SOLUTIONS TO

 MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM
Solutions to Question A1

ILO: bivariate extreme value distributions
a) The marginal cumulative distribution functions of X and Y are

$$
F_{X}(x)=F_{X, Y}(x, \infty)=\left[H_{U, V}(x, \infty)\right]^{\alpha}=\left[H_{U}(x)\right]^{\alpha}
$$

and

$$
F_{Y}(y)=F_{X, Y}(\infty, y)=\left[H_{U, V}(\infty, y)\right]^{\alpha}=\left[H_{V}(y)\right]^{\alpha}
$$

respectively.
(2 marks)

UNSEEN

b) Setting $F_{X}(x)=1$ gives

$$
F_{X}(x)=\left[H_{U}(x)\right]^{\alpha}=1
$$

which implies

$$
H_{U}(x)=1
$$

which implies $x=w\left(H_{U}\right)$. Hence, $w\left(F_{X}\right)=w\left(H_{U}\right)$.

UNSEEN

c) Setting $F_{Y}(y)=1$ gives

$$
F_{Y}(y)=\left[H_{V}(y)\right]^{\alpha}=1
$$

which implies

$$
H_{V}(y)=1
$$

which implies $y=w\left(H_{V}\right)$. Hence, $w\left(F_{Y}\right)=w\left(H_{V}\right)$.

UNSEEN

d) Suppose that $H_{U}(u)=H_{U, V}(u, \infty)$ belongs to the Gumbel max domain of attraction. Then there exists $\gamma(t)>0$ such that

$$
\lim _{t \rightarrow w(H)} \frac{1-H_{U}\left(t+\gamma_{U}(t) u\right)}{1-H_{U}(t)}=\exp (-u)
$$

So,

$$
\begin{aligned}
\lim _{t \rightarrow w\left(F_{X}\right)} \frac{1-F_{X}\left(t+\gamma_{U}(t) x\right)}{1-F_{X}(t)} & =\lim _{t \rightarrow w\left(F_{X}\right)} \frac{1-\left[H_{U}\left(t+\gamma_{U}(t) x\right)\right]^{\alpha}}{1-\left[H_{V}(t)\right]^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{U}\right)} \frac{1-\left[H_{U}\left(t+\gamma_{U}(t) x\right)\right]^{\alpha}}{1-\left[H_{V}(t)\right]^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{U}\right)} \frac{1-\left\{1-\left[1-H_{U}\left(t+\gamma_{U}(t) x\right)\right]\right\}^{\alpha}}{1-\left\{1-\left[1-H_{U}(t)\right]\right\}^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{U}\right)} \frac{1-\left\{1-\alpha\left[1-H_{U}\left(t+\gamma_{U}(t) x\right)\right]\right\}}{1-\left\{1-\alpha\left[1-H_{U}(t)\right]\right\}} \\
& =\lim _{t \rightarrow w\left(H_{U}\right)} \frac{1-H_{U}\left(t+\gamma_{U}(t) x\right)}{1-H_{U}(t)} \\
& =\exp (-x)
\end{aligned}
$$

and $F_{X}(x)$ also belongs to the Gumbel max domain of attraction.
(3 marks)

UNSEEN

e) Suppose that $H_{V}(v)=H_{U, V}(\infty, v)$ belongs to the Gumbel max domain of attraction. Then there exists $\gamma_{V}(t)>0$ such that

$$
\lim _{t \rightarrow w(H)} \frac{1-H_{V}\left(t+\gamma_{V}(t) v\right)}{1-H_{V}(t)}=\exp (-v)
$$

So,

$$
\begin{aligned}
\lim _{t \rightarrow w\left(F_{Y}\right)} \frac{1-F_{Y}\left(t+\gamma_{V}(t) y\right)}{1-F_{Y}(t)} & =\lim _{t \rightarrow w\left(F_{Y}\right)} \frac{1-\left[H_{V}\left(t+\gamma_{V}(t) y\right)\right]^{\alpha}}{1-\left[H_{V}(t)\right]^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{V}\right)} \frac{1-\left[H_{V}\left(t+\gamma_{V}(t) y\right)\right]^{\alpha}}{1-\left[H_{V}(t)\right]^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{V}\right)} \frac{1-\left\{1-\left[1-H_{V}\left(t+\gamma_{V}(t) y\right)\right]\right\}^{\alpha}}{1-\left\{1-\left[1-H_{V}(t)\right]\right\}^{\alpha}} \\
& =\lim _{t \rightarrow w\left(H_{V}\right)} \frac{1-\left\{1-\alpha\left[1-H_{V}\left(t+\gamma_{V}(t) y\right)\right]\right\}}{1-\left\{1-\alpha\left[1-H_{V}(t)\right]\right\}} \\
& =\lim _{t \rightarrow w\left(H_{V}\right)} \frac{1-H_{V}\left(t+\gamma_{V}(t) y\right)}{1-H_{V}(t)} \\
& =\exp (-y)
\end{aligned}
$$

and $F_{Y}(y)$ also belongs to the Gumbel max domain of attraction.

