SOLUTIONS TO MATH38181 EXTREME VALUES EXAM

a) We can write

$$\overline{F}(x,y) = \exp\left[-\left(x^a + y^a\right)^{1/a}\right] = \exp\left\{-\left(x + y\right)\left[\left(\frac{y}{x + y}\right)^a + \left(\frac{x}{x + y}\right)^a\right]\right\}.$$

This is in the form of

$$\overline{F}(x,y) = \exp\left[-(x+y)A\left(\frac{y}{x+y}\right)\right]$$

with $A(t) = [t^a + (1-t)^a]^{1/a}$.

We now check the conditions for $A(\cdot)$. Clearly, A(0) = 1 and A(1) = 1.

Also $A(t) \ge 0$ since $t^a \ge 0$ and $(1-t)^a \ge 0$ for all t.

To show that $A(t) \leq 1$, note that

$$A(t) \le 1$$

$$\Leftrightarrow [t^a + (1-t)^a]^{1/a} \le 1$$

$$\Leftrightarrow t^a + (1-t)^a \le 1.$$

Now let $g(t) = t^a + (1-t)^a$. We have $g'(t) = at^{a-1} - a(1-t)^{a-1}$, g'(0) = -a, g'(1) = a and $g''(t) = a(a-1)t^{a-2} + a(a-1)(1-t)^{a-2}$. So, g(t) attains its maximum at t = 0 or t = 1. Hence, $t^a + (1-t)^a \le 1$ holds for all t.

Also $A(t) \ge t$ since

$$[t^a + (1-t)^a]^{1/a} \ge [t^a]^{1/a} \ge t.$$

Also $A(t) \ge 1 - t$ since

$$[t^a + (1-t)^a]^{1/a} \ge [(1-t)^a]^{1/a} \ge 1 - t.$$

 $A(\cdot)$ is convex since

$$A'(t) = \left[t^{a} + (1-t)^{a}\right]^{1/a-1} \left[t^{a-1} - (1-t)^{a-1}\right]$$

and

$$A''(t) = (a-1)\left[t^a + (1-t)^a\right]^{1/a-2}\left[t^a(1-t)^{a-2} + t^{a-2}(1-t)^a + 2t^{a-1}(1-t)^{a-1}\right] \ge 0.$$

b) the joint cdf is

$$F(x,y) = 1 - \exp(-x) - \exp(-y) + \exp\left[-(x^a + y^a)^{1/a}\right].$$

c) the derivative of joint cdf with respect to x is

$$\frac{\partial F(x,y)}{\partial x} = \exp(-x) - x^{a-1} (x^a + y^a)^{1/a-1} \exp\left[-(x^a + y^a)^{1/a}\right],$$

so the conditional cdf if Y given X = x is

$$F(y|x) = 1 - x^{a-1} (x^a + y^a)^{1/a-1} \exp \left[x - (x^a + y^a)^{1/a} \right].$$

d) the derivative of joint cdf with respect to y is

$$\frac{\partial F(x,y)}{\partial y} = \exp(-y) - y^{a-1} (x^a + y^a)^{1/a-1} \exp\left[-(x^a + y^a)^{1/a}\right],$$

so the conditional cdf if X given Y = y is

$$F(x|y) = 1 - y^{a-1} (x^a + y^a)^{1/a-1} \exp \left[y - (x^a + y^a)^{1/a} \right].$$

e) the derivative of joint cdf with respect to x and y is

$$f(x,y) = \frac{\partial F(x,y)}{\partial x \partial y}$$

= $(xy)^{a-1} (x^a + y^a)^{1/a-2} \exp \left[-(x^a + y^a)^{1/a} \right]$
 $\cdot \left[a - 1 + (x^a + y^a)^{1/a} \right].$

a) Let X denote the actual stock return. The pdf of X is

$$f_X(x) = \frac{1}{b-a} \int_a^b \lambda \exp(-\lambda x) d\lambda$$

$$= \frac{1}{b-a} \left\{ \left[\lambda \frac{\exp(-\lambda x)}{-x} \right]_a^b + \frac{1}{x} \int_a^b \exp(-\lambda x) d\lambda \right\}$$

