SOLUTIONS TO MATH10802
 INTRO TO STATISTICS

Solutions to Question 1

ILOs addressed: present numerical summaries of a data set.
Suppose that we have the following sample of observations

$$
-1.3,-0.59,0.1,-1.4,-0.22,-0.35,-0.76,-0.2,0.41,0.32
$$

The sample mean is

$$
\begin{equation*}
\frac{1}{10}(-1.3-0.59+0.1-1.4-0.22-0.35-0.76-0.2+0.41+0.32)=-0.399 \tag{1marks}
\end{equation*}
$$

UNSEEN

The sample variance is

$$
\frac{1}{9}\left[(-1.3-\bar{x})^{2}+(-0.59-\bar{x})^{2}+\cdots+(0.32-\bar{x})^{2}\right]=0.3861211
$$

(1 marks)

UNSEEN

Arrange the data as

$$
-1.40,-1.30,-0.76,-0.59,-0.35,-0.22,-0.20,0.10,0.32,0.41
$$

The middle two numbers are -0.35 and -0.22 . The median is their average which is -0.285 . (1 marks)

UNSEEN
Note that $r=2.75$ and $r^{\prime}=3$, so $Q(1 / 4)=x_{(2)}+0.75\left(x_{(3)}-x_{(2)}\right)=-0.895$. (1 marks)
UNSEEN
Note that $r=8.25$ and $r^{\prime}=8$, so $Q(3 / 4)=x_{(8)}+0.25\left(x_{(9)}-x_{(8)}\right)=0.155 . \quad(1$ marks $)$

UNSEEN

The sample quartile range is $0.10-(-0.76)=0.86$.

UNSEEN

The range of the data are

$$
0.41-(-1.4)=1.81
$$

UNSEEN

$-0.76-1.5 \times 0.86=-2.05$ and $0.1+1.5 \times 0.86=1.39$, so there are no outliers (1 marks)

UNSEEN

since mean \neq median the data are not symmetrically distributed.
(1 marks)
UNSEEN
since mean $<$ median the data are skewed to the left.
(1 marks)
UNSEEN

Solutions to Question 2

ILOs addressed: define elementary statistical concepts and terminology such as unbiasedness; analyse and compare statistical properties of simple estimators.
(a) Suppose $\widehat{\theta}$ is an estimator of θ based on a random sample of size n. Define what is meant by the following:
(i) $\widehat{\theta}$ is an unbiased estimator of θ if $E(\widehat{\theta})=\theta$;
(ii) the bias of $\widehat{\theta}$ is $E(\widehat{\theta})-\theta$;
(iii) the mean squared error of $\widehat{\theta}$ is $E\left[(\widehat{\theta}-\theta)^{2}\right]$;
(iv) $\widehat{\theta}$ is a consistent estimator of θ if $\lim _{n \rightarrow \infty} E\left[(\widehat{\theta}-\theta)^{2}\right]=0$.

UP TO THIS BOOK WORK.
(b) Suppose X_{1}, \ldots, X_{n} are independent Uniform $[0, \theta]$ random variables. Let $\widehat{\theta_{1}}=\frac{2\left(X_{1}+\cdots+X_{n}\right)}{n}$ and $\widehat{\theta_{2}}=\max \left(X_{1}, \ldots, X_{n}\right)$ denote possible estimators of θ.
(i) The bias and mean squared error of $\widehat{\theta_{1}}$ are

$$
\begin{aligned}
\operatorname{bias}\left(\widehat{\theta_{1}}\right) & =E\left(\widehat{\theta_{1}}\right)-\theta \\
& =\frac{2}{n} E\left(X_{1}+\cdots+X_{n}\right)-\theta \\
& =\frac{2}{n}\left[E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right]-\theta \\
& =\frac{2}{n}\left[\frac{\theta}{2}+\cdots+\frac{\theta}{2}\right]-\theta \\
& =\theta-\theta \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\theta_{1}}\right) & =\operatorname{Var}\left(\widehat{\theta_{1}}\right) \\
& =\frac{4}{n^{2}} \operatorname{Var}\left(X_{1}+\cdots+X_{n}\right) \\
& =\frac{4}{n^{2}}\left[\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right] \\
& =\frac{4}{n^{2}}\left[\frac{\theta^{2}}{12}+\cdots+\frac{\theta^{2}}{12}\right] \\
& =\frac{\theta^{2}}{3 n}
\end{aligned}
$$

