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Solutions to Question 1

a) We can write

Fleg) = e [+ ] = { -+ [ () + (=) ]}

This is in the form of

F(z,y) = exp [—(x+y)A< 4 )]

r+y

with A(t) = [t + (1 — t)4¥/e.
We now check the conditions for A(-). Clearly, A(0) =1 and A(1) = 1.
Also A(t) > 0 since t* > 0 and (1 —¢)* > 0 for all ¢.
To show that A(t) < 1, note that

Alt) <1
& [+ 1 -t/ <1
& '+ (1-1)*<1.
Now let g(t) = t* + (1 —)®. We have ¢ (t) = at** —a(1 —t)* !, g (0) = —a, ¢ (1) = a and

g (t) = ala—1)t"2 +a(a — 1)(1 — t)*"2. So, g(t) attains its maximum at t = 0 or t = 1.
Hence, t* + (1 — ¢)* < 1 holds for all .

Also A(t) > t since

[ta + (1 o t)@}l/a > [ta]l/a > ¢,

Also A(t) > 1 —t since

[ta + (1 B t)a]l/a > [(1 _ t)a}l/a >1—t

A(+) is convex since
A =t + (1 =0 e = (1= )]

and

"

Aty =(a—1)[t"+ (L —t) ]/ 2 [t = )" 2+ "2 (1 — ) + 2t 1 (1 — )" ] > 0.

b) the joint cdf is
Flz,y) = 1 - exp(—z) — exp(—y) +exp [~ (* + )]
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c) the derivative of joint cdf with respect to x is

OF (z,y)
ox

so the conditional cdf if Y given X = x is

= exp(—z) — 27! (2" + ") exp [— (" + y“)l/“} ,

Plyla) = 1 - a0 2+ y2) Y exp [ — (a2 + )]

d) the derivative of joint cdf with respect to y is

OF (z, o .
OF(wy) _ exp(—y) — " (7 + )"/ exp [— (" +y")" ] ,

so the conditional cdf if X given Y =y is

F(zly) =1 -y (2" +y)"" " exp [y — (" + ya)l/“} :

e) the derivative of joint cdf with respect to z and y is

OF (x,y)
0xdy

= (ay)" " (2" +y")

: a—1+(x“+y“)1/“].

f(z,y)

1/a—2 1/a

e



Solutions to Question 2
a) Let X denote the actual stock return. The pdf of X is

1 b
fx(x) = = Aexp(—Az)dA

_ . i - { {)\exp(_—;\x)} ) + % exp(—/\x)d)\}
(—bx)

w) — exp(—aaj)}

1 { bexp(—bx) — aexp(—ax) exp(—

b—a x x?
_ (xa+ 1) exp(—ax) — (zb+ 1) exp(—bx)
22(b — a) '

b) the expected value of X is

E(X) - /OOO (za + 1)exp(—ax$()b:(a:t;b+ 1) exp(—bx)dx
= i _a N exp(—ax)dr — b b exp(—bx)dr + h 1 exp(—azx)dr — h 1 exp(—bz)dzx
b—a| /0 /0 /o x /0 z }

[ 1 <1
— 1—1 - _ — - _
b=l + /0 " exp(—ax)dz /0 " exp( bx)d:v}

1 [[>1 <1
= _/0 Eexp(—ax)dx—/o Eexp(—bx)dw}

= [00 — o0

c) the expected value of X? is

o [T (za+1)exp(—ax) — (xb+ 1) exp(—br)
E(X ) = /0 b_a dx

1 o o oo oo
= [a/ zrexp(—ax)dr — b/ zexp(—bx)dx +/ exp(—ax)dz —/ exp(—b:z:)dx]
b—a 0 0 0 0

1 1 1 1 1
- b_a[a—5+‘—z]
2
=

Hence, the variance is infinite.

d) If x1, 9, ..., x, is a random sample on X then the likelihood function is

. n (x;a+ 1) exp (—az;) — (z;0 + 1) exp (—bx;
Lot = -] (cam) — (a4 Desp (hes)
i=1 ?



The log-likelihood function is
log L(a,b) = —nlog(b — a) + Z log [(z;a + 1) exp (—ax;) — (x;b 4+ 1) exp (—bx;)] — 2 Z log ;.
i=1 i=1

The partial derivatives with respect to a and b are

n

al;fl’ ) ﬁ a ¢ Z (x;a+ 1) exp (fijcf)pﬁ_(:ifbl)—l— 1) exp (—bx;)
i=1
and
dlogL _ n bzn: x? exp (—bx;) ‘
ob b—a (r;a+ 1) exp (—ax;) — (z;0 + 1) exp (—bzx;)

i=1
So, the mles of a and b are the simultaneous solutions of the equations

n - 22 exp (—ax;)

b—a a; (x;a + 1) exp (—ax;) — (x;0 + 1) exp (—bx;)

and

n - a7 exp (—ba;)

b—a b; (via + 1) exp (—ax;) — (x;b+ 1) exp (—bx;)



Solutions to Question 3

If there are norming constants a,, > 0, b, and a nondegenerate GG such that the cdf of a
normalized version of M,, converges to G, i.e.