UNSEEN

f) If a_{n} and b_{n} satisfy

$$
\left[H_{U}\left(a_{n} u+b_{n}\right)\right]^{n} \rightarrow \exp (u)
$$

as $n \rightarrow \infty$ then

$$
a_{n}=\gamma_{U}\left(F_{U}^{-1}\left(1-\frac{1}{n}\right)\right)
$$

and

$$
b_{n}=F_{U}^{-1}\left(1-\frac{1}{n}\right)
$$

F_{X} also belongs to the Gumbel max domain of attraction with

$$
a_{n}^{\prime}=\gamma_{U}\left(F_{X}^{-1}\left(1-\frac{1}{n}\right)\right)
$$

and

$$
b_{n}^{\prime}=F_{X}^{-1}\left(1-\frac{1}{n}\right) .
$$

Setting

$$
F_{X}(x)=1-\frac{1}{n}
$$

implies

$$
\left[H_{U}(x)\right]^{\alpha}=1-\frac{1}{n}
$$

which implies

$$
x=H_{U}^{-1}\left(\left(1-\frac{1}{n}\right)^{1 / \alpha}\right)
$$

which behaves as

$$
x=H_{U}^{-1}\left(1-\frac{1}{\alpha n}\right) .
$$

Hence, $a_{n}^{\prime}=a_{\alpha n}$ and $b_{n}^{\prime}=b_{\alpha n}$.
g) If c_{n} and d_{n} satisfy

$$
\left[H_{V}\left(c_{n} v+d_{n}\right)\right]^{n} \rightarrow \exp (v)
$$

as $n \rightarrow \infty$ then

$$
c_{n}=\gamma_{V}\left(F_{V}^{-1}\left(1-\frac{1}{n}\right)\right)
$$

and

$$
d_{n}=F_{V}^{-1}\left(1-\frac{1}{n}\right)
$$

F_{Y} also belongs to the Gumbel max domain of attraction with

$$
c_{n}^{\prime}=\gamma_{V}\left(F_{Y}^{-1}\left(1-\frac{1}{n}\right)\right)
$$

and

$$
d_{n}^{\prime}=F_{Y}^{-1}\left(1-\frac{1}{n}\right)
$$

Setting

$$
F_{Y}(y)=1-\frac{1}{n}
$$

implies

$$
\left[H_{V}(y)\right]^{\alpha}=1-\frac{1}{n}
$$

which implies

$$
y=H_{V}^{-1}\left(\left(1-\frac{1}{n}\right)^{1 / \alpha}\right)
$$

which behaves as

$$
y=H_{V}^{-1}\left(1-\frac{1}{\alpha n}\right) .
$$

Hence, $c_{n}^{\prime}=c_{\alpha n}$ and $d_{n}^{\prime}=d_{\alpha n}$.
h) The limiting cumulative distribution function is

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[F_{X, Y}\left(a_{\alpha n} x+b_{\alpha n}, c_{\alpha n} y+d_{\alpha n}\right)\right]^{n} \\
= & \lim _{n \rightarrow \infty}\left[H_{X, Y}\left(a_{\alpha n} x+b_{\alpha n}, c_{\alpha n} y+d_{\alpha n}\right)\right]^{\alpha n} \\
= & \lim _{n \rightarrow \infty}\left[H_{X, Y}\left(a_{m} x+b_{m}, c_{m} y+d_{m}\right)\right]^{m} \quad \text { set } m=\alpha n \\
= & G(x, y)
\end{aligned}
$$

UNSEEN

h) This is trivial since the limiting distributions for (X, Y) and (U, V) are the same.
(1 marks)

UNSEEN

Solutions to Question A2

ILO: checking a function is a copula
$C\left(u_{1}, u_{2}\right)$ is a valid copula if

$$
\begin{gathered}
C(u, 0)=0, \\
C(0, u)=0, \\
C(1, u)=u \\
C(u, 1)=u \\
\frac{\partial}{\partial u_{1}} C\left(u_{1}, u_{2}\right) \geq 0
\end{gathered}
$$

and

$$
\frac{\partial}{\partial u_{2}} C\left(u_{1}, u_{2}\right) \geq 0
$$

SEEN

a) for C defined by

$$
C\left(u_{1}, u_{2}\right)=\min \left[C_{1}\left(u_{1}, u_{2}\right), C_{2}\left(u_{1}, u_{2}\right)\right],
$$

we have

$$
\begin{gathered}
C(u, 0)=\min \left[C_{1}(u, 0), C_{2}(u, 0)\right]=\min (0,0)=0, \\
C(0, u)=\min \left[C_{1}(0, u), C_{2}(0, u)\right]=\min (0,0)=0, \\
C(1, u)=\min \left[C_{1}(1, u), C_{2}(1, u)\right]=\min (u, u)=u, \\
C(u, 1)=\min \left[C_{1}(u, 1), C_{2}(u, 1)\right]=\min (u, u)=u, \\
\frac{\partial}{\partial u_{1}} C\left(u_{1}, u_{2}\right)= \begin{cases}\frac{\partial C_{1}\left(u_{1}, u_{2}\right)}{\partial u_{1},}, & \text { if } C_{1}\left(u_{1}, u_{2}\right)<C_{2}\left(u_{1}, u_{2}\right), \\
\frac{\partial C_{2}\left(u_{1}, u_{2}\right)}{\partial u_{1}}, & \text { if } C_{1}\left(u_{1}, u_{2}\right) \geq C_{2}\left(u_{1}, u_{2}\right)\end{cases}
\end{gathered}
$$

and

$$
\frac{\partial}{\partial u_{2}} C\left(u_{1}, u_{2}\right)= \begin{cases}\frac{\partial C_{1}\left(u_{1}, u_{2}\right)}{\partial u_{2}}, & \text { if } C_{1}\left(u_{1}, u_{2}\right)<C_{2}\left(u_{1}, u_{2}\right), \\ \frac{\partial C_{2}\left(u_{1}, u_{2}\right)}{\partial u_{2}}, & \text { if } C_{1}\left(u_{1}, u_{2}\right) \geq C_{2}\left(u_{1}, u_{2}\right)\end{cases}
$$

so C is a valid copula.

