Three hours

This exam will be worth 80% of the final mark on this course unit.

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

26 January 2021

Exam Released:	9:00	(GMT)
End of Submission W	indow: 16:00	(GMT)

Answer any **TWO** out of the three questions in Section A. Answer any **FOUR** of the five questions in Section B.

If more than TWO questions are attempted from Section A then credit will be given to the best TWO answers. If more than FOUR questions are attempted from Section B then credit will be given to the best FOUR answers.

University approved calculators may be used.

© The University of Manchester, 2021

[2 marks]

[2 marks]

SECTION A

Answer any $\underline{\mathbf{TWO}}$ questions

A1. Suppose (X, Y) has the joint probability density function specified by

$$f_{X,Y}(x,y) = x + y$$

for 0 < x < 1 and 0 < y < 1.

(a) Find the joint cumulative distribution function of X and Y, that is $F_{X,Y}(\cdot, \cdot)$; [3 marks]

(b) Find the marginal cumulative distribution functions of X and Y, that is $F_X(\cdot)$ and $F_Y(\cdot)$;

(c) Show that F_X belongs to the Weibull max domain of attraction; [2 marks]

(d) Show that F_Y also belongs to the Weibull max domain of attraction; [2 marks]

(e) Find a_n and b_n such that

$$F_X^n(a_nx+b_n) \to \exp(x)$$

as
$$n \to \infty$$
;

(f) Find c_n and d_n such that

 $F_Y^n(c_n x + d_n) \to \exp(x)$

as $n \to \infty$; [2 marks]

(g) Find the limiting cumulative distribution function of $F_{X,Y}^n(a_nx+b_n,c_ny+d_n)$ as $n \to \infty$; [5 marks]

(h) Are the extremes of (X, Y) completely independent? Justify your answer. [2 marks]

[4 marks]

A2. State the conditions in full for $C(u_1, u_2), 0 \le u_1, u_2 \le 1$, to be a copula. [4 marks]

Show that each of the following is a copula function.

- (a) the copula defined by $C(u_1, u_2) = \min(u_1, u_2)$. [4 marks]
- (b) the copula defined by

$$C(u_1, u_2) = u_1 u_2 \exp\left[-\theta \log u_1 \log u_2\right]$$

for $0 < \theta \leq 1$.

(c) the Farlie-Gumbel-Morgenstern copula defined by

$$C(u_1, u_2) = u_1 u_2 \left[1 + \phi \left(1 - u_1 \right) \left(1 - u_2 \right) \right]$$

for $-1 \le \phi \le 1$. [4 marks]

(d) the Burr copula defined by

$$C(u_1, u_2) = u_1 + u_2 - 1 + \left[(1 - u_1)^{-1/\alpha} + (1 - u_2)^{-1/\alpha} - 1 \right]^{-\alpha}$$
 for $\alpha > 0.$ [4 marks]

MATH4/68181

A3. Consider a bivariate distribution specified by the joint survival function

$$\overline{F}(x,y) = \Pr(X > x, Y > y) = \exp\left[-\frac{\theta y^2}{x+y} + \theta y - x - y\right]$$

for x > 0 and y > 0.

(a) Show that the distribution is a bivariate extreme value distribution.	[6 marks]
(b) Derive the joint cumulative distribution function.	[2 marks]
(c) Derive the conditional cumulative distribution function of Y given $X = x$.	[4 marks]
(d) Derive the conditional cumulative distribution function of X given $Y = y$.	[4 marks]
(e) Derive the joint probability density function.	[4 marks]

SECTION B

Answer any \underline{FOUR} questions

B1. (a) Suppose X_1, X_2, \ldots, X_n is a random sample with cumulative distribution function $F(\cdot)$. State the Extremal Types Theorem for $M_n = \max(X_1, X_2, \ldots, X_n)$. You must clearly specify the cumulative distribution function of each of the three extreme value distributions. [4 marks]

(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions. [4 marks]

(c) Consider a class of distributions defined by the cumulative distribution function

$$F(x) = \frac{aG(x) \left[1 + b - bG(x)\right]}{1 - (1 - a)G(x) \left[1 + b - bG(x)\right]}$$

where a > 0, b > 0 and $G(\cdot)$ is a valid cumulative distribution function. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points. [12 marks]

B2. Determine the domain of attraction (if there is one) for each of the following distributions:

(a) The distribution given by the probability mass function

for
$$0 < a < 1$$
 and $k = 1, 2, \ldots;$

(b) The distribution given by the cumulative distribution function

$$F(x) = \frac{2}{\pi} \arcsin\left(\sqrt{x}\right)$$

 $p(k) = a(1-a)^{k-1}$

for $-\infty < x < \infty$;

(c) The distribution given by the cumulative distribution function

$$F(x) = \frac{x^b}{a^b + x^b}$$

for x > 0, a > 0 and b > 0;

(d) The distribution given by the probability density function

$$f(x) = C (x - a)^{-\frac{3}{2}} \exp\left[-\frac{1}{2(x - a)}\right]$$

for x > a > 0, where C is a constant;

(e) The distribution given by the probability density function

$$f(x) = C\left(1 + \frac{x^2}{a}\right)^{-\frac{a+1}{2}}$$

for $-\infty < x < \infty$ and a > 0, where C is a constant.