UNSEEN

(ii) Let $Z=\widehat{\theta_{2}}$. The cdf and the pdf of Z are

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}\left(\max \left(X_{1}, \ldots, X_{n}\right) \leq z\right) \\
& =\operatorname{Pr}\left(X_{1} \leq z, \ldots, X_{n} \leq z\right) \\
& =\operatorname{Pr}\left(X_{1} \leq z\right) \cdots \operatorname{Pr}\left(X_{n} \leq z\right) \\
& =\frac{z}{\theta} \cdots \frac{z}{\theta} \\
& =\frac{z^{n}}{\theta^{n}}
\end{aligned}
$$

and

$$
f_{Z}(z)=\frac{n z^{n-1}}{\theta^{n}}
$$

So, the bias and mean squared error of $\widehat{\theta_{2}}$ are

$$
\begin{aligned}
\operatorname{bias}\left(\widehat{\theta_{2}}\right) & =E(Z)-\theta \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} z^{n} d z-\theta \\
& =\frac{n}{\theta^{n}}\left[\frac{z^{n+1}}{n+1}\right]_{0}^{\theta}-\theta \\
& =\frac{n}{\theta^{n}}\left[\frac{\theta^{n+1}}{n+1}-0\right]-\theta \\
& =\frac{n \theta}{n+1}-\theta \\
& =-\frac{\theta}{n+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\theta_{1}}\right) & =\operatorname{Var}(Z)+\left(-\frac{\theta}{n+1}\right)^{2} \\
& =E\left(Z^{2}\right)-E^{2}(Z)+\frac{\theta^{2}}{(n+1)^{2}} \\
& =E\left(Z^{2}\right)-\frac{n^{2} \theta^{2}}{(n+1)^{2}}+\frac{\theta^{2}}{(n+1)^{2}} \\
& =\frac{n}{\theta^{n}} \int_{0}^{\theta} z^{n+1} d z-\frac{n^{2} \theta^{2}}{(n+1)^{2}}+\frac{\theta^{2}}{(n+1)^{2}} \\
& =\frac{n}{\theta^{n}}\left[\frac{z^{n+2}}{n+2}\right]_{0}^{\theta}-\frac{n^{2} \theta^{2}}{(n+1)^{2}}+\frac{\theta^{2}}{(n+1)^{2}} \\
& =\frac{n \theta^{2}}{n+2}-\frac{n^{2} \theta^{2}}{(n+1)^{2}}+\frac{\theta^{2}}{(n+1)^{2}} \\
& =\frac{2 \theta^{2}}{(n+1)(n+2)} .
\end{aligned}
$$

UNSEEN

(iii) $\widehat{\theta_{1}}$ is better with respect to bias since bias $\widehat{\theta_{1}}=0$ and bias $\widehat{\theta_{2}} \neq 0$.

UNSEEN

(iv) $\widehat{\theta_{2}}$ is better with respect to mean squared error since

$$
\begin{array}{ll}
& \frac{2 \theta^{2}}{(n+1)(n+2)} \leq \frac{\theta^{2}}{3 n} \\
\Leftrightarrow & 6 n \leq(n+1)(n+2) \\
\Leftrightarrow & 6 n \leq n^{2}+3 n+2 \\
\Leftrightarrow & 0 \leq n^{2}-3 n+2 \\
\Leftrightarrow & 0 \leq(n-1)(n-2) .
\end{array}
$$

Both $\widehat{\theta_{1}}$ and $\widehat{\theta_{2}}$ have equal mean squared errors when $n=1,2$.

