Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

Examiner:

20 January 2017
9:45am-12:45pm

> Answer ANY TWO questions in Section A.
> Answer ANY FOUR questions in Section B.

Electronic calculators are permitted provided that cannot store text.

SECTION A

Answer any TWO questions

A1. Suppose (X, Y) has the joint cdf specified by

$$
F_{X, Y}(x, y)=1-\exp \left(-x^{\alpha}\right)-\exp \left(-y^{\alpha}\right)+\left[\exp \left(x^{\alpha}\right)+\exp \left(y^{\alpha}\right)-1\right]^{-1}
$$

for $x>0, y>0$ and $\alpha>0$.
(a) Find the marginal cdfs of X and Y, that is $F_{X}(\cdot)$ and $F_{Y}(\cdot)$;
(b) Show that F_{X} belongs to the Gumbel max domain of attraction;
(c) Show that F_{Y} also belongs to the Gumbel max domain of attraction;
(d) Find a_{n} and b_{n} such that

$$
F_{X}^{n}\left(a_{n} x+b_{n}\right) \rightarrow \exp \{-\exp (-x)\}
$$

as $n \rightarrow \infty$;
(e) Find c_{n} and d_{n} such that

$$
F_{Y}^{n}\left(c_{n} x+d_{n}\right) \rightarrow \exp \{-\exp (-x)\}
$$

as $n \rightarrow \infty$;
(f) Find the limiting cdf of $F_{X, Y}^{n}\left(a_{n} x+b_{n}, c_{n} y+d_{n}\right)$ as $n \rightarrow \infty$;
(g) Are the extremes of (X, Y) completely independent? Justify your answer.

A2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$ to be a copula.
Show each of the following is a copula.
(a) The copula defined by $C\left(u_{1}, u_{2}\right)=\alpha C_{1}\left(u_{1}, u_{2}\right)+(1-\alpha) C_{2}\left(u_{1}, u_{2}\right)$ for $0<\alpha<1$, where C_{1} and C_{2} are valid copulas.
(b) The copula defined by $C\left(u_{1}, u_{2}\right)=\frac{u_{1} u_{2}}{u_{1}+u_{2}-u_{1} u_{2}}$.
(c) The copula defined by $C\left(u_{1}, u_{2}\right)=u_{1} u_{2}+\alpha u_{1} u_{2}\left(1-u_{1}\right)\left(1-u_{2}\right)$ for $-1<\alpha<1$. (4 marks)
(d) The copula defined by $C\left(u_{1}, u_{2}\right)= \begin{cases}\max \left(u_{1}+u_{2}-1, t\right), & \text { if } t \leq u_{1} \leq 1, t \leq u_{2} \leq 1, \\ \min \left(u_{1}, u_{2}\right), & \text { otherwise } 0<\end{cases}$ $t<1$.

A3. Consider a bivariate distribution specified by the joint survival function

$$
\bar{G}(x, y)=\exp \left\{-(x+y) \sum_{i=1}^{k} \alpha_{i} A_{i}\left(\frac{y}{x+y}\right)\right\}
$$

for $x>0$ and $y>0$, where $A_{i}, i=1,2, \ldots, k$ are convex functions on $[0,1]$ satisfying $A_{i}(0)=1$, $A_{i}(1)=1$ and $\max (w, 1-w) \leq A_{i}(w) \leq 1$ for all w and $\alpha_{i}, i=1,2, \ldots, k$ are non-negative and sum to 1 .
(a) Show that the distribution is a bivariate extreme value distribution;
(b) Derive the joint cumulative distribution function;
(c) Derive the conditional cumulative distribution function of Y given $X=x$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$;
(d) Derive the conditional cumulative distribution function of X given $Y=y$. You may express this in terms of $A_{i}^{\prime}(w)$, the first derivative of $A_{i}(w)$;
(e) Derive the joint probability density function. You may express this in terms of $A_{i}^{\prime}(w)$ and $A_{i}^{\prime \prime}(w)$, the first and second derivatives of $A_{i}(w)$.

SECTION B

Answer any FOUR questions

B1. Suppose a portfolio consists of N investments, where N is a Poisson (θ) random variable. Suppose the losses on the investments $X_{1}, X_{2}, \ldots, X_{N}$ are independent uniform $[-a, a]$ random variables independent of N. Let $T=\max \left(X_{1}, X_{2}, \ldots, X_{N}\right)$ denote the maximum portfolio loss.
(a) Determine the cumulative distribution function of T conditional on $N=n$;
(b) Hence, determine the unconditional cumulative distribution function of T;
(c) Hence, deduce the unconditional probability density function of T;
(d) Find the moment generating function of T;
(e) Find the value at risk of T;
(f) Find the expected shortfall of T.

