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Solutions to Question 1

ILOs addressed: present numerical summaries of a data set.

Suppose that we have the following sample of observations

-1.3, -0.59, 0.1, -1.4, -0.22, -0.35, -0.76, -0.2, 0.41, 0.32

The sample mean is

1

10
(−1.3− 0.59 + 0.1− 1.4− 0.22− 0.35− 0.76− 0.2 + 0.41 + 0.32) = −0.399

(1 marks)

UNSEEN

The sample variance is

1

9

[
(−1.3− x)2 + (−0.59− x)2 + · · ·+ (0.32− x)2

]
= 0.3861211

(1 marks)

UNSEEN

Arrange the data as

-1.40, -1.30, -0.76, -0.59, -0.35, -0.22, -0.20, 0.10, 0.32, 0.41

The middle two numbers are -0.35 and -0.22. The median is their average which is -0.285.
(1 marks)

UNSEEN

Note that r = 2.75 and r′ = 3, so Q(1/4) = x(2) + 0.75
(
x(3) − x(2)

)
= −0.895. (1 marks)

UNSEEN

Note that r = 8.25 and r′ = 8, so Q(3/4) = x(8) + 0.25
(
x(9) − x(8)

)
= 0.155. (1 marks)

UNSEEN

The range of the data are

0.41 - (-1.4) = 1.81.
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(1 marks)

UNSEEN

Note that r = p(n+ 1) and r
′
= [p(n+ 1)] are

r =


3m+ 3

4
, if n = 4m,

3m, if n = 4m− 1,
3m− 3

4
, if n = 4m− 2,

3m− 6
4
, if n = 4m− 3

and

r
′
=


3m, if n = 4m,
3m, if n = 4m− 1,
3m− 1, if n = 4m− 2,
3m− 2, if n = 4m− 3,

respectively. So,

r − r′ =


3
4
, if n = 4m,

0, if n = 4m− 1,
1
4
, if n = 4m− 2,

1
2
, if n = 4m− 3.

Hence,

thirdquartile =


x(3m) + 3

4

[
x(3m+1) − x(3m)

]
, if n = 4m,

x(3m), if n = 4m− 1,
x(3m−1) + 1

4

[
x(3m) − x(3m−1)

]
, if n = 4m− 2,

x(3m−2) + 1
2

[
x(3m−1) − x(3m−2)

]
, if n = 4m− 3.

(4 marks)

UNSEEN
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Solutions to Question 2

ILOs addressed: define elementary statistical concepts and terminology such as unbiased-
ness; analyse and compare statistical properties of simple estimators.

(a) Suppose θ̂ is an estimator of θ based on a random sample of size n. Define what is
meant by the following:

(i) θ̂ is an unbiased estimator of θ if E
(
θ̂
)

= θ; (1 marks)

(ii) the bias of θ̂ is E
(
θ̂
)
− θ; (1 marks)

(iii) the mean squared error of θ̂ is E

[(
θ̂ − θ

)2]
; (1 marks)

(iv) θ̂ is a consistent estimator of θ if limn→∞E

[(
θ̂ − θ

)2]
= 0. (1 marks)

UP TO THIS BOOK WORK.

(b) SupposeX1, . . . , Xn are independent Exp(1/θ) random variables. Let θ̂ = nmin (X1, . . . , Xn)
denote a possible estimator of θ.

(i) Let Z = θ̂ = nmin (X1, . . . , Xn). The cdf of Z is

FZ(z) = Pr [nmin (X1, . . . , Xn) ≤ z]

= Pr
[
min (X1, . . . , Xn) ≤ z

n

]
= 1− Pr

[
min (X1, . . . , Xn) >

z

n

]
= 1− Pr

[
X1 >

z

n
, . . . , Xn >

z

n

]
= 1− Pr

[
X1 >

z

n

]
· · ·Pr

[
Xn >

z

n

]
= 1−

(
Pr
[
X1 >

z

n

])n
= 1−

(
1− Pr

[
X1 ≤

z

n

])n
= 1−

(
1−

[
1− exp

(
− z

nθ

)])n
= 1− exp

(
−z
θ

)
,

which is the cdf of Exp(1/θ). Hence, Bias(Z) = E(Z)− θ = θ − θ = 0. (3 marks)