UNSEEN

Solutions to Question 3

ILOs addressed: define elementary statistical concepts and terminology such as confidence intervals and hypothesis tests.
(a) Suppose we wish to test $H_{0}: \mu=\mu_{0}$ versus $H_{0}: \mu \neq \mu_{0}$.
(i) the Type I error occurs if H_{0} is rejected when in fact $\mu=\mu_{0}$;

SEEN
(ii) the Type II error occurs if H_{0} is accepted when in fact $\mu \neq \mu_{0}$;

SEEN
(iii) the significance level is the probability of type I error.
(1 marks)
SEEN
(b) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $N\left(\mu, \sigma^{2}\right)$, where σ is known. The rejection region for the following tests are
(i) reject $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ if $\sqrt{n}\left|\bar{X}-\mu_{0}\right| / \sigma>z_{1-\frac{\alpha}{2}}$;

SEEN
(ii) reject $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu<\mu_{0}$ if $\sqrt{n}\left(\bar{X}-\mu_{0}\right) / \sigma<z_{\alpha}$.

SEEN
(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $N\left(\mu, \sigma^{2}\right)$, where σ is not known. Then,
(i) the required probability is

$$
\begin{aligned}
\operatorname{Pr}\left(\text { Reject } H_{0} \mid H_{1}\right. \text { is true) } & =\operatorname{Pr}\left(\left.\frac{\sqrt{n}\left|\bar{X}-\mu_{0}\right|}{\sigma}>z_{1-\frac{\alpha}{2}} \right\rvert\, \mu \neq \mu_{0}\right) \\
& =\operatorname{Pr}\left(\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}>z_{1-\frac{\alpha}{2}} \text { or } \left.\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}<-z_{1-\frac{\alpha}{2}} \right\rvert\, \mu \neq \mu_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}>z_{1-\frac{\alpha}{2}} \right\rvert\, \mu \neq \mu_{0}\right)+\operatorname{Pr}\left(\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}<-z_{1-\frac{\alpha}{2}}\right. \\
& =\operatorname{Pr}\left(\left.\frac{\sqrt{n}\left(\bar{X}-\mu+\mu-\mu_{0}\right)}{\sigma}>z_{1-\frac{\alpha}{2}} \right\rvert\, \mu \neq \mu_{0}\right)+\operatorname{Pr}\left(\frac{\sqrt{n}(\bar{X}-\mu+\mu}{\sigma}\right. \\
& =\operatorname{Pr}\left(\left.\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}>z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma} \right\rvert\, \mu \neq \mu_{0}\right)+\operatorname{Pr}\left(\frac{\sqrt{n}(\bar{X}-}{\sigma}\right. \\
& =\operatorname{Pr}\left(N(0,1)>z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right)+\operatorname{Pr}\left(N(0,1)<-z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}}{\sigma}\right. \\
& =1-\operatorname{Pr}\left(N(0,1) \leq z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right)+\operatorname{Pr}\left(N(0,1)<-z_{1-\frac{\alpha}{2}}-\right. \\
& =1-\Phi\left(z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right)+\Phi\left(-z_{1-\frac{\alpha}{2}}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right) .
\end{aligned}
$$

(3 marks)

UNSEEN

(ii) the required probability is

$$
\begin{aligned}
\operatorname{Pr}\left(\text { Reject } H_{0} \mid H_{1} \text { is true }\right) & =\operatorname{Pr}\left(\left.\frac{\sqrt{n}\left(\bar{X}-\mu_{0}\right)}{\sigma}<z_{\alpha} \right\rvert\, \mu<\mu_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\sqrt{n}\left(\bar{X}-\mu+\mu-\mu_{0}\right)}{\sigma}<z_{\alpha} \right\rvert\, \mu<\mu_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}<z_{\alpha}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma} \right\rvert\, \mu<\mu_{0}\right) \\
& =\operatorname{Pr}\left(N(0,1)<z_{\alpha}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right) \\
& =\Phi\left(z_{\alpha}-\frac{\sqrt{n}\left(\mu-\mu_{0}\right)}{\sigma}\right) .
\end{aligned}
$$

(2 marks)