UNSEEN

b) for C defined by

$$
C\left(u_{1}, u_{2}\right)=\max \left[C_{1}\left(u_{1}, u_{2}\right), C_{2}\left(u_{1}, u_{2}\right)\right]
$$

we have

$$
\begin{aligned}
C(u, 0) & =\max \left[C_{1}(u, 0), C_{2}(u, 0)\right]=\max (0,0)=0, \\
C(0, u) & =\max \left[C_{1}(0, u), C_{2}(0, u)\right]=\max (0,0)=0, \\
C(1, u) & =\max \left[C_{1}(1, u), C_{2}(1, u)\right]=\max (u, u)=u, \\
C(u, 1) & =\max \left[C_{1}(u, 1), C_{2}(u, 1)\right]=\max (u, u)=u, \\
\frac{\partial}{\partial u_{1}} C\left(u_{1}, u_{2}\right) & = \begin{cases}\frac{\partial C_{1}\left(u_{1}, u_{2}\right)}{\partial u_{1},}, & \text { if } C_{1}\left(u_{1}, u_{2}\right)>C_{2}\left(u_{1}, u_{2}\right), \\
\frac{\partial C_{2}\left(u_{1}, u_{2}\right)}{\partial u_{1}}, & \text { if } C_{1}\left(u_{1}, u_{2}\right) \leq C_{2}\left(u_{1}, u_{2}\right)\end{cases}
\end{aligned}
$$

and

$$
\frac{\partial}{\partial u_{2}} C\left(u_{1}, u_{2}\right)= \begin{cases}\frac{\partial C_{1}\left(u_{1}, u_{2}\right)}{\left.\partial u_{2}, u_{2}\right)}, & \text { if } C_{1}\left(u_{1}, u_{2}\right)>C_{2}\left(u_{1}, u_{2}\right), \\ \frac{\partial C_{2}\left(u_{1}, u_{2}\right)}{\partial u_{2}}, & \text { if } C_{1}\left(u_{1}, u_{2}\right) \leq C_{2}\left(u_{1}, u_{2}\right)\end{cases}
$$

so C is a valid copula.

UNSEEN

c) for C defined by

$$
C\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}\left(u_{1}, u_{2}\right)
$$

where C_{i} are valid copulas and α_{i} are non-negative real numbers summing to 1 , we have

$$
\begin{gathered}
C(u, 0)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}(u, 0)=0, \\
C(0, u)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}(0, u)=0 \\
C(u, 1)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}(u, 1)=\sum_{i=1}^{\infty} \alpha_{i} u=u \\
C(1, u)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}(1, u)=\sum_{i=1}^{\infty} \alpha_{i} u=u \\
\frac{\partial}{\partial u_{1}} C\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{i} \frac{\partial}{\partial u_{1}} C_{i}\left(u_{1}, u_{2}\right) \geq 0
\end{gathered}
$$

and

$$
\frac{\partial}{\partial u_{2}} C\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{i} \frac{\partial}{\partial u_{2}} C_{i}\left(u_{1}, u_{2}\right) \geq 0
$$

so C is a valid copula.

UNSEEN

d) for C defined by

$$
C\left(u_{1}, u_{2}\right)=\prod_{i=1}^{\infty}\left[C_{i}\left(u_{1}, u_{2}\right)\right]^{\alpha_{i}}
$$

where C_{i} are valid copulas and α_{i} are non-negative real numbers summing to 1 , we have

$$
\begin{aligned}
& C(u, 0)=\prod_{i=1}^{\infty}\left[C_{i}(u, 0)\right]^{\alpha_{i}}=0 \\
& C(0, u)=\prod_{i=1}^{\infty}\left[C_{i}(0, u)\right]^{\alpha_{i}}=0
\end{aligned}
$$

$$
\begin{gathered}
C(1, u)=\prod_{i=1}^{\infty}\left[C_{i}(1, u)\right]^{\alpha_{i}}=\prod_{i=1}^{\infty} u^{\alpha_{i}}=u^{\alpha_{1}+\cdots}=1 \\
C(u, 1)=\prod_{i=1}^{\infty}\left[C_{i}(u, 1)\right]^{\alpha_{i}}=\prod_{i=1}^{\infty} u^{\alpha_{i}}=u^{\alpha_{1}+\cdots}=1 \\
\frac{\partial}{\partial u_{1}}\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{1}\left[C_{i}\left(u_{1}, u_{2}\right)\right]^{\alpha_{i}-1} \frac{\partial C_{i}\left(u_{1}, u_{2}\right)}{\partial u_{1}} \prod_{j=1, j \neq i}^{\infty}\left[C_{j}\left(u_{1}, u_{2}\right)\right]^{\alpha_{j}} \geq 0
\end{gathered}
$$

and

$$
\frac{\partial}{\partial u_{2}}\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{1}\left[C_{i}\left(u_{1}, u_{2}\right)\right]^{\alpha_{i}-1} \frac{\partial C_{i}\left(u_{1}, u_{2}\right)}{\partial u_{2}} \prod_{j=1, j \neq i}^{\infty}\left[C_{j}\left(u_{1}, u_{2}\right)\right]^{\alpha_{j}} \geq 0
$$

so C is a valid copula.

Solutions to Question A3

ILO: bivariate extreme value distributions
a) We can write

$$
\bar{F}(x, y)=\exp \left\{-(x+y) \sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)\right\}
$$

for $x>0, y>0$ and $\alpha_{i} \geq 0$ sum to one. This is in the form of

$$
\bar{F}(x, y)=\exp \left[-(x+y) A\left(\frac{y}{x+y}\right)\right]
$$

with

$$
A(w)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}(w)
$$

We now check the conditions for $A(\cdot)$. Clearly,

$$
A(0)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}(0)=\sum_{i=1}^{\infty} \alpha_{i} \cdot 1=1
$$

and

$$
A(1)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}(1)=\sum_{i=1}^{\infty} \alpha_{i} \cdot 1=1
$$

Also $A(t) \geq 0$ since $A_{i}(w) \geq 0$ for all w and every k.
Also since each $A_{i}(w) \leq 1$,

$$
A(w)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}(w) \leq \sum_{i=1}^{\infty} \alpha_{i} \cdot 1=1
$$