UNSEEN
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(ii) MSE (Z) = Var (Z) = θ2. (1 marks)

UNSEEN

(iii) θ̂ is unbiased since the bias is zero. (1 marks)

UNSEEN

(iv) θ̂ is not consistent since the MSE is θ2. (1 marks)

UNSEEN
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Solutions to Question 3

ILOs addressed: define elementary statistical concepts and terminology such as confidence
intervals and hypothesis tests.

(a) Suppose we wish to test H0 : µ = µ0 versus H0 : µ 6= µ0.

(i) the Type I error occurs if H0 is rejected when in fact µ = µ0; (1 marks)

SEEN

(ii) the Type II error occurs if H0 is accepted when in fact µ 6= µ0; (1 marks)

SEEN

(iii) the significance level is the probability of type I error. (1 marks)

SEEN

(b) Suppose X1, X2, . . . , Xn is a random sample from N (µ, σ2), where σ is known. The
rejection region for the following tests are

(i) reject H0 : µ = µ0 versus H1 : µ 6= µ0 if
√
n
∣∣X − µ0

∣∣ /σ > z1−α
2
; (1 marks)

SEEN

(ii) reject H0 : µ = µ0 versus H1 : µ < µ0 if
√
n
(
X − µ0

)
/σ < zα. (1 marks)

SEEN

(c) Suppose X1, X2, . . . , Xn is a random sample from N (µ, σ2), where σ is known. Then,
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(i) the required probability is

Pr (Reject H0 | H1 is true)

= Pr

(√
n
∣∣X − µ0

∣∣
σ

> z1−α
2
| µ 6= µ0

)

= Pr

(√
n
(
X − µ0

)
σ

> z1−α
2

or

√
n
(
X − µ0

)
σ

< −z1−α
2
| µ 6= µ0

)

= Pr

(√
n
(
X − µ0

)
σ

> z1−α
2
| µ 6= µ0

)
+ Pr

(√
n
(
X − µ0

)
σ

< −z1−α
2
| µ 6= µ0

)

= Pr

(√
n
(
X − µ+ µ− µ0

)
σ

> z1−α
2
| µ 6= µ0

)
+ Pr

(√
n
(
X − µ+ µ− µ0

)
σ

< −z1−α
2
| µ 6= µ0

)

= Pr

(√
n
(
X − µ

)
σ

> z1−α
2
−
√
n (µ− µ0)

σ
| µ 6= µ0

)
+ Pr

(√
n
(
X − µ

)
σ

< −z1−α
2
−
√
n (µ− µ0)

σ
| µ 6= µ0

)

= Pr

(
N(0, 1) > z1−α

2
−
√
n (µ− µ0)

σ

)
+ Pr

(
N(0, 1) < −z1−α

2
−
√
n (µ− µ0)

σ

)
= 1− Pr

(
N(0, 1) ≤ z1−α

2
−
√
n (µ− µ0)

σ

)
+ Pr

(
N(0, 1) < −z1−α

2
−
√
n (µ− µ0)

σ

)
= 1− Φ

(
z1−α

2
−
√
n (µ− µ0)

σ

)
+ Φ

(
−z1−α

2
−
√
n (µ− µ0)

σ

)
.

(3 marks)

UNSEEN

(ii) the required probability is

Pr (Reject H0 | H1 is true)

= Pr

(√
n
(
X − µ0

)
σ

< zα | µ < µ0

)

= Pr

(√
n
(
X − µ+ µ− µ0

)
σ

< zα | µ < µ0

)

= Pr

(√
n
(
X − µ

)
σ

< zα −
√
n (µ− µ0)

σ
| µ < µ0

)

= Pr

(
N(0, 1) < zα −

√
n (µ− µ0)

σ

)
= Φ

(
zα −

√
n (µ− µ0)

σ

)
.