UNSEEN

Solutions to Question 4

ILOs addressed: define elementary statistical concepts and terminology such as confidence intervals and hypothesis tests; conduct statistical inferences, including confidence intervals and hypothesis tests, in simple one and two-sample situations; sampling distributions.
(a) Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$, with X_{1}, \ldots, X_{n} an independent random sample from a distribution F_{X} with unknown parameter θ. Let $I(\mathbf{X})=[a(\mathbf{X}), b(\mathbf{X})]$ denote an interval estimator for θ.
(i) $I(\mathbf{X})$ is a $100(1-\alpha) \%$ confidence interval if

$$
\begin{equation*}
\operatorname{Pr}(a(\mathbf{X})<\theta<b(\mathbf{X}))=1-\alpha ; \tag{1marks}
\end{equation*}
$$

SEEN

(ii) the coverage probability of $I(\mathbf{X})$ is

$$
\begin{equation*}
\operatorname{Pr}(a(\mathbf{X})<\theta<b(\mathbf{X})) ; \tag{1marks}
\end{equation*}
$$

SEEN

(iii) the coverage length of $I(\mathbf{X})$ is $b(\mathbf{X})-a(\mathbf{X})$.

SEEN

(b) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from $N\left(\mu, \sigma^{2}\right)$.
(i) if σ is known then $\sqrt{n}(\bar{X}-\mu) / \sigma \sim N(0,1)$. So,

$$
\begin{aligned}
& \operatorname{Pr}\left(z_{\alpha / 2}<\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}<z_{1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}<\bar{X}-\mu<\frac{\sigma}{\sqrt{n}} z_{1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(-\bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}<-\mu<-\bar{X}+\frac{\sigma}{\sqrt{n}} z_{1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(\bar{X}-\frac{\sigma}{\sqrt{n}} z_{1-\alpha / 2}<\mu<\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right)=1-\alpha .
\end{aligned}
$$

Hence, a $100(1-\alpha) \%$ confidence interval for μ is

$$
\begin{equation*}
\left(\bar{X}-\frac{\sigma}{\sqrt{n}} z_{1-\alpha / 2}, \bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right) . \tag{1marks}
\end{equation*}
$$

SEEN
(ii) if σ is not known then $\sqrt{n}(\bar{X}-\mu) / S \sim t_{n-1}$. So,

$$
\begin{aligned}
& \operatorname{Pr}\left(t_{n-1, \alpha / 2}<\frac{\sqrt{n}(\bar{X}-\mu)}{S}<t_{n-1,1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}<\bar{X}-\mu<\frac{S}{\sqrt{n}} t_{n-1,1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(-\bar{X}+\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}<-\mu<-\bar{X}+\frac{S}{\sqrt{n}} t_{n-1,1-\alpha / 2}\right)=1-\alpha \\
\Leftrightarrow & \operatorname{Pr}\left(\bar{X}-\frac{S}{\sqrt{n}} t_{n-1,1-\alpha / 2}<\mu<\bar{X}-\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}\right)=1-\alpha .
\end{aligned}
$$

Hence, a $100(1-\alpha) \%$ confidence interval for μ is

$$
\left(\bar{X}-\frac{S}{\sqrt{n}} t_{n-1,1-\alpha / 2}, \bar{X}-\frac{S}{\sqrt{n}} t_{n-1, \alpha / 2}\right) .
$$

(1 marks)

SEEN

(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from Uniform $[0, a]$.
(i) The cumulative distribution function $\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)=Z$ say, is

$$
\begin{aligned}
F_{Z}(z) & =\operatorname{Pr}(Z \leq z) \\
& =\operatorname{Pr}\left(\max \left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq z\right) \\
& =\operatorname{Pr}\left(X_{1} \leq z, X_{2} \leq z, \ldots, X_{n} \leq z\right) \\
& =\operatorname{Pr}\left(X_{1} \leq z\right) \operatorname{Pr}\left(X_{2} \leq z\right) \cdots \operatorname{Pr}\left(X_{n} \leq z\right) \\
& =\left(\frac{z}{a}\right)\left(\frac{z}{a}\right) \cdots\left(\frac{z}{a}\right) \\
& =\left(\frac{z}{a}\right)^{n}
\end{aligned}
$$

for $0<z<a$.

