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SECTION A

Answer any TWO questions

A1. Suppose that (X, Y ) has the joint survival function specified by

FX,Y (x, y) = (1 + ax+ by + cxy)−q

for x > 0, y > 0, q > 0, a > 0, b > 0 and 0 ≤ c ≤ ab(1 + q).

(a) Find the joint cumulative distribution function of X and Y , that is FX,Y (·, ·); [3 marks]

(b) Find the marginal cumulative distribution functions of X and Y , that is FX(·) and FY (·);
[2 marks]

(c) Show that FX belongs to the Fréchet max domain of attraction; [2 marks]

(d) Show that FY also belongs to the Fréchet max domain of attraction; [2 marks]

(e) Find an and bn such that

[FX (anx+ bn)]n → exp
[
−x−q

]
as n→∞; [2 marks]

(f) Find cn and dn such that

[FY (cnx+ dn)]n → exp
[
−x−q

]
as n→∞; [2 marks]

(g) Find the limiting cumulative distribution function of [FX,Y (anx+ bn, cny + dn)]n as n→∞;
[5 marks]

(h) Are the extremes of (X, Y ) completely independent? Justify your answer. [2 marks]

(Total marks: 20)
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A2. (a) State the conditions in full for C (u1, u2), 0 ≤ u1, u2 ≤ 1 to be a copula. [4 marks]

(b) Show that each of the following is a copula function.

(i) C (u1, u2) = u1−a
1 u1−b

2 min
(
ua1, u

b
2

)
for 0 < a < 1 and 0 < b < 1; [4 marks]

(ii) C (u1, u2) = u1u2

u1+u2−u1u2
; [4 marks]

(iii) C (u1, u2) = [C1 (u1, u2)C2 (u1, u2) · · ·Cp (u1, u2)]
1/p, where C1, C2, . . . , Cp are valid copulas;

[4 marks]

(iv) C (u1, u2) = w1C1 (u1, u2) + w2C2 (u1, u2) + · · · + wpCp (u1, u2), where C1, C2, . . . , Cp are valid
copulas and w1, w2, . . . , wp are non-negative constants summing to one. [4 marks]

(Total marks: 20)
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A3. Suppose that a random vector (X, Y ) has the joint survival function specified by

G(x, y) = exp

{
−x− y +

αxy

x+ y

[
1− βxy

(x+ y)2

]}
for x > 0, y > 0, 0 < α ≤ 1 and 0 < β ≤ 2.

(a) Show that the distribution is a bivariate extreme value distribution; [7 marks]

(b) Derive the joint cumulative distribution function of X and Y ; [1 marks]

(c) Derive the conditional cumulative distribution function of Y given X = x; [4 marks]

(d) Derive the conditional cumulative distribution function of X given Y = y; [4 marks]

(e) Derive the joint probability density function of X and Y . [4 marks]

(Total marks: 20)
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SECTION B

Answer any FOUR questions

B1. (a) Suppose that X1, X2, . . . , Xn is a random sample with cumulative distribution function F (·).
State the Extremal Types Theorem for Mn = max (X1, X2, . . . , Xn). You must clearly specify the
cumulative distribution function of each of the three extreme value distributions. [4 marks]

(b) State in full the necessary and sufficient conditions for F (·) to belong to the domain of attraction
of each of the three extreme value distributions. [4 marks]

(c) Consider a class of distributions defined by the cumulative distribution function

F (x) =
[G(x)]a

[G(x)]a + [1−G(x)]a
,

where a > 0 and G(·) is a cumulative distribution function. Show that F belongs to the same max
domain of attraction as G. You may assume that F and G have the same upper end points.