$$= \frac{1}{b-a} \left\{ -\frac{b \exp(-bx) - a \exp(-ax)}{x} - \frac{\exp(-bx) - \exp(-ax)}{x^2} \right\}$$

$$= \frac{(xa+1) \exp(-ax) - (xb+1) \exp(-bx)}{x^2(b-a)}.$$

b) the expected value of X is

$$E(X) = \int_{0}^{\infty} \frac{(xa+1)\exp(-ax) - (xb+1)\exp(-bx)}{x(b-a)} dx$$

$$= \frac{1}{b-a} \left[a \int_{0}^{\infty} \exp(-ax) dx - b \int_{0}^{\infty} \exp(-bx) dx + \int_{0}^{\infty} \frac{1}{x} \exp(-ax) dx - \int_{0}^{\infty} \frac{1}{x} \exp(-bx) dx \right]$$

$$= \frac{1}{b-a} \left[1 - 1 + \int_{0}^{\infty} \frac{1}{x} \exp(-ax) dx - \int_{0}^{\infty} \frac{1}{x} \exp(-bx) dx \right]$$

$$= \frac{1}{b-a} \left[\int_{0}^{\infty} \frac{1}{x} \exp(-ax) dx - \int_{0}^{\infty} \frac{1}{x} \exp(-bx) dx \right]$$

$$= \frac{1}{b-a} \left[\infty - \infty \right]$$

$$= \infty$$

c) the expected value of X^2 is

$$E(X^{2}) = \int_{0}^{\infty} \frac{(xa+1)\exp(-ax) - (xb+1)\exp(-bx)}{b-a} dx$$

$$= \frac{1}{b-a} \left[a \int_{0}^{\infty} x \exp(-ax) dx - b \int_{0}^{\infty} x \exp(-bx) dx + \int_{0}^{\infty} \exp(-ax) dx - \int_{0}^{\infty} \exp(-bx) dx \right]$$

$$= \frac{1}{b-a} \left[\frac{1}{a} - \frac{1}{b} + \frac{1}{a} - \frac{1}{b} \right]$$

$$= \frac{2}{ab}.$$

Hence, the variance is infinite.

d) If x_1, x_2, \ldots, x_n is a random sample on X then the likelihood function is

$$L(a,b) = (b-a)^{-n} \prod_{i=1}^{n} \frac{(x_i a + 1) \exp(-ax_i) - (x_i b + 1) \exp(-bx_i)}{x_i^2}.$$

The log-likelihood function is

$$\log L(a,b) = -n\log(b-a) + \sum_{i=1}^{n} \log \left[(x_i a + 1) \exp(-ax_i) - (x_i b + 1) \exp(-bx_i) \right] - 2\sum_{i=1}^{n} \log x_i.$$

The partial derivatives with respect to a and b are

$$\frac{\partial \log L}{\partial a} = \frac{n}{b-a} - a \sum_{i=1}^{n} \frac{x_i^2 \exp\left(-ax_i\right)}{\left(x_i a + 1\right) \exp\left(-ax_i\right) - \left(x_i b + 1\right) \exp\left(-bx_i\right)}$$

and

$$\frac{\partial \log L}{\partial b} = -\frac{n}{b-a} - b \sum_{i=1}^{n} \frac{x_i^2 \exp\left(-bx_i\right)}{\left(x_i a + 1\right) \exp\left(-ax_i\right) - \left(x_i b + 1\right) \exp\left(-bx_i\right)}.$$

So, the mles of a and b are the simultaneous solutions of the equations

$$\frac{n}{b-a} = a \sum_{i=1}^{n} \frac{x_i^2 \exp(-ax_i)}{(x_i a + 1) \exp(-ax_i) - (x_i b + 1) \exp(-bx_i)}$$

and

$$-\frac{n}{b-a} = b \sum_{i=1}^{n} \frac{x_i^2 \exp(-bx_i)}{(x_i a + 1) \exp(-ax_i) - (x_i b + 1) \exp(-bx_i)}.$$