(2 marks)

UNSEEN
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Solutions to Question 4

ILOs addressed: define elementary statistical concepts and terminology such as confidence
intervals and hypothesis tests; conduct statistical inferences, including confidence intervals
and hypothesis tests, in simple one and two-sample situations; sampling distributions.

(a) Let X = (X1, . . . , Xn), with X1, . . . , Xn an independent random sample from a dis-
tribution FX with unknown parameter θ. Let I(X) = [a (X) , b (X)] denote an interval
estimator for θ.

(i) I (X) is a 100(1− α)% confidence interval if

Pr (a (X) < θ < b (X)) = 1− α;

(1 marks)

SEEN

(ii) the coverage probability of I (X) is

Pr (a (X) < θ < b (X)) ;

(1 marks)

SEEN

(iii) the coverage length of I (X) is b (X)− a (X). (1 marks)

SEEN

(b) Suppose X1, X2, . . . , Xn is a random sample from N (µ, σ2).

(i) if σ is known then
√
n
(
X − µ

)
/σ ∼ N(0, 1). So,

Pr

(
zα/2 <

√
n
(
X − µ

)
σ

< z1−α/2

)
= 1− α

⇔ Pr

(
σ√
n
zα/2 < X − µ < σ√

n
z1−α/2

)
= 1− α

⇔ Pr

(
−X +

σ√
n
zα/2 < −µ < −X +

σ√
n
z1−α/2

)
= 1− α

⇔ Pr

(
X − σ√

n
z1−α/2 < µ < X − σ√

n
zα/2

)
= 1− α.

Hence, a 100(1− α)% confidence interval for µ is(
X − σ√

n
z1−α/2, X −

σ√
n
zα/2

)
.

(1 marks)

SEEN
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(ii) if σ is not known then
√
n
(
X − µ

)
/S ∼ tn−1. So,

Pr

(
tn−1,α/2 <

√
n
(
X − µ

)
S

< tn−1,1−α/2

)
= 1− α

⇔ Pr

(
S√
n
tn−1,α/2 < X − µ < S√

n
tn−1,1−α/2

)
= 1− α

⇔ Pr

(
−X +

S√
n
tn−1,α/2 < −µ < −X +

S√
n
tn−1,1−α/2

)
= 1− α

⇔ Pr

(
X − S√

n
tn−1,1−α/2 < µ < X − S√

n
tn−1,α/2

)
= 1− α.

Hence, a 100(1− α)% confidence interval for µ is(
X − S√

n
tn−1,1−α/2, X −

S√
n
tn−1,α/2

)
.

(1 marks)

SEEN

(c) Suppose X1, X2, . . . , Xn is a random sample from Uniform [0, a].

(i) The cumulative distribution function max (X1, X2, . . . , Xn) = Z say, is

FZ(z) = Pr (Z ≤ z)

= Pr (max (X1, X2, . . . , Xn) ≤ z)

= Pr (X1 ≤ z,X2 ≤ z, . . . , Xn ≤ z)

= Pr (X1 ≤ z) Pr (X2 ≤ z) · · ·Pr (Xn ≤ z)

=
(z
a

)(z
a

)
· · ·
(z
a

)
=

(z
a

)n
for 0 < z < a. (2 marks)

UNSEEN

(ii) The
(
α
2

)
th and

(
1− α

2

)
th percentiles of Z are a

(
α
2

)1/n
and a

(
1− α

2

)1/n
, respectively.

So,

Pr

(
a
(α

2

)1/n
≤ Z ≤ a

(
1− α

2

)1/n)
= 1− α,

which can be rewritten as

Pr

(
Z
(

1− α

2

)−1/n
≤ a ≤ Z

(α
2

)−1/n)
= 1− α.
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Hence, a 100(1− α)% confidence interval for a is[
Z
(

1− α

2

)−1/n
, Z
(α

2

)−1/n]
.