Also since each $A_{i}(w) \geq \max (w, 1-w)$,

$$
A(w)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}(w) \geq \sum_{i=1}^{\infty} \alpha_{i} \cdot \max (w, 1-w)=\max (w, 1-w)
$$

Also since each $A_{i}(w)$ is convex,

$$
A^{\prime \prime}(w)=\sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime \prime}(w)>0
$$

UNSEEN

b) Note that

$$
\bar{F}(x, 0)=\exp \left\{-(x+0) \sum_{i=1}^{\infty} \alpha_{i} A_{i}(0)\right\}=\exp (-x)
$$

and

$$
\bar{F}(0, y)=\exp \left\{-(0+y) \sum_{i=1}^{\infty} \alpha_{i} A_{i}(0)\right\}=\exp (-y)
$$

So, the joint cdf is

$$
F(x, y)=1-\exp (-x)-\exp (-y)+\exp \left\{-(x+y) \sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)\right\}
$$

(1 marks)

UNSEEN

c) the derivative of joint cdf with respect to x is

$$
\frac{\partial F(x, y)}{\partial x}=\exp (-x)+\bar{F}(x, y)\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)+\frac{y}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\}
$$

so the conditional cdf of Y given $X=x$ is

$$
F(y \mid x)=1+\exp (x) \bar{F}(x, y)\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)+\frac{y}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\} .
$$

UNSEEN

d) the derivative of joint cdf with respect to y is

$$
\frac{\partial F(x, y)}{\partial y}=\exp (-y)+\bar{F}(x, y)\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)-\frac{x}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\}
$$

so the conditional cdf of Y given $X=x$ is

$$
F(x \mid y)=1+\exp (y) \bar{F}(x, y)\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)-\frac{x}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\} .
$$

UNSEEN

e) the derivative of joint cdf with respect to x and y is

$$
\begin{aligned}
f(x, y)= & \bar{F}(x, y)\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)+\frac{y}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\} \\
& \cdot\left\{-\sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)-\frac{x}{x+y} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime}\left(\frac{y}{x+y}\right)\right\} \\
& +\bar{F}(x, y) \frac{x y}{(x+y)^{3}} \sum_{i=1}^{\infty} \alpha_{i} A_{i}^{\prime \prime}\left(\frac{y}{x+y}\right) .
\end{aligned}
$$

(4 marks)

UNSEEN

Solutions to Question B1

ILO: extreme value distribution of a given univariate distribution
If there are norming constants $a_{n}>0, b_{n}$ and a nondegenerate G such that the cumulative distribution function of a normalized version of M_{n} converges to G, i.e.

$$
\operatorname{Pr}\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=F^{n}\left(a_{n} x+b_{n}\right) \rightarrow G(x)
$$

as $n \rightarrow \infty$ then G must be of the same type as (cumulative distribution functions G and G^{*} are of the same type if $G^{*}(x)=G(a x+b)$ for some $a>0, b$ and all $\left.x\right)$ as one of the following three classes:

$$
\begin{aligned}
I: & \Lambda(x)=\exp \{-\exp (-x)\}, \quad x \in \Re ; \\
I I: & \Phi_{\alpha}(x)= \begin{cases}0 & \text { if } x<0 \\
\exp \left\{-x^{-\alpha}\right\} & \text { if } x \geq 0\end{cases} \\
& \text { for some } \alpha>0 ; \\
I I I: & \Psi_{\alpha}(x)= \begin{cases}\exp \left\{-(-x)^{\alpha}\right\} & \text { if } x<0 \\
1 & \text { if } x \geq 0\end{cases} \\
& \text { for some } \alpha>0 .
\end{aligned}
$$

SEEN

The necessary and sufficient conditions for the three extreme value distributions are:

$$
\begin{array}{r}
I: \exists \gamma(t)>0 \text { s.t. } \lim _{t \uparrow w(F)} \frac{1-F(t+x \gamma(t))}{1-F(t)}=\exp (-x), \quad x>0, \\
I I: w(F)=\infty \text { and } \lim _{t \uparrow \infty} \frac{1-F(t x)}{1-F(t)}=x^{-\alpha}, \quad x>0, \\
I I I: w(F)<\infty \text { and } \lim _{t \downarrow 0} \frac{1-F(w(F)-t x)}{1-F(w(F)-t)}=x^{\alpha}, \quad x>0 .
\end{array}
$$

SEEN

First, suppose that G belongs to the max domain of attraction of the Gumbel extreme value distribution. Then, there must exist a strictly positive function say $h(t)$ such that

$$
\lim _{t \rightarrow w(G)} \frac{1-G(t+x h(t))}{1-G(t)}=e^{-x}
$$

for every $x>0$. But

$$
\begin{aligned}
& \lim _{t \rightarrow w(F)} \frac{1-F(t+x h(t))}{1-F(t)} \\
= & \lim _{t \rightarrow w(F)} \frac{\left[1-[G(t+x h(t))]^{a} \exp \{a[1-G(t+x h(t))]\}\right]^{b}}{\left[1-[G(t)]^{a} \exp \{a[1-G(t)]\}\right]^{b}} \\
= & \lim _{t \rightarrow w(F)}\left[\frac{1-[G(t+x h(t))]^{a} \exp \{a[1-G(t+x h(t))]\}}{1-[G(t)]^{a} \exp \{a[1-G(t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-\left[G(t+x h(t)]^{a} \exp \{a[1-G(t+x h(t))]\}\right.}{1-[G(t)]^{a} \exp \{a[1-G(t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-[G(t+x h(t))]^{a} \exp \{a[1-1]\}}{1-[G(t)]^{a} \exp \{a[1-1]\}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-[G(t+x h(t))]^{a}}{1-[G(t)]^{a}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-\{1-[1-G(t+x h(t))]\}^{a}}{1-\{1-[1-G(t)]\}^{a}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-\{1-a[1-G(t+x h(t))]\}}{1-\{1-a[1-G(t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow w(G)}\left[\frac{1-G(t+x h(t))]^{b}}{1-G(t)}\right]^{b} \\
= & {[\exp (-x)]^{b} } \\
= & \exp (-b x)
\end{aligned}
$$

for every $x>0$, assuming $w(F)=w(G)$. So, it follows that F also belongs to the max domain of attraction of the Gumbel extreme value distribution with

$$
\lim _{n \rightarrow \infty} P\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=\exp [-\exp (-b x)]
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