If there are norming constants $a_n > 0$, b_n and a nondegenerate G such that the cdf of a normalized version of M_n converges to G, i.e.

$$\Pr\left(\frac{M_n - b_n}{a_n} \le x\right) = F^n\left(a_n x + b_n\right) \to G(x) \tag{1}$$

as $n \to \infty$ then G must be of the same type as (cdfs G and G^* are of the same type if $G^*(x) = G(ax + b)$ for some a > 0, b and all x) as one of the following three classes:

$$I : \Lambda(x) = \exp\{-\exp(-x)\}, \quad x \in \Re;$$

$$II : \Phi_{\alpha}(x) = \begin{cases} 0 & \text{if } x < 0, \\ \exp\{-x^{-\alpha}\} & \text{if } x \ge 0 \end{cases}$$

$$\text{for some } \alpha > 0;$$

$$III : \Psi_{\alpha}(x) = \begin{cases} \exp\{-(-x)^{\alpha}\} & \text{if } x < 0, \\ 1 & \text{if } x \ge 0 \end{cases}$$

$$\text{for some } \alpha > 0.$$

The necessary and sufficient conditions for the three extreme value distributions are:

$$I : \exists \gamma(t) > 0 \text{ s.t. } \lim_{t \uparrow w(F)} \frac{1 - F(t + x\gamma(t))}{1 - F(t)} = \exp(-x), \qquad x \in \Re,$$

$$II : w(F) = \infty \text{ and } \lim_{t \uparrow \infty} \frac{1 - F(tx)}{1 - F(t)} = x^{-\alpha}, \qquad x > 0,$$

$$III : w(F) < \infty \text{ and } \lim_{t \downarrow 0} \frac{1 - F(w(F) - tx)}{1 - F(w(F) - t)} = x^{\alpha}, \qquad x > 0.$$

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel extreme value distribution. Then, there must exist a strictly positive function, say h(t), such that

$$\lim_{t \to w(G)} \frac{1 - G\left(t + xh(t)\right)}{1 - G(t)} = \exp(-x)$$

for every $x \in (-\infty, \infty)$. But, using L'Hopital's rule, we note that

$$\lim_{t \to w(F)} \frac{1 - F(t + x h(t))}{1 - F(t)} = \lim_{t \to w(F)} \frac{[1 + x h'(t)] f(t + x h(t))}{f(t)}$$

$$= \lim_{t \to w(G)} \frac{[1 + x h'(t)] g(t + x h(t))}{g(t)} \left[\frac{G(t + x h(t))}{G(t)} \right]^{a-1}$$

$$\times \left[\frac{1 - G(t + x h(t))}{1 - G(t)} \right]^{b-1} \exp\left\{ c G(t) - c G(t + x h(t)) \right\}$$

$$= \exp(-b x)$$

for every $x \in (-\infty, \infty)$. So, it follows that F also belongs to the max domain of attraction of the Gumbel extreme value distribution with

$$\lim_{n \to \infty} \Pr \left\{ a_n \left(M_n - b_n \right) \le x \right\} = \exp \left\{ -\exp(-bx) \right\}$$

for some suitable norming constants $a_n > 0$ and b_n .

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet extreme value distribution. Then, there must exist a $\beta < 0$ such that

$$\lim_{t \to \infty} \frac{1 - G(t \, x)}{1 - G(t)} = x^{\beta}$$

for every x > 0. But, using L'Hopital's rule, we note that

$$\lim_{t \to \infty} \frac{1 - F(t \, x)}{1 - F(t)} = \lim_{t \to \infty} \frac{x f(t \, x)}{f(t)}$$

$$= \lim_{t \to \infty} \frac{x g(t \, x)}{g(t)} \left[\frac{G(t \, x)}{G(t)} \right]^{a-1} \left[\frac{1 - G(t \, x)}{1 - G(t)} \right]^{b-1} \exp\left\{c \, G(t) - c \, G(t \, x)\right\}$$

$$= \lim_{t \to \infty} \frac{x g(t \, x)}{g(t)} \left[\frac{1 - G(t \, x)}{1 - G(t)} \right]^{b-1}$$

