MATH20802: Statistical Methods Semester 2 Formulas to remember for the final exam in May / June 2018

The moment generating function of a random variable X is $M_X(t) = E [\exp(tX)]$. The fact that $E(X^n) = M_X^{('n)}(0)$.

 $\widehat{\theta}$ is an unbiased estimator of θ if $E\left(\widehat{\theta}\right) = \theta$.

 $\widehat{\theta}$ is an asymptotically unbiased estimator of θ if $\lim_{n \to \infty} E\left(\widehat{\theta}\right) = \theta$.

The bias of $\hat{\theta}$ is $E(\hat{\theta}) - \theta$.

The mean squared error of $\hat{\theta}$ is $E\left[\left(\hat{\theta}-\theta\right)^2\right]$.

 $\widehat{\theta}$ is a consistent estimator of θ if $\lim_{n \to \infty} E\left[\left(\widehat{\theta} - \theta\right)^2\right] = 0.$

The Cauchy distribution has its probability density function specified by $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ for $-\infty < x < +\infty$.

The gamma function is defined by $\Gamma(a) = \int_0^\infty t^{a-1} \exp(-t) dt$.

The fact that $\Gamma(n) = (n-1)!$.

The fact that $\Gamma(x+1) = x\Gamma(x)$.

The beta function is defined by $B(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1} dt$.

The fact that $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.

The probability density function of $X \sim Exp(\lambda)$ is $f_X(x) = \lambda \exp(-\lambda x)$.

The cumulative distribution function of $X \sim Exp(\lambda)$ is $F_X(x) = 1 - \exp(-\lambda x)$.

The probability density function of $X \sim Uni(a, b)$ is $f_X(x) = \frac{1}{b-a}$.

The probability density function of an inverse Gaussian random variable is

$$f_X(x) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

for x > 0, $\mu > 0$ and $\lambda > 0$. The mean and variance are $E(X) = \mu$ and $Var(X) = \frac{\mu^3}{\lambda}$. The mean and variance of $X \sim \chi^2_{\nu}$ are $E(X) = \nu$ and $Var(X) = 2\nu$.

If X_1, X_2, \ldots, X_n is a random sample from $N(\mu, \sigma^2)$ then $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 \sim \chi^2_{n-1}$, where \overline{X} denotes the sample mean.

The Type I error of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ occurs if H_0 is rejected when in fact $\mu = \mu_0$.

The Type II error of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ occurs if H_0 is accepted when in fact $\mu \neq \mu_0$.

The significance level of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ is the probability of type I error. The power function of $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ is $\Pi(\mu) = \Pr(\text{Reject}H_0 \mid \mu)$.

Suppose X_1, X_2, \ldots, X_n is a random sample from $N(\theta, \sigma^2)$, where σ is not known.

The rejection region for $H_0: \sigma = \sigma_0$ versus $H_1: \sigma \neq \sigma_0$ is

$$\frac{(n-1)S^2}{\sigma_0^2} < \chi^2_{n-1,1-\alpha/2} \text{ or } \frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1,\alpha/2}.$$

The rejection region for $H_0: \sigma = \sigma_0$ versus $H_1: \sigma < \sigma_0$ is

$$\frac{(n-1)S^2}{\sigma_0^2} < \chi^2_{n-1,1-\alpha}.$$

The rejection region for $H_0: \sigma = \sigma_0$ versus $H_1: \sigma > \sigma_0$ is

$$\frac{(n-1)S^2}{\sigma_0^2} > \chi^2_{n-1,\alpha}$$

The method of mathematical induction.

Based on a random sample X_1, X_2, \ldots, X_n from a distribution with the probability density function $f(x; \theta)$, the Neyman-Pearson test rejects $H_0: \theta = \theta_1$ versus $H_1: \theta = \theta_2$ if

$$\frac{L\left(\theta_{1}\right)}{L\left(\theta_{2}\right)} = \frac{\prod_{i=1}^{n} f\left(X_{i};\theta_{1}\right)}{\prod_{i=1}^{n} f\left(X_{i};\theta_{2}\right)} < k$$

for some k.