Second, suppose that G belongs to the max domain of attraction of the Fréchet extreme value distribution. Then, there must exist a $\beta>0$ such that

$$
\lim _{t \rightarrow \infty} \frac{1-G(t x)}{1-G(t)}=x^{-\beta}
$$

for every $x>0$. But

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)} \\
= & \lim _{t \rightarrow \infty} \frac{\left[1-[G(t x)]^{a} \exp \{a[1-G(t x)]\}\right]^{b}}{\left[1-[G(t)]^{a} \exp \{a[1-G(t)]\}\right]^{b}} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-[G(t x)]^{a} \exp \{a[1-G(t x)]\}}{1-[G(t)]^{a} \exp \{a[1-G(t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-[G(t x)]^{a} \exp \{a[1-1]\}}{1-[G(t)]^{a} \exp \{a[1-1]\}}\right]^{b} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-[G(t x)]^{a}}{1-[G(t)]^{a}}\right]^{b} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-\{1-[1-G(t x)]\}^{a}}{1-\{1-[1-G(t)]\}^{a}}\right]^{b} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-\{1-a[1-G(t x)]\}}{1-\{1-a[1-G(t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow \infty}\left[\frac{1-G(t x)}{1-G(t)}\right]^{b} \\
= & {\left[x^{-\beta}\right]^{b} } \\
= & x^{-b \beta}
\end{aligned}
$$

for every $x>0$. So, it follows that F also belongs to the max domain of attraction of the Fréchet extreme value distribution with

$$
\lim _{n \rightarrow \infty} P\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=\exp \left(-x^{-b \beta}\right)
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

Third, suppose that G belongs to the max domain of attraction of the Weibull extreme value distribution. Then, there must exist a $\beta>0$ such that

$$
\lim _{t \rightarrow 0} \frac{1-G(w(G)-t x)}{1-G(w(G)-t)}=x^{\beta}
$$

for every $x>0$. But

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{1-F(t+x h(t))}{1-F(t)} \\
= & \lim _{t \rightarrow 0} \frac{\left[1-[G(w(F)-t x)]^{a} \exp \{a[1-G(w(F)-t x)]\}\right]^{b}}{\left[1-[G(w(F)-t)]^{a} \exp \{a[1-G(w(F)-t)]\}\right]^{b}} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-[G(w(F)-t x)]^{a} \exp \{a[1-G(w(F)-t x)]\}}{1-[G(w(F)-t)]^{a} \exp \{a[1-G(w(F)-t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-[G(w(G)-t x)]^{a} \exp \{a[1-G(w(G)-t x)]\}}{1-[G(w(G)-t)]^{a} \exp \{a[1-G(w(G)-t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-[G(w(G)-t x)]^{a} \exp \{a[1-1]\}}{1-[G(w(G)-t)]^{a} \exp \{a[1-1]\}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-[G(w(G)-t x)]^{a}}{1-[G(w(G)-t)]^{a}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-\{1-[1-G(w(G)-t x)]\}^{a}}{1-\{1-[1-G(w(G)-t)]\}^{a}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-\{1-a[1-G(w(G)-t x)]\}}{1-\{1-a[1-G(w(G)-t)]\}}\right]^{b} \\
= & \lim _{t \rightarrow 0}\left[\frac{1-G(w(G)-t x)}{1-G(w(G)-t)}\right]^{b} \\
= & {\left[x^{\beta}\right]^{b} } \\
= & x^{b \beta}
\end{aligned}
$$

for every $x>0$, assuming $w(F)=w(G)$. So, it follows that F also belongs to the max domain of attraction of the Weibull extreme value distribution with

$$
\lim _{n \rightarrow \infty} P\left(\frac{M_{n}-b_{n}}{a_{n}} \leq x\right)=\exp \left(-(-x)^{b \beta}\right)
$$

for some suitable norming constants $a_{n}>0$ and b_{n}.

UNSEEN

Solutions to Question B2

ILO: extreme value distribution of a given univariate distribution
a) Note that $w(F)=\infty$ and

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{1-F(t+x \gamma(t))}{1-F(t)} \\
= & \lim _{t \rightarrow \infty} \frac{1-\exp [-\exp (-t-x \gamma(t))]}{1-\exp [-\exp (-t)]} \\
= & \lim _{t \rightarrow \infty} \frac{1-[1-\exp (-t-x \gamma(t))]}{1-[1-\exp (-t)]} \\
= & \lim _{t \rightarrow \infty} \frac{\exp (-t-x \gamma(t))}{\exp (-t)} \\
= & \lim _{t \rightarrow \infty} \exp (-x \gamma(t)) \\
= & \exp (-x)
\end{aligned}
$$

if $\gamma(t)=1$. Hence, $F(x)$ belongs to the Gumbel domain of attraction.

