Two hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

23 January 2019
14:00pm-16:00pm

Answer any FOUR of the five questions.
If more than FOUR questions are attempted then credit will be given to the best FOUR answers.

Electronic calculators are permitted provided that cannot store text.

1. (a) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with cumulative distribution function $F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cumulative distribution function of each of the three extreme value distributions. [4 marks]
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
[4 marks]
(c) Consider a class of distributions defined by the cumulative distribution function

$$
F(x)=\frac{[G(x)]^{a}}{[G(x)]^{a}+[1-G(x)]^{a}},
$$

where $a>0$ and $G(\cdot)$ is a cumulative distribution function. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.
[12 marks]
(Total marks: 20)
2. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The distribution given by the probability mass function

$$
p(k)=a(1-a)^{k-1}
$$

for $0<a<1$ and $k=1,2, \ldots$;
(b) The distribution given by the probability mass function

$$
p(k)= \begin{cases}p, & \text { if } k=1 \\ 1-p, & \text { if } k=0\end{cases}
$$

for $0<p<1$;
(c) The distribution given by the probability density function

$$
f(x)=a b x^{a-1}\left(1-x^{a}\right)^{b-1}
$$

for $x>0, a>0$ and $b>0$;
(d) The distribution given by the cumulative distribution function

$$
F(x)=\left[1+x^{-a}\right]^{-b}
$$

for $x>0, a>0$ and $b>0$;
[4 marks]
(e) The distribution given by the probability density function

$$
f(x)=\frac{C}{\sqrt{x(1-x)}}
$$

for $0<x<1$ and C a constant.
3. (a) If X is an absolutely continuous random variable with cumulative distribution function $F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
[2 marks]
(b) Suppose that a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments, say $X_{i}, i=1,2, \ldots, k$, are dependent random variables with joint probability density function

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{\Gamma\left(k+\frac{a}{2}\right)}{\Gamma\left(\frac{a}{2}\right)}\left(1-\sum_{i=1}^{k} x_{i}\right)^{\frac{a}{2}-1}
$$

for $a>0, x_{i}>0, i=1,2, \ldots, k$ and $0<x_{1}+x_{2}+\cdots+x_{k}<1$.
(i) Show that the probability density function of the total portfolio loss $S=X_{1}+\cdots+X_{k}$ is

$$
f_{S}(s)=\frac{1}{B\left(\frac{a}{2}, k\right)} s^{k-1}(1-s)^{\frac{a}{2}-1}
$$

for $0<s<1$. You may use the following identity without proof:

$$
\int_{0}^{s} \int_{0}^{s-x_{1}} \cdots \int_{0}^{s-x_{1}-\cdots-x_{k-2}} d x_{k-1} \cdots d x_{2} d x_{1}=\frac{s^{k-1}}{(k-1)!}
$$

(ii) Derive the nth moment of S;
(iii) Derive the cumulative distribution function of S;
(iv) Derive the corresponding $\operatorname{VaR}_{p}(S)$;
(v) Derive the corresponding $\mathrm{ES}_{p}(S)$.
4. Suppose that a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments, say $X_{i}, i=1,2, \ldots, k$, are dependent random variables with joint cumulative distribution function

$$
F\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{1}{1+\sum_{i=1}^{k} \exp \left(-x_{i}\right)}
$$

for $-\infty<x_{i}<\infty, i=1,2, \ldots, k$.
(a) Show that the cumulative distribution function of $U=\max \left(X_{1}, X_{2}, \ldots, X_{k}\right)$, the maximum portfolio loss, is

$$
F_{U}(u)=\frac{1}{1+k \exp (-u)}
$$

(b) Derive the corresponding probability density function of U;
(c) Derive the corresponding moment generating function of U;
(d) Derive the corresponding $\operatorname{VaR}_{p}(U)$;
(e) Derive the corresponding $\mathrm{ES}_{p}(U)$.
5. Suppose that a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments, say $X_{i}, i=1,2, \ldots, k$, are dependent random variables with joint survival function

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\exp \left[-\sum_{i=1}^{k} x_{i}-\lambda \max \left(x_{1}, x_{2}, \ldots, x_{k}\right)\right]
$$

for $\lambda>0$ and $x_{i}>0, i=1,2, \ldots, k$, where λ is an unknown parameter.
(a) Show that the cumulative distribution function of $V=\min \left(X_{1}, X_{2}, \ldots, X_{k}\right)$, the minimum portfolio loss, is

$$
F_{V}(v)=1-\exp (-k v-\lambda v)
$$

(b) Derive the corresponding probability density function of V;
(c) Derive the corresponding $\operatorname{VaR}_{p}(V)$;
(d) Derive the corresponding $\mathrm{ES}_{p}(V)$;
(e) Let $v_{1}, v_{2}, \ldots, v_{n}$ be a random sample on V. Derive the maximum likelihood estimator of λ.