(Total marks: 20)

[4 marks]

[4 marks]

[4 marks]

[4 marks]

[4 marks]

MATH4/68181

B3. (a) If X is an absolutely continuous random variable with cumulative distribution function $F(\cdot)$, then define $\operatorname{VaR}_p(X)$, the Value at Risk of X, and $\operatorname{ES}_p(X)$, the Expected Shortfall of X, explicitly. **[2** marks]

(b) Suppose X is a random variable with probability density function given by

$$f(x) = \frac{3x^2}{2a^3}$$

for -a < x < a.

(i) Show that the corresponding cumulative distribution function is

$$F(x) = \frac{x^3 + a^3}{2a^3}$$

for -a < x < a;

- (ii) Derive the corresponding $\operatorname{VaR}_{p}(X)$;
- (iii) Derive the corresponding $ES_p(X)$.
 - (c) Suppose X_1, X_2, \ldots, X_n is a random sample on X in (b).
- (i) Write down the likelihood function of a;
- (ii) Show that the maximum likelihood estimator of a is

$$\widehat{a} = \max\left[\max\left(X_1, X_2, \dots, X_n\right), -\min\left(X_1, X_2, \dots, X_n\right)\right];$$

[1 marks]

[3 marks]

- (iii) Deduce the maximum likelihood estimators of $\operatorname{VaR}_p(X)$ and $\operatorname{ES}_p(X)$; **[2** marks]
- (iv) Let $Z = \max[\max(X_1, X_2, \dots, X_n), -\min(X_1, X_2, \dots, X_n)]$. Show that the cumulative distribution function of Z is

$$F_Z(z) = \left[\frac{z^3}{a^3}\right]^n$$

for z > 0;

- (v) Hence, show that the maximum likelihood estimator \hat{a} is biased but consistent for a; [2 marks]
- (vi) Hence, show that the maximum likelihood estimator of $\operatorname{VaR}_p(X)$ is also biased but consistent for $\operatorname{VaR}_p(X)$; **1** marks
- (vii) Hence, show that the maximum likelihood estimator of $ES_p(X)$ is also biased but consistent for $\mathrm{ES}_p(X)$. **1** marks

(Total marks: 20)

P.T.O.

[2 marks]

1 marks

[2 marks]

[3 marks]

[2 marks]

[2 marks]

B4. (a) Suppose X_1, X_2, \ldots, X_k are losses on k investments. Suppose also X_1, X_2, \ldots, X_k are independent $N(\mu_i, \sigma_i^2)$, $i = 1, 2, \ldots, k$ random variables. Let $T = X_1 + X_2 + \cdots + X_k$ denote the total loss.

- (i) Determine the distribution of T;
- (ii) Derive the corresponding $\operatorname{VaR}_p(T)$; [2 marks]
- (iii) Derive the corresponding $\text{ES}_p(T)$.

(b) Suppose $X_{i,1}, X_{i,2}, \ldots, X_{i,n}$ is a random sample on X_i in (a). Suppose also $X_{i,1}, X_{i,2}, \ldots, X_{i,n}$ and $X_{j,1}, X_{j,2}, \ldots, X_{j,n}$ are independent for $i \neq j$.

(i) Write down the joint likelihood function of $\mu_1, \mu_2, \ldots, \mu_k$ and $\sigma_1^2, \sigma_2^2, \ldots, \sigma_k^2$; [2 marks]

(ii) Show that the maximum likelihood estimators are

$$\widehat{\mu_i} = \frac{1}{n} \sum_{j=1}^n X_{i,j}$$

and

$$\widehat{\sigma_i^2} = \frac{1}{n} \sum_{j=1}^n \left(X_{i,j} - \widehat{\mu_i} \right)^2;$$

[4 marks]

- (iii) Show that $\hat{\mu}_i$ is unbiased and consistent for μ_i ; [3 marks]
- (iv) Show that $\widehat{\sigma_i^2}$ is biased and consistent for σ_i^2 ; [3 marks]
- (v) Deduce the maximum likelihood estimators of $\operatorname{VaR}_p(T)$ and $\operatorname{ES}_p(T)$. [2 marks]

MATH4/68181

B5. Suppose that a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments, say X_i , i = 1, 2, ..., k, are dependent random variables with joint survival function

$$\overline{F}(x_1, x_2, \dots, x_k) = \exp\left[-\sum_{i=1}^k x_i - \lambda \max(x_1, x_2, \dots, x_k)\right]$$

for $\lambda > 0$ and $x_i > 0$, i = 1, 2, ..., k, where λ is an unknown parameter.

(a) Show that the cumulative distribution function of $V = \min(X_1, X_2, \ldots, X_k)$, the minimum portfolio loss, is

$$F_V(v) = 1 - \exp\left(-kv - \lambda v\right);$$

[6 marks]

- (b) Derive the corresponding probability density function of V; [2 marks]
- (c) Derive the corresponding $\operatorname{VaR}_p(V)$; [2 marks]
- (d) Derive the corresponding $\text{ES}_p(V)$; [2 marks]

(e) Let v_1, v_2, \ldots, v_n be a random sample on V. Derive the maximum likelihood estimator of λ . [8 marks]

(Total marks: 20)

END OF EXAMINATION PAPER