SEEN

b) Note that $w(F)=\infty$ and

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{1-F(t x)}{1-F(t)} \\
&= \lim _{t \rightarrow \infty} \frac{1-\exp \left(-(t x)^{-\alpha}\right)}{1-\exp \left(-t^{-\alpha}\right)} \\
&= \lim _{t \rightarrow \infty} \frac{1-\left[1-(t x)^{-\alpha}\right]}{1-\left[1-t^{-\alpha}\right]} \\
&= \lim _{t \rightarrow \infty} \frac{(t x)^{-\alpha}}{t^{-\alpha}} \\
&=7 x^{-\alpha}
\end{aligned}
$$

Hence, $F(x)$ belongs to the Fréchet domain of attraction.
c) Note that $w(F)=\infty$ and

$$
\begin{aligned}
& \lim _{t \downarrow \infty} \frac{1-F(t x)}{1-F(t)} \\
= & \lim _{t \downarrow \infty} \frac{x f(t x)}{f(t)} \\
= & \lim _{t \downarrow \infty} \frac{x\left(\frac{C(t)^{a-1}}{(1+t)^{a+b}}\right.}{\frac{C t^{a-1}}{(1+t)^{a+b}}} \\
= & \lim _{t \downarrow \infty} x^{a}\left(\frac{1+t}{1+t x}\right)^{a+b} \\
= & \lim _{t \downarrow \infty} x^{a}\left(\frac{\frac{1}{t}+1}{\frac{1}{t}+x}\right)^{a+b} \\
= & x^{-b} .
\end{aligned}
$$

Hence, $F(x)$ belongs to the Fréchet domain of attraction.

UNSEEN

d) Note that $w(F)=\infty$ and

$$
\begin{aligned}
& \lim _{t \downarrow \infty} \frac{1-F(t x)}{1-F(t)} \\
= & \lim _{t \downarrow \infty} \frac{x f(t x)}{f(t)} \\
= & \lim _{t \downarrow \infty} \frac{x C\left(1+a t^{2} x^{2}\right)^{-1}\left(1+b t^{2} x^{2}\right)^{-1}}{C\left(1+a t^{2}\right)^{-1}\left(1+b t^{2}\right)^{-1}} \\
= & \lim _{t \downarrow \infty} x \frac{1+a t^{2}}{1+a t^{2} x^{2}} \frac{1+b t^{2}}{1+b t^{2} x^{2}} \\
= & \lim _{t \downarrow \infty} x \frac{t^{-2}+a}{t^{-2}+a x^{2}} \frac{t^{-2}+b}{t^{-2}+b x^{2}} \\
= & x^{-3} .
\end{aligned}
$$

Hence, $F(x)$ belongs to the Fréchet domain of attraction.
e) Note that $w(F)=N$ and

$$
\begin{aligned}
\frac{\operatorname{Pr}(X=w(F))}{1-F(w(F)-1)} & =\frac{\operatorname{Pr}(X=N)}{1-F(N-1)} \\
& =\frac{\operatorname{Pr}(X=N)}{1-\operatorname{Pr}(X=1)-\operatorname{Pr}(X=2)-\cdots-\operatorname{Pr}(X=N-1)} \\
& =\frac{\frac{1}{N}}{1-\frac{1}{N}-\frac{1}{N}-\cdots-\frac{1}{N}} \\
& =\frac{\frac{1}{N}}{1-\frac{N-1}{N}} \\
& =1 .
\end{aligned}
$$

Hence, there can be no non-degenerate limit.

UNSEEN

Solutions to Question B3

ILO: estimates of financial risk measures and total portfolio loss
(a) If X is an absolutely continuous random variable with cumulative distribution function $F(\cdot)$ then

$$
\operatorname{VaR}_{p}(X)=F^{-1}(p)
$$

and

$$
\mathrm{ES}_{p}(X)=\frac{1}{p} \int_{0}^{p} F^{-1}(v) d v
$$

SEEN

(b) (i) The probability density function of S is

$$
\begin{aligned}
f_{S}(s) & =\int_{0}^{s} f_{X, Y}(x, s-x) d x \\
& =(a+1)(a+2) \int_{0}^{s}(1-s)^{a} d x \\
& =(a+1)(a+2) s(1-s)^{a}
\end{aligned}
$$

for $0<s<1$.

UNSEEN

(b) (ii) The cumulative distribution function of S is

$$
\begin{aligned}
F_{S}(s) & =\int_{0}^{s} f_{S}(t) d t \\
& =(a+1)(a+2) \int_{0}^{s} t(1-t)^{a} d t \\
& =(a+1)(a+2) \int_{0}^{s}[1-(1-t)](1-t)^{a} d t \\
& =(a+1)(a+2) \int_{0}^{s}\left[(1-t)^{a}-(1-t)^{a+1}\right] d t \\
& =(a+1)(a+2)\left[-\frac{(1-t)^{a+1}}{a+1}+\frac{(1-t)^{a+2}}{a+2}\right]_{0}^{s} \\
& =1-(a+2)(1-s)^{a+1}+(a+1)(1-s)^{a+2}
\end{aligned}
$$

for $0<s<1$.

UNSEEN

(b) (iii) The value at risk of S is the solution of

$$
F_{S}(s)=u
$$

which is equivalent to

$$
(a+2)(1-s)^{a+1}-(a+1)(1-s)^{a+2}=1-u
$$

UNSEEN

(b) (iv) The expected shortfall of S is

$$
\begin{aligned}
\mathrm{ES}_{p}(S)= & \frac{1}{p} \int_{0}^{p} F_{S}^{-1}(u) d u \\
& =\frac{1}{p} \int_{0}^{F_{S}^{-1}(p)} s f_{S}(s) d s \\
& =\frac{(a+1)(a+2)}{p} \int_{0}^{F_{S}^{-1}(p)} s^{2}(1-s)^{a} d s \\
= & \frac{(a+1)(a+2)}{p} \int_{0}^{F_{S}^{-1}(p)}[1-(1-s)]^{2}(1-s)^{a} d s \\
= & \frac{(a+1)(a+2)}{p} \int_{0}^{F_{S}^{-1}(p)}\left[(1-s)^{a}-2(1-s)^{a+1}+(1-s)^{a+2}\right] d s \\
= & \frac{(a+1)(a+2)}{p}\left[-\frac{(1-s)^{a+1}}{a+1}+2 \frac{(1-s)^{a+1}}{a+2}-\frac{(1-s)^{a+3}}{a+3}\right]_{0}^{F_{S}^{-1}(p)} \\
= & \frac{(a+1)(a+2)}{p}\left[\frac{1}{a+1}-\frac{2}{a+2}+\frac{1}{a+3}\right. \\
& \left.-\frac{\left(1-F_{S}^{-1}(p)\right)^{a+1}}{a+1}+2 \frac{\left(1-F_{S}^{-1}(p)\right)^{a+1}}{a+2}-\frac{\left(1-F_{S}^{-1}(p)\right)^{a+3}}{a+3}\right] .
\end{aligned}
$$