UNSEEN

(ii) The $\left(\frac{\alpha}{2}\right)$ th and $\left(1-\frac{\alpha}{2}\right)$ th percentiles of Z are $a\left(\frac{\alpha}{2}\right)^{1 / n}$ and $a\left(1-\frac{\alpha}{2}\right)^{1 / n}$, respectively. So,

$$
\operatorname{Pr}\left(a\left(\frac{\alpha}{2}\right)^{1 / n} \leq Z \leq a\left(1-\frac{\alpha}{2}\right)^{1 / n}\right)=1-\alpha
$$

which can be rewritten as

$$
\operatorname{Pr}\left(Z\left(1-\frac{\alpha}{2}\right)^{-1 / n} \leq a \leq Z\left(\frac{\alpha}{2}\right)^{-1 / n}\right)=1-\alpha
$$

Hence, a $100(1-\alpha) \%$ confidence interval for a is

$$
\left[Z\left(1-\frac{\alpha}{2}\right)^{-1 / n}, Z\left(\frac{\alpha}{2}\right)^{-1 / n}\right]
$$

(3 marks)

UNSEEN

Solutions to Question 5

ILOs addressed: analyse and compare statistical properties of simple estimators.
Suppose X_{1} and X_{2} are independent $\operatorname{Exp}(1 / \lambda)$ random variables. Let $\widehat{\theta_{1}}=a\left(X_{1}+X_{2}\right)$ and $\widehat{\theta_{2}}=b \sqrt{X_{1} X_{2}}$ denote possible estimators of λ, where a and b are constants.
(i) The expectation of $\widehat{\theta_{1}}$ is

$$
\begin{aligned}
E\left(\widehat{\theta_{1}}\right) & =a\left[E\left(X_{1}\right)+E\left(X_{2}\right)\right] \\
& =2 a \int_{0}^{+\infty} \frac{x}{\lambda} \exp \left(-\frac{x}{\lambda}\right) d x \\
& =2 a \lambda \int_{0}^{+\infty} y \exp (-y) d y \\
& =2 a \lambda
\end{aligned}
$$

So, $\widehat{\theta_{1}}$ is unbiased for λ if $a=1 / 2$.

UNSEEN

(ii) The expectation of $\widehat{\theta_{2}}$ is

$$
\begin{aligned}
E\left(\widehat{\theta_{2}}\right) & =b E\left(\sqrt{X_{1}}\right) E\left(\sqrt{X_{2}}\right) \\
& =b\left[\int_{0}^{+\infty} \frac{\sqrt{x}}{\lambda} \exp \left(-\frac{x}{\lambda}\right) d x\right]^{2} \\
& =b\left[\int_{0}^{+\infty} \sqrt{\lambda y} \exp (-y) d y\right]^{2} \\
& =b \lambda\left[\int_{0}^{+\infty} \sqrt{y} \exp (-y) d y\right]^{2} \\
& =b \lambda[\Gamma(3 / 2)]^{2} \\
& =b \lambda \pi / 4
\end{aligned}
$$

So, $\widehat{\theta_{2}}$ is unbiased for λ if $b=4 / \pi$.
UNSEEN
(iii) The variance of $\widehat{\theta_{1}}$ is

$$
\begin{aligned}
\operatorname{Var}\left(\widehat{\theta_{1}}\right) & =a^{2}\left[\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\right] \\
& = \\
& =2 a^{2} \operatorname{Var}\left(X_{1}\right) \\
& =2 a^{2}\left[\int_{0}^{+\infty} \frac{x^{2}}{\lambda} \exp \left(-\frac{x}{\lambda}\right) d x-\lambda^{2}\right] \\
& =2 a^{2}\left[\lambda^{2} \int_{0}^{+\infty} y^{2} \exp (-y) d y-\lambda^{2}\right] \\
& =2 a^{2}\left[\lambda^{2} \Gamma(3)-\lambda^{2}\right] \\
& =2 a^{2} \lambda^{2} \\
& =\lambda^{2} / 2
\end{aligned}
$$

(4 marks)

UNSEEN

(iv) The variance of $\widehat{\theta_{2}}$ is

$$
\operatorname{Var}\left(\widehat{\theta_{2}}\right)=b^{2} E\left(X_{1}\right) E\left(X_{2}\right)-\lambda^{2}=b^{2} \lambda^{2}-\lambda^{2}=\left(b^{2}-1\right) \lambda^{2}=\left(\frac{16}{\pi^{2}}-1\right) \lambda^{2}
$$

