Three hours

This exam will be worth 80% of the final mark on this course unit.

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

26 January 2022
$\begin{array}{lr}\text { Exam Released: } & 9: 00 \text { (GMT) } \\ \text { End of Submission Window: } & \text { 16:00 (GMT) }\end{array}$

Answer any TWO out of the three questions in Section A.
Answer any FOUR of the five questions in Section B.
If more than TWO questions are attempted from Section A then credit will be given to the best TWO answers. If more than FOUR questions are attempted from Section B then credit will be given to the best FOUR answers.

University approved calculators may be used.

SECTION A

Answer any TWO questions

A1. Suppose (X, Y) has the joint cumulative distribution function specified by

$$
F_{X, Y}(x, y)=\left[H_{U, V}(x, y)\right]^{\alpha}
$$

for $x>0, y>0$ and $\alpha>0$, where H is a valid joint cumulative distribution function of (U, V).
(a) Find the marginal cumulative distribution functions of X and Y, that is $F_{X}(\cdot)$ and $F_{Y}(\cdot)$.
(b) Show that $w\left(F_{X}\right)=w\left(H_{U}\right)$, where $H_{U}(u)=H_{U, V}(u, \infty)$.
(c) Show that $w\left(F_{Y}\right)=w\left(H_{V}\right)$, where $H_{V}(v)=H_{U, V}(\infty, v)$.
(d) If $H_{U}(u)=H_{U, V}(u, \infty)$ belongs to the Gumbel max domain of attraction show that $F_{X}(x)$ also belongs to the Gumbel max domain of attraction.
(e) If $H_{V}(v)=H_{U, V}(\infty, v)$ belongs to the Gumbel max domain of attraction show that $F_{Y}(y)$ also belongs to the Gumbel max domain of attraction.
(f) If a_{n} and b_{n} satisfy

$$
\left[H_{U}\left(a_{n} u+b_{n}\right)\right]^{n} \rightarrow \exp (u)
$$

as $n \rightarrow \infty$ show that

$$
\left[F_{X}\left(a_{\alpha n} x+b_{\alpha n}\right)\right]^{n} \rightarrow \exp (x)
$$

as $n \rightarrow \infty$.
[2 marks]
(g) If c_{n} and d_{n} satisfy

$$
\left[H_{V}\left(c_{n} v+d_{n}\right)\right]^{n} \rightarrow \exp (v)
$$

as $n \rightarrow \infty$ show that

$$
\left[F_{Y}\left(c_{\alpha n} y+d_{\alpha n}\right)\right]^{n} \rightarrow \exp (y)
$$

as $n \rightarrow \infty$.
[2 marks]
(h) If a_{n}, b_{n}, c_{n} and d_{n} satisfy

$$
\left[H_{U, V}\left(a_{n} u+b_{n}, c_{n} v+d_{n}\right)\right]^{n} \rightarrow G(x, y)
$$

as $n \rightarrow \infty$ find the limiting cumulative distribution function $\left[F_{X, Y}\left(a_{\alpha n} x+b_{\alpha n}, c_{\alpha n} y+d_{\alpha n}\right)\right]^{n}$ as $n \rightarrow \infty$.
(i) Show that the extremes of (X, Y) are completely independent if and only if the extremes of (U, V) completely independent.

A2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$, to be a copula.
Show that each of the following is a copula function.
(a) the copula defined by

$$
C\left(u_{1}, u_{2}\right)=\min \left[C_{1}\left(u_{1}, u_{2}\right), C_{2}\left(u_{1}, u_{2}\right)\right],
$$

where C_{1} and C_{2} are valid copulas.
(b) the copula defined by

$$
C\left(u_{1}, u_{2}\right)=\max \left[C_{1}\left(u_{1}, u_{2}\right), C_{2}\left(u_{1}, u_{2}\right)\right],
$$

where C_{1} and C_{2} are valid copulas.
(c) the copula defined by

$$
C\left(u_{1}, u_{2}\right)=\sum_{i=1}^{\infty} \alpha_{i} C_{i}\left(u_{1}, u_{2}\right)
$$

where C_{i} are valid copulas and α_{i} are non-negative real numbers summing to 1 .
(d) the copula defined by

$$
C\left(u_{1}, u_{2}\right)=\prod_{i=1}^{\infty}\left[C_{i}\left(u_{1}, u_{2}\right)\right]^{\alpha_{i}}
$$

where C_{i} are valid copulas and α_{i} are non-negative real numbers summing to 1 . [4 marks]

A3. Consider a bivariate distribution specified by the joint survival function

$$
\bar{G}(x, y)=\exp \left\{-(x+y) \sum_{i=1}^{\infty} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)\right\}
$$

for $x>0$ and $y>0$, where $A_{i}, i=1,2, \ldots$ are convex functions on $[0,1]$ satisfying $A_{i}(0)=1$, $A_{i}(1)=1$ and $\max (w, 1-w) \leq A_{i}(w) \leq 1$ for all w.
(a) Show that the distribution is a bivariate extreme value distribution.
(b) Derive the joint cumulative distribution function.
(c) Derive the conditional cumulative distribution function of Y given $X=x$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$.
[4 marks]
(d) Derive the conditional cumulative distribution function of X given $Y=y$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$.
[4 marks]
(e) Derive the joint probability density function. You may express this in terms of $A_{i}^{\prime}(w)$ and $A_{i}^{\prime \prime}(w)$, the first and second derivatives of $A_{i}(w)$.