(b) (v) The likelihood function is

$$
\begin{aligned}
L(a) & =\prod_{i=1}^{n}\left[(a+1)(a+2) s_{i}\left(1-s_{i}\right)^{a}\right] \\
& =(a+1)^{n}(a+2)^{n}\left(\prod_{i=1}^{n} s_{i}\right)\left[\prod_{i=1}^{n}\left(1-s_{i}\right)\right]^{a}
\end{aligned}
$$

The log-likelihood function is

$$
\log L(a)=n \log (a+1)+n \log (a+2)+\sum_{i=1}^{n} \log s_{i}+a \sum_{i=1}^{n} \log \left(1-s_{i}\right) .
$$

The derivative with respect to a is

$$
\frac{d \log L(a)}{a}=\frac{n}{a+1}+\frac{n}{a+2}+\sum_{i=1}^{n} \log \left(1-s_{i}\right)
$$

Setting this to zero, we obtain

$$
\frac{2 a+3}{(a+1)(a+2)}=-\frac{1}{n} \sum_{i=1}^{n} \log \left(1-s_{i}\right),
$$

which can be rewritten as

$$
A a^{2}+B a+C=0
$$

where

$$
\begin{aligned}
A & =-\frac{1}{n} \sum_{i=1}^{n} \log \left(1-s_{i}\right) \\
B & =-\frac{3}{n} \sum_{i=1}^{n} \log \left(1-s_{i}\right)-2, \\
C & =-\frac{2}{n} \sum_{i=1}^{n} \log \left(1-s_{i}\right)-3 .
\end{aligned}
$$

The valid root is $\left(-B+\sqrt{B^{2}-4 A C}\right) /(2 A)$. This is a maximum likelihood estimator since

$$
\frac{d^{2} \log L(a)}{a^{2}}=-\frac{n}{(a+1)^{2}}-\frac{n}{(a+2)^{2}}<0 .
$$

Solutions to Question B4

ILO: estimates of financial risk measures and minimum portfolio loss
(i) The cumulative distribution function of $U=\min (X, Y)$ is

$$
\begin{aligned}
F_{U}(u) & =\operatorname{Pr}(U \leq u) \\
& =1-\operatorname{Pr}(U>u) \\
& =1-\operatorname{Pr}(\min (X, Y)>u) \\
& =1-\operatorname{Pr}(X>u, Y>u) \\
& =1-\bar{F}(u, u) \\
& =1-\left(\frac{K}{u}\right)^{a}
\end{aligned}
$$

for $u>K$.
(2 marks)

UNSEEN

(ii) The probability density function of U is

$$
f_{U}(u)=\frac{a K^{a}}{u^{a+1}}
$$

for $u>K$.

UNSEEN

(iii) The m th moment of U is

$$
\begin{aligned}
E\left(U^{m}\right) & =\int_{K}^{\infty} u^{m} \frac{a K^{a}}{u^{a+1}} d u \\
& =a K^{a} \int_{K}^{\infty} u^{m-a-1} d u \\
& =a K^{a}\left[\frac{u^{m-a}}{m-a}\right]_{K}^{\infty} \\
& =a K^{a}\left[0-\frac{K^{m-a}}{m-a}\right] \\
& =\frac{a K^{m}}{a-m}
\end{aligned}
$$

UNSEEN

(iv) The mean of U is

$$
E(U)=\frac{a K}{a-1} .
$$

UNSEEN

(v) The variance of U is

$$
\operatorname{Var}(U)=E\left(U^{2}\right)-[E(U)]^{2}=\frac{a K^{2}}{a-2}-\left(\frac{a K}{a-1}\right)^{2}
$$

UNSEEN

(vi) Setting

$$
F_{U}(u)=p
$$

gives

$$
1-\left(\frac{K}{u}\right)^{a}=p
$$

which implies

$$
u=K(1-p)^{-1 / a}
$$

Hence, $\operatorname{VaR}_{p}(U)=K(1-p)^{-1 / a}$.

UNSEEN

(vii) The expected shortfall is

$$
\begin{aligned}
\mathrm{ES}_{p}(U) & =\frac{K}{p} \int_{0}^{p}(1-t)^{-1 / a} d t \\
& =\frac{K}{p}\left[\frac{(1-t)^{1-1 / a}}{1 / a-1}\right]_{0}^{p} \\
& =\frac{K}{p(1 / a-1)}\left[(1-p)^{1-1 / a}-1\right]
\end{aligned}
$$

UNSEEN

(viii) The likelihood function is

$$
\begin{aligned}
L(K, a) & =\prod_{i=1}^{n}\left[\frac{a K^{a}}{u_{i}^{a+1}} I\left\{u_{i}>K\right\}\right] \\
& =a^{n} K^{n a}\left(\prod_{i=1}^{n} u_{i}\right)^{-a-1}\left[\prod_{i=1}^{n} I\left\{u_{i}>K\right\}\right] \\
& =a^{n} K^{n a}\left(\prod_{i=1}^{n} u_{i}\right)^{-a-1} I\left\{\min \left(u_{1}, \ldots, u_{n}\right)>K\right\}
\end{aligned}
$$