(3 marks)

UNSEEN
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Solutions to Question 5

ILOs addressed: analyse and compare statistical properties of simple estimators.

Suppose X1 and X2 are independent Exp(1/λ) random variables. Let θ̂1 = a (X1 +X2)

and θ̂2 = b
√
X1X2 denote possible estimators of λ, where a and b are constants.

(i) The expectation of θ̂1 is

E
(
θ̂1

)
= a [E (X1) + E (X2)]

= 2a

∫ +∞

0

x

λ
exp

(
−x
λ

)
dx

= 2aλ

∫ +∞

0

y exp (−y) dy

= 2aλ.

So, θ̂1 is unbiased for λ if a = 1/2. (4 marks)

UNSEEN

(ii) The expectation of θ̂2 is

E
(
θ̂2

)
= bE

(√
X1

)
E
(√

X2

)
= b

[∫ +∞

0

√
x

λ
exp

(
−x
λ

)
dx

]2
= b

[∫ +∞

0

√
λy exp (−y) dy

]2
= bλ

[∫ +∞

0

√
y exp (−y) dy

]2
= bλ [Γ(3/2)]2

= bλπ/4.

So, θ̂2 is unbiased for λ if b = 4/π. (4 marks)

UNSEEN
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(iii) The variance of θ̂1 is

Var
(
θ̂1

)
= a2 [Var (X1) + Var (X2)]

=

= 2a2Var (X1)

= 2a2
[∫ +∞

0

x2

λ
exp

(
−x
λ

)
dx− λ2

]
= 2a2

[
λ2
∫ +∞

0

y2 exp (−y) dy − λ2
]

= 2a2
[
λ2Γ(3)− λ2

]
= 2a2λ2

= λ2/2.

(4 marks)

UNSEEN

(iv) The variance of θ̂2 is

Var
(
θ̂2

)
= b2E (X1)E (X2)− λ2 = b2λ2 − λ2 =

(
b2 − 1

)
λ2 =

(
16

π2
− 1

)
λ2.

(4 marks)

UNSEEN

(v) Clearly, λ2/2 <
(
16
π2 − 1

)
λ2, so the estimator θ̂1 is better with respect to mean squared

error. (4 marks)

UNSEEN
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Solutions to Question 6

ILOs addressed: analyse statistical properties of simple estimators.

Suppose X1, X2, . . . , Xn is a random sample from a distribution specified by the proba-

bility density function x
σ2 exp

(
− x2

2σ2

)
for x > 0.

(i) The likelihood function of σ2 is

L
(
σ2
)

=
n∏
i=1

[
Xi

σ2
exp

(
−X

2
i

2σ2

)]

=
1

σ2n

(
n∏
i=1

Xi

)
exp

(
− 1

2σ2

n∑
i=1

X2
i

)
.

(4 marks)

UNSEEN

(ii) The log likelihood function of σ2 is

logL
(
σ2
)

= −2n log σ +
n∏
i=1

logXi −
1

2σ2

n∑
i=1

X2
i .

The derivative with respect to σ is

d logL (σ2)

dσ
= −2n

σ
+

1

σ3

n∑
i=1

X2
i .

Setting this to zero gives

σ̂2 =
1

2n

n∑
i=1

X2
i .

This is a maximum likelihood estimator since

d2 logL (σ2)

dσ2
=

2n

σ2
− 3

σ4

n∑
i=1

X2
i

=
1

σ4

[
2nσ2 − 3

n∑
i=1

X2
i

]

=
1

σ4

[
2n

1

2n

n∑
i=1

X2
i − 3

n∑
i=1

X2
i

]
< 0

at σ = σ̂. (4 marks)

UNSEEN
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(iii) By the invariance principle, the maximum likelihood estimator of σ is

σ̂ =

√√√√ 1

2n

n∑
i=1

X2
i .