$$= \lim_{t \to \infty} \frac{1 - G(t \, x)}{1 - G(t)} \left[\frac{1 - G(t \, x)}{1 - G(t)} \right]^{b-1}$$

$$= \lim_{t \to \infty} \left[\frac{1 - G(t \, x)}{1 - G(t)} \right]^{b}$$

$$= x^{b \, \beta}$$

for every x > 0. So, it follows that F also belongs to the max domain of attraction of the Fréchet extreme value distribution with

$$\lim_{n \to \infty} \Pr\left\{ a_n \left(M_n - b_n \right) \le x \right\} = \exp\left(-x^{b\beta} \right)$$

for some suitable norming constants $a_n > 0$ and b_n .

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull extreme value distribution. Then, there must exist a $\alpha > 0$ such that

$$\lim_{t \to 0} \frac{1 - G(w(G) - tx)}{1 - G(w(G) - t)} = x^{\alpha}$$

for every x > 0. But, using L'Hopital's rule, we note that

$$\begin{split} \lim_{t \to 0} \frac{1 - F(w(F) - tx)}{1 - F(w(F) - t)} &= \lim_{t \to 0} \frac{x f(w(F) - tx)}{f(w(F) - t)} \\ &= \lim_{t \to 0} \frac{x g(w(F) - tx)}{g(w(F) - t)} \left[\frac{G(w(F) - tx)}{G(w(F) - t)} \right]^{a - 1} \left[\frac{1 - G(w(F) - tx)}{1 - G(w(F) - t)} \right]^{b - 1} \\ &\quad \times \exp\left\{c G(w(F) - t) - c G\left(w(F) - tx\right)\right\} \\ &= \lim_{t \to 0} \frac{x g(w(F) - tx)}{g(w(F) - t)} \left[\frac{1 - G(w(F) - tx)}{1 - G(w(F) - t)} \right]^{b - 1} \\ &= \lim_{t \to 0} \frac{1 - G(w(F) - tx)}{1 - G(w(F) - t)} \left[\frac{1 - G(w(F) - tx)}{1 - G(w(F) - t)} \right]^{b - 1} \\ &= \lim_{t \to 0} \left[\frac{1 - G(w(F) - tx)}{1 - G(w(F) - t)} \right]^{b} \\ &= x^{b\alpha}. \end{split}$$

So, it follows that F also belongs to the max domain of attraction of the Weibull extreme value distribution with

$$\lim_{n \to \infty} \Pr \left\{ a_n \left(M_n - b_n \right) \le x \right\} = \exp \left\{ -(-x)^{b\alpha} \right\}$$

for some suitable norming constants $a_n > 0$ and b_n .

a) Note that $w(F) = \infty$. Then

$$\begin{split} \lim_{t\uparrow\infty} \frac{1-F\left(t+xg(t)\right)}{1-F(t)} &= \lim_{t\uparrow\infty} \frac{1-\left\{1-\exp\left[1-\left(1+\lambda t+\lambda xg(t)\right)^{\alpha}\right]\right\}}{1-\left\{1-\exp\left[1-\left(1+\lambda t\right)^{\alpha}\right]\right\}} \\ &= \lim_{t\uparrow\infty} \frac{\exp\left[1-\left(1+\lambda t+\lambda xg(t)\right)^{\alpha}\right]}{\exp\left[1-\left(1+\lambda t\right)^{\alpha}\right]} \\ &= \lim_{t\uparrow\infty} \exp\left[\left(1+\lambda t\right)^{\alpha}-\left(1+\lambda t+\lambda xg(t)\right)^{\alpha}\right] \\ &= \lim_{t\uparrow\infty} \exp\left\{\left(1+\lambda t\right)^{\alpha}\left[1-\left(1+\frac{\lambda g(t)x}{1+\lambda t}\right)^{\alpha}\right]\right\} \\ &= \lim_{t\uparrow\infty} \exp\left\{\left(1+\lambda t\right)^{\alpha}\left[1-\left(1+\alpha\frac{\lambda g(t)x}{1+\lambda t}\right)\right]\right\} \qquad \text{using } (1+x)^{a} \approx 1+ax \\ &= \lim_{t\uparrow\infty} \exp\left\{-\left(1+\lambda t\right)^{\alpha}\left[\alpha\frac{\lambda g(t)x}{1+\lambda t}\right]\right\} \\ &= \lim_{t\uparrow\infty} \exp\left\{-\lambda \alpha(1+\lambda t)^{\alpha-1}g(t)x\right\} \\ &= \exp\left\{-x\right\} \end{split}$$

