Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

Examiner:

19 January 2016

14:00pm-17:00pm

Answer ANY TWO questions in Section A. Answer ANY FOUR questions in Section B.

Electronic calculators are permitted provided that cannot store text.

SECTION A

Answer any **TWO** questions

A1. Suppose (X,Y) has the joint cdf specified by

$$F_{X,Y}(x,y) = [1 + \exp(-x) + \exp(-y) + (1 - \alpha)\exp(-x - y)]^{-1}$$

for $-\infty < x < \infty$, $-\infty < y < \infty$ and $0 < \alpha < 1$.

- (a) Find the marginal cdfs of X and Y, that is $F_X(\cdot)$ and $F_Y(\cdot)$; (3 marks)
- (b) Show that F_X belongs to the Gumbel max domain of attraction; (3 marks)
- (c) Show that F_Y also belongs to the Gumbel max domain of attraction; (2 marks)
- (d) Find a_n and b_n such that

$$F_X^n(a_nx+b_n) \to \exp\{-\exp(-x)\}$$

as
$$n \to \infty$$
; (3 marks)

(e) Find c_n and d_n such that

$$F_V^n(c_nx+d_n) \to \exp\left\{-\exp(-x)\right\}$$

as
$$n \to \infty$$
; (2 marks)

- (f) Find the limiting cdf of $F_{X,Y}^n(a_nx + b_n, c_ny + d_n)$ as $n \to \infty$; (5 marks)
- (g) Are the extremes of (X, Y) completely independent? Justify your answer. (2 marks)

A2. State the conditions in full for $C(u_1, u_2)$, $0 \le u_1, u_2 \le 1$ to be a copula. (4 marks)

Show each of the following is a copula.

- (a) The copula defined by $C(u_1, u_2) = [\alpha (\min (u_1, u_2))^m + (1 \alpha)u_1^m u_2^m]^{1/m}$ for $0 < \alpha < 1$ and m > 0.
- (b) The copula defined by $C(u_1, u_2) = \max(u_1 + u_2 1, 0)$. (4 marks)
- (c) The copula defined by $C(u_1, u_2) = \min(u_1^a, u_2^b) \min(u_1^{1-a}, u_2^{1-b})$ for 0 < a, b < 1. (4 marks)
- (d) The copula defined by $C(u_1, u_2) = \exp\left\{-\left[\left(-\log u_1\right)^{\theta} + \left(-\log u_2\right)^{\theta}\right]^{1/\theta}\right\}$ for $\theta > 0$. (4 marks)

A3. Consider a bivariate distribution specified by the joint survival function

$$\overline{G}(x,y) = \exp\left\{-x - y + (\theta + \phi)y - \frac{\theta y^2}{x+y} - \frac{\phi y^3}{(x+y)^2}\right\}$$

for x > 0, y > 0, $\theta \ge 0$, $\phi \ge 0$, $\theta + 3\phi \ge 0$, $\theta + \phi \le 1$ and $\theta + 2\phi \le 1$.

- (a) Show that the distribution is a bivariate extreme value distribution; (6 marks)
- (b) Derive the joint cumulative distribution function; (2 marks)
- (c) Derive the conditional cumulative distribution function of Y given X = x; (4 marks)
- (d) Derive the conditional cumulative distribution function of X given Y=y; (4 marks)
- (e) Derive the joint probability density function. (4 marks)

SECTION B

Answer any **FOUR** questions

- **B1.** Suppose a portfolio consists of N investments, where N is a Geometric (θ) random variable. Suppose the losses on the investments X_1, X_2, \ldots, X_N are independent and identical Exponential (λ) random variables independent of N. Let $T = X_1 + X_2 + \cdots + X_N$ denote the total portfolio loss.
 - (a) Show that the moment generating function of X_i is

$$M_{X_i}(t) = \frac{\lambda}{\lambda - t}$$

for $t < \lambda$; (2 marks)

