Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

Examiner:

24 January 2018
9:45am-12:45pm

> Answer ANY TWO questions in Section A.
> Answer ANY FOUR questions in Section B.

Electronic calculators are permitted provided that cannot store text.

SECTION A

Answer any TWO questions

A1. Suppose (X, Y) has the joint pdf specified by

$$
f_{X, Y}(x, y)=\frac{4 x y+2 x+2 y+1}{4}
$$

for $0<x<1$ and $0<y<1$.
(a) Find the joint cdf of X and Y, that is $F_{X, Y}(\cdot, \cdot)$;
(b) Find the marginal cdfs of X and Y, that is $F_{X}(\cdot)$ and $F_{Y}(\cdot)$;
(c) Show that F_{X} belongs to the Weibull max domain of attraction;
(d) Show that F_{Y} also belongs to the Weibull max domain of attraction;
(e) Find a_{n} and b_{n} such that

$$
F_{X}^{n}\left(a_{n} x+b_{n}\right) \rightarrow \exp (x)
$$

as $n \rightarrow \infty$;
(f) Find c_{n} and d_{n} such that

$$
F_{Y}^{n}\left(c_{n} x+d_{n}\right) \rightarrow \exp (x)
$$

as $n \rightarrow \infty$;
(g) Find the limiting cdf of $F_{X, Y}^{n}\left(a_{n} x+b_{n}, c_{n} y+d_{n}\right)$ as $n \rightarrow \infty$;
(h) Are the extremes of (X, Y) completely independent? Justify your answer.

A2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$ to be a copula.
Show that each of the following is a copula function.
(a) $C\left(u_{1}, u_{2}\right)=\min \left(u_{1}^{1-\alpha} u_{2}, u_{1} u_{2}^{1-\beta}\right)$ for $0<\alpha<1$ and $0<\beta<1$; (4 marks)
(b) $C\left(u_{1}, u_{2}\right)=u_{2}-\left[\max \left(\left(1-u_{1}\right)^{1 / n}+u_{2}^{1 / n}-1,0\right)\right]^{n}$ for $n \geq 1$ an integer;
(c) $C\left(u_{1}, u_{2}\right)=\log _{\alpha}\left[1+\frac{\left(\alpha^{u_{1}}-1\right)\left(\alpha^{u_{2}}-1\right)}{\alpha-1}\right]$ for $\alpha>1$;
(d) $C\left(u_{1}, u_{2}\right)=\left\{\left[\left(u_{1}^{-\theta}-1\right)^{\delta}+\left(u_{2}^{-\theta}-1\right)^{\delta}\right]^{1 / \delta}+1\right\}^{-1 / \theta}$ for $\theta>0$ and $\delta \geq 1$.

A3. Suppose a random vector (X, Y) has the joint survival function specified by

$$
\bar{G}(x, y)= \begin{cases}\exp \left\{-(x+y) A_{1}\left(\frac{y}{x+y}\right)\right\}, & \text { if } 0 \leq \frac{y}{x+y} \leq w_{1} \\ \exp \left\{-(x+y) A_{2}\left(\frac{y}{x+y}\right)\right\}, & \text { if } w_{1}<\frac{y}{x+y} \leq w_{2} \\ \vdots \\ \exp \left\{-(x+y) A_{p}\left(\frac{y}{x+y}\right)\right\}, & \text { if } w_{p-1} \leq \frac{y}{x+y} \leq 1\end{cases}
$$

where $A_{i}, i=1,2, \ldots, k$ are convex functions on $[0,1]$ satisfying $A_{i}(0)=1, A_{i}(1)=1$ and $\max (w, 1-$ $w) \leq A_{i}(w) \leq 1$ for all w and $\alpha_{i}, i=1,2, \ldots, k$ are non-negative and sum to 1 .
(a) Show that the distribution is a bivariate extreme value distribution;
(b) Derive the joint cumulative distribution function of X and Y;
(c) Derive the conditional cumulative distribution function of Y given $X=x$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$;
(d) Derive the conditional cumulative distribution function of X given $Y=y$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$;
(e) Derive the joint probability density function of X and Y. You may express this in terms of $A_{i}^{\prime}(w)$ and $A_{i}^{\prime \prime}(w)$, the first and second derivatives of $A_{i}(w)$.

SECTION B

Answer any FOUR questions

B1. Suppose a portfolio consists of N investments, where N is a Geometric (θ) random variable. Suppose the losses on the investments $X_{1}, X_{2}, \ldots, X_{N}$ are independent random variables having the cdf $[1+\exp (-x)]^{-1}$. Suppose also $X_{1}, X_{2}, \ldots, X_{N}$ are independent of N. Let $T=\max \left(X_{1}, X_{2}, \ldots, X_{N}\right)$ denote the maximum portfolio loss.
(a) Determine the cumulative distribution function of T conditional on $N=n$;
(b) Hence, determine the unconditional cumulative distribution function of T;
(c) Hence, deduce the unconditional probability density function of T;
(d) Find the moment generating function of T;
(e) Find the value at risk of T;
(f) Find the expected shortfall of T.