(4 marks)

UNSEEN

(v) Clearly, $\lambda^{2} / 2<\left(\frac{16}{\pi^{2}}-1\right) \lambda^{2}$, so the estimator $\widehat{\theta_{1}}$ is better with respect to mean squared error.
UNSEEN

Solutions to Question 6

ILOs addressed: analyse statistical properties of simple estimators.
Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution specified by the probability density function $\frac{x}{\sigma^{2}} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)$ for $x>0$.
(i) The likelihood function of σ^{2} is

$$
\begin{aligned}
L\left(\sigma^{2}\right) & =\prod_{i=1}^{n}\left[\frac{X_{i}}{\sigma^{2}} \exp \left(-\frac{X_{i}^{2}}{2 \sigma^{2}}\right)\right] \\
& =\frac{1}{\sigma^{2 n}}\left(\prod_{i=1}^{n} X_{i}\right) \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} X_{i}^{2}\right)
\end{aligned}
$$

UNSEEN

(ii) The \log likelihood function of σ^{2} is

$$
\log L\left(\sigma^{2}\right)=-2 n \log \sigma+\prod_{i=1}^{n} \log X_{i}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} X_{i}^{2}
$$

The derivative with respect to σ is

$$
\frac{d \log L\left(\sigma^{2}\right)}{d \sigma}=-\frac{2 n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n} X_{i}^{2}
$$

Setting this to zero gives

$$
\widehat{\sigma^{2}}=\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}
$$

This is a maximum likelihood estimator since

$$
\begin{aligned}
\frac{d^{2} \log L\left(\sigma^{2}\right)}{d \sigma^{2}} & =\frac{2 n}{\sigma^{2}}-\frac{3}{\sigma^{4}} \sum_{i=1}^{n} X_{i}^{2} \\
& =\frac{1}{\sigma^{4}}\left[2 n \sigma^{2}-3 \sum_{i=1}^{n} X_{i}^{2}\right] \\
& =\frac{1}{\sigma^{4}}\left[2 n \frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}-3 \sum_{i=1}^{n} X_{i}^{2}\right] \\
& <0
\end{aligned}
$$

at $\sigma=\widehat{\sigma}$.
(iii) By the invariance principle, the maximum likelihood estimator of σ is

$$
\widehat{\sigma}=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}}
$$

UNSEEN

(iv) The bias of $\widehat{\sigma^{2}}$ is

$$
\begin{aligned}
\operatorname{Bias}\left(\widehat{\sigma^{2}}\right) & =E\left(\widehat{\sigma^{2}}\right)-\sigma^{2} \\
& =E\left(\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}\right)-\sigma^{2} \\
& =\frac{1}{2 n} \sum_{i=1}^{n} E\left(X_{i}^{2}\right)-\sigma^{2} \\
& =\frac{1}{2 n \sigma^{2}} \sum_{i=1}^{n} \int_{0}^{\infty} x^{3} \exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right) d x-\sigma^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{n} \int_{0}^{\infty} y \exp (-y) d y-\sigma^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{n} \Gamma(2)-\sigma^{2} \\
& =\frac{\sigma^{2}}{n} \sum_{i=1}^{n} 1-\sigma^{2} \\
& =0 .
\end{aligned}
$$

Hence, $\widehat{\sigma^{2}}$ is unbiased for σ^{2}.
(v) The mean squared error of $\widehat{\sigma^{2}}$ is

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\sigma^{2}}\right) & =\operatorname{Var}\left(\widehat{\sigma^{2}}\right) \\
& =\operatorname{Var}\left(\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}\right) \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{2}\right) \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n}\left\{E\left(X_{i}^{4}\right)-\left[E\left(X_{i}^{2}\right)\right]^{2}\right\} \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n}\left\{E\left(X_{i}^{4}\right)-\left[2 \sigma^{2}\right]^{2}\right\} \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n}\left\{4 \sigma^{4} \int_{0}^{\infty} y^{2} \exp (-y) d y-4 \sigma^{4}\right\} \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n}\left\{4 \sigma^{4} \Gamma(3)-4 \sigma^{4}\right\} \\
& =\frac{1}{4 n^{2}} \sum_{i=1}^{n}\left\{8 \sigma^{4}-4 \sigma^{4}\right\} \\
& =\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Hence, $\widehat{\sigma^{2}}$ is consistent σ^{2}.
(4 marks)
UNSEEN

