull extreme value distribution with
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for some suitable norming constants a,, > 0 and b,.