B2. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cdfs of each of the three extreme value distributions.
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
(4 marks)
(c) Consider a class of distributions defined by the pdf

$$
f(x)=C g(x)[1-G(x)]^{\lambda b-1}\left\{1-[1-G(x)]^{\lambda}\right\}^{a-1}
$$

where $a>0, b>0, \lambda>0, G(\cdot)$ is a cdf, $g(x)=d G(x) / d x$ and C is a constant. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.

B3. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The distribution given by the pmf

$$
p(k)=\binom{n}{k} \frac{B(k+\alpha, n-k+\beta)}{B(\alpha, \beta)}
$$

for $\alpha>0, \beta>0$ and $k=1,2, \ldots, n$;
(b) The distribution given by the pmf

$$
p(k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}
$$

for $N \geq 1,0 \leq K \leq N, 0 \leq n \leq N$ and $k=\max (0, n+K-N), \ldots, \min (n, K) ; \quad$ (4 marks)
(c) The distribution given by the pdf

$$
f(x)=C \exp [b x-\eta \exp (b x)]
$$

for $x>0, b>0, \eta>0$ and C a constant;
(d) The distribution given by the pdf

$$
f(x)=C x^{-\alpha-1} \exp \left(-\frac{\beta}{x}\right)
$$

for $x>0, \alpha>0, \beta>0$ and C a constant;
(e) The distribution given by the cdf

$$
F(x)=[1+\exp (-a x)]^{-b}
$$

for $-\infty<x<\infty, a>0$ and $b>0$.

B4. (a) If X is an absolutely continuous random variable with cdf $F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
(b) Suppose $X_{1}, X_{2}, \ldots, X_{k}$ are losses on k investments. Suppose also $X_{1}, X_{2}, \ldots, X_{k}$ are independent $N\left(\mu_{i}, \sigma_{i}^{2}\right), i=1,2, \ldots, k$ random variables. Let $T=X_{1}+X_{2}+\cdots+X_{k}$ denote the total loss.
(i) Determine the distribution of T;
(ii) Derive the corresponding $\operatorname{VaR}_{p}(T)$;
(iii) Derive the corresponding $\operatorname{ES}_{p}(T)$.
(c) Suppose $X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}$ is a random sample on X_{i} in (b). Suppose also $X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}$ and $X_{j, 1}, X_{j, 2}, \ldots, X_{j, n}$ are independent for $i \neq j$.
(i) Write down the joint likelihood function of $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ and $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{k}^{2}$;
(ii) Show that the maximum likelihood estimators are

$$
\widehat{\mu_{i}}=\frac{1}{n} \sum_{j=1}^{n} X_{i, j}
$$

and

$$
\widehat{\sigma_{i}^{2}}=\frac{1}{n} \sum_{j=1}^{n}\left(X_{i, j}-\widehat{\mu_{i}}\right)^{2} ;
$$

(iii) Show that $\widehat{\mu_{i}}$ is unbiased and consistent for μ_{i};
(iv) Show that $\widehat{\sigma_{i}^{2}}$ is biased and consistent for σ_{i}^{2};
(v) Deduce the maximum likelihood estimators of $\operatorname{VaR}_{p}(T)$ and $\mathrm{ES}_{p}(T)$.

B5. Suppose a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments say $X_{i}, i=1,2, \ldots, k$ are dependent random variables with joint survival function

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left[\max \left(\frac{x_{1}}{a_{1}}, \frac{x_{2}}{a_{2}}, \ldots, \frac{x_{k}}{a_{k}}\right)\right]^{-a}
$$

for $a>0$ and $x_{i}>a_{i}, i=1,2, \ldots, k$, where both $a>0$ and $a_{i}>0, i=1,2, \ldots, k$ are unknown parameters.
(a) Show that the cdf of the minimum portfolio loss $T=\min \left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is

$$
F_{T}(t)=1-\left[\min \left(a_{1}, a_{2}, \ldots, a_{k}\right)\right]^{a} t^{-a}
$$

(b) Derive the corresponding pdf of T;
(c) Derive the corresponding $\operatorname{VaR}_{p}(T)$;
(d) Derive the corresponding $\mathrm{ES}_{p}(T)$;
(e) If $t_{1}, t_{2}, \ldots, t_{n}$ is a random sample on T derive the maximum likelihood estimates of a and $a_{1}, a_{2}, \ldots, a_{k}$.