B2. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cdfs of each of the three extreme value distributions.
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
(4 marks)
(c) Consider a class of distributions defined by the pdf

$$
f(x)=C g(x) G^{a-1}(x)[1-G(x)]^{b-1}
$$

where $a>0, b>0, G(\cdot)$ is a cdf, $g(x)=d G(x) / d x$ and C is a constant. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.
(12 marks)
(Total marks: 20)

B3. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The distribution given by the pmf

$$
p(k)=\frac{1}{N}
$$

for $k=1,2, \ldots, N$;
(b) The distribution given by the pmf

$$
p(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

for $n \geq 1,0<p<1$ and $k=0,1, \ldots, n$;
(c) The distribution given by the pdf

$$
f(x)=\frac{1}{(\log b-\log a) x}, 0<a<x<b<\infty ;
$$

(d) The distribution given by the cdf

$$
F(x)=\left[1-\exp \left(-x^{2}\right)\right]^{a}, a>0, x>0 ;
$$

(e) The distribution given by the cdf

$$
F(x)=1-\left[1-\exp \left(-x^{-1}\right)\right]^{a}, a>0, x>0 .
$$

B4. (a) If X is an absolutely continuous random variable with $\operatorname{cdf} F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
(b) Suppose X is a random variable with pdf given by

$$
f(x)=\frac{3 x^{2}}{2 a^{3}}
$$

for $-a<x<a$.
(i) Show that the corresponding cdf is

$$
F(x)=\frac{x^{3}+a^{3}}{2 a^{3}}
$$

$$
\begin{equation*}
\text { for }-a<x<a \text {; } \tag{2marks}
\end{equation*}
$$

(ii) Derive the corresponding $\operatorname{VaR}_{p}(X)$;
(iii) Derive the corresponding $\mathrm{ES}_{p}(X)$.
(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample on X in (b).
(i) Write down the likelihood function of a;
(ii) Show that the maximum likelihood estimator of a is

$$
\widehat{a}=\max \left[\max \left(X_{1}, X_{2}, \ldots, X_{n}\right),-\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right] ;
$$

(iii) Deduce the maximum likelihood estimators of $\operatorname{VaR}_{p}(X)$ and $\mathrm{ES}_{p}(X)$;
(iv) Let $Z=\max \left[\max \left(X_{1}, X_{2}, \ldots, X_{n}\right),-\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]$. Show that the cdf of Z is

$$
F_{Z}(z)=\left[\frac{z^{3}}{a^{3}}\right]^{n}
$$

$$
\begin{equation*}
\text { for } z>0 \tag{3marks}
\end{equation*}
$$

(v) Hence, show that the maximum likelihood estimator \widehat{a} is biased but consistent for a; (2 marks)
(vi) Hence, show that the maximum likelihood estimator of $\operatorname{VaR}_{p}(X)$ is also biased but consistent for $\operatorname{VaR}_{p}(X)$;
(vii) Hence, show that the maximum likelihood estimator of $\mathrm{ES}_{p}(X)$ is also biased but consistent for $\mathrm{ES}_{p}(X)$.

B5. Suppose a portfolio is made up of k investments where k is known. Suppose also that the losses on the investments say $X_{i}, i=1,2, \ldots, k$ are dependent random variables with joint survival function

$$
\bar{F}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\left(1+\frac{1}{\theta} \sum_{i=1}^{k} x_{i}\right)^{-\alpha}
$$

for $x_{i}>0, i=1,2, \ldots, k$, where both $\theta>0$ and $\alpha>0$ are unknown parameters.
(a) Show that the joint pdf of $X_{1}, X_{2}, \ldots, X_{k}$ is

$$
f\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\frac{\alpha(\alpha+1) \cdots(\alpha+k-1)}{\theta^{k}}\left(1+\frac{1}{\theta} \sum_{i=1}^{k} x_{i}\right)^{-\alpha-k}
$$

(b) Show that the pdf of the total portfolio loss $S=X_{1}+\cdots+X_{k}$ is

$$
f_{S}(s)=\frac{\alpha(\alpha+1) \cdots(\alpha+k-1)}{k!\theta^{k}} s^{k}\left(1+\frac{s}{\theta}\right)^{-\alpha-k} .
$$

You may use the following fact without proof:

$$
\int_{0}^{s} \int_{0}^{s-x_{1}} \cdots \int_{0}^{s-x_{1} \cdots \cdots-x_{k-1}} d x_{k} \cdots d x_{2} d x_{1}=\frac{s^{k}}{k!}
$$

(c) Show that the cdf of the total portfolio loss $S=X_{1}+\cdots+X_{k}$ is

$$
F_{S}(s)=\frac{\theta \alpha(\alpha+1) \cdots(\alpha+k-1)}{k!} B_{s /(s+\theta)}(k+1, \alpha-1),
$$

where

$$
B_{x}(a, b)=\int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

denotes the incomplete beta function;
(d) Determine the nth moment of S;
(e) If $s_{1}, s_{2}, \ldots, s_{n}$ is a random sample on S derive the maximum likelihood estimates of θ and α.