Solutions to Question 7

ILOs addressed: analyse statistical properties of simple estimators.
An electrical circuit consists of four batteries connected in series to a lightbulb. We model the battery lifetimes $X_{1}, X_{2}, X_{3}, X_{4}$ as independent and identically distributed $\operatorname{Uni}(0, \theta)$ random variables. Our experiment to measure the operating time of the circuit is stopped when any one of the batteries fails. Hence, the only random variable we observe is $Y=$ $\min \left(X_{1}, X_{2}, X_{3}, X_{4}\right)$.
(i) The cdf of Y is

$$
\begin{aligned}
\operatorname{Pr}(Y \leq y) & =1-\operatorname{Pr}\left[\min \left(X_{1}, X_{2}, X_{3}, X_{4}\right)>y\right] \\
& =1-\operatorname{Pr}\left(X_{1}>y\right) \operatorname{Pr}\left(X_{2}>y\right) \operatorname{Pr}\left(X_{3}>y\right) \operatorname{Pr}\left(X_{4}>y\right) \\
& =1-\operatorname{Pr}^{4}(X>y) \\
& =1-(1-y / \theta)^{4} .
\end{aligned}
$$

UNSEEN

(ii) The likelihood function of θ is

$$
\begin{equation*}
L(\theta)=4(\theta-y)^{3} / \theta^{4} \tag{4marks}
\end{equation*}
$$

for $0<y<\theta$.
UNSEEN
(iii) The log-likelihood function is

$$
\log L(\theta)=\log 4+3 \log (\theta-y)^{3}-4 \log \theta
$$

and

$$
\frac{d \log L(\theta)}{d \theta}=\frac{3}{\theta-y}-\frac{4}{\theta} .
$$

Setting $d \log L(\theta) / d \theta=0$ gives $\widehat{\theta}=4 y$. This is an MLE since

$$
\begin{equation*}
\frac{d^{2} \log L(\theta)}{d \theta^{2}}=-\frac{3}{(\theta-y)^{2}}+\frac{4}{\theta^{2}} \tag{4marks}
\end{equation*}
$$

at $\widehat{\theta}=4 y$ is negative.
UNSEEN
(iv) The bias of $\widehat{\theta}$ is

$$
\begin{aligned}
\operatorname{Bias}(\widehat{\theta}) & =E(\widehat{\theta})-\theta \\
& =16 \theta^{-4} \int_{0}^{\theta} y(\theta-y)^{3} d y-\theta \\
& =16 \theta \int_{0}^{1} y(1-y)^{3} d y-\theta \\
& =\frac{4 \theta}{5}-\theta \\
& =-\frac{\theta}{5}
\end{aligned}
$$

so the estimator is biased.

UNSEEN

(v) The variance of $\widehat{\theta}$ is

$$
\begin{aligned}
\operatorname{Var}(\widehat{\theta}) & =E\left(\widehat{\theta}^{2}\right)-E^{2}(\widehat{\theta}) \\
& =64 \theta^{-4} \int_{0}^{\theta} y^{2}(\theta-y)^{3} d y-\frac{16 \theta^{2}}{25} \\
& =64 \theta^{2} \int_{0}^{1} y^{2}(1-y)^{3} d y-\frac{16 \theta^{2}}{25} \\
& =\frac{16 \theta^{2}}{15}-\frac{16 \theta^{2}}{25} \\
& =\frac{32 \theta^{2}}{75}
\end{aligned}
$$

So, the mean squared error of $\hat{\lambda}$ is

$$
\operatorname{MSE}(\widehat{\theta})=\operatorname{Var}(\widehat{\theta})+\operatorname{Bias}^{2}(\widehat{\theta})=\frac{32 \theta^{2}}{75}+\frac{\theta^{2}}{25}=\frac{35 \theta^{2}}{75}=\frac{7 \theta^{2}}{15}
$$

UNSEEN