if $g(t) = 1/(\lambda \alpha)(1+\lambda t)^{1-\alpha}$. So, the exponentiated extension cdf $F(x) = 1-\exp\left[1-(1+\lambda x)^{\alpha}\right]^{\alpha}$ belongs to the Gumbel domain of attraction.

b) Note that $w(F) = \infty$. Then

$$\lim_{t \to \infty} \frac{1 - F(tx)}{1 - F(t)} = \lim_{t \to \infty} \frac{\left[1 - \exp\left(-\frac{\lambda}{tx}\right)\right]^{\alpha}}{\left[1 - \exp\left(-\frac{\lambda}{t}\right)\right]^{\alpha}}$$

$$= \lim_{t \to \infty} \left[\frac{1 - \exp\left(-\frac{\lambda}{tx}\right)}{1 - \exp\left(-\frac{\lambda}{t}\right)}\right]^{\alpha}$$

$$= \lim_{t \to \infty} \left[\frac{1 - \left(1 - \frac{\lambda}{tx}\right)}{1 - \left(1 - \frac{\lambda}{t}\right)}\right]^{\alpha} \quad \text{using } \exp(-a) \approx 1 - a$$

$$= \lim_{t \to \infty} \left[\frac{\frac{\lambda}{tx}}{\frac{\lambda}{t}}\right]^{\alpha}$$

$$= x^{-\alpha}.$$

So, the inverse exponentiated exponential cdf $F(x) = 1 - \left[1 - \exp\left(-\frac{\lambda}{x}\right)\right]^{\alpha}$ belongs to the Fréchet domain of attraction.

c) For the Poisson distribution,

$$\frac{\Pr(X = k)}{1 - F(k - 1)} = \frac{\lambda^k / k!}{\sum_{j = k}^{\infty} \lambda^j / j!} = \frac{1}{1 + \sum_{j = k + 1}^{\infty} k! \lambda^{j - k} / j!}.$$

The term in the denominator can be rewritten as

$$\sum_{j=1}^{\infty} \frac{\lambda^j}{(k+1)(k+2)\cdots(k+j)} \le \sum_{j=1}^{\infty} \left(\frac{\lambda}{k}\right)^j = \frac{\lambda/k}{1-\lambda/k}$$

(when $k > \lambda$) and the bound tends to 0 as $k \to \infty$ and so it follows that $p(k)/(1-F(k-1)) \to 1$. Hence, there can be no non-degenerate limit.

d) For the Bernoulli (p) distribution,

$$\frac{\Pr(X=k)}{1 - F(k-1)} = \begin{cases} 1 - p, & \text{if } k = 0, \\ 1, & \text{if } k = 1. \end{cases}$$

Hence, there can be no sequences $a_n > 0$ and b_n such that $(M_n - b_n)/a_n$ has a non-degenerate limiting distribution.

e) For the discrete Weibull distribution, the corresponding pmf is

$$p(x) = q^{x^a} - q^{(x+1)^a}.$$

So,

$$\frac{\Pr(X=x)}{1 - F(x-1)} = \frac{q^{x^a} - q^{(x+1)^a}}{1 - [1 - q^{x^a}]}$$
$$= \frac{q^{x^a} - q^{(x+1)^a}}{q^{x^a}}$$
$$= 1 - q^{(x+1)^a - x^a}$$

Note that

$$x^{a} - (x+1)^{a} = x^{a} - x^{a} \left(1 + \frac{1}{x}\right)^{a}$$

$$= x^{a} \left[1 - \left(1 + \frac{1}{x}\right)^{a}\right]$$

$$= x^{a} \left[1 - 1 - a\frac{1}{x} - \frac{a(a-1)}{2!} \frac{1}{x^{2}} - \cdots\right]$$

$$\to -\infty.$$

Hence,

$$\frac{\Pr(X=x)}{1 - F(x-1)} \to 1.$$

Hence, there can be no sequences $a_n > 0$ and b_n such that $(M_n - b_n)/a_n$ has a non-degenerate limiting distribution.

