Three hours

To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables

THE UNIVERSITY OF MANCHESTER

EXTREME VALUES AND FINANCIAL RISK

> Examiner:

19 January 2016
14:00pm-17:00pm

Answer ANY TWO questions in Section A.
Answer ANY FOUR questions in Section B.

Electronic calculators are permitted provided that cannot store text.

SECTION A

Answer any TWO questions

A1. Suppose (X, Y) has the joint cdf specified by

$$
F_{X, Y}(x, y)=[1+\exp (-x)+\exp (-y)+(1-\alpha) \exp (-x-y)]^{-1}
$$

for $-\infty<x<\infty,-\infty<y<\infty$ and $0<\alpha<1$.
(a) Find the marginal cdfs of X and Y, that is $F_{X}(\cdot)$ and $F_{Y}(\cdot)$;
(b) Show that F_{X} belongs to the Gumbel max domain of attraction;
(c) Show that F_{Y} also belongs to the Gumbel max domain of attraction;
(d) Find a_{n} and b_{n} such that

$$
F_{X}^{n}\left(a_{n} x+b_{n}\right) \rightarrow \exp \{-\exp (-x)\}
$$

as $n \rightarrow \infty$;
(e) Find c_{n} and d_{n} such that

$$
F_{Y}^{n}\left(c_{n} x+d_{n}\right) \rightarrow \exp \{-\exp (-x)\}
$$

as $n \rightarrow \infty$;
(f) Find the limiting cdf of $F_{X, Y}^{n}\left(a_{n} x+b_{n}, c_{n} y+d_{n}\right)$ as $n \rightarrow \infty$;
(g) Are the extremes of (X, Y) completely independent? Justify your answer.

A2. State the conditions in full for $C\left(u_{1}, u_{2}\right), 0 \leq u_{1}, u_{2} \leq 1$ to be a copula.
Show each of the following is a copula.
(a) The copula defined by $C\left(u_{1}, u_{2}\right)=\left[\alpha\left(\min \left(u_{1}, u_{2}\right)\right)^{m}+(1-\alpha) u_{1}^{m} u_{2}^{m}\right]^{1 / m}$ for $0<\alpha<1$ and $m>0$.
(b) The copula defined by $C\left(u_{1}, u_{2}\right)=\max \left(u_{1}+u_{2}-1,0\right)$.
(c) The copula defined by $C\left(u_{1}, u_{2}\right)=\min \left(u_{1}^{a}, u_{2}^{b}\right) \min \left(u_{1}^{1-a}, u_{2}^{1-b}\right)$ for $0<a, b<1$. (4 marks)
(d) The copula defined by $C\left(u_{1}, u_{2}\right)=\exp \left\{-\left[\left(-\log u_{1}\right)^{\theta}+\left(-\log u_{2}\right)^{\theta}\right]^{1 / \theta}\right\}$ for $\theta>0$. (4 marks)

A3. Consider a bivariate distribution specified by the joint survival function

$$
\bar{G}(x, y)=\exp \left\{-x-y+(\theta+\phi) y-\frac{\theta y^{2}}{x+y}-\frac{\phi y^{3}}{(x+y)^{2}}\right\}
$$

for $x>0, y>0, \theta \geq 0, \phi \geq 0, \theta+3 \phi \geq 0, \theta+\phi \leq 1$ and $\theta+2 \phi \leq 1$.
(a) Show that the distribution is a bivariate extreme value distribution;
(b) Derive the joint cumulative distribution function;
(c) Derive the conditional cumulative distribution function of Y given $X=x$;
(d) Derive the conditional cumulative distribution function of X given $Y=y$;
(e) Derive the joint probability density function.

SECTION B

Answer any FOUR questions

B1. Suppose a portfolio consists of N investments, where N is a Geometric (θ) random variable. Suppose the losses on the investments $X_{1}, X_{2}, \ldots, X_{N}$ are independent and identical Exponential (λ) random variables independent of N. Let $T=X_{1}+X_{2}+\cdots+X_{N}$ denote the total portfolio loss.
(a) Show that the moment generating function of X_{i} is

$$
M_{X_{i}}(t)=\frac{\lambda}{\lambda-t}
$$

for $t<\lambda$;
(b) Deduce the moment generating function of $T=X_{1}+X_{2}+\cdots+X_{N}$ conditional on $N=n$; (3 marks)
(c) Hence, determine the distribution of $T=X_{1}+X_{2}+\cdots+X_{N}$ conditional on $N=n$; (3 marks)
(d) Determine the unconditional distribution of $T=X_{1}+X_{2}+\cdots+X_{N}$;
(e) Find the mean and variance of T;
(f) Find the value at risk of T;
(g) Find the expected shortfall of T.