SECTION B

Answer any FOUR questions

B1. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with cumulative distribution function $F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cumulative distribution function of each of the three extreme value distributions.
[4 marks]
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
[4 marks]
(c) Consider a class of distributions defined by the cumulative distribution function

$$
F(x)=1-\left[1-[G(x)]^{a} \exp \{a[1-G(x)]\}\right]^{b}
$$

where $a>0, b>0$ and $G(\cdot)$ is a valid cumulative distribution function. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.
[12 marks]
(Total marks: 20)

B2. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The distribution given by the cumulative distribution function

$$
F(x)=\exp [-\exp (-x)]
$$

for $-\infty<x<\infty$.
(b) The distribution given by the cumulative distribution function

$$
F(x)=\exp \left(-x^{-\alpha}\right)
$$

for $x>0$ and $\alpha>0$.
(c) The distribution given by the probability density function

$$
f(x)=\frac{C x^{a-1}}{(1+x)^{a+b}}
$$

for $x>0, a>0$ and $b>0$, where C is a constant.
(d) The distribution given by the probability density function

$$
f(x)=C\left(1+a x^{2}\right)^{-1}\left(1+b x^{2}\right)^{-1}
$$

for $-\infty<x<\infty, a>0$ and $b>0$, where C is a constant.
(e) The distribution given by the probability mass function

$$
p(k)=\frac{1}{N}
$$

for $k=1,2, \ldots, N$.

B3. (a) If X is an absolutely continuous random variable with cumulative distribution function $F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
[2 marks]
(b) Suppose X and Y are losses of two investments with joint probability density function

$$
f_{X, Y}(x, y)=(a+1)(a+2)(1-x-y)^{a}
$$

for $x>0, y>0, x+y<1$ and $a>0$.
(i) Show that the probability density function of $S=X+Y$ is

$$
f_{S}(s)=(a+1)(a+2) s(1-s)^{a}
$$

for $0<s<1$.
(ii) Derive the corresponding cumulative distribution function of S.
(iii) Show that $\operatorname{VaR}_{u}(S)$ is the root of

$$
(a+2)(1-s)^{a+1}-(a+1)(1-s)^{a+2}=1-u
$$

(iv) Derive the corresponding $\mathrm{ES}_{u}(S)$.
(v) If s_{1}, \ldots, s_{n} is a random sample on S derive an explicit expressions for the maximum likelihood estimator of a.

B4. Suppose X and Y are losses of two investments with joint survival function

$$
\bar{F}_{X, Y}(x, y)=\left[\frac{K}{\min (x, y)}\right]^{a}
$$

for $x>K, y>K, K>0$ and $a>0$.
(i) Show that the cumulative distribution function of $U=\min (X, Y)$ is

$$
F_{U}(u)=1-\left(\frac{K}{u}\right)^{a}
$$

for $u>K$.
(ii) Derive the probability density function of U.
(iii) Derive the m th moment of U.
(iv) Derive the mean of U.
(v) Derive the variance of U.
(vi) Derive the value at risk of U.
(vii) Derive the expected shortfall of U.
(viii) If u_{1}, \ldots, u_{n} is a random sample on U derive explicit expression for the maximum likelihood estimators of K and a.
(ix) Deduce the maximum likelihood estimators of the value at risk of U and the expected shortfall of U.

B5. Suppose X and Y are losses of two investments with joint cumulative distribution function

$$
F_{X, Y}(x, y)=\left[\frac{\max (x, y)}{K}\right]^{a}
$$

for $0<x \leq K, 0<y \leq K, K>0$ and $a>0$.
(i) Show that the cumulative distribution function of $V=\max (X, Y)$ is

$$
F_{V}(v)=\left(\frac{v}{K}\right)^{a}
$$

for $0<v<K$.
(ii) Derive the probability density function of V.
(iii) Derive the m th moment of V.
(iv) Derive the mean of V.
(v) Derive the variance of V.
(vi) Derive the value at risk of V.
(vii) Derive the expected shortfall of V.
(viii) If v_{1}, \ldots, v_{n} is a random sample on V derive explicit expression for the maximum likelihood estimators of K and a.
(ix) Deduce the maximum likelihood estimators of the value at risk of V and the expected shortfall of V.