Py (M“—;b” < x) — P (anz + by) — G(z) (1)

a

as n — oo then G must be of the same type as (cdfs G and G* are of the same type if
G*(z) = G(ax + b) for some a > 0, b and all =) as one of the following three classes:

I : Alx)=exp{—exp(—2)}, reN;
0 if x <0,
I @a(w) = { exp{—z~*} ifx>0

for some a > 0;

exp{—(—2)*} ifx <0,
HI q’a(‘”):{l I if >0

for some o > 0.

The necessary and sufficient conditions for the three extreme value distributions are:

1— F (t +2y(t))

I Jy(t A0 1 = —
v(t) > 0s i T~ F 1) exp(—x), r e R,
1—F(t
I : w(F)=o00 and Ilti%gl_—F((g:x_a, x>0,
1-F(w(F)—-t
III : w(F) < oo and lim G e

to 1—F(w(F)—t)

Firstly, suppose that G belongs to the max domain of attraction of the Gumbel extreme
value distribution. Then, there must exist a strictly positive function, say h(t), such that
1-G(t h(t
1=t rh(r)
t—w(G) 1-— G(t)

= exp(—z)

for every x € (—o0,00). But, using L’Hopital’s rule, we note that

1— F(t+ah(t)) [+ 2k (£)]f (t+xh(t))

T F 0
oy L @lglt+ah(t) {G(t +a h(t))] o
t—w(G) 9(t) G(1)
! _Cf(_tgé)h(t))] exp{cG(t) — cG(t+xh(t))}
= exp(—bx)



for every x € (—o0, 00). So, it follows that F' also belongs to the max domain of attraction
of the Gumbel extreme value distribution with

lim Pr{a, (M, —b,) <z} =exp{—exp(—bx)}

n—oo

for some suitable norming constants a,, > 0 and b,,.

Secondly, suppose that G belongs to the max domain of attraction of the Fréchet extreme
value distribution. Then, there must exist a § < 0 such that

tlggo 1 —-G(t) -

for every x > 0. But, using LL’Hopital’s rule, we note that

1— F(tx) I zf(tx)

lim ——=* = 1m ——

= lim ryltz) [G(tr) - i(tx) b_leX c —c T
- w0 G [Tem] evteot-cou)
_ g zg(tx) {1—G(tw)r_l
tvoo g(t) | 1=G(t)
iy Lo Gln) [1-G(ta) bt
T ihx 1-G0) [1—G(t)]
L [1=-G(t)
= i G
Y

for every x > 0. So, it follows that F' also belongs to the max domain of attraction of the
Fréchet extreme value distribution with

lim Pr{a, (M, —b,) <z} = exp (—2")

n—oo

for some suitable norming constants a,, > 0 and b,,.

Thirdly, suppose that G belongs to the max domain of attraction of the Weibull extreme
value distribution. Then, there must exist a a > 0 such that
1 - Gw(G) — tx)

lim =z

01— G(w(G) —t)

(67




for every x > 0. But, using L’Hopital’s rule, we note that

lim 1— F(w(F) —tx) — lim xf (w(F) — tx)
t=0 1 — F(w(F) —1t) =0 f(w(F)—1)
iy F9(w(F) — tr) [Gw(F) — tx)] ot [1 — G(w(F) — tx)] bt
i~0 g(w(F)—t) | G(w(F)—t) 1—Gw(F) —1t)

x exp {cG(w(F) —t) — c¢G (w(F) —tx)}

(F) — tz) '1—G(w(F)—tx)r_1
=0 g(w(F)—1t) | 1-Gw(F)—1t)
1= G(w(F) - t) [1 — G(w(F) — m)r—l
t-0 1 —G(w(F)—t) | 1 -Gw(F)—1t)

i 1—G(w(F)—tm)r
-0 | 1 — G(w(F) —t)

So, it follows that F' also belongs to the max domain of attraction of the Weibull extreme
value distribution with

lim Pr{a, (M, —b,) < z} = exp {—(—z)**}

n—o0

for some suitable norming constants a,, > 0 and b,.



Solutions to Question 4

a) Note that w(F') = co. Then

lim 1—F(t+xg(t) lim 1—{1—exp[l— (14 X+ Axg(t)"]}
ttoo 1—F(t) ttoo I—{1—exp[l—(1+X)"}
i &P [1— (14 A+ Azg(t)”]
ttoo exp [l — (1 + A\t)“]
= grorgexp (T4 X)" — (14 Mt + Axg(t))”]

= limexp {(1 +At)" {1 - (1 * igf)ki)j }

Ag(t
= EIOEGXP{<1+M)Q [1— (1—1—0419_5 Z)]} using (1 +z)* ~ 1+ ax
Ag(t
= liTmeXp {—(1 + At)* {a%} }
— a— 1
= ggéexp{ Aa(l + At) .’E}
= exp{-7}

if g(t) = 1/(Aa)(14+Xt)'~*. So, the exponentiated extension cdf F(x) = 1—exp [1 — (1 + Az)*]|"
belongs to the Gumbel domain of attraction.