B2. (a) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample with cdf $F(\cdot)$. State the Extremal Types Theorem for $M_{n}=\max \left(X_{1}, X_{2}, \ldots, X_{n}\right)$. You must clearly specify the cdfs of each of the three extreme value distributions.
(b) State in full the necessary and sufficient conditions for $F(\cdot)$ to belong to the domain of attraction of each of the three extreme value distributions.
(6 marks)
(c) Consider a class of distributions defined by the cdf

$$
F(x)=1-\left\{1-\left\{1-[1-G(x)]^{a}\right\}^{b}\right\}^{\theta}
$$

where $a>0, b>0, \theta>0, G(\cdot)$ is a cdf and $g(x)=d G(x) / d x$. Show that F belongs to the same max domain of attraction as G. You may assume that F and G have the same upper end points.

B3. Determine the domain of attraction (if there is one) for each of the following distributions:
(a) The beta distribution given by the pdf

$$
f(x)=C x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1, \alpha>0, \beta>0
$$

where C is a fixed constant;
(b) The distribution given by the pmf

$$
p(k)= \begin{cases}1 / 2, & \text { if } k=-1,1 \\ 0, & \text { otherwise }\end{cases}
$$

(c) The Cauchy distribution given by the pdf

$$
f(x)=\pi^{-1}\left(1+x^{2}\right)^{-1},-\infty<x<\infty ;
$$

(d) The Laplace distribution given by the pdf

$$
f(x)=0.5 e^{-|x|},-\infty<x<\infty ;
$$

(e) The Fréchet distribution given by the cdf

$$
F(x)=\exp \left\{-x^{-1}\right\}, x>0
$$

B4. (a) If X is an absolutely continuous random variable with $\operatorname{cdf} F(\cdot)$, then define $\operatorname{VaR}_{p}(X)$, the Value at Risk of X, and $\mathrm{ES}_{p}(X)$, the Expected Shortfall of X, explicitly.
(b) Suppose X is a Pareto random variable with pdf given by

$$
f(x)=a K^{a} x^{-a-1}
$$

for $a>0, K>0$ and $x>K$.
(i) Show that the corresponding cdf is

$$
F(x)=1-\left(\frac{K}{x}\right)^{a}
$$

for $x>K$;
(ii) Derive the corresponding $\operatorname{VaR}_{p}(X)$;
(iii) Derive the corresponding $\operatorname{ES}_{p}(X)$.
(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample on X.
(i) Write down the joint likelihood function of a and K;
(ii) Show that the maximum likelihood estimator of K is $\widehat{K}=\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$; (2 marks)
(iii) Show that the maximum likelihood estimator of a is $\widehat{a}=n\left[-n \log \widehat{K}+\sum_{i=1}^{n} \log X_{i}\right]^{-1} ;(2$ marks $)$
(iv) Deduce the maximum likelihood estimators of $\operatorname{VaR}_{0}(X)$ and $\mathrm{ES}_{0}(X)$;
(v) Show that the maximum likelihood estimators in part iv) are biased [Hint: derive the distribution of $\left.\min \left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]$.

B5. Suppose a portfolio is made up of m investments where m is known. Suppose also that the losses on the investments say $X_{i}, i=1,2, \ldots, m$ are independent and identical uniform $[a, b]$ random variables, where both a and b are unknown parameters. Let $Y=\max \left(X_{1}, \ldots, X_{m}\right)$. Do the following:
(a) Show that the cdf of Y is

$$
F_{Y}(y)=\left[\frac{y-a}{b-a}\right]^{m} ;
$$

(b) Find the pdf of Y;
(c) Find the mean and variance of Y;
(d) Find the value at risk of Y;
(e) Find the expected shortfall of Y;
(f) If $y_{1}, y_{2}, \ldots, y_{n}$ is a random sample on Y derive the maximum likelihood estimates of a and b.