[12 marks]

(Total marks: 20)
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B2. Determine the domain of attraction (if there is one) for each of the following distributions:

(a) The distribution given by the probability mass function

p(k) = a(1− a)k−1

for 0 < a < 1 and k = 1, 2, . . .; [4 marks]

(b) The distribution given by the probability mass function

p(k) =

{
p, if k = 1,
1− p, if k = 0

for 0 < p < 1; [4 marks]

(c) The distribution given by the probability density function

f(x) = abxa−1 (1− xa)b−1

for x > 0, a > 0 and b > 0; [4 marks]

(d) The distribution given by the cumulative distribution function

F (x) =
[
1 + x−a

]−b

for x > 0, a > 0 and b > 0; [4 marks]

(e) The distribution given by the probability density function

f(x) =
C√

x(1− x)

for 0 < x < 1 and C a constant. [4 marks]

(Total marks: 20)
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B3. (a) If X is an absolutely continuous random variable with cumulative distribution function F (·),
then define VaRp(X), the Value at Risk of X, and ESp(X), the Expected Shortfall of X, explicitly.

[2 marks]

(b) Suppose that a portfolio is made up of k investments where k is known. Suppose also that
the losses on the investments, say Xi, i = 1, 2, . . . , k, are dependent random variables with joint
probability density function

f (x1, x2, . . . , xk) =
Γ
(
k +

a

2

)
Γ
(a

2

) (
1−

k∑
i=1

xi

)a
2
−1

for a > 0, xi > 0, i = 1, 2, . . . , k and 0 < x1 + x2 + · · ·+ xk < 1.

(i) Show that the probability density function of the total portfolio loss S = X1 + · · ·+Xk is

fS(s) =
1

B
(
a
2
, k
)sk−1 (1− s)

a
2
−1

for 0 < s < 1. You may use the following identity without proof:∫ s

0

∫ s−x1

0

· · ·
∫ s−x1−···−xk−2

0

dxk−1 · · · dx2dx1 =
sk−1

(k − 1)!
;

[6 marks]

(ii) Derive the nth moment of S; [3 marks]

(iii) Derive the cumulative distribution function of S; [3 marks]

(iv) Derive the corresponding VaRp(S); [3 marks]

(v) Derive the corresponding ESp(S). [3 marks]

(Total marks: 20)
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B4. Suppose that a portfolio is made up of k investments where k is known. Suppose also that
the losses on the investments, say Xi, i = 1, 2, . . . , k, are dependent random variables with joint
cumulative distribution function

F (x1, x2, . . . , xk) =
1

1 +
k∑

i=1

exp (−xi)

for −∞ < xi <∞, i = 1, 2, . . . , k.

(a) Show that the cumulative distribution function of U = max (X1, X2, . . . , Xk), the maximum
portfolio loss, is

FU (u) =
1

1 + k exp (−u)
;

[6 marks]

(b) Derive the corresponding probability density function of U ; [2 marks]

(c) Derive the corresponding moment generating function of U ; [5 marks]

(d) Derive the corresponding VaRp(U); [2 marks]

(e) Derive the corresponding ESp(U). [5 marks]

(Total marks: 20)
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B5. Suppose that a portfolio is made up of k investments where k is known. Suppose also that the
losses on the investments, say Xi, i = 1, 2, . . . , k, are dependent random variables with joint survival
function

F (x1, x2, . . . , xk) = exp

[
−

k∑
i=1

xi − λmax (x1, x2, . . . , xk)

]

for λ > 0 and xi > 0, i = 1, 2, . . . , k, where λ is an unknown parameter.

(a) Show that the cumulative distribution function of V = min (X1, X2, . . . , Xk), the minimum
portfolio loss, is

FV (v) = 1− exp (−kv − λv) ;

[6 marks]

(b) Derive the corresponding probability density function of V ; [2 marks]

(c) Derive the corresponding VaRp(V ); [2 marks]

(d) Derive the corresponding ESp(V ); [2 marks]

(e) Let v1, v2, . . . , vn be a random sample on V . Derive the maximum likelihood estimator of λ.
[8 marks]

(Total marks: 20)
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