(4 marks)

UNSEEN

(iv) The bias of σ̂2 is

Bias
(
σ̂2
)

= E
(
σ̂2
)
− σ2

= E

(
1

2n

n∑
i=1

X2
i

)
− σ2

=
1

2n

n∑
i=1

E
(
X2
i

)
− σ2

=
1

2nσ2

n∑
i=1

∫ ∞
0

x3 exp

(
− x2

2σ2

)
dx− σ2

=
σ2

n

n∑
i=1

∫ ∞
0

y exp (−y) dy − σ2

=
σ2

n

n∑
i=1

Γ(2)− σ2

=
σ2

n

n∑
i=1

1− σ2

= 0.

Hence, σ̂2 is unbiased for σ2. (4 marks)

UNSEEN
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(v) The mean squared error of σ̂2 is

MSE
(
σ̂2
)

= Var
(
σ̂2
)

= Var

(
1

2n

n∑
i=1

X2
i

)

=
1

4n2

n∑
i=1

Var
(
X2
i

)
=

1

4n2

n∑
i=1

{
E
(
X4
i

)
−
[
E
(
X2
i

)]2}
=

1

4n2

n∑
i=1

{
E
(
X4
i

)
−
[
2σ2
]2}

=
1

4n2

n∑
i=1

{
4σ4

∫ ∞
0

y2 exp (−y) dy − 4σ4

}
=

1

4n2

n∑
i=1

{
4σ4Γ(3)− 4σ4

}
=

1

4n2

n∑
i=1

{
8σ4 − 4σ4

}
=

σ4

n
.

Hence, σ̂2 is consistent σ2. (4 marks)

UNSEEN
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Solutions to Question 7

ILOs addressed: analyse statistical properties of simple estimators.

An electrical circuit consists of four batteries connected in series to a lightbulb. We model
the battery lifetimes X1, X2, X3, X4 as independent and identically distributed Uni(0, θ)
random variables. Our experiment to measure the operating time of the circuit is stopped
when any one of the batteries fails. Hence, the only random variable we observe is Y =
min (X1, X2, X3, X4).

(i) The cdf of Y is

Pr(Y ≤ y) = 1− Pr [min (X1, X2, X3, X4) > y]

= 1− Pr (X1 > y) Pr (X2 > y) Pr (X3 > y) Pr (X4 > y)

= 1− Pr4 (X > y)

= 1− (1− y/θ)4.

(4 marks)

UNSEEN

(ii) The likelihood function of θ is

L(θ) = 4(θ − y)3/θ4

for 0 < y < θ. (4 marks)

UNSEEN

(iii) The log-likelihood function is

logL(θ) = log 4 + 3 log(θ − y)3 − 4 log θ

and

d logL(θ)

dθ
=

3

θ − y
− 4

θ
.

Setting d logL(θ)/dθ = 0 gives θ̂ = 4y. This is an MLE since

d2 logL(θ)

dθ2
= − 3

(θ − y)2
+

4

θ2

at θ̂ = 4y is negative. (4 marks)

UNSEEN

15



(iv) The bias of θ̂ is

Bias
(
θ̂
)

= E
(
θ̂
)
− θ

= 16θ−4
∫ θ

0

y(θ − y)3dy − θ

= 16θ

∫ 1

0

y(1− y)3dy − θ

=
4θ

5
− θ

= −θ
5
,

so the estimator is biased. (4 marks)

UNSEEN

(v) The variance of θ̂ is

V ar
(
θ̂
)

= E
(
θ̂2
)
− E2

(
θ̂
)

= 64θ−4
∫ θ

0

y2(θ − y)3dy − 16θ2

25

= 64θ2
∫ 1

0

y2(1− y)3dy − 16θ2

25

=
16θ2

15
− 16θ2

25

=
32θ2

75
.

So, the mean squared error of λ̂ is

MSE
(
θ̂
)

= V ar
(
θ̂
)

+Bias2
(
θ̂
)

=
32θ2

75
+
θ2

25
=

35θ2

75
=

7θ2

15
.

(4 marks)

UNSEEN
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