- (b) Deduce the moment generating function of $T = X_1 + X_2 + \cdots + X_N$ conditional on N = n; (3 marks)
- (c) Hence, determine the distribution of $T = X_1 + X_2 + \cdots + X_N$ conditional on N = n; (3 marks)
- (d) Determine the unconditional distribution of $T = X_1 + X_2 + \dots + X_N$; (3 marks)
- (e) Find the mean and variance of T; (3 marks)
- (f) Find the value at risk of T; (3 marks)
- (g) Find the expected shortfall of T. (3 marks)

- **B2.** (a) Suppose X_1, X_2, \ldots, X_n is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_n = \max(X_1, X_2, \ldots, X_n)$. You must clearly specify the cdfs of each of the three extreme value distributions. (6 marks)
- (b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions. (6 marks)
- (c) Consider a class of distributions defined by the cdf

$$F(x) = 1 - \left\{1 - \left\{1 - \left[1 - G(x)\right]^a\right\}^b\right\}^\theta,$$

where $a>0,\ b>0,\ G(\cdot)$ is a cdf and g(x)=dG(x)/dx. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points. (8 marks)

B3. Determine the domain of attraction (if there is one) for each of the following distributions:

(a) The beta distribution given by the pdf

$$f(x) = Cx^{\alpha - 1}(1 - x)^{\beta - 1}, 0 < x < 1, \alpha > 0, \beta > 0,$$

where C is a fixed constant;

(4 marks)

(b) The distribution given by the pmf

$$p(k) = \begin{cases} 1/2, & \text{if } k = -1, 1, \\ 0, & \text{otherwise;} \end{cases}$$

(4 marks)

(c) The Cauchy distribution given by the pdf

$$f(x) = \pi^{-1} (1 + x^2)^{-1}, -\infty < x < \infty;$$

(4 marks)

(d) The Laplace distribution given by the pdf

$$f(x) = 0.5e^{-|x|}, -\infty < x < \infty;$$

(4 marks)

(e) The Fréchet distribution given by the cdf

$$F(x) = \exp\{-x^{-1}\}, x > 0.$$

(4 marks)

B4. (a) If X is an absolutely continuous random variable with cdf $F(\cdot)$, then define $VaR_p(X)$, the Value at Risk of X, and $ES_p(X)$, the Expected Shortfall of X, explicitly. (2 marks)

(b) Suppose X is a Pareto random variable with pdf given by

$$f(x) = aK^ax^{-a-1}$$

for a > 0, K > 0 and x > K.

(i) Show that the corresponding cdf is

$$F(x) = 1 - \left(\frac{K}{x}\right)^a$$

for x > K; (2 marks)

- (ii) Derive the corresponding $VaR_p(X)$; (2 marks)
- (iii) Derive the corresponding $ES_p(X)$. (2 marks)
 - (c) Suppose X_1, X_2, \ldots, X_n is a random sample on X.
 - (i) Write down the joint likelihood function of a and K; (1 marks)
- (ii) Show that the maximum likelihood estimator of K is $\widehat{K} = \min(X_1, X_2, \dots, X_n)$; (2 marks)
- (iii) Show that the maximum likelihood estimator of a is $\widehat{a} = n \left[-n \log \widehat{K} + \sum_{i=1}^{n} \log X_i \right]^{-1}$; (2 marks)
- (iv) Deduce the maximum likelihood estimators of $VaR_0(X)$ and $ES_0(X)$; (2 marks)
 - (v) Show that the maximum likelihood estimators in part iv) are biased [Hint: derive the distribution of $\min(X_1, X_2, \dots, X_n)$]. (5 marks)

- **B5.** Suppose a portfolio is made up of m investments where m is known. Suppose also that the losses on the investments say X_i , i = 1, 2, ..., m are independent and identical uniform [a, b] random variables, where both a and b are unknown parameters. Let $Y = \max(X_1, ..., X_m)$. Do the following:
 - (a) Show that the cdf of Y is

$$F_Y(y) = \left[\frac{y-a}{b-a}\right]^m;$$

(2 marks)

- (b) Find the pdf of Y; (2 marks)
- (c) Find the mean and variance of Y; (4 marks)
- (d) Find the value at risk of Y; (2 marks)
- (e) Find the expected shortfall of Y; (4 marks)
- (f) If $y_1, y_2, ..., y_n$ is a random sample on Y derive the maximum likelihood estimates of a and b. (6 marks)