b) Note that w(F) = oco. Then

— —_2A\]“
lim 1— F(t.CC) — lim [1 eXp( tm)]a
t—soo | — F(t) t—o0 1 — exp ( %)]
_ —A 1"
t—oo | 1 —exp ( ;
J— 1 _1 B %) ’ 1
= lim 1_ %) using exp(—a) ~ 1 —a
R
= o —]
|t
= z %

So, the inverse exponentiated exponential cdf F(x) = 1 — [1 — exp( )] belongs to the
Fréchet domain of attraction.

c¢) For the Poisson distribution,

Pr(X=k) N/ 1
L—F(k—1) Y22, N/ 14352 kIR




The term in the denominator can be rewritten as

= N T \k
2 (k+1)(k+2)---(k+7) Z( ) 11— Nk

J=1 J=1

(when £ > A) and the bound tends to 0 as k — oo and so it follows that p(k)/(1—F(k—1)) —
1. Hence, there can be no non-degenerate limit.

d) For the Bernoulli (p) distribution,

Pr(X=%k) [ 1-p, ifk=0,
1-Fk-1) |1, if k= 1.

Hence, there can be no sequences a,, > 0 and b,, such that (M,,—b,)/a, has a non-degenerate
limiting distribution.

e) For the discrete Weibull distribution, the corresponding pmf is

p(x) =" — ¢t
So,
Pl"(X — ZE) qm“ . q(z+1)“
1-Fz—1)  1—[1—¢"]
_ qxa _ q(x+1)“
q*
pr 1 J— q(m‘i’l)a*ma.
Note that
1 a
T
1 a
- =) |
T
1 ala—1)1
- %01 =1—=q=— — _
o [ &:c 21 22 1
— —0o0
Hence,
Pr(X =z)
—_— 1.
1—F(z—1)

Hence, there can be no sequences a,, > 0 and b,, such that (M,, — b,) /a,, has a non-degenerate
limiting distribution.



Solutions to Question 5

If X is an absolutely continuous random variable with cdf F(-) then

VaR,(X) = F(p)

and
1 [P
ES,(X) = —/ F~(v)dv.
P Jo
Setting
T —
o(57) -
o
gives
VaR,(X) = i+ 00 (p)
and

o P
ES,(X)=n+ Z_?/ O (v)dv.
0

a) The joint likelihood function of y and o is

v - Bl 5]

iy 2mo

The joint log likelihood function of u and o? is

1

507 2 (Xi— )’

=1

log L (p,07%) = —g log(27) — nlogo —

The first order partial derivatives of this with respect to p and o are

Jdlog L 1 & 1 -
o :;5 (Xi—#):;(E Xi‘”ﬂ) (2)
i—1 i=1
and
dlog L no1< 9
- 4 = X, —
R SRS )
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respectively.

b) Using equation (2), one can see that the solution of dlogL/0uy = 0is p = X =

(1/n) 222 X

c) Using equation (3), one can see that the solution of dlogL/0c = 0 is ¢ = S? =

(1/n) 30, (X = X)%
d) The mle of Value at Risk is
VaR,(X) = X + S0~ (p)

The mle of Expected Shortfall is

ES,(X) =X + —/ O (v)dv.
P Jo

e) Since

= K
X is unbiased for . Since 31 (X; — X)? ~ 0%\2_, and E (yx) = V2T ((k+1)/2) /T(k/2),

we can write

E(S) =

&=

so S is biased for o.
Since

E(\Bﬁp(x)> = E(X)+E(S)o ()

o VAW
IRV NSy R
7’é M+0<I>_1(p)7

11



@p(X ) is biased for VaR,(X).
f) Since
—~ — 1 (7
E (ES,,(X)) = BE(X)+ E(S)Z—)/ &~ (v)dv
0

o ) 1
ot 1, * O

1 P
# uror [ W,
b Jo

]:]EP(X) is biased for ES,(X).
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Solutions to Question 6

a) The cdf of X is

Fy (y)

Pr(Y <y)

Pr (min (X4,...,X,) <)

1 —Pr(min (Xy,...,X,) > v)
1-Pr(X;>y,...,Xo >vy)

1-Pr(Xg>y) - -Pr(X,>y)

1 —exp(—=Ay) - - - exp(—Ay)
1- exp(—a)\y),

the exponential cdf with parameter a\.

b) The corresponding pdf is

fr(y) = aXexp(—aly).

¢) The nth moment of Y can be calculated as

E(Y™)

So,

and

d) Setting

gives

VaR,(Y) =

oz)\/ " exp(—ax)dx
0

)" /OOO " exp(—z)dx
(aN)"T'(n+1)
)

1 —exp(—aly) =p

1
——log(1—p).

a\
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e) The expected shortfall is

ES,(Y) = —— [ log(l—wv)dv

f) The likelihood function is

L(a, \) = a" X" exp (—a)\Zyi) .
i=1

The log-likelihood function is

log L = nlog(aX) — aA Z Yi.

i=1

The partial derivatives with respect to o and \ are

0logL _ E—AZyz

and

Olog L
Og _;_ Zl

Setting these to zero, we find that the mles of @ and \ are the solutions of
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