Note that $L(K, a)$ is an increasing function of K over $\left(-\infty, \min \left(u_{1}, \ldots, u_{n}\right)\right)$. Hence, the maximum likelihood estimator of K is $\widehat{K}=\min \left(u_{1}, \ldots, u_{n}\right)$. The log-likelihood function is

$$
\log L(K, a)=n \log a+n a \log K-(a+1) \sum_{i=1}^{n} \log u_{i}
$$

The partial derivative with respect to a is

$$
\frac{\partial \log L(K, a)}{\partial a}=\frac{n}{a}+n \log K-\sum_{i=1}^{n} \log u_{i} .
$$

Setting this to zero, we obtain the maximum likelihood estimator of a as

$$
\widehat{a}=n\left[-n \log K+\sum_{i=1}^{n} \log u_{i}\right]^{-1}
$$

UNSEEN

(ix) The maximum likelihood estimator of Value at Risk and Expected Shortfall are

$$
\widehat{\operatorname{VaR}}_{p}(U)=\widehat{K}(1-p)^{-1 / \widehat{a}}
$$

and

$$
\widehat{\mathrm{ES}}_{p}(U)=\frac{\widehat{K}}{p(1 / \widehat{a}-1)}\left[(1-p)^{1-1 / \widehat{a}}-1\right] .
$$

Solutions to Question B5

ILO: estimates of financial risk measures and maximum portfolio loss
(i) The cumulative distribution function of $V=\max (X, Y)$ is

$$
\begin{aligned}
F_{V}(v) & =\operatorname{Pr}(V \leq v) \\
& =\operatorname{Pr}(\max (X, Y) \leq v) \\
& =\operatorname{Pr}(X \leq v, Y \leq v) \\
& =F_{X, Y}(v, v) \\
& =\left(\frac{v}{K}\right)^{a}
\end{aligned}
$$

for $0 \leq v \leq K$.

UNSEEN

(ii) The probability density function of V is

$$
f_{V}(v)=\frac{a v^{a-1}}{K^{a}}
$$

for $0 \leq v \leq K$.

UNSEEN
(iii) The m th moment of U is

$$
\begin{aligned}
E\left(V^{m}\right) & =\int_{0}^{K} v^{m} \frac{a v^{a-1}}{K^{a}} d v \\
& =\frac{a}{K^{a}} \int_{0}^{K} v^{m+a-1} d v \\
& =\frac{a}{K^{a}}\left[\frac{v^{m+a}}{m+a}\right]_{0}^{K} \\
& =\frac{a}{K^{a}}\left[\frac{K^{m+a}}{m+a}-0\right] \\
& =\frac{a K^{m}}{m+a}
\end{aligned}
$$

UNSEEN

(iv) The mean of V is

$$
E(V)=\frac{a K}{1+a}
$$

UNSEEN

(v) The variance of V is

$$
\operatorname{Var}(V)=E\left(V^{2}\right)-[E(V)]^{2}=\frac{a K^{2}}{2+a}-\left(\frac{a K}{1+a}\right)^{2}
$$

UNSEEN
(vi) Setting

$$
F_{V}(v)=p
$$

gives

$$
\left(\frac{v}{K}\right)^{a}=p
$$

which implies

$$
v=K p^{1 / a} .
$$

Hence, $\operatorname{VaR}_{p}(V)=K p^{1 / a}$.

UNSEEN

(vii) The expected shortfall is

$$
\begin{aligned}
\mathrm{ES}_{p}(V) & =\frac{K}{p} \int_{0}^{p} t^{1 / a} d t \\
& =\frac{K}{p}\left[\frac{t^{1+1 / a}}{1+1 / a}\right]_{0}^{p} \\
& =\frac{K p^{1 / a}}{1+1 / a}
\end{aligned}
$$

UNSEEN

(viii) The likelihood function is

$$
\begin{aligned}
L(K, a) & =\prod_{i=1}^{n}\left[\frac{a v_{i}^{a-1}}{K^{a}} I\left\{v_{i} \leq K\right\}\right] \\
& =\frac{a^{n}}{K^{n a}}\left(\prod_{i=1}^{n} v_{i}\right)^{a-1}\left[\prod_{i=1}^{n} I\left\{v_{i} \leq K\right\}\right] \\
& =\frac{a^{n}}{K^{n a}}\left(\prod_{i=1}^{n} v_{i}\right)^{a-1} I\left\{\max \left(u_{1}, \ldots, u_{n}\right) \leq K\right\}
\end{aligned}
$$

Note that $L(K, a)$ is a decreasing function of K over $\left[\max \left(u_{1}, \ldots, u_{n}\right), \infty\right)$. Hence, the maximum likelihood estimator of K is $\widehat{K}=\max \left(u_{1}, \ldots, u_{n}\right)$. The log-likelihood function is

$$
\log L(K, a)=n \log a-n a \log K+(a-1) \sum_{i=1}^{n} \log v_{i}
$$

The partial derivative with respect to a is

$$
\frac{\partial \log L(K, a)}{\partial a}=\frac{n}{a}-n \log K+\sum_{i=1}^{n} \log v_{i} .
$$

Setting this to zero, we obtain the maximum likelihood estimator of a as

$$
\widehat{a}=n\left[n \log K-\sum_{i=1}^{n} \log u_{i}\right]^{-1}
$$

UNSEEN

(ix) The maximum likelihood estimator of Value at Risk and Expected Shortfall are

$$
\widehat{\operatorname{VaR}}_{p}(U)=\widehat{K} p^{1 / \widehat{a}}
$$

and

$$
\widehat{\mathrm{ES}}_{p}(U)=\frac{\widehat{K} p^{1 / \widehat{a}}}{1+1 / \widehat{a}}
$$