If X is an absolutely continuous random variable with cdf $F(\cdot)$ then

$$\operatorname{VaR}_p(X) = F^{-1}(p)$$

and

$$ES_p(X) = \frac{1}{p} \int_0^p F^{-1}(v) dv.$$

Setting

$$\Phi\left(\frac{x-\mu}{\sigma}\right) = p$$

gives

$$\operatorname{VaR}_p(X) = \mu + \sigma \Phi^{-1}(p)$$

and

$$\mathrm{ES}_p(X) = \mu + \frac{\sigma}{p} \int_0^p \Phi^{-1}(v) dv.$$

a) The joint likelihood function of μ and σ^2 is

$$L(\mu, \sigma^2) = \prod_{i=1}^n \left\{ \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(X_i - \mu)^2}{2\sigma^2}\right] \right\}$$
$$= \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2\right].$$

The joint log likelihood function of μ and σ^2 is

$$\log L(\mu, \sigma^2) = -\frac{n}{2}\log(2\pi) - n\log\sigma - \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2.$$

The first order partial derivatives of this with respect to μ and σ are

$$\frac{\partial \log L}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu) = \frac{1}{\sigma^2} \left(\sum_{i=1}^n X_i - n\mu \right)$$
 (2)

and

$$\frac{\partial \log L}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (X_i - \mu)^2, \tag{3}$$

respectively.

b) Using equation (2), one can see that the solution of $\partial \log L/\partial \mu = 0$ is $\mu = \overline{X} = (1/n) \sum_{i=1}^{n} X_i$.

c) Using equation (3), one can see that the solution of $\partial \log L/\partial \sigma = 0$ is $\sigma^2 = S^2 = (1/n) \sum_{i=1}^n (X_i - \overline{X})^2$.

d) The mle of Value at Risk is

$$\widehat{\operatorname{VaR}}_p(X) = \overline{X} + S\Phi^{-1}(p)$$

The mle of Expected Shortfall is

$$\widehat{\mathrm{ES}}_p(X) = \overline{X} + \frac{S}{p} \int_0^p \Phi^{-1}(v) dv.$$

e) Since

$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= \frac{1}{n}\sum_{i=1}^{n}E(X_{i})$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mu$$

$$= \mu,$$

 \overline{X} is unbiased for μ . Since $\sum_{i=1}^{n} (X_i - \overline{X})^2 \sim \sigma^2 \chi_{n-1}^2$ and $E(\chi_k) = \sqrt{2}\Gamma((k+1)/2)/\Gamma(k/2)$, we can write

$$E(S) = E\left[\frac{\sigma}{\sqrt{n}}\sqrt{\chi_{n-1}^2}\right]$$
$$= \frac{\sigma}{\sqrt{n}}E\left[\sqrt{\chi_{n-1}^2}\right]$$
$$= \frac{\sigma}{\sqrt{n}}\frac{\sqrt{2}\Gamma(n/2)}{\Gamma((n-1)/2)},$$

so S is biased for σ .

Since

$$E\left(\widehat{\operatorname{VaR}}_{p}(X)\right) = E\left(\overline{X}\right) + E(S)\Phi^{-1}(p)$$

$$= \mu + \frac{\sigma}{\sqrt{n}} \frac{\sqrt{2}\Gamma\left(n/2\right)}{\Gamma\left((n-1)/2\right)} \Phi^{-1}(p)$$

$$\neq \mu + \sigma\Phi^{-1}(p),$$

 $\widehat{\operatorname{VaR}}_p(X)$ is biased for $\operatorname{VaR}_p(X)$.

f) Since

$$E\left(\widehat{\mathrm{ES}}_{p}(X)\right) = E\left(\overline{X}\right) + E(S)\frac{1}{p}\int_{0}^{p}\Phi^{-1}(v)dv$$

$$= \mu + \frac{\sigma}{\sqrt{n}}\frac{\sqrt{2}\Gamma\left(n/2\right)}{\Gamma\left((n-1)/2\right)}\frac{1}{p}\int_{0}^{p}\Phi^{-1}(v)dv$$

$$\neq \mu + \sigma\frac{1}{p}\int_{0}^{p}\Phi^{-1}(v)dv,$$

 $\widehat{\mathrm{ES}}_p(X)$ is biased for $\mathrm{ES}_p(X).$

a) The cdf of X is

$$F_Y(y) = \Pr(Y \le y)$$

$$= \Pr(\min(X_1, \dots, X_\alpha) \le y)$$

$$= 1 - \Pr(\min(X_1, \dots, X_\alpha) > y)$$

$$= 1 - \Pr(X_1 > y, \dots, X_\alpha > y)$$

$$= 1 - \Pr(X_1 > y) \cdots \Pr(X_\alpha > y)$$

$$= 1 - \exp(-\lambda y) \cdots \exp(-\lambda y)$$

$$= 1 - \exp(-\alpha \lambda y),$$

the exponential cdf with parameter $\alpha\lambda$.

b) The corresponding pdf is

$$f_Y(y) = \alpha \lambda \exp(-\alpha \lambda y).$$

c) The nth moment of Y can be calculated as

$$E(Y^n) = \alpha \lambda \int_0^\infty x^n \exp(-\alpha \lambda x) dx$$
$$= (\alpha \lambda)^{-n} \int_0^\infty x^n \exp(-x) dx$$
$$= (\alpha \lambda)^{-n} \Gamma(n+1)$$
$$= (\alpha \lambda)^{-n} n!.$$

So,

$$E(Y) = (\alpha \lambda)^{-1}$$

and

$$Var(Y) = (\alpha \lambda)^{-2}$$
.

d) Setting

$$1 - \exp(-\alpha \lambda y) = p$$

gives

$$\operatorname{VaR}_{p}(Y) = -\frac{1}{\alpha \lambda} \log (1 - p).$$

e) The expected shortfall is

$$ES_{p}(Y) = -\frac{1}{\alpha \lambda p} \int_{0}^{p} \log(1 - v) dv
= -\frac{1}{\alpha \lambda p} \left\{ [v \log(1 - v)]_{0}^{p} + \int_{0}^{p} \frac{v}{1 - v} dv \right\}
= -\frac{1}{\alpha \lambda p} \left\{ p \log(1 - p) + \int_{0}^{p} \frac{v - 1 + 1}{1 - v} dv \right\}
= -\frac{1}{\alpha \lambda p} \left\{ p \log(1 - p) - p + \int_{0}^{p} \frac{1}{1 - v} dv \right\}
= -\frac{1}{\alpha \lambda p} \left\{ p \log(1 - p) - p - \log(1 - p) \right\}.$$

f) The likelihood function is

$$L(\alpha, \lambda) = \alpha^n \lambda^n \exp\left(-\alpha \lambda \sum_{i=1}^n y_i\right).$$

The log-likelihood function is

$$\log L = n \log(\alpha \lambda) - \alpha \lambda \sum_{i=1}^{n} y_i.$$

The partial derivatives with respect to α and λ are

$$\frac{\partial \log L}{\partial \alpha} = \frac{n}{\alpha} - \lambda \sum_{i=1}^{n} y_i$$

and

$$\frac{\partial \log L}{\partial \lambda} = \frac{n}{\lambda} - \alpha \sum_{i=1}^{n} y_i.$$

Setting these to zero, we find that the mles of α and λ are the solutions of

$$\widehat{\alpha} = \frac{n}{\lambda \sum_{i=1}^{n} y_i}.$$

By definition, α must be a positive integer. Hence, the set of all possible mles of α and λ is

$$\left\{ \left(m, \frac{n}{m \sum_{i=1}^{n} y_i} \right), m = 1, 2, \dots \